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Abstract
Recent advances in machine learning for materials
science have significantly improved the prediction
of novel materials. Building on these methods,
we have adapted them for drug discovery, specifi-
cally focusing on assessing performance on out-
of-distribution data. We found this approach more
effective than conventional cross-validation meth-
ods by employing k-fold n-step forward cross-
validation (SFCV) for predicting small molecules.
Additionally, we introduced two new metrics: dis-
covery yield and novelty error. These metrics
provide deeper insights into model applicability
and prediction accuracy for drug-like molecules.
Based on our findings, we recommend incorporat-
ing these metrics into state-of-the-art bioactivity
prediction models for drug discovery.

1. Introduction
Recently, many advancements have been made in devel-
oping computational methods for predicting properties in
materials science. Suitable validation methods have also
been introduced to estimate the performance of these predic-
tive models [18, 3, 4]. Here, we investigated whether these
validation methods can be translated into the field of drug
discovery. Here, we address the problem of prospective val-
idation. Since predictive models are trained and validated
on the experimentally measured activity of libraries of com-
pounds, real-world use in drug discovery requires strong
performance on out-of-distribution data [11]. This is be-
cause the goal is often to accurately predict the properties of
compounds that have not been synthesized yet. Inadequate
prospective validation is a common issue in the drug discov-
ery literature, often creating a mismatch between published
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studies and real-world use [1, 2]. This problem is less severe
in domains such as materials science, where the underlying
physical principles are often known [4, 37], and protein fold-
ing, where evolution led to a lower-dimensional underlying
space of possible solutions [6]. However, this problem is
significant in drug discovery because the chemical space is
vast (more than 1060 small molecules) and only explored
to a limited extent, making it challenging to extrapolate to
novel chemical series [1].

Benchmarking state-of-the-art models is more reliable for
real-world decision-making when predicting compounds dif-
ferent from those in the training data space. However, most
studies use cross-validation (CV) to evaluate models by ran-
domly splitting the datasets for training versus testing [5].
This approach typically suffers from a limited applicabil-
ity domain because test compounds are often similar to
compounds in the training set. To mitigate this problem,
splitting datasets by chemical scaffold or time-split has been
proposed [14, 35, 8]. Even though these splits could be re-
peated for multiple external test sets (for example, repeated
nested cross-validation), studies usually lack a detailed anal-
ysis of how variations in the drug discovery landscape and
chemical space influence outcomes by differentiating be-
tween compounds unlikely to be drug-like and those that
have desirable bioactivity and physicochemical properties.

To overcome these problems, one can take inspiration from
machine learning studies for materials discovery, where val-
idation and evaluation strategies have been developed for
effective prospective discovery, i.e., identifying materials
whose properties lie outside the range of training data [4,
34]. This trend makes sense because, in materials discov-
ery, the goal is often to discover materials with a higher
or lower property of interest (e.g., conductivity, band gap,
etc.) than already known materials [3]. In one aspect, drug
discovery is similar, as models are trained on data from
previously known small molecules and then used to predict
the bioactivity of compounds optimized to have desirable
properties. Learning from these developments, we propose
implementing a validation method and two metrics com-
monly used in prospective validation from materials science
to the search for small molecules in drug discovery: (a) k-
fold n-step forward cross-validation [34], (b) novelty error,
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and (c) discovery yield [3].

During drug discovery, several properties of a compound
are optimized simultaneously. One of the goals is to de-
crease logP, the logarithm of the partition coefficient (P)
of a compound between n-octanol and water, a standard
measure of hydrophobicity [10, 19]. Moderate logP values
(typically between 1 and 3) are preferred in drug candidates
to balance lipophilicity and hydrophilicity, enhancing oral
bioavailability through good lipid membrane permeability
and adequate aqueous solubility. A moderate logP value also
ensures proper drug distribution, avoiding excessive accu-
mulation in fatty tissues or insufficient penetration through
cell membranes [17]. Therefore, we implemented a sorted
k-fold n-step forward cross-validation (SFCV) to validate
models, where the training and test datasets are selected
based on continuous blocks of decreasing logP. When im-
plementing SFCV, it is essential to ensure that the folds in
the later iterations represent the desired logP values, which
should be moderate (between 1 and 3). One could then as-
sess whether a model fails to accurately predict compounds
with desired bioactivity compared to other small molecules
using discovery yield. Novelty error shows whether models
can generalize on new, unseen data that differ significantly
from the data on which the model was trained. This is sim-
ilar to using the applicability domain [11] and distance to
model measures [33]. Overall, we present these validation
and evaluation metrics to the specific needs of toxicity and
protein target prediction for small molecules [15].

