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ABSTRACT

Radiological services are experiencing unprecedented demand, leading to in-
creased interest in automating radiology report generation. Existing Vision-
Language Models (VLMs) suffer from hallucinations, lack interpretability, and
require expensive fine-tuning. Sparse Autoencoders (SAEs) have been shown
to provide a principled approach to reverse-engineer a model’s internal activa-
tions into discrete, verifiable components. Thus, we introduce SAE-Rad, the first
instance of using mechanistic interpretability techniques explicitly for a down-
stream multi-modal reasoning task. SAE-Rad uses a novel SAE architecture
to decompose latent representations from a pre-trained vision transformer into
human-interpretable features. These features are then labelled using an off-the-
shelf language model and compiled into a full report for each image, eliminating
the need for fine-tuning large models for this task. On the MIMIC-CXR dataset,
SAE-Rad achieves competitive radiology-specific metrics compared to state-of-
the-art models while using significantly fewer computational resources for train-
ing. Qualitative analysis reveals that SAE-Rad learns meaningful visual concepts
and generates reports aligning closely with expert interpretations. Our results sug-
gest that SAEs can enhance multimodal reasoning in healthcare, providing a more
interpretable alternative to existing VLMs.

1 INTRODUCTION

Radiological services are essential to modern clinical practice, with demand rising rapidly. In the
UK, the NHS performs over 43 million radiological procedures annually (Lewis et al., 2021), costing
over £2 billion, and demand for scans more than doubled between 2012 and 2019 (NHS England
& NHS Improvement, 2019). Much of the cost covers agency, bank, and overtime staff, but a
national imaging strategy deemed it unsustainable. (NHS England & NHS Improvement, 2019).
Consequently, there’s growing interest in (semi)-automating tasks like radiology report generation,
augmentation, and summarization to assist clinicians (Zhu et al., 2024; Chen et al., 2024; Pérez-
Garcı́a et al., 2024), spurred by advances in multimodal text-vision modelling techniques.

Recent architectures combining vision encoders with pretrained Large Language Models (LLMs)
into multimodal Vision-Language Models (VLMs) excel in visual and language tasks (Liu et al.,
2024b; 2023a; Li et al., 2024; Lin et al., 2023; Liu et al., 2023b). VLMs have been applied to
healthcare tasks, including radiology report generation (Hyland et al., 2023; Bannur et al., 2024;
Chen et al., 2024; Stock et al., 2024; Yang et al., 2024), often by mapping image representations into
the LLM’s token embedding space (Pérez-Garcı́a et al., 2024). Despite improvements from scaling
VLMs (Yang et al., 2024), hallucinations and disagreements with domain experts remain common
(Yildirim et al., 2024; Jeblick et al., 2023; Lee et al., 2023; Tanno et al., 2024a). Hallucinations
are unavoidable in LLMs (Kalai & Vempala, 2024; Xu et al., 2024), and this limits VLMs for
radiology reporting, but other important considerations remain. For current state-of-the-art systems,
it is necessary to finetune a multi-billion parameter LLM to perform visual instruction tuning (Liu
et al., 2024b), which is computationally intensive. Additionally, reports generated by VLMs may not
be faithful to the underlying computations of the image encoder – we seek to design a framework
that is verifiably faithful to the image model by reverse engineering it’s computations. This may
yield more interpretable results, engendering more trust in automated radiology reporting models.
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Figure 1: SAE-Rad overview. Panel A: We learn a set of sparsely activating features by training
a Sparse Autoencoder (SAE) on class tokens produced by a radiology-image encoder. Panel B:
We retrieve the corresponding reference reports for highest activating images for a feature, from
which we can produce text descriptions of each feature. Panel C: We pass a new image through
the radiology-image encoder and SAE encoder to retrieve the highest activating features. Text de-
scriptions of these features are subsequently used by a pretrained large language model (LLM) to
generate a detailed radiology report.

To this end, we introduce SAE-Rad (Fig. 1), a framework which leverages sparse autoencoders
(SAEs) to learn human-interpretable features from image latents extracted from a pre-trained radi-
ology image encoder (Pérez-Garcı́a et al., 2024). We propose to automatically label these features
using pre-trained LLMs (Bricken et al., 2023) and then compile them into descriptive radiology
reports. To the best of our knowledge, this is the first instance of using SAEs explicitly for a down-
stream task requiring multi-modal reasoning. Our contributions are as follows: 1) Novel SAE: We
propose a hybrid architecture which builds on gated SAEs to achieve accurate reconstructions with
comparable sparsity to state-of-the-art techniques; 2) Multimodal reasoning pipeline: We develop a
framework based on our SAE which leverages automated interpretability to label SAE features us-
ing paired text data and ultimately produce radiology reports given an image; 3) Interpretability in
healthcare: Our case study on healthcare data demonstrates the utility of mechanistic interpretabil-
ity for downstream tasks in a relatively smaller and significantly more homogeneous dataset than
most general-domain text or natural-image datasets.

