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Abstract

We propose to sample from high-dimensional posterior distributions arising in
physics-based inverse problems using conditional score-based generative models.
The proposed approach trains a noise-conditional score network to approximate the
score function of the posterior distribution. Then, the network is used to sample
from the posterior distribution through annealed Langevin dynamics. The proposed
method is applicable even when we can only simulate the forward problem. We
apply it to two physics-based inverse problems and compare its performance with
conditional generative adversarial networks. Results show that conditional score-
based generative models can reliably perform Bayesian inference.

1 Introduction

Solving inverse problems can be challenging, not least because they are ill-posed. High-dimensionality
and non-linearity of the underlying forward problem are well-known complications. Bayesian
inference allows us to specify a prior that, in turn, helps regularize the inverse problem, and obtain
a posterior distribution over all possible solutions by means of the likelihood function. Although
Markov chain Monte Carlo methods are the main workhorse of Bayesian inference, their performance
on high-dimensional inverse problems remains challenging. To this end, this work proposes to
sample from high-dimensional posterior distributions, which result from the application of Bayesian
inference to large-scale inverse problems, using conditional score-based generative models.

Score-based generative models [15, 29, 30] belong to the class of diffusion models [19]; the latter is
emerging as the leading choice among various generative models [7, 37, 16], achieving state-of-the-
art performance in some cases [10]. Score-based models attempt to train a score network that can
approximate the score function of the target distribution. Thereafter, new samples are generated using
Langevin dynamics [30] wherein initial white noise samples are driven towards samples from the
desired target distribution with help from the trained score network. Score-based models are easily
extendable to conditional counterparts; one way is to simply concatenate the conditioning features
with the input to the score network [27, 31, 2].

Related work There is a significant body of work that proposes to use deep generative models to
solve inverse problems; see [11, 21] for recent reviews. Deep generative models, such as generative
adversarial networks [4], variational autoencoders [17, 13] and normalizing flows [26], have been
used as priors [23, 3, 36, 12], and their conditional counterparts for sampling from the posterior
distribution [1, 24, 25, 22]. Explicit generative models, like normalizing flows, have been used to
carry out variational inference [26, 33, 34, 8, 18]. However, many of these generative models suffer
from limitations such as mode collapse, poor synthesis quality and large memory footprint [27].
In contrast, diffusion models offer the flexibility to work with different network architectures and
training using a simple loss function that is relatively stable. As a result, unconditional and conditional
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diffusion models have been used to solve various inverse problems [28, 14, 32, 6, 5, 20, 35], largely
those associated with computer vision.

2 Proposed method

Problem setup Consider random vectors € X € RV% and y € ) C R™> denoting the quantity
that must be inferred and the measurements from which to infer it, respectively. Further, let 7(x) and
£(y|x) denote the prior and likelihood model, respectively. Then, Bayes’ rule provides the posterior:

m(zly) o U(ylz) (). (D)
We seek samples from the posterior distribution 7 (x|y), which we can use to estimate the posterior
statistics of any quantity of interest. We assume that we have access to a dataset S that comprises pair-

wise data of « and y from the joint distribution 7(x, y), i.e., S = {x¥), y¥) }11\;1 ~ 7(zx,y). Note
that, we can construct the dataset by sampling from ¢(y|x) provided we have access to realizations
of x, even using black-box solvers.

Conditional score model The goal is to train a conditional score network s(x,y; @), which is
parameterized by 6 with inputs « and y, to approximate the score of the posterior distribution
point-wise for all y € ). We will train the network s(x, y; 0) using the dataset S and employ it to
sample from the posterior distribution using annealed Langevin dynamics [30]. We first develop the
conditional score-matching objective to train the conditional score-based model and then present the
annealed Langevin dynamics sampling algorithm which we adopt from [30].