2. Methods
2.1. Dataset

Models for predicting compound bioactivity require train-
ing datasets of activity readouts for many compounds. An
activity readout is often expressed as an IC50 value, the
concentration at which a particular biological response is
reduced to half (50%) of the original signal. While sev-
eral datasets have binary readouts (active/inactive) for com-
pounds towards given protein targets, these datasets are
often noisy or employ arbitrary thresholds for binarising
activity. Recently, it was demonstrated that combining data
from different assay measurements is a significant noise
source for such datasets [13]. Therefore, we restricted this
study to having clean and single measurement type data,
i.e., IC50 values. Although the actual safety and potency of
a compound depends on the dose and Cmax value (i.e., the
maximum concentration in plasma in the organism) and is
not inherent to the IC50 of protein binding in a cell system,
this study does not consider Cmax due to insufficient data
in the public domain [25, 28]. Following previous studies,
we selected the three relevant protein targets: hERG (1467
compounds), MAPK14 (1513 compounds), and VEGFR2
(1751 compounds) from Landrum et al. [13]. hERG in-

hibition is well-known to cause cardiotoxicity [26, 7] and
should be avoided in drug discovery. The other two targets
represent positive attributes: MAPK14 inhibitors could po-
tentially treat multiple diseases, such as neurodegenerative
diseases, cardiovascular cases, and cancer. VEGFR2 is a
potent therapeutic target for treating angiogenesis-related
tumors. From the literature, we found that approved drugs
have an IC50>6.3 µM for hERG (less likely to inhibit hERG
and cause toxicity) [32]. On the other hand, drugs that target
the other two proteins would ideally have IC50<100 nM for
VEGFR2 [36] or MAPK14 inhibition [21].

We converted all IC50 values into pIC50 values, the nega-
tive logarithm in base 10 of the IC50 value expressed in
molar concentration (M). The pIC50 value provides a more
intuitive understanding of compound potency: higher pIC50
values indicate greater potency, as they correspond to lower
IC50 concentrations [30].

2.2. Compound Featurization and Model Algorithm

Compound SMILES were first standardized (for details, see
Appendix 5.1). To represent compounds as features, we
used 2048-bit ECFP4 fingerprints (also known as Morgan
fingerprints, as implemented in RDKit), which encode chem-
ical structural features in a binary vector format, and logP
values were calculated using RDKit. We used three models:
(a) Random Forest (RF) Regressor, (b) Gradient Boosting,
and (c) Multi-Layer Perceptrons (MLP, as implemented in
scikit-learn version 1.3.0 [23] for all the analysis in this
paper) to use molecular fingerprints encoded in a feature
matrix to predict chemical properties of interest, namely the
pIC50 values. The Random Forest Regressor was coded
dynamically to set the number of trees based on the training
data size, using the square root of the number of samples
but not exceeding 25 trees. A similar approach was imple-
mented for the other models, with the number of estimators
in Gradient Boosting and the number of hidden-layer nodes
in the MLP being limited to 25. This approach balances
model complexity, helping to prevent overfitting for these
tasks where data is limited.

2.3. Model Training and Evaluation

To validate models, we adopted a step-forward cross-
validation (SFCV) method [34] (as shown in Figure 1) and
compared it with conventional k-fold cross-validation (CV).
To implement the SFCV method, we sorted the dataset from
high to low logP values and divided the dataset into ten
bins. For the first iteration, we used the first bin for train-
ing and the second for testing. In each successive iteration,
we expanded the training set by adding the next bin while
using the subsequent bin (with lower logP compounds) for
testing. This method mimics a real-world scenario where
chemical structures undergo optimization to become more
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Figure 1. Workflow for 10-fold step-forward cross-validation (SFCV). The Di dataset block can be sorted via a calculated or experimental
molecular property. Here, we used logP.