2 RELATED WORK

Multimodal reasoning Multimodal reasoning methods like ScienceQA (Lu et al., 2022) intro-
duced multimodal chain-of-thought (CoT) by zero-shot prompting models to generate both ratio-
nales and answers. Multimodal-CoT (MM-CoT) (Zhang et al., 2023) extended this with a two-stage
framework that separates rationale generation and answer inference using two models of the same ar-
chitecture. Duty-Distinct CoT (DDCoT) (Zheng et al., 2023) further factorizes rationales by decom-
posing the initial question into sub-questions answered by a vision-language model (VLM). Other
divide-and-conquer approaches decompose questions into sub-questions but often require training
task-specific visual question generation (VQG) models and additional scoring models (Selvaraju
et al., 2020; Uehara et al., 2022; Wang et al., 2022). IdealGPT (You et al., 2023) iteratively decom-
poses queries and uses a VLM to answer sub-questions, repeating the process if confidence is low.
Unlike these methods that rely on decomposing questions or generating rationales through additional
models, our approach directly extracts and interprets features from pre-trained image encoders. This
enables faithful and transparent multimodal reasoning without the need for extensive fine-tuning or
supplementary VQG models.
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Radiological VLMs Several works have finetuned or otherwise trained specialized foundation
models for radiological applications including Med-flamingo (Moor et al., 2023), Med-PaLM M (Tu
et al., 2024), LLava-Med (Li et al., 2024), Med-Gemini (Yang et al., 2024), Rad-DINO (Pérez-
Garcı́a et al., 2024), MAIRA-1 (Hyland et al., 2023), R2gengpt (Wang et al., 2023b), and Radiology-
GPT (Liu et al., 2023c). Regarding radiology report synthesis, many models produce both the
‘findings’ and ‘impression’ sections of the reports (Chen et al., 2020; Jin et al., 2024; Yan et al.,
2023), whilst others only produce the ‘impression’ section (Bannur et al., 2023), or the ‘findings’
section (Tu et al., 2024; Miura et al., 2020; Delbrouck et al., 2022; Tanida et al., 2023; Nicolson
et al., 2023). As noted by others (Hyland et al., 2023; Yu et al., 2023; Jeong et al., 2024), studies
examining all three settings found that the choice of section(s) to report significantly affects the
performance metrics, making comparison between results difficult. As such, we focus on the most
common setting of producing the ‘findings’ section.

Mechanistic interpretability Bricken et al. (2023) demonstrated that SAEs could recover
monosemantic features by training on the residual stream of small transformers. The gated SAE
was a Pareto improvement over the baseline SAE in terms of sparsity (L0) and the loss recovered
(Rajamanoharan et al., 2024). There was concern that SAEs would not scale to frontier transformers
until recent work by Templeton et al. (2024), which trained SAEs on Claude 3 Sonnet and discovered
many monosemantic features. Similarly, Gao et al. (2024) trained SAEs on GPT-4 and introduced
the Top-K training variant, while Lieberum et al. (2024) released Gemma Scope, a comprehensive
suite of SAEs for Gemma 2 models. Contemporaneously, SAEs were trained on the class tokens of
a CLIP vision transformer (Fry, 2024), InceptionV1 (Gorton, 2024), the conditioning embeddings
of diffusion models (Daujotas, 2024), and the vision transformer of a pathology foundation model
(Le et al., 2024). Other methods use an overcomplete basis and LASSO regressions on CLIP em-
beddings (Bhalla et al., 2024). However, in all cases the discovered language/visual features were
not used to perform a downstream multimodal reasoning task.

3 BACKGROUND

In this section we give a brief overview of mechanistic interpretability, SAEs, and gated SAEs,
before introducing our SAE-Rad framework.

3.1 MECHANISTIC INTERPRETABILITY AND SPARSE AUTOENCODERS (SAES)

Mechanistic interpretability Mechanistic interpretability research aims to identify, understand,
and verify the algorithms that an ML model implements by reverse engineering a model’s compu-
tations into human-interpretable components (Olah et al., 2020; Rajamanoharan et al., 2024). Clas-
sical approaches attempted to achieve this by analysing the firing patterns of individual neurons,
which were interpreted as possible ‘concept representations’. However, this was broadly ineffective
as neurons can be polysemantic, meaning that a single neuron may fire on many unrelated concepts
(Rajamanoharan et al., 2024; Bolukbasi et al., 2021; Elhage et al., 2022a). Polysemantic neurons
are believed to arise during training due to the composition of both the linear representation and
superposition hypotheses.