Conditional score matching objective With score matching it is possible to train the model
s(x, y; 0) to estimate the score V4 log m(x|y) of the posterior distribution. For any value of vy, the
objective can be written as:

1
£1(07y) = §]Ew~7r(w\y) {||5(a:,y; 0) — Vg 10g71’(33|y)||§}
(2)

1
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where tr(-) is the trace operator. Eq. (2) is not scalable to high-dimensional data, so we adopt
denoising score matching. The latter approach attempts to match the score of a perturbed distribution,
say 7, (Z|z,y) where o is the variance of the Gaussian noise used to perturb x. The denoising
score matching objective is:

1 - -
£2(6,y) = 5Es~r, (al2) {lls(®,y;0) — Vzlog mo (2|2, y) 3} - 3)
z~m(z|y)

We further assume that Z is conditionally independent of y given z, i.e., 7, (Z|x, y) = 7, (Z|x),
which yields V log 7, (Z|x) = — (& — x)/0? for Gaussian perturbations with variance 0. Eq. (3)
is still not sufficient to train the score network s(x, y; 0) [29]. Song and Ermon [29] suggest the
perturbation of & across various noise levels {ai}iL:1 and the simultaneous estimation of the score at
all the pre-specified noise levels o;. This leads to the following denoising score matching objective
when the perturbations are Gaussian noise with variance a? [30]:

L ~
1 - T—x
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=1

o~ (aly) i

where s(x,y; 04,0) = s(x,y;0)/0; [30]; In order to obtain the optimal conditional score-based
model, we marginalize Eq. (4) over y and that leads to the training objective:

L ~
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We can estimate £(0) with the dataset S by replacing the expectation with its Monte Carlo (MC)
approximation.



Posterior sampling using Langevin dynam-
ics Using the optimally trained conditional
score network s(x, y; 6*), we can generate sam-
ples of x for a given measurement gy using
annealed Langevin dynamics [30]; see Algo-
rithm 1. For the proper functioning of the
conditional score model, the hyperparameters
{Ui}le, T, € must be tuned. We follow the
recommendations of Song and Ermon [30] in
deciding these hyper-parameters.

3 Numerical examples

We use the conditional score-based generative
model (¢cSGM), with NSCN++ networks [30] as
the score network, to solve two physics-based
inverse problems. We compare the results (pos-

Algorithm 1: Annealed Langevin dynamics [30]

Input: Conditional score model s(x, y; 0*),
measurement g, sampling steps 7', step

size €, and noise scales {0},
Initialize @ such that {x}; ~ U(0,1)
fori =1to L do
a; = €oi/or
for j =1to T do
Sample z ~ N (0,Iy,)
T =xj_1+os(xj—1, Y;0%)+ 20,2
end
Set ro =T
end
Denoise 1 = xg + 02 s(xo, ¥; 0*)
Output: Realization 1 ~ 7(x|§)

terior mean and standard deviation) obtained using cSGMs against conditional GANs (cGANs) with
full gradient penalty [25]. See Appendix A for more details regarding the network architectures, and
training and sampling hyper-parameters used for both approaches to solve the inverse problems.

Heat conduction: inferring initial conditions
This inverse problem, adapted from [24, 25, 9],
concerns that of inferring the initial conditions
(t = 0) in a heat conduction problem on a
two-dimensional solid body from the measure-
ments of the temperature field at some later
time (¢ = 1). Over the rectangular domain
0 = [0,1] x [0,1], where I = 2, the physical
phenomena can be modeled using the following
partial differential equation (PDE):

ou(s,t)/0t = kAu(s,t) ¥(s,t) € 2x]0,1]
u(s,t) =0 V(s,t) € 90x[0,1]

where s denotes the spatial coordinates, the con-
ductivity k = 0.64 is constant over (2, and u
denotes the temperature field. We discretize the
physical domain 2 and the temperature field u
over a uniform 28 x 28 grid i.e., Ny = Ny =
28 x 28. The underlying parametric prior for the
initial condition is as follows:

u(s,0) =2 (1 + (u1 — &1)/(&3 — &1))
V& <up <&gand &y <up <&y

where &1,&5 ~ U(0.21,0.4]) and &,&; ~
4(0.61,0.87). We use the parametric prior to
generate a realization of the initial temperature
field, solve the PDE above with a suitable time
integration scheme to obtain the temperature
field at time ¢ = 1, to which we add Gaussian
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Figure 1. True initial (left), final (middle) and
measured (right) temperature fields.
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Figure 2. Comparison of posterior statistics of
the initial temperature field obtained using cSGM
(first row) and cGAN (second row), and the true
posterior statistics (third row).

Mean
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noise with unit variance, and ultimately obtain the corresponding measurement. The training dataset
S contains 10,000 pairs of such initial temperature field () and corresponding noisy measurements
(y). Fig. 1 shows the test case ground truth and measurements. Fig. 2 shows the posterior statistics
obtained using various methods. We observe that the score-based approach agrees well with the
true posterior statistics, and correctly predicts larger uncertainty around the edge of the rectangular
inclusion. The normalized root mean-squared error (nRMSE) between the ground truth and the
posterior mean obtained using the conditional score-based generative approach and cGAN are 0.371

and 0.378, respectively.