drug-like [29]. To explore the impact of logP sorting on
model performance, we also implemented an SFCV without
sorting, effectively creating a random step forward cross-
validation. This setup allowed us to assess how sorting
training data influences predictive accuracy and the discov-
ery of more drug-like molecules. SFCV, however, leads to
lesser training data for each iteration. To explore the impact
of dataset size, we implemented a conventional 10-fold CV
with random splits for a direct comparison, with one of the
ten randomly selected folds as a test set for each turn, and
the remaining folds composed of the training set. To explore
the impact of chemical scaffolds, we further implemented a
10-fold CV with scaffold-based splitting (as implemented in
ScaffoldSplitter in DeepChem version 2.7.1 [20, 31]), where
molecules are grouped based on the Bemis-Murcko scaffold
representation. The predictive performance for each iter-
ation was evaluated by calculating the Root Mean Square
Error (RMSE, a point-based measure of model accuracy)
and R2 (an overall-fit measure of model accuracy).

2.4. Discovery Yield and Novelty Error

We introduced two metrics to assess the model in a real-
world context and adopted them from machine learning in
material science: discovery yield and novelty error rates [3].
To define discovery yield, first, we identified highly po-
tent and safe compounds called discovery compounds. For
hERG, compounds with a pIC50 value lower than 5.2 are de-
fined as discovery compounds [32]. Similarly, for VEGFR2
and MAPK14, compounds with a pIC50 value exceeding 7.0
are defined as discovery compounds [36, 21]. We defined
discovery yield as the fraction of discovery compounds for
which the IC50 value was predicted within an error range of
0.5 log units. Furthermore, for each test set, we analyzed
the performance specifically for compounds structurally dis-
similar to those in the training dataset (<0.55 Tanimoto
similarity for the nearest neighbor [9]). We defined the
mean absolute error on these compounds as novelty error.

3. Results and Discussion
In the work, we evaluated the effectiveness of sorted step-
forward cross-validation (SFCV) in predicting compounds’
bioactivity and toxicity. We sorted compounds based on
logP values and used an SFCV to assess whether the models
could accurately predict desired bioactivity and generalize
to new, unseen data. We selected three protein targets rel-
evant to drug discovery: hERG, MAPK14, and VEGFR2
datasets, comprising 1,262, 1,445, and 1,641 unique com-
pounds. Available data for the pIC50 of compounds against
these protein targets (a measure of potency) show a wide
distribution of biological activity values (Figure S1). The
distribution of pIC50 values for training and test datasets
remained relatively similar for sorted and unsorted SFCV,
indicating that sorting by logP does not significantly affect
the activity distribution within the datasets (Figure S1).

3.1. Sorted SFCV selected more novel compounds than
CV methods

Next, we analyzed the chemical space selected for train-
ing/testing splits using four validation strategies (Figure S2).
Sorted SFCV selected test compounds with progressively
lower logP values, as expected. In contrast, other validation
methods did not show this trend—cross-validation (CV)
with scaffold-based splits selected compounds in different
molecular weight spaces in earlier batches. However, in
later batches, the distribution of test compounds resembled
that of random splitting. This can be attributed to the nature
of scaffold splits: larger groups of molecules remaining
in later folds are often very dissimilar to each other and
thus not representative of any specific scaffold type (that
is, chemistry datasets usually do not form exact clusters of
molecules, making it challenging to split them neatly into
scaffold clusters). As a result, scaffold-based CV effectively
identifies some groups of scaffolds in the early batches but
also groups some relatively dissimilar compounds in later
batches.
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To determine which validation is likely to test compounds
dissimilar to the training data, we analyzed each method
using the hERG prediction task as an example (Figure 2a).
Sorted and unsorted SFCVs showed more dissimilar com-
pounds in early testing batches, which gradually decreased.
CV with random splitting maintained a much lower number
of dissimilar test compounds across all batches. CV selected
fewer dissimilar compounds to test than sorted SFCV (170
with sorted SFCV compared to 127 compounds with scaf-
fold splits and 24 with random splits; Figure S3a). Thus,
sorted SFCV is better for evaluating compounds with novel
structures.