Linear representation and superposition hypotheses Motivated by a number of findings which
suggest that concept representations are linear (Gurnee et al., 2023; Olah et al., 2020; Park et al.,
2023), the linear representation hypothesis states that neural networks represent concepts as direc-
tions in activation space (Nanda et al., 2024). This hypothesis can be thought of as being composed
of two properties: 1) Linearity: That is, features are represented as directions; and 2) Decom-
posability: We can understand neural network outputs as a composition of multiple independently
understandable features (Elhage et al., 2022b). The superposition hypothesis states that for an in-
termediate representation of dimension n, neural networks will encode M ≫ n concepts as linear
directions (Rajamanoharan et al., 2024; Elhage et al., 2022b). These directions form an overcom-
plete basis of the activation space and must therefore necessarily overlap with each other. However,
a single input will only activate a sparse subset of these concepts, leading to minimal interference
between the (non-orthogonal) concept directions (Gurnee et al., 2023; Rajamanoharan et al., 2024).
Recent work (Bricken et al., 2023) has proposed using SAEs to take features out of superposition
and learn monosemantic interpretable representations.
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Sparse autoencoders (SAEs) SAEs attempt to ‘undo’ superposition by learning the sparse over-
complete basis (Mallat & Zhang, 1993; Rajamanoharan et al., 2024) (or dictionary) of the activation
space induced by superposition. SAEs attempt to learn both the concept directions and a sparse
vector of coefficients for the inputs, that reflect how much each concept is activated for each input
(Cunningham et al., 2023; Bricken et al., 2023). We will henceforth refer to such sparse vectors of
coefficients as ‘feature activations’.

We begin by defining the ‘baseline SAE’ described by Bricken et al. (2023). Let n be the dimension
of the input and output (typically the input is the residual stream of a transformer, and the output is
its reconstruction (Elhage et al., 2021)), and m be the SAE hidden layer dimension. Let s be the
size of the dataset. Then given encoder weights and biases W enc ∈ Rm×n,benc ∈ Rm, and decoder
weights and biases W dec ∈ Rn×m,bdec ∈ Rn, the encoding and decoding operations for a dataset
X ∈ Rs,n are

h(x) := ReLU(W enc(x− bdec) + benc) (1)

x̂(h(x)) := W dech(x) + bdec. (2)

The loss function is then

L(x) := 1

|X|
∑
x∈X

[
∥x− x̂(h(x))∥22 + λ∥h(x)∥1

]
, (3)

where λ is an L1 sparsity coefficient. The first term is a reconstruction error measured by the
squared distance between the input and its reconstruction, and the second is an L1 regularization
loss to induce sparsity. The column-wise norm of the decoder W dec is constrained to unit norm
during training (Bricken et al., 2023).

3.2 GATED SAES

As can be seen in Eq. (3), SAEs jointly optimize two opposing objectives: 1) Reconstruction fidelity
and 2) L1 regularization as a proxy for sparsity (as measured by L0). This means the SAE is free
to trade-off some reconstruction fidelity in order to perform better on the sparsity penalty. One
consequence of this is shrinkage (Wright & Sharkey, 2024). That is, for a fixed decoder, the sparsity
penalty pushes the feature activations h(x) towards zero whilst the squared distance loss encourages
h(x) to be large enough in order to produce high quality reconstructions. Thus, the standard SAE
will systematically underestimate the optimal magnitude of feature activations (and simply rescaling
these does not necessarily overcome this bias) (Rajamanoharan et al., 2024; Wright & Sharkey,
2024).

Rajamanoharan et al. (2024) propose a gated SAE which separates the encoding procedure into two
tasks: 1) Detecting which features should activate for a given input (this requires an L1 penalty if the
features are to be sparse); and 2) Estimating the magnitude of the feature activations (this does not
require an L1 loss; indeed, including this loss here introduces a shrinkage bias). The architecture of
the gated encoder is

h(x) := I[

πgate(x)︷ ︸︸ ︷
W gate(x− bdec) + bgate > 0]︸ ︷︷ ︸

hgate(x)

⊙ReLU(Wmag(x− bdec) + bmag)︸ ︷︷ ︸
hmag(x)

, (4)

where I[• > 0] is an element-wise Heaviside step function and ⊙ is element-wise multiplication.
The hgate sub-function learns which features should activate for a given input and hmag estimates the
magnitude of activations for these features. Here, πgate is referred to as the hgate sub-function’s ‘pre-
activations’. To minimize the number of additional parameters required, Wmag shares the same fea-
ture directions as W gate, and is defined as Wmag

i,j := exp(rmag
i ) ·W gate

i,j , where rmag ∈ Rm is a vector-
valued scaling parameter. Letting RA(·) := ReLU(πgate(·)) denote the rectified pre-activations of
the gating sub-function, the loss function is defined as

L(x) := ∥x− x̂(h(x))∥22︸ ︷︷ ︸
Lreconstruct

+λ∥RA(x)∥1︸ ︷︷ ︸
Lsparsity

+ ∥x− x̂frozen(RA(x))∥22︸ ︷︷ ︸
Laux

, (5)

where x̂frozen is a fixed copy of the decoder so that gradients from the auxiliary loss Laux do not
back-propagate to the decoder weights or bias terms. The auxiliary term Laux ensures that hgate
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correctly identifies features necessary for reconstruction, as its (positive) pre-activations must be
able to reproduce the input. The sparsity term Lsparsity applies an L1 penalty to the rectified pre-
activations (and thus sparsity is only imposed on the gating sub-function), and the reconstruction
term serves the same function as in Eq. (3).

