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Abstract

Medical image segmentation is a crucial computer vision task in medical image
analysis. Recently, the Segment Anything Model (SAM) has made significant
advancements in natural image segmentation. Despite current studies indicating
the potential of SAM to revolutionise medical image segmentation using parameter-
efficient fine-tuning techniques, it still faces three primary challenges. Firstly,
these methods still rely on the large vision transformer of SAM, which is computa-
tionally expensive. Secondly, the point and box prompt modes of SAM demand
manual annotations, which are time-consuming and expensive in medical sce-
narios and reduce their clinical applicability. Thirdly, SAM leverages large-size
patches to predict masks, resulting in the loss of fine-grained details. To address
these limitations, in this paper, we propose a fast-transferring architecture for
adapting SAM to domain-generalised medical image segmentation, named Med-
FastSAM. Specifically, we introduce a lightweight knowledge aggregation encoder
that combines the distilled natural image knowledge with learned medical-specific
information for producing feature representation. Moreover, we devise a coarse
prompt module to automatically generate coarse masks for guiding segmenta-
tion decoding. Furthermore, we design a multi-scale feature decoder to produce
precise segmentation masks. Eventually, extensive experiments on four bench-
mark datasets have been conducted to evaluate the proposed model. The result
demonstrates that Med-FastSAM outperforms state-of-the-art methods without
any manual prompts. Especially, our model shows excellent zero-shot domain
generalisation performance by using only 15.45% parameters compared to the
standard SAM. The code for our work and more technical details can be found at
https://github.com/GalacticHogrider/Med-FastSAM.

1 Introduction

Medical image segmentation aims to delineate disease regions in complex medical imaging accurately,
which is vital for various clinical applications, including diagnosis, treatment planning, and surgical
navigation [17]. In the last decade, computer-aid automatic segmentation methods have received the
most attention from pathologists [25]. Specifically, deep neural networks, such as U-Net [24], have
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significantly contributed to the field. It designs an encoder-decoder structure with symmetric skip
connections that combine high-resolution features from the contracting path with the up-sampled
output. Inspired by the architecture of U-Net, various variants have been introduced to further improve
its performance in segmentation [10, 11]. However, such models demonstrate poor generalisation
performance due to the limitation of the local receptive field. The Segment Anything Model (SAM)
[3] has emerged as a significant advancement in natural image segmentation tasks. SAM leverages
a robust vision transformer to achieve state-of-the-art generalization performance, demonstrating
its capability to handle complex scenes with high accuracy and efficiency [6]. While beneficial,
adapting SAM to medical image segmentation faces significant challenges. Due to a large Vision
Transformer (ViT) [5] as the image encoder, SAM requires huge computational costs. Particularly,
the ViT-H image encoder in SAM has 632M parameters. Medical image datasets usually contain
limited samples that are difficult to support the global fine-tuning of SAM. Although existing medical
SAMs [28, 33] utilise parameter-efficient fine-tuning techniques to reduce the parameters during
training, they are still based on the large ViT encoder. Secondly, to generate a precise mask, SAM
usually requires manual annotations (e.g. point and box) as prompts, which are time-consuming and
expensive in medical scenarios as they depend on expert knowledge. Thirdly, the mask decoder of
SAM primarily relies on high-level features extracted by the transformer [12]. This can lead to losing
fine-grained details, which are crucial for boundary-sensitive medical segmentation tasks.

To address these issues, we propose a novel architecture for adapting SAM to domain-generalised
medical image segmentation, named Med-FastSAM. It includes three modules: lightweight knowl-
edge aggregation encoder, coarse prompt encoder and multi-scale feature decoder. Specifically, the
Lightweight Knowledge Aggregation Encoder (LKA-Encoder) combines the natural image knowl-
edge, distilled from SAM, with learned medical-specific information to refine feature representation,
which reduces model parameters and computational costs. To eliminate the demand for manual
prompts, we devise a Coarse Prompt Encoder (CP-Encoder) that automatically generates coarse
masks, providing sufficient prompt information without requiring manual annotations. Additionally,
we present a Multi-Scale Feature Decoder (MSF-Decoder) to further enhance segmentation accuracy
by incorporating with fine-grained details at different scales.

The contributions of our work are summarized as follows:

• We propose the LKA-Encoder to reduce the computational costs of feature extraction. The
image encoder leverages a group attention mechanism and a hybrid expert head to effectively
aggregate both natural and medical domain-specific knowledge, enhancing the efficiency of
transfer learning.