3.2. Sorted SFCV selected more discovery compounds
than CV methods

We compared the validation methods based on how they
split between train and test data in the biological space and
how models could be evaluated. All validation methods
selected discovery compounds (compounds with pIC50 <
5.2 in the case of hERG) in the test folds (Figure S3b). Using
unsorted SFCV and CV (random splits), models predicted a
higher number within an error range of 0.5 log units in early
batches but fluctuated in later batches (Figure 2b). Models
evaluated using sorted SFCV showed an increasing trend
in accurately predicted discovery compounds towards later
batches, where compounds have a desirable lower logP.

Among these discovery compounds, there were also novel
compounds structurally dissimilar to those in the training
data (Tc < 0.55). Unsorted and sorted SFCVs effectively
selected these dissimilar discovery compounds as test com-
pounds (Figure 2c). CV with scaffold split had fewer such
compounds than SFCV methods (29 in CV with scaffold
splits vs. 59 in sorted SFCV and 66 in unsorted SFCV in
the hERG task). CV with random splits identified very few
dissimilar discovery compounds (only 2 in the hERG task),
shown in Figure S3c. We checked how many predictions for
these dissimilar discovery compounds were within an error
range of 0.5 log units. The pattern was similar to the num-
ber of compounds detected: most methods could identify
these compounds (Figure 2d). However, as SFCV had more
such compounds to predict, it was advantageous to evaluate
models using this validation strategy.

Overall, sorted SFCV balances identifying diversely struc-
tured compounds with consistent and improved predictions
over testing batches. CV (random split) maintains an op-
timistic approach with stable performance, while unsorted
SFCV and CV (scaffold split) offer higher initial diversity
but may lack consistency in later batches.

3.3. Sorted SFCV selects more discovery compounds

We compared the validation methods based on how they
split train/test data in the biological space and how well

Figure 2. (a) Number of compounds dissimilar to training data
(Tc<0.55), (b-d) Number of discovery compounds (pIC50<5.2) in
the test set predicted within an error range of 0.5 log unit (b), and
discovery compounds dissimilar to training data (Tc<0.55) (c),
and discovery compounds dissimilar to training data (Tc<0.55)
correcting predicted within an error range of 0.5 log unit (d), as
shown for the hERG target prediction task across four validation
methods of sorted SFCV, unsorted SFCV, cross-validation with
random splits, and cross-validation with scaffold splits (for each
of the first nine test folds). Tc: Tanimoto Similarity; SFCV: Step-
Forward Cross-Validation.

models could be evaluated in that space. Unsorted SFCV
and CV (random split) achieved a higher number of discov-
ery compounds (compounds with pIC50 < 5.2 in the case
of hERG) predicted within an error range of 0.5 log units
in early batches, but this fluctuated in later batches (Figure
2b). Sorted SFCV showed an increasing trend in accurately
predicted discovery compounds towards later batches.

Among these total discovery compounds, there were also
novel compounds structurally dissimilar to those in the train-
ing data (Tc < 0.55). Unsorted and sorted SFCVs effec-
tively selected these dissimilar discovery compounds as test
compounds (Figure 2c). CV (scaffold split) had fewer such
compounds compared to SFCV methods (29 vs. 59 in sorted
SFCV, 66 in unsorted SFCV), while CV (random split) iden-
tified very few (only 2 in the hERG task). We checked
predictions within an error range of 0.5 log units for these
dissimilar discovery compounds. The pattern was similar
to the total number of compounds detected: most methods
could identify these compounds (Figure 2d). However, as
sorted SFCV had more such compounds to predict, it is
easier to evaluate models using those validation strategies.

Overall, sorted SFCV balances identify diversely structured
compounds with consistent and improved predictions over
testing batches. CV (random split) maintains an optimistic
approach with stable performance, while unsorted SFCV
and CV (scaffold split) offer higher initial diversity but may
lack consistency in later batches.
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Figure 3. Discovery yield for models validated using (a) sorted
SFCV, (b) unsorted SFCV, (c) cross-validation with random splits,
and (d) cross-validation with scaffold splits for all three protein
targets when using a Random Forest model. SFCV: Step-Forward
Cross-Validation.