4 SAE-RAD

In this section we introduce SAE-Rad. First, we describe the autoencoder architecture, which is
based on the gated SAE described in Section 3.2. Then, we describe our end-to-end radiology report
generation pipeline.

4.1 SAE ARCHITECTURE

It was recently demonstrated that a lower overall SAE loss is achievable without constraining the L2
norm of the decoder weights, or centering the input based on the decoder bias (Conerly et al., 2024).
Concretely, they use the same decoder as in Eq. (2) and define the encoder as

h(x) := ReLU(W encx+ benc). (6)

Note that the input x is no longer centered by subtracting the decoder bias bdec as in Eq. (1). The
sparsity penalty in the loss also now includes the L2 norm of the columns of the decoder W dec.
We present a novel proof of the equivalence between the equation below and the loss in Eq. (3) in
Appendix K:

L(x) := ∥x− x̂(h(x))∥22 + λ
∑
i

hi(x) · ∥W dec
·,i ∥2. (7)

The feature activation for a feature i is then hi(x) · ∥W dec
·,i ∥2. The ‘concept directions’ are the

unit-normalized decoder vectors
W dec

·,i
∥W dec

·,i ∥2
.

The SAE-Rad sparse autoencoder is a hybrid architecture which combines a gated encoder layer
with unconstrained decoder norms. Its encoder is defined as

h(x) := I[W gatex+ bgate > 0]⊙ ReLU(Wmagx+ bmag), (8)

and the training objective given by

L(x) := ∥x− x̂(h(x))∥22︸ ︷︷ ︸
Lreconstruct

+λ
∑
i

RAi(x) · ∥W dec
·,i ∥2︸ ︷︷ ︸

Lsparsity

+ ∥x− x̂(RA(x))∥22︸ ︷︷ ︸
Laux

. (9)

There are four architectural differences between the gated SAE and SAE-Rad: 1) The L2 norm
of the decoder weights are not constrained to unit norm; 2) The L2 norm of the decoder weights
are included in the sparsity loss term; 3) The input is not centered by subtracting the decoder bias
term; 4) We do not leverage stop gradient operations/decoder copying – this means that we allow
gradients to back-propagate to the decoder parameters from the auxiliary loss. SAEs are trained
to balance reconstruction fidelity and sparsity, placing them on a Pareto frontier of these objectives
(Rajamanoharan et al., 2024). We therefore evaluate SAEs based on the L0 norm and the mean-
squared error loss as defined in Eq. (3). We demonstrate that this novel SAE architecture outperforms
the architecture described by Conerly et al. (2024) on our dataset, achieving both a lower L0 and a
lower mean-squared error. As such, SAE-Rad is a more Pareto-optimal architecture in the present
context. Details of this comparison can be found in Appendix B.1.

4.2 SAE-RAD – AUTOMATED RADIOLOGY REPORTING PIPELINE

In this section we describe our pipeline to automate the task of radiology report generation.
Concretely, a radiographic image x is passed through a pre-trained and frozen vision encoder
fimg(·) : x 7→ z to produce an image latent z. We leverage the hybrid SAE architecture described in

Section 4.1 to learn feature directions
W dec

·,i
∥W dec

·,i ∥2
and their associated activations h(z) · ∥W dec∥2 from

the latents.
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In order to generate a text-based report, we produced plain-English descriptions of the learned sparse
dictionary (i.e., a description of what each feature direction represents). To do this we performed
automated interpretability (Bricken et al., 2023) by using a pre-trained and frozen LLM to analyse
the ground-truth radiology reports of the highest activating images for each feature. Let X(i)

highest
represent the set of images with the largest feature activations for feature i. For each image x ∈
X

(i)
highest there is an associated ground-truth radiology report r(x). We collect these reports into

a set R(i) := {r(x)|x ∈ X
(i)
highest}. We then utilized a pre-trained and frozen language model

fdescriptor : R 7→ d to generate a description d(i) for a feature i by analyzing the set R(i) as d(i) =

fdescriptor(R(i)). This process yielded a set of feature descriptions {d(i)}Mi=1, where M is the total
number of features learned by the SAE.