Inverse Helmholtz problem: elastography of the optic nerve head Consider a wave propagating
through a heterogeneous media. For instance, consider an ultrasound wave dispersing through the
1.75 mm x 1.75 mm (= €2) region surrounding the optic nerve head shown in Fig. 3 [25]. The
Helmholtz equation can be used to model such phenomena, and the governing PDE is:

— w(ur(s) + iug(s)) — V- (G;S)a +iaw)V(ur(s) + iul(s))): 0vseQ,  (6)

where s is the physical coordinates , w is the wave propagation frequency,
ur and wug are the real and imaginary components of the wave amplitude
field at frequency w, respectively, G(s) denotes the real part of the com-
plex shear modulus field, « = 5 x 1072 is the wave dissipation coefficient,
and p = 103 denotes the density. Note that the shear modulus field is a
complex-valued field, and the ratio of the imaginary component to the
real component is aw. Here, the inverse problem entails obtaining the
shear modulus field, from the wave amplitude fields. We discretize (2,
G and the amplitude fields over a 64 x 64 uniform Cartesian grid. Thus,
in this study, Ny = Ny /2 = 64 x 64. To solve Eq. (6), it is necessary
to consider a larger domain that allows for wave dissipation and avoids
reflections. So, we pad the left edge by 2.6 mm, pad the top and bottom
edges by 1.75 mm, but do not pad the right edge. Additionally, we impose
ur = 0.02 mm and u; = 0 mm on the right edge, and zero displacement
boundary conditions on all other edges.

Figure 3. Optic nerve
head phantom show-
ing sclera (1), lamina
cribrosa (2), pia matter
(3), optic nerve (4), and
retina (5) [25].

The geometry of the optic nerve head phantom, and the spatial distribution

of the shear modulus around the optic nerve is controlled by 16 parameters and all but one are
random [25]; see Appendix B for more details. To construct the training dataset S, we generate
12,000 samples of x, solve Eq. (6) to obtain ur and uy, and finally add 4% (of the respective maximum
values) Gaussian noise to the displacements and generate the corresponding y. Fig. 4 shows the
posterior statistics using the cSGM and cGAN method. Posterior standard deviation estimated using
¢SGM is able to correctly predict larger uncertainties around the edges of the sclera and optic nerve.
We also observe that cSGM can recover the ground truth better than the cGAN as evidenced by the
lower absolute error; both the absolute reconstruction error between the ground truth and the posterior
mean and the posterior standard deviation is lower for the cSGM method as compared to cGAN.

Ground Noisy measurement c¢SGM cGAN
truth = Mean  Std. Dev. Abs. err. Mean Std. deb. Abs. err.

3
MH% Iq 7
0.1
10 03

08

06 , 05 06 ?

o Hos 04 04
01 01

0z t 02 0z
00 £ 00 00 00 00

Figure 4. Comparison of posterior statistics obtained using different conditional generative models
for the inverse Helmholtz problem. y; and y» denote the noisy versions of ur and uj, respectively.
For ease of visibility we have scaled all physical quantities between 0 and 1.

4 Conclusions

In this work, we solve inverse problems using cSGMs that train a score network to approximate the
score function of the posterior distribution. The results show that the method is promising; cSGMs
are better at recovering the ground truth as compared to cGANs. Like other conditional generative
models, cSGMs can be re-used for a new set of measurements. However, there is a significant
drawback of the method: the computational cost of obtaining posterior samples using cSGMs is
much larger than cGANSs. For instance, in the case of the inverse Helmholtz problem, obtaining a
batch of 300 posterior realizations on a single NVIDIA Quadro RTX 8000 GPU takes approximately
20 minutes. Whereas, the cGAN can be evaluated almost instantaneously. Thus, the application of
c¢SGMs to large-scale physics-based inverse problems stands to gain from the current research efforts
towards reducing the computational cost of sampling from diffusion models.
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A Details of various conditional generative models

A.1 Conditional score model

In this work, we use the NCSNv2 [30] as the conditional score networks. Specifically, we use
the NCSNv2 962-1282 and 322-642 architectures for the heat conduction and inverse Helmholtz
problem, respectively; see [30] for details. We only change the number of input channels to 2 and 3
for the heat conduction and inverse Helmholtz problem, respectively. Following [30], we employ
exponential moving average of the weights of the conditional score network to improve stability.
Both conditional score networks are trained using the Adam optimizer, with parameters 5; = 0.9
and 2 = 0.999. Other relevant training hyper-parameters and sampling parameters for the Langevin
dynamics MCMC are listed in Table A1l.