3.4. Extrapolation error: Sorted SFCV shows that
predicting bioactivity for compounds with low
lipophilicity is challenging

Conventional CV with random splitting exhibited better per-
formance metrics (mean RMSE=0.58±0.04 for RF) com-
pared to sorted SFCV (mean RMSE=0.77±0.03 for RF)
across all protein targets (Table 1). However, all the mod-
els evaluated, including RF, xgboost, and MLP, demon-
strated limited ability to extrapolate when predicting for
compounds with lower or higher pIC50 values than remain-
ing compounds (Figure S4 for VEGFR2). The extrapolation
challenges are less noticeable under unsorted SFCV or con-
ventional CV conditions than under sorted SFCV. Sorted
SFCV (Figure S4a) results in significantly higher absolute
errors for compounds with the highest pIC50 values—up to
100 times the experimental IC50 value across multiple test
compounds—compared to errors obtained using alternative
validation methods. These results indicate that evaluating
models is more difficult for compounds with lower logP
than the training data. It will thus be essential to develop
models capable of adapting to desirable regions of chemical
space. For example, in the first 5 out of 10 iterations of the
hERG dataset, the models performed poorly when validated
using sorted SFCV (mean R2=0.22) compared to CV with
random splits (mean R2=0.74), where more data were avail-
able to train individual models and the chemical space of
test data was more similar to training datasets (Figure S5,
see Table S1 for more details). Overall, sorted SFCVs can
better evaluate models, considering the inherent challenges
of model extrapolation to less-represented regions of the
chemical space.

3.5. Discovery Yield: Sorted SFCV performs similarly
to CV with scaffold split but has a more systematic
approach to selecting compounds.

We next evaluated the models based on their discovery yield.
Unlike accuracy, which measures the overall correctness of
predictions across all compounds, discovery yield focuses
on the ability of the model to predict activity for compounds
with desired properties—such as low toxicity for hERG and
high potency for MAPK14 and VEGFR2, as compounds
selected in this way offer the most potential for further devel-
opment. The discovery yield remained high (0.60 to 0.82)
across all iterations of conventional CV with random splits
(Figure 3). However, this metric showed notable fluctua-
tions under unsorted SFCV (0.40 to 0.75), CV with scaffold
split (0.25 to 0.78), and sorted SFCV (0.36 to 0.73). These
fluctuations within each method can be attributed to the
inherent differences in the composition of the test datasets.
In sorted SFCV, the test dataset tends to be dissimilar to the
training data. This difference creates a more challenging
test environment that mirrors real-world scenarios in drug
discovery.

Conversely, in conventional CV with random splits, the test
sets mirror the training data distribution more closely, mak-
ing predictions for compounds relatively easier. In many
drug projects, properties such as logP often increase as opti-
mization progresses in Design-Make-Test-Analyze (DMTA)
cycles, which is undesirable[16, 24]. A conventional CV
with random splits may appear to provide stable perfor-
mance metrics, but it gives a misleading representation of
a model’s efficacy in practical settings. On the other hand,
CV with scaffold splits represents a stricter task. Although
this simulates the challenges encountered in real-world ap-
plications, a systematic approach is needed to introduce
novel scaffolds. It can sometimes be too random, introduc-
ing wide variability and unpredictability in the performance
metrics over various folds. Overall, our results indicate that
sorted SFCV is a better validation approach that simulates
the progression in molecule optimization.

3.6. Novelty Error is more consistent for sorted SFCV

A key question about models aimed at predicting the activity
of small molecules is their applicability domain - that is, in
what regions of chemical space does a model offer accurate
predictions?[11, 27] We explored this question by assessing
the novelty error, defined as the mean absolute error for
compounds in the test dataset that are structurally distinct
from the training set across each iteration. We observed
that the novelty error remains low throughout the iterations
of sorted SFCV (0.88 ± 0.21). Meanwhile, it fluctuates
more for unsorted SFCV (0.81 ± 0.31) and conventional
cross-validation with random splits (0.80 ± 0.41) or with
scaffold-splits (0.80± 0.48) (Figure 4). One might expect
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Table 1. Mean performance metrics in predicting pIC50 over the three protein targets when using RF models for each validation technique
used in this study. RF: Random Forest; SFCV: Step-Forward Cross-Validation.