For a new image x we identified the set of active features I(x) based on a threshold τ as

I(x) := {i|hi(fimg(x)) · ∥W dec∥2 > τ}. (10)

The automated radiology report R(x) is then generated by a pre-trained and frozen LLM from the
descriptions of the active features

R(x) = fgenerator({d(i)|i ∈ I(x)}). (11)

5 EXPERIMENTS

Our overarching hypotheses are that: 1) SAE features capture meaningful visual concepts even in ho-
mogeneous datasets (such as is the case for chest radiographs); 2) The visual concepts captured by an
SAE can be appropriately described by a pre-trained LLM by use of automated interpretability tech-
niques with paired text data; 3) Natural language descriptions of visual features in the latent space of
an SAE can be composed into high-quality radiology reports without explicit use (or training/fine-
tuning) of a VLM for multimodal reasoning. We assessed these hypotheses with our automated
radiology reporting experiment (Section 5.1). We then conducted a number of ablation studies
to investigate the effects of model size, different sparsity constraints, and the inclusion of auxiliary
information (Section 5.2). Next, we performed a case study for image-based feature localization to
assess whether the features learned by our SAE relate appropriately to their corresponding location
in the images (Section 5.3). Finally, we conducted a reader study with a specialist radiologist to
assess the quality of our generated reports (Section 5.4).

5.1 AUTOMATED RADIOLOGY REPORTING

Dataset description We trained and evaluated all models on the MIMIC-CXR dataset (Johnson
et al., 2019), a public dataset of 227,835 radiographic studies for a total of 377,110 chest radio-
graphs and associated written text reports. We linked all images to their DICOM metadata files to
retrieve scan orientations. We only considered images for which metadata files exist, and retained
only antero-posterior(AP)/postero-anterior(PA) scans for training (these are ‘head-on’ scans, as op-
posed to lateral ones). These are the default views for the generation of diagnostic reports given the
increased clarity and ability to visualize the relevant anatomy comprehensively (Hyland et al., 2023).
We then extracted the ‘findings’ section from each text report. The ‘findings’ are a natural language
description of all relevant negative and positive features for a given radiograph. Occasionally, the
‘findings’ section is placed into another section with the sub-heading of ‘impression’. Datapoints
without either a findings or impression section were discarded. We used the recommended train/test
split for MIMIC-CXR, resulting in a total of 239,931 training and 3,403 test images.

Evaluation metrics We evaluated generated radiology reports using both general Natural Lan-
guage Generation (NLG) metrics (BLEU-4 (Papineni et al., 2002), ROUGE-L (Lin, 2004), ME-
TEOR (Banerjee & Lavie, 2005)) and radiology-specific metrics (RGER score (Delbrouck et al.,
2022), CheXpert F1 score (Irvin et al., 2019)). While lexical metrics assess n-gram overlap and
word order, clinical metrics like RGER and CheXpert F1 attempt to evaluate factual complete-
ness and consistency by analyzing entity-relationship graphs and predicting common chest X-ray
pathologies, respectively. NLG metrics can be inadequate for assessing radiology reports as they
don’t account for clinical significance (Bannur et al., 2024), while radiology-specific metrics often

6
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rely on specialized models (Yu et al., 2023) or pre-specified findings classes (Smit et al., 2020; Ban-
nur et al., 2024). To address these limitations, the RadFact framework Bannur et al. (2024) uses
LLMs to assess sentence-level factuality through bi-directional entailment verification with refer-
ence reports— offering a robust evaluation method without relying on pre-specified error types or
specialized models. Additional details are provided in Appendix B.2.

Experimental setup The SAE-Rad framework was trained on class tokens produced by the Rad-
DINO vision transformer, using an expansion factor of 64 resulting in a latent dimension of 49,152.
The model was optimized using Adam with a learning rate peaking at 5e-5 and a sparsity penalty
of 8e-3, trained for 200,000 steps with a batch size of 2048. Claude 3.5 Sonnet was used for au-
tomated feature interpretation and report generation, while RadFact evaluation employed Llama3-
70B-Instruct. Additional experimental setup details are given in Appendix B.3.

Table 1: Report generation performance on the official MIMIC-CXR test split. BL4 = BLEU-4,
RG-L = ROUGE-L, MTR = Meteor. Ma-5 (Macro-F1-5), Ma-14 (Macro-F1-14), Mi-5 (Micro-F1-
5), and Mi-14 (Micro-F1-14) represent the clinical CheXbert labeler scores. Bolding represents best
performance in the current study or between the upper bound models.