Table Al. Hyper-parameters associated with the cSGMs for various numerical examples.

Hyperparameters .Experiment

yperp Inverse Heat conduction  Inverse Helmholtz problem
NCSNv?2 architecture 962-1282 322642
Number of Langevin steps T’ ) )
Step size ¢ 0.1 x 1076 5.7 x 1076
Number of noise levels L 125 256
Initial noise scale o 15 50
Final noise scale o7, 10—3 102
Learning rate 1075 10~*
Batch size 128 128
Training iterations 4 x 105 3 x 10°

A.2 Conditional GANs

In this work, the cGANs we use are based on the conditional Wasserstein GANs with full gradient
penalty proposed by Ray et al. [25]. The optimal generator g* and critic d* are obtained using the
following min-max problem:

g*,d* = arg min arg max L(g,d) — A\GP, @)
g
where
£(ga d) = ]Em,ywﬂ(m,y) - Ea:rvn'gyyd(w7 y) (8)
GP is the gradient penalty term defined as:
gp :EéNU(O,l)(”Vd(h(w?yvzvé),y)HQ - 1)27 (9)

where h(x,y,z,0) = dx + (1 — d)g(z,y). In Eq. (9), V represents the derivative with respect to
the full set of inputs to the generator, i.e., with respect to both « and y.

For both inverse problems, the cGANs use generator and critic architectures similar to [24, 25].
Notably, Ray et al. [24] uses a residual block-based U-Net architecture for the generator. Latent
information is injected in a multi-scale fashion at every level of the U-Net using conditional instance
normalization. The critic also comprises residual block-based convolution layers followed by fully
connected layers. Refer to [24, 25] for more details. For the heat conduction problem, we use leaky
ReLU activation (with activation parameter 0.1). Whereas, we use ELU activation for the inverse
Helmholtz problem. Other relevant hyper-parameters are listed in Table A2. Both cGANs are trained
using the Adam optimizer, with parameters 3; = 0.5 and 32 = 0.9.

B Additional details regarding the inverse Helmholtz problem

The spatial distribution of the shear modulus and the geometry of the optic nerve head is controlled
by sixteen variables, of which fifteen are random, which we adopt from [25].



Table A2. Hyper-parameters associated with the cGANSs for various numerical examples. Here,
Nritic / Neen refers to the number of critic updates made for every update to the generator.

Hyperparameters Experiment
yperp Inverse Heat conduction  Inverse Helmholtz problem
Latent space dimension 3 50
Gradient penalty A 0.1 0.1
Batch size 50 100
Activation function LReLU(0.1) ELU
Ncritic /Ngen 4 4
Max epochs 500 2,000
Learning rate 1073 10~

Table B3. Various variables comprising the prior measure for the optic nerve head dataset and
their corresponding distributions [25]. To generate physically meaningful phantoms, the normal
distributions A/ (0, ¢?) are truncated to have support between (0, 2c].

Parameter Definition
Width of lamina cribrosa (mm) U(1.1,2.7)
Thickness of lamina cribrosa (mm) U(0.16,0.44)
Radius of lamina cribrosa (mm) U(1.0,5.0)
Thickness of the sclera (mm) U4(0.45,1.15)
Radius of the sclera and retina (mm)  ¢/(1.0,5.0)
Thickness of retina (mm) 4(0.20,0.40)
Width of optic nerve (mm) 4(0.20,0.40)
Radius of optic nerve (mm) U(1.65,3.65)
Thickness of pia matter (mm) 4(0.06,0.10)
Optic nerve shear modulus (kPa) N(9.8,3.342)*
Sclera shear modulus (kPa) N(125,52)*

Pia matter shear modulus (kPa) N(125,50%)*
Retina shear modulus (kPa) N(9.8,3.342)*
Lamina cribrosa shear modulus (kPa) ~ N(73.1,46.92)*
Background shear modulus (kPa) 0.1

Rotation of the geometry (rad) U(—m/12,7/12)
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