Validation R2 (mean ± std) RMSE (mean ± std) Novelty Error (mean ± std) Discovery Yield (mean ± std)

CV (Random) 0.71 ± 0.05 0.58 ± 0.04 0.80 ± 0.09 0.72 ± 0.04
CV (Scaffold) 0.49 ± 0.11 0.71 ± 0.05 0.80 ± 0.09 0.59 ± 0.08
SFCV (Sorted) 0.43 ± 0.11 0.77 ± 0.03 0.88 ± 0.04 0.55 ± 0.08
SFCV (Unsorted) 0.59 ± 0.08 0.68 ± 0.02 0.82 ± 0.15 0.63 ± 0.06

Figure 4. Novelty error for models validated using (a) sorted SFCV,
(b) unsorted SFCV, (c) cross-validation with random splits, and
(d) cross-validation with scaffold splits for all three protein targets
when using a Random Forest model. SFCV: Step-Forward Cross-
Validation.

that sorted SFCV would increase the difficulty of accurate
prediction, thereby raising the error rates. However, the
consistency in lower mean errors during sorted SFCV can
be explained by the nature of novelty in this validation set.
In sorted SFCV, the novelty of compounds is defined more
narrowly, focusing on compounds that have not been seen
but are systematically selected based on a specific biological
property (here, logP). This systematic approach ensures
that while the compounds are novel, they are not randomly
diverse[22], which leads to more predictable error patterns.

In contrast, in unsorted SFCVs and CVs, the novelty is
broader; random splits introduce a wider variety of com-
pounds into the training set, and novel compounds in the test
set need to be further out-of-distribution and highly varied,
making predictions for these compounds more challenging
and error-prone. We demonstrate that sorted SFCV can
minimize overfitting in random chemical spaces and reduce
novelty error.

4. Conclusion
We have investigated the potential of applying machine
learning validation techniques developed in materials sci-

ence to molecular property prediction in drug discovery.
We made a conceptual argument that k-fold n-step forward
cross-validation (SFCV) [34] better matches real-world
use and is more stringent than conventional k-fold cross-
validation (CV). We show that sorted SFCV is better at
selecting novel structures where the biological activity is of
interest compared to the second-best validation approach of
CV with scaffold-based splitting. We have also translated
discovery yield [3] and novelty error [3] into the drug discov-
ery field as metrics to evaluate models to accurately predict
properties of compounds that diverge from the training data
in terms of biological property and chemical structure.

Using a sorted SFCV, we have demonstrated that it is chal-
lenging for any model to perform consistently in a varying
chemical space that systematically changes towards a de-
sired property, such as logP. The differing discovery yields
observed across different validation methods highlight the
influence of dataset composition and model training strate-
gies on predictive accuracy. Models trained using a sorted
SFCV are less prone to overfitting and yield lower nov-
elty errors. In the future, models optimized using sorted
SFCV—implemented in DMTA cycles [24]—could poten-
tially generalize better for diverse compounds. In the future,
SFCV could be implemented for other activity measures,
such as inhibition constants (Ki) and potency measures from
ChEMBL, offering additional insights. Various activity mea-
sures are crucial for understanding compound-protein inter-
actions in drug discovery, and findings from other activity
measures could help elucidate how they relate to IC50, the
property explored in the current work.

Overall, we recommend the techniques presented in this
study to align model testing with the directional nature of
drug discovery, where compounds are gradually optimized
to become more drug-like [1]. Our results suggest that
integrating machine learning strategies developed in materi-
als science into drug discovery pipelines offers additional
opportunities for a more accurate assessment of model per-
formance.
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Code Release
An example notebook implementa-
tion for sorted SFCV is available at
https://github.com/srijitseal/ValidationDiscovery-
/MolProp/tree/main/local implementation notebook.
All code for this work is publicly released on
https://github.com/srijitseal/ValidationDiscovery-
MolProp.