Model RadFact ↑ NLG Metrics ↑ Clinical Metrics ↑
F1 BL4 RG-L MTR RGER Ma-5 Ma-14 Mi-5 Mi-14

Current study
Baseline 30.0 3.1 18.6 23.5 14.9 38.3 25.5 45.0 42.8
CheXagent 36.9 3.7 21.5 21.1 18.0 31.5 22.5 38.6 38.1
SAE-Rad (×64) 37.2 1.9 17.1 29.1 18.2 47.2 34.3 54.4 53.2

Upper bound models
MAIRA-1 47.8 14.2 28.9 33.3 29.6 47.7 38.6 56.0 55.7
MAIRA-2 50.4 23.1 38.4 41.7 39.6 50.4 41.6 59.1 58.1

Feature 1 DIMENSION 714

DEXTROSCOLIOSIS OF THE THORACIC SPINE

Feature 2 DIMENSION 152

BILATERAL LUNG OPACITIES & SIGNS OF PULMONARY 
CONSOLIDATION

Feature 4 DIMENSION 89
PACEMAKER DEVICE & ASSOCIATED LEADS WITHIN CHEST CAVITY

Feature 3 DIMENSION 150
RIGHT-SIDED PLEURAL EFFUSION

Figure 2: SAE-Rad identifies clinically relevant and interpretable features within radiological
images. We illustrate a number of pathological and instrumentation features relevant for producing
radiology reports. We add annotations (green arrows) to emphasize the presence of each feature.

Quantitative evaluation We compared SAE-Rad to the current state-of-the-art radiology report-
ing systems. CheXagent (Chen et al., 2024) is an instruction-tuned foundation model for CXRs
trained on 1.1M scans for question-answering and text-generation tasks. MAIRA-1 &-2 (Hyland
et al., 2023; Bannur et al., 2024) are VLMS based on the LLaVA 1.5 architecture (Liu et al.,
2024b;a). MAIRA-2 is trained on 510,848 CXRs from four datasets and sets the current state-of-the-
art for report generation. The MAIRA systems are not publicly available for result replication, and
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Cardiomediastinal silhouette is unchanged including prominence of the 
main pulmonary artery consistent with pulmonary hypertension and 
overall cardiomegaly. Bilateral, right more than left pleural effusions are 
unchanged, larger on the right and moderate-to-large on the left. There 
is no evidence of pneumothorax. There is bilateral vascular engorgement 
seen in the perihilar areas with interstitial prominence, consistent with 
mild interstitial pulmonary edema, most likely chronic finding. As 
compared to ___, the degree of interstitial edema has improved slightly. 
Unchanged appearance of the stent in the left brachiocephalic artery is 
noted.

The chest radiograph demonstrates bilateral pleural effusions, more 
pronounced on the right, with associated bibasilar atelectasis. There 
is evidence of pulmonary vascular congestion and cardiomegaly. 
There is no pneumothorax. A right-sided dialysis catheter is 
visualized. The overall appearance is consistent with pulmonary 
edema. The combinations of findings suggests fluid overload, 
possibly related to renal dysfunction requiring dialysis. 

A: Ground-Truth Report

B: SAE-Rad Report

Shared findings between reports

Finding missed by SAE-Rad

Finding missed in ground-truth report

Figure 3: SAE-Rad accurately captures features reported by human radiologists and more.
Above, we showcase a side-by-side comparison between a ground-truth radiology report and one
generated by SAE-Rad. The model successfully identifies key clinically relevant features. SAE-
Rad also identifies additional details, such as a right-sided dialysis catheter, without hallucination
(we annotate this feature with green arrows for emphasis). SAE-Rad can also miss features when
compared to the reference report.

thus we quote their evaluation values directly as our upper-bound. CheXagent is publicly available,
and we therefore performed independent replications for this model for a direct comparison. The
‘baseline’ approach is a naı̈ve method of report generation that uses the report of the closest image in
the MIMIC train split. Further details of the ‘baseline’ approach can be found in Appendix B.6. As
Table 1 demonstrates, SAE-Rad underperforms on generic NLG metrics such as BLEU-4. This is
expected as we do not try to optimize for any specific ‘writing style’ by fine-tuning an LLM on the
reference reports from MIMIC-CXR. Conversely, SAE-Rad demonstrates strong performance on
radiology-specific metrics which are clinically relevant, outperforming CheXagent by up to 52% in
the CheXpert F1 score (macro-averaged F1-14), and achieving 92.1% and 89.9% of the performance
of MAIRA-1 and MAIRA-2 on these scores, respectively. We additionally compare SAE-Rad to 14
alternative approaches for automated report generation in Appendix J, broadly outperforming them
across all clinical metrics.

Qualitative investigation Figure 2 illustrates randomly selected monosemantic visual features
from SAE-Rad. As can be seen, the SAE learns human-interpretable visual concepts despite the ho-
mogeneity and relatively small size of the dataset. These include dextroscoliosis of the spine (Fig. 2;
feature 1), bilateral opacifications (Fig. 2; feature 2), unilateral pleural effusions (Fig. 2; feature 3),
and the presence of instrumentation – in this case a pacemaker (Fig. 2; feature 4). In Fig. 3, we
illustrate an example ‘findings’ section for a CXR with a number of pathological findings; SAE-
Rad is capable of detecting multiple relevant pathologies for a given image. Like other radiology
report generation systems, SAE-Rad can miss findings. However, it can also occasionally describe
a relevant finding which is otherwise missing from the reference report – an example relating to the
presence of a dialysis catheter is shown in Fig. 3.