• We introduce the CP-Encoder to eliminate the requirement of laborious annotations for
prompts and improve the applicability in clinical applications. By utilising traditional image
processing methods, CP-Encoder automatically generates coarse masks as prompts, guiding
the segmentation decoding.

• We devise the MSF-Decoder to achieve the prediction of segmentation masks. It employs a
multi-scale sampling approach to capture local fine-grained details, improving the precision
of the segmentation masks.

• We take LKA-Encoder, CP-Encoder and MSF-Decoder to build our Med-FastSAM. We
evaluate the proposed framework on four datasets, and the results demonstrate that Med-
FastSAM outperforms state-of-the-art methods without any manual annotations. Notably,
our model exhibits superior domain generalization capabilities.

2 Related Work

2.1 Medical Image Segmentation

Medical image segmentation has traditionally relied on methods like Otsu thresholding and the
Watershed algorithm, which, despite their early successes, struggle with generalization and robust-
ness across different imaging conditions. The introduction of U-Net [24] marked a significant
advancement in the field, with its encoder-decoder architecture and skip connections allowing for
effective contextual feature capture and precise segmentation results. However, the performance
of U-Net is highly task-dependent, and its generalization to unseen domains remains a notable
challenge [15, 18, 16]. To overcome these limitations, several U-Net variants have been developed.
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Figure 1: The overview of proposed Med-FastSAM framework. (a) Med-FastSAM contains three
innovative components: LKA-Encoder, CP-Encoder and MSF-Decoder. (b) Feature-Level Distillation.
(c) Group Attention.

U-Net++ [34] enhances feature propagation with denser skip connections, while Attention U-Net
[23] incorporates attention mechanisms to improve focus on relevant regions. TransUNet [2] and
Swin-UNet [1] introduce Transformer-based architectures to better handle long-range dependencies,
and nnU-Net [11] dynamically adjusts its architecture to suit various tasks. ACC-UNet [10] further
refines segmentation accuracy through additional attention mechanisms. Despite these improvements,
many of these models have not been extensively trained on large-scale datasets, which limits their
generalizability. Our Med-FastSAM model addresses these generalization issues by optimizing the
architecture and training strategies, enabling superior performance across diverse medical imaging
datasets.

2.2 Segment Anything in Medical Image Segmentation

The Segment Anything Model (SAM) [13] has demonstrated exceptional flexibility in handling a
wide range of segmentation tasks, particularly in natural image processing. The robust ViT encoder
of SAM, coupled with a prompt encoder and versatile decoder, has made it adaptable to various
challenges, including medical image segmentation. Models like SAMMI [9] and MedSAM [20]
apply global fine-tuning of SAM to multiple medical datasets, achieving strong performance but at
a high computational cost. To reduce this burden, models such as SAMed [33] and Med-SA [28]
employ techniques like Adapters and LoRA for parameter-efficient fine-tuning, reducing the number
of trainable parameters. However, they still maintain large overall model sizes due to the extensive
architecture of the ViT encoder. Furthermore, reliance on manual prompts in these models introduces
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challenges in clinical settings, where manual annotations are time-consuming and can introduce
bias. In contrast, our Med-FastSAM model addresses these limitations by achieving automatic
prompt generation, eliminating the need for manual annotations while maintaining a smaller and
more efficient model architecture, making it more practical for clinical use.

3 Method

The architecture of our Med-FastSAM is illustrated in Fig 1a. It is mainly composed of LKA-
Encoder, CP-Encoder and MSF-Decoder. Given a medical image, it is first fed into the LKA-Encoder,
extracting hybrid image embeddings. Meanwhile, the CP-Encoder processes the image to generate a
coarse prompt for assisting segmentation decoding. Then, the MSF-Decoder incorporates the image
embedding and local fine-grained features at different scales to predict segmentation masks.