Data Release
All datasets used in this paper have been publicly made avail-
able on https://github.com/srijitseal/ValidationDiscovery-
MolProp/tree/main/data
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5. Appendix
5.1. Compound Standardization

We used the RDKit library (version 2023.9.427, for all the analysis in this paper) to standardize the SMILES (Simplified
Molecular Input Line Entry System) representations of chemical structures. Multiple standardization steps included RDKit
cleanup functions to desalt and reionize the molecules and neutralize charges. Further standardization involved normalizing
isotopes, stereochemistry, and tautomers through canonicalization methods implemented in the RDKit MolStandardize
module [12]. Each molecule was iteratively processed up to five times until the output SMILES stabilized. Otherwise, the
most frequently occurring standardized SMILES was selected as the final output. For each unique SMILES, the median
pIC50 values of replicates were calculated to summarize the central tendency and minimize the impact of outliers in the
data. Finally, this resulted in 1262 unique compounds for the hERG dataset, 1445 for the MAPK14 dataset, and 1641 for the
VEGFR2 dataset.

5.2. Tables

Table S1. Performance metrics for predicting the pIC50 for three protein targets in this work for each combination of models and validation
techniques used in this study. Cross-validation (CV) is shown to perform better than other techniques.

Target Method Validation R2 (mean ± std) RMSE (mean ± std) Novelty Error (mean ± std) Discovery Yield (mean ± std)

hERG MLP CV (Random) 0.58 ± 0.10 0.66 ± 0.06 1.28 ± 0.34 0.70 ± 0.11
hERG MLP CV (Scaffold) 0.08 ± 0.58 0.81 ± 0.21 1.07 ± 0.59 0.57 ± 0.07
hERG MLP SFCV (Sorted) 0.07 ± 0.65 0.85 ± 0.25 0.99 ± 0.37 0.61 ± 0.11
hERG MLP SFCV (Unsorted) 0.26 ± 0.47 0.79 ± 0.16 0.80 ± 0.31 0.64 ± 0.10
hERG RF CV (Random) 0.70 ± 0.07 0.55 ± 0.07 0.74 ± 0.51 0.74 ± 0.06
hERG RF CV (Scaffold) 0.41 ± 0.31 0.69 ± 0.35 0.82 ± 0.80 0.59 ± 0.14
hERG RF SFCV (Sorted) 0.32 ± 0.46 0.73 ± 0.20 0.87 ± 0.27 0.47 ± 0.12
hERG RF SFCV (Unsorted) 0.52 ± 0.18 0.66 ± 0.09 0.65 ± 0.20 0.62 ± 0.11
hERG xgboost CV (Random) 0.70 ± 0.09 0.55 ± 0.07 0.72 ± 0.49 0.71 ± 0.10
hERG xgboost CV (Scaffold) 0.38 ± 0.27 0.71 ± 0.33 0.80 ± 0.82 0.58 ± 0.10
hERG xgboost SFCV (Sorted) 0.35 ± 0.43 0.71 ± 0.18 0.84 ± 0.32 0.45 ± 0.14
hERG xgboost SFCV (Unsorted) 0.51 ± 0.22 0.66 ± 0.09 0.60 ± 0.25 0.63 ± 0.11

MAPK14 MLP CV (Random) 0.66 ± 0.07 0.67 ± 0.05 0.67 ± 0.66 0.65 ± 0.05
MAPK14 MLP CV (Scaffold) 0.39 ± 0.41 0.83 ± 0.12 1.04 ± 0.45 0.54 ± 0.07
MAPK14 MLP SFCV (Sorted) 0.39 ± 0.21 0.88 ± 0.17 1.05 ± 0.40 0.47 ± 0.07
MAPK14 MLP SFCV (Unsorted) 0.56 ± 0.18 0.76 ± 0.14 0.91 ± 0.55 0.59 ± 0.11
MAPK14 RF CV (Random) 0.76 ± 0.04 0.57 ± 0.05 0.76 ± 0.39 0.74 ± 0.04
MAPK14 RF CV (Scaffold) 0.62 ± 0.18 0.67 ± 0.08 0.88 ± 0.22 0.66 ± 0.08
MAPK14 RF SFCV (Sorted) 0.54 ± 0.09 0.77 ± 0.11 0.93 ± 0.17 0.63 ± 0.05
MAPK14 RF SFCV (Unsorted) 0.67 ± 0.09 0.67 ± 0.10 0.93 ± 0.37 0.69 ± 0.06
MAPK14 xgboost CV (Random) 0.74 ± 0.05 0.59 ± 0.06 0.79 ± 0.50 0.73 ± 0.04
MAPK14 xgboost CV (Scaffold) 0.53 ± 0.26 0.73 ± 0.10 0.95 ± 0.13 0.60 ± 0.08
MAPK14 xgboost SFCV (Sorted) 0.48 ± 0.12 0.81 ± 0.12 0.98 ± 0.19 0.61 ± 0.06
MAPK14 xgboost SFCV (Unsorted) 0.64 ± 0.09 0.70 ± 0.09 1.03 ± 0.34 0.67 ± 0.08