5.2 ABLATION STUDIES

We conducted a set of additional experiments which characterize the effects of: 1) Varying the SAE
expansion factor; 2) Investigating less sparse (‘dense’) SAEs by reducing the L1 penalty coefficient;
and 3) Evaluating the relative benefits of including auxiliary information including the ‘indication’
section of a report as well as previous reports, where available. The experimental setup for these
ablations is described in Appendix H.

As can be seen in Table 2, an expansion factor of ×64 produced a higher RadFact F1 score com-
pared with both smaller (×32) and larger (×128) expansion factors. In addition, denser SAEs
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with a larger L0 norm underperformed sparser models. This suggests that concepts useful for
radiology report generation are likely to exist in balance between being too coarse or too fine-
grained. If the feature are too coarse, this may cause ‘feature absorption’— an asymmetric form
of feature splitting that can negatively impact the interpretability of an SAE feature (Chanin et al.,
2024). Conversely if the features are too fine-grained, the features may be more difficult to accu-
rately describe given insufficient amount of descriptive detail in the ground-truth reference reports.

Table 2: RadFact performance metrics for different
SAE-Rad configurations. /w inds = with indication(s),
/w inds + prev.reps = with indications and previous text
reports.

SAE-Rad Configuration Precision ↑ Recall ↑ F1 Score ↑

×128 34.83 29.91 32.18
×64 35.95 31.95 33.83
×32 31.22 27.89 29.46
×128 dense 32.57 27.06 29.56
×64 dense 31.15 28.46 29.74
×32 dense 32.02 28.61 30.22

×64 /wo inds 38.78 28.22 32.67
×64 /w inds 38.45 32.42 35.18
×64 /w inds + prev. reps 37.32 39.83 38.45

Table 2 demonstrates that the addition of aux-
iliary information such as the indication, which
describes why the patient required the scan in
the first instance, can boost the RadFact F1
score, with a large boost to recall. However,
in our experiments this caused a small degra-
dation to the precision sub-metric. This find-
ing runs against prior work on the effect of in-
cluding this section (Yu et al., 2023; Tu et al.,
2024; Nguyen et al., 2023) and warrants ad-
ditional investigation in future. We find that
adding both previous indications and prior stud-
ies has a net positive effect on the quality of
generated reports. Additionally, we report NLG
and radiology-specific metrics for this ablation
experiment in Table 6 of Appendix H, These
additional analyses support the findings in Table 2.

5.3 IMAGE-BASED FEATURE LOCALIZATION

To test whether SAE features relate appropriately to their corresponding image location we trained
a diffusion model conditioned on Rad-DINO class tokens (Pérez-Garcı́a et al., 2024). We then pro-
duced counterfactual images, where we ask, what would this image have looked like if a particular
feature were present or absent? If the SAE successfully captures visual features, the counterfac-
tual images should reflect the targeted feature’s presence or absence. To produce such images, we
passed a class token through the SAE, intervened on encoder activations, and reconstructed a coun-
terfactual token via the decoder, which conditioned the diffusion model to project interventions into
imaging space. We tested whether: 1) interventions alter the reconstructed class token accordingly,
2) changes affect only the targeted feature, and 3) features can be “added” or “removed” by manipu-
lating the same activation. Fig. 4 shows the results for two features (cardiomegaly and pacemaker),
demonstrating that our interpretations accurately reflect their impact on model behaviour. This also
enables us to conduct unsupervised segmentation, where we semantically segment specific visual
features by adding them to an image and then taking the difference between the pre- and post-edit
images. Further details are given in Appendix D.

5.4 READER STUDY

In a reader study with a specialist radiologist evaluating the quality of the automated radiology
reports, 328 sentences from 60 reports (SAE-Rad, CheXagent, and a baseline) were analyzed. SAE-
Rad had up to 7% fewer edits than other models and demonstrated significantly fewer errors with
clinical impact, particularly in the “significant” category, where SAE-Rad had almost half the rate
compared to others. This highlights SAE-Rad’s potential for radiology report generation in a real
clinical scenario. The full study can be found in Appendix E.

6 DISCUSSION, LIMITATIONS, AND CONCLUSION

In this work, we introduced SAE-Rad, a novel framework that leverages sparse autoencoders to
automate radiology report generation. Our approach directly decomposes image class tokens from
a pre-trained radiology image encoder into human-interpretable features, which are then compiled
into comprehensive radiology reports. The experimental results demonstrate that SAE-Rad achieves
competitive performance on radiology-specific metrics, outperforming existing models like CheX-
agent (Chen et al., 2024) and approaching the performance of state-of-the-art systems such as
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Original CLS CLSadd pacemaker {CLSadd pacemaker}del pacemaker Unsupervised segmentation

Original CLS CLSadd cardiomegaly {CLSadd cardiomegaly}del cardiomegaly Unsupervised segmentation

Figure 4: SAE-Rad enables targeted counterfactual image generation and unsupervised seg-
mentation with disentangled class tokens. Row 1 examines a pacemaker, and Row 2 investigates
cardiomegaly. Column 1 shows original MIMIC-CXR images, Column 2 shows model reconstruc-
tions, and Columns 3 and 4 depict counterfactuals by adding and removing features. The final
column demonstrates unsupervised segmentation by comparing counterfactual and original images.
Details are in Appendix D.