3.1 Lightweight Knowledge Aggregation Encoder

The standard SAM contains a large image encoder that costs huge computational resources, degrading
its applicability in real-world scenarios [31]. Although existing parameter-efficient fine-tuning
techniques reduce parameters in the training phase, they still rely on the large ViT [5] encoder and
additional trainable parameters increase the size of the entire model [7, 8]. To address this issue, we
propose the Lightweight Knowledge Aggregation Encoder (LKA-Encoder) that utilizes knowledge
distillation to reduce memory costs of SAM-based knowledge and leverages a set of learnable
parameters for efficient fine-tuning in medical scenarios. Specifically, the image encoder of SAM [13]
FSAM mainly involves a set of pre-trained functions {Qnat(·),Knat(·), Vnat(·),Ψnat(·)} ⊂ Fsam,
where Qnat(·), Knat(·) and Vnat(·) stand for the query, key and value branches of the multi-head
attention layer and Ψnat(·) is a MLP layer. To reduce computational costs and inspired by [], we
adopt a feature-level knowledge distillation strategy to project the weight of these functions to a
lower-dimensional space d. In progress, the loss function LFLKD is defined as:

LFLKD =
1

N

N∑
z=1

∣∣∣∣FSAM(uz)−FLKA(uz)
∣∣∣∣2
2
, (1)

where uz is a natural image sampled from 1% SA-1B dataset and FLKA(·) represents our LKA-
Encoder. Let the input patch embeddings be denoted by X ∈ R

H
p ×W

p ×d, where H , W , p and d stand
for height, width, patch size and number of channels, respectively. In LKA-Encoder, we devise a
Group Attention (GA) inspired by the split attention of CNN. As presented in Fig. 1c, the first branch
performs a general self-attention computation:

Anat = softmax(
Qkd

nat(X ) ·Kkd
nat(X )T√

d
) · V kd

nat(X ), (2)

where Anat ∈ R
H
p ×W

p ×d, {Qkd
nat(·),Kkd

nat(·), V kd
nat(·)} ⊂ FLKA includes the knowledge of nat-

ural images distilled from Eq. 2. The second branch contains a set of learnable parameters
{Qmed(·),Kmed(·), Vmed(·)} to adapt the attention map from natural to medical domains in a cas-
caded manner:

Amed = softmax(
Qmed(X ⊕Anat) ·Kmed(X ⊕Anat)

T

√
d

) · Vmed(X ⊕Anat), (3)

where ⊕ stands for the operation of element-wise addition. Then, Amed integrates with Anat to
generate rich image embeddings E that precisely focuses on the disease region:

E = Flinear(Anat ⊕Amed), (4)

where Flinear(·) is a projection layer. Furthermore, we devise a Hybrid Expert Head (HEH) to extend
the model capacity without unduly increasing computational overheads. It contains two parallel MLP
layers {Ψkd

nat(·),Ψmed(·)}. Similarly to GA, we compress the common knowledge from Ψnat(·) to
Ψkd

nat(·). Ψmed(·) aims to learn medical domain-specific knowledge. Then, we aggregate both outputs
with the residual style to update the image embeddings, as follows:

E ← E +Ψkd
nat(E) + Ψmed(E). (5)

On this basis, the proposed LKA-Encoder overcomes the demand for fine-tuning the large vision
transformer and achieves efficient transfer learning between natural and medical images.
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3.2 Coarse Prompt Encoder

The standard SAM mainly requires manual annotations as prompts[3] to assist segmentation de-
coding, which is time-consuming and expensive, limiting its applicability for clinical scenarios. To
overcome this challenge, we introduce the Coarse Prompt Encoder (CP-Encoder) that leverages Ostu
thresholding method to automatically generate coarse segmentation masks as prompts. Specifically,
Otsu is a traditional image processing method that automatically determines the optimal threshold to
separate the foreground from the background. The algorithm starts by computing the histogram h(·)
of the grayscale image I:

h(i) =
1

N

H∑
x=1

W∑
y=1

δ(I(x, y)− i), (6)

where δ is the Dirac delta function,N is the total number of pixels in the image, x and y are the pixel
coordinates. Then, the between-class variance σ2

B for each threshold t is defined as:

σ2
B(t) =

(
∑L−1

i=0 i · h(i) ·
∑t

i=0 h(i)−
∑t

i=0 i · h(i))2∑t
i=0 h(i) · (1−

∑t
i=0 h(i)) + ϵ

, (7)

where L represents the number of gray levels in the image, ϵ is a small constant to avoid division by
0. The optimal threshold t∗ is found by:

t∗ = argmax
t

σ2
B(t). (8)

The threshold value is then scaled back to the range [0, 1]. We discretise the values of the image to
either 0 or 1 using this threshold t∗. The coarse mask C is generated as follows:

C(x, y) =
{
1, if I(x, y) ≥ t∗

0, if I(x, y) < t∗
(9)

On this basis, we receive a coarse mask C corresponding to the input image. To convert this coarse
mask into a set of dense prompts P , we use a two-layer convolutional neural network (CNN) to
perform the downsampling operation:

P = F1×1
conv(σ(FLN(F2×2

conv(σ(FLN(F2×2
conv(C))))))), (10)

where F2×2
conv(·) is a 2× 2 convolution with stride 2, FLN(·) is LayerNorm, σ stands for the GELU

activation function and F1×1
conv(·) is a 1 × 1 for aligning the channel with the image embeddings

E . Overall, the proposed GKP-Encoder can produce a set of sufficient semantic prompt tokens
to promote medical image segmentation and eliminate the need for our Med-FastSAM on manual
annotations.