VEGFR2 MLP CV (Random) 0.53 ± 0.06 0.74 ± 0.06 1.04 ± 0.59 0.59 ± 0.03
VEGFR2 MLP CV (Scaffold) 0.27 ± 0.21 0.89 ± 0.11 0.87 ± 0.34 0.44 ± 0.08
VEGFR2 MLP SFCV (Sorted) 0.04 ± 0.35 1.02 ± 0.13 1.33 ± 0.17 0.39 ± 0.06
VEGFR2 MLP SFCV (Unsorted) 0.43 ± 0.16 0.81 ± 0.10 0.99 ± 0.37 0.48 ± 0.09
VEGFR2 RF CV (Random) 0.66 ± 0.04 0.63 ± 0.05 0.91 ± 0.35 0.67 ± 0.05
VEGFR2 RF CV (Scaffold) 0.46 ± 0.19 0.77 ± 0.08 0.71 ± 0.23 0.50 ± 0.10
VEGFR2 RF SFCV (Sorted) 0.43 ± 0.13 0.80 ± 0.07 0.84 ± 0.18 0.55 ± 0.06
VEGFR2 RF SFCV (Unsorted) 0.58 ± 0.08 0.70 ± 0.06 0.86 ± 0.28 0.57 ± 0.07
VEGFR2 xgboost CV (Random) 0.62 ± 0.03 0.67 ± 0.04 0.95 ± 0.28 0.59 ± 0.07
VEGFR2 xgboost CV (Scaffold) 0.41 ± 0.26 0.79 ± 0.10 0.71 ± 0.21 0.47 ± 0.11
VEGFR2 xgboost SFCV (Sorted) 0.41 ± 0.12 0.82 ± 0.07 0.88 ± 0.17 0.55 ± 0.06
VEGFR2 xgboost SFCV (Unsorted) 0.54 ± 0.07 0.74 ± 0.04 0.86 ± 0.19 0.55 ± 0.05
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5.3. Figures

Figure S1. (a) Distribution of biological activity (pIC50 values) for the three protein target datasets. (b,c) Distribution of pIC50 values in
the training set and test set of the 5th iteration for sorted SFCV (b) and unsorted SFCV (c). SFCV: Step-Forward Cross-Validation
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Figure S2. Comparison of logP and Molecular Weight for physico-chemical space for compounds selected as training and test sets across
various iterations for the hERG target prediction task for (a) sorted SFCV, (b) unsorted SFCV, (c) cross-validation with random splits, and
(d) cross-validation with scaffold splits for the (first) nine iterations for Random Forest models. SFCV: Step-Forward Cross-Validation
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Figure S3. (a) The total number of compounds dissimilar to training data (Tc<0.55), (b) the total number of discovery compounds
(pIC50<5.2) in the test set predicted within an error range of 0.5 log unit, and (c) the total discovery compounds dissimilar to training data
(Tc<0.55), as shown for the hERG target prediction task across four validation methods of sorted SFCV, unsorted SFCV, cross-validation
with random splits, and cross-validation with scaffold splits (combined for all test folds). The colored stack shows how many predictions
are within a range of 0.5 log fold unit error. Tc: Tanimoto Similarity; SFCV: Step-Forward Cross-Validation.
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Figure S4. Absolute Error for VEGFR2 target prediction (sorted by pIC50 values) for (a) sorted SFCV, (b) unsorted SFCV, (c) cross-
validation with random splits, and (d) cross-validation with scaffold splits. SFCV: Step-Forward Cross-Validation
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Figure S5. Parity plots for hERG target prediction for (a) sorted SFCV, (b) unsorted SFCV, (c) cross-validation with random splits, and (d)
cross-validation with scaffold splits for the first five iterations for Random Forest models. SFCV: Step-Forward Cross-Validation