3.3 Multi-Scale Feature Decoder

The mask decoder of SAM [13] directly utilises, the tokens from large-size, patches to predict
masks, resulting in the loss of fine-grained details crucial for accurate medical image segmentation.
To address this issue, we propose the Multi-Scale Feature Decoder (MSF-Decoder) that provides
additional semantic information at different scales. Specifically, we first adopt the self-attention
mechanism to update the mask query embedding q. Then, we combine the image embedding with the
dense prompt embedding and conduct cross-attention with q:

D = softmax(
((E ⊕ P) + ϕ) · qT√

d
) · q ⊕ (E ⊕ P), (11)

where D is the updated embedding. ϕ represents the positional encoding and · is the matrix multi-
plication. Inspired by the U-shape architecture [24], for the input image, we additionally perform
patch embedding on the input images with different patch sizes p and then conduct multi-scale patch
merging. The generated two multi-scale embeddings are denoted as r1 and r2. We combine these
low-level semantic information maps with the updated embedding D, constructing a hierarchical
decoding workflow to predict segmentation maskM as follows:

M = σ(F2×2
up σ((FLN(F2×2

up (D) ⌢ r1) ⌢ r2))), (12)
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M← Finter(Φ(M ·Ψquery(q))), (13)

whereF2×2
up (·) stands for the upsampling operation with 2×2 kernel size (e.g. transpose convolution),

⌢ is the concatenation operation, Φ is the sigmoid operation and Finter(·) is a bilinear interpolation
function to recover the shape of segmentation masks. The predicted segmentation mask is supervised
by the weighted combination of focal loss [19] Lfocal and dice loss Ldice, as follows:

LM = λLfocal + (1− λ)Ldice, (14)

where λ is the coefficient to balance the weight of these two loss terms. Overall, our MSF-Decoder
utilises convolutions to capture local fine-grained details, improving the precision of the segmentation
mask.

4 Experiment

4.1 Datasets

To evaluate the effectiveness of the proposed Med-FastSAM framework, we first train our model
on the ISIC-2018 [4, 26] and MoNuSeg-2018 [14] datasets and follow their official guidelines to
construct training, validation and test sets. We further select two external datasets: PH2 [21] and
TNBC [22] as the unseen target domains. All images from the PH2 [21] and TNBC [22] datasets are
used for testing domain generalisation capabilities of models. The details are as follows:

4.1.1 ISIC-2018

The ISIC-2018 [4, 26] dataset focuses on dermoscopy images for skin lesion segmentation, which is
crucial for melanoma detection. It includes 2594 training images, 100 validation images, and 1000
test images with different image sizes. The dataset covers various body portions such as the back,
arms, and legs.

4.1.2 MoNuSeg-2018 Dataset

The MoNuSeg-2018 [14] dataset consists of histopathology images for nuclei segmentation. It is
collected from the liver, breast, colon, stomach, bladder, kidney and prostate organs. The dataset
contains 30 training images and 14 test images with the fixed image size of 1000× 1000.

4.1.3 PH2 Dataset

The PH2 [21] dataset includes 200 dermoscopy images of various pigmented skin lesions, such as
nevi and melanomas, primarily from the back and limbs. It serves as a benchmark for evaluating
lesion segmentation and diagnosis. All images have the same resolution of 767× 576.

4.1.4 TNBC Dataset

The TNBC [22] dataset contains 50 histopathology images of 512×512 sampled from triple-negative
breast cancer tissues. This dataset is particularly challenging due to the dense clustering and variability
of nuclei, making it essential for evaluating models in complex cancer pathology.

4.2 Implementation Details

All experiments are conducted with PyTorch 1.13.0 framework on a single NVIDIA RTX8000
(48GB) Tensor Core GPU, 64-core CPU, and 520G RAM. We set batch sizes and epochs to 4 and
200 respectively. An Adam optimizer with a learning rate of 5e-4 is used for training and the loss
coefficient λ is set as 0.8. We resize the original images into 1024 × 1024. Inspired by [30, 29],
we set d as 320 and p as 16 to construct our Med-FastSAM. For a fair comparison, all baseline
models use the same training configuration as our framework and all SAM models use ViT-B [5]
structure as the image encoder. To compare with the point prompt mode [13], these models apply the
ConnectedComponentsWithStats function in OpenCV to calculate the centroid of each object (e.g.
lesion, nuclei) as point prompts [9].
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Table 1: Comparison with state-of-the-arts on two source domains.

Methods Manual Tuned/ ISIC-2018 MoNuSeg-2018
Prompt Total (M) mIoU(%) Dice(%) mIoU(%) Dice(%)

U-Net [24]
✘

13.40/13.40 74.66 83.26 60.12 74.53
ACC-UNet [10] 16.68/16.68 75.89 84.72 64.06 77.76
nnU-Net [11] 30.60/30.60 78.21 86.43 67.52 80.52

SAM [13]

Point

4.06/93.74 76.41 85.34 66.66 79.93
SAMMI [9] 4.06/93.74 78.35 86.47 67.23 80.32
MedSAM [20] 4.06/93.74 76.93 85.61 62.23 76.32
Med-SA [28] 7.10/100.84 79.02 86.97 68.53 81.26
SAMed [33] 4.21/93.88 78.98 86.93 68.00 80.88
MobileSAM [32] 10.13/10.13 78.46 86.65 66.28 79.64
EfficientSAM [30] 25.38/25.38 76.87 85.53 67.80 80.72
RepViT-SAM [27] 9.98/9.98 77.01 85.72 64.40 78.29

Med-FastSAM ✘ 8.62/14.48 80.38 87.84 69.35 81.75

Table 2: Comparison with state-of-the-arts on two target domains.

Methods Manual ISIC-2018⇒ PH2 MoNuSeg-2018⇒ TNBC
Prompt mIoU(%) Dice(%) mIoU(%) Dice(%)

U-Net [24]
✘

77.56 86.70 36.19 50.02
ACC-UNet [10] 78.12 86.99 39.34 52.43
nnU-Net [11] 79.51 88.03 41.72 53.81

SAM [13]

Point

81.65 89.16 45.34 59.76
SAMMI [9] 81.93 89.29 46.16 60.84
MedSAM [20] 81.27 88.94 43.55 56.98
Med-SA [28] 82.71 90.32 46.65 60.92
SAMed [33] 82.54 90.10 46.28 60.73
MobileSAM [32] 81.36 89.01 45.17 59.53
EfficientSAM [30] 80.29 88.59 45.91 60.25
RepViT-SAM [27] 81.15 88.87 44.93 59.31

Med-FastSAM ✘ 83.48 90.62 47.89 62.26

Table 3: Ablation study of Med-FastSAM on the MoNuSeg dataset.
LKA-Encoder CP-Encoder MSF-Decoder mIoU(%) Dice(%) Param(M) FPSHEH GA

48.36 64.92 93.74 4.53
✓ 52.06 67.94 11.32 26.68
✓ ✓ 68.36 80.82 14.46 24.19
✓ ✓ ✓ 68.68 81.26 14.47 24.09
✓ ✓ ✓ ✓ 69.53 81.53 14.48 21.18

4.3 Comparison with State-of-the-Arts on Source Domains

To evaluate our Med-FastSAM in medical image segmentation, we conduct the comparison with state-
of-the-arts in skin lesion and nuclei segmentation tasks. Specifically, we select U-shape architectures
(i.e., U-Net [24], ACC-UNet [10] and nnU-Net [11]), SAM [13], medical SAMs (i.e., SAMMI [9]
and MedSAM [20]), PEFT SAMs (i.e., Med-SA [28] and SAMed [33]) and lightweight SAMs (i.e.,
MobileSAM [32], EfficientSAM [30] and RepViT-SAM [27]) as baselines. We first train all models
on ISIC-2018 [4, 26] and MoNuSeg-2018 [14] datasets, respectively. As shown in Table 1, among the
U-Net variants, nnU-Net achieves the best performance on ISIC-2018 with the Dice of 86.43% and
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Figure 2: Qualitative comparison on two source domains: ISIC-2018 and MoNuSeg-2018 and two
target domains: PH2 and TNBC.

80.52% while the proposed Med-FastSAM surpasses it with an improvement of 1.41% and 1.23%.
For foundation models, PEFT SAMs show better performance than Medical SAMs and lightweight
SAMs. In contrast, our Med-FastSAM framework outperforms these state-of-the-arts with the Dice
of 87.84% and 81.75%, which is 0.87% and 0.49% higher than Med-SA. Notably, Med-FastSAM
does not require any manual annotations as prompts, which is more clinical-friendly.

Furthermore, we report the tuned and total parameters for each segmentation architecture. It is
observed that the total parameters of U-Net variants are lower than SAM-based foundation models,
e.g., nnU-Net uses 32.64% parameters compared to SAM. On the other hand, foundation models
have the ability to provide generalised feature representations as they are pre-trained on a large-scale
dataset. Therefore, existing methods adopt the decoder-only strategy or PEFT techniques to adapt
SAM from natural to medical domains while reducing training complexity, e.g., Med-SA only tunes
7.04% of all parameters but the size of the final model does not decrease, which is still expensive.
Lightweight SAMs transfer the knowledge of SAM to small models, compressing the model size
but their performance is inferior to PEFT SAMs. On the contrary, our Med-FastSAM frameworks
use only 15.45% parameters compared to the standard SAM and outperform state-of-the-arts on two
datasets, achieving significant generalisation-efficiency trade-offs.

4.4 Comparison with State-of-the-Arts on Unseen Target Domains

In this section, we demonstrate the domain generalisation capabilities of Med-FastSAM on two
external datasets. Specifically, all trained models on ISIC-2018 and MoNuSeg-2018 datasets are
respectively evaluated on PH2 and TNBC datasets without any further fine-tuning. The results are
presented in Table 2. We can observe that all SAM-based frameworks perform better than U-Net
variants due to their larger image encoder and extra manual prompts, e.g., SAM achieves the Dice
of 89.16% and 59.76%, which is 1.13% and 5.95% higher than nnU-Net. Lightweight SAMs are
inferior to PEFT SAMs as the full-parameter fine-tuning method loses the common knowledge
pre-trained on the large-scale dataset. In contrast, our Med-FastSAM adopts a semi-parameter
fine-tuning method to take advantage of foundation models and automatic prompt generation to
achieve superior domain generalisation capabilities with the Dice increase of 0.3% and 1.34% on
two datasets compared to Med-SA. To perform the qualitative comparison with state-of-the-arts, we
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provide the visualisation results in Figure 2. It can be revealed that our Med-FastSAM generates the
best segmentation results with fewer false positives, especially for skin lesion segmentation. Overall,
the proposed Med-FastSAM illustrates remarkable domain-generalised medical image segmentation
without laborious annotations as prompts.

4.5 Ablation Study

In this section, a detailed ablation study is conducted on the MoNuSeg-2018 dataset to evaluate the
efficiency of three components, including the LKA-Encoder, CP-Encoder and MSF-Decoder, in Med-
FastSAM, which is provided in Table 3. We consider the original SAM [13] as the baseline. Firstly,
introducing the LKA-Encoder significantly increases the mIoU from 48.36% to 68.36% and the Dice
score from 64.92% to 80.32% by providing enhanced feature representation. Meanwhile, it reduces
the number of parameters from 93.74M to 14.46M and increases the inference speed of Med-FastSAM
from 4.53 FPS to 24.19 FPS. Secondly, the CP-Encoder eliminates the requirement of manual prompts
and further boosts model performance by effectively incorporating coarse prompt information.
Finally, the MSF-Decoder leverages multi-scale features to further improve the prediction accuracy
of segmentation masks, with the mIoU of 69.53% and the Dice score of 81.53%. This comprehensive
evaluation demonstrates the effectiveness of each module in the proposed Med-FastSAM.

5 Conclusion

In this paper, we propose Med-FastSAM to enhance the transfer efficiency of SAM for domain-
generalised medical image segmentation. Med-FastSAM integrates three key modules: LKA-Encoder
improves feature representation and reduces computational costs through feature-level knowledge
distillation and semi-parameter fine-tuning strategies; CP-Encoder eliminates the reliance on manual
annotations by incorporating coarse prompt information, enabling fully automated segmentation; and
the MSF-Decoder captures local fine-grained details by leveraging multi-scale features. Extensive
experiments confirm the superiority of Med-FastSAM over existing medical SAM models, demon-
strating its enhanced generalisation capability on unseen domains. Future research will optimise
Med-FastSAM to accommodate diverse medical imaging modalities.
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