MAIRA-2 whilst being trained on a significantly smaller dataset and with a much lower training
compute budget; see Appendix F. By reverse-engineering the computations of the image encoder,
SAE-Rad provides a framework that is verifiably faithful to the underlying model, enhancing trans-
parency and trustworthiness, which are critical considerations in the healthcare setting.

Qualitative analyses confirm that SAE-Rad successfully captures meaningful visual concepts in-
cluding the presence or absence of pathological features. These interpretable features contribute
to generating detailed and accurate radiology reports, as evidenced by strong performance in the
clinical evaluation metrics. Our ablation studies indicate that the choice of expansion factor and
inclusion of auxiliary information, such as previous reports and indications, can significantly impact
the quality of the generated reports, which is broadly in line with the previous literature on this topic
(Bannur et al., 2024).

Our approach has limitations. First, SAE-Rad relies on pre-trained (frozen) models for both the
image encoder and the LLM in the interpretability pipeline, potentially introducing inherent biases.
Spurious correlations and other biases in the image encoder’s latent space may prevent our method
from fully disentangling concepts. This may lead to feature absorption (Chanin et al., 2024), where
distinct concepts are inappropriately merged into a single SAE dimension. However, due to the
pipeline’s modular nature, these biases can be mitigated by replacing either model without retrain-
ing the SAE if the LLM is swapped. Additionally, SAE-Rad underperforms on general language
metrics like BLEU-4, suggesting that while the generated reports are clinically accurate, they may
lack the fluency and stylistic nuances of human-generated reports, particularly those in the MIMIC-
CXR dataset. Improving these metrics through style-aware radiology report generation (Yan et al.,
2023) is a natural avenue for future work. Another exciting direction is to prevent errors from LLM
hallucinations by having SAE features labeled by human inspection (Appendix I) and using a deter-
ministic regex for report synthesis, thereby obviating the need for LLMs in our pipeline altogether.

Overall, this feasibility study presents a novel and effective approach to radiology report genera-
tion by leveraging mechanistic interpretability techniques to extract and utilize human-interpretable
features from medical images. By providing a verifiably faithful representation of the underlying
computations, SAE-Rad contributes to the development of more interpretable AI systems in health-
care.
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A REPRODUCIBILITY STATEMENT

We provide details on the experimental setup, hyperparameters, and data preprocessing steps to
ensure the reproducibility of our results. We cannot share the MIMIC-CXR dataset, however it
can be accessed through application here: https://physionet.org/content/mimic-cxr/2.1.
0/. Our codebase is available at: https://anonymous.4open.science/r/sae rad-5B77/.

B AUTOMATED RADIOLOGY REPORT EXPERIMENT

B.1 SAE ARCHITECTURE COMPARISON

In this section we compare the performance of our novel SAE architecture with the state-of-the-art
architecture proposed by Conerly et al. (2024), which itself introduced a novel loss that outperformed
prior works. The following hyperparameters were used to train both SAEs:

• Expansion factor of ×64.

• Batch size of 2048.

• Learning rate of 5 × 10−5.

• Linear warm-up of learning rate for the first 1% of training.

• Linear warm-down of learning rate for the last 20% of training.

• L1 coefficient warmup for the first 5% of training.

• Adam optimizer with no weight decay.

• Trained for 200,000 optimization steps.

The L1 coefficient was increased for the SAE-Rad architecture in comparison to the Conerly et al.
(2024) SAE in order to compensate for the additional auxiliary loss term used to train the SAE-Rad
architecture. Table 3 displays the resulting metrics comparing the two SAEs - our proposed SAE
attains both a lower L0 and a higher reconstruction accuracy.

L1 coefficient L0 ↓ Explained Variance (%) ↑
Conerly et al. (2024) SAE 5.3× 10−3 15.7 81.3
SAE-Rad 8.0× 10−3 13.6 84.3

Table 3: Comparison of SAE types.

B.2 EVALUATION METRICS

NLG and classical radiology-specific metrics We evaluated generated radiology reports using
both general NLG metrics and radiology-specific metrics. For lexical evaluation, we report BLEU-4
(Papineni et al., 2002) for 4-gram overlap based on n-gram precision, ROUGE-L (Lin, 2004) for
longest common subsequence matching, and METEOR (Banerjee & Lavie, 2005), which performs
unigram matching using surface forms, stems, and meanings, computing scores based on precision,
recall, and fragmentation assessing word order. Whilst widely reported, lexical metrics do not cap-
ture factual completeness or consistency (Miura et al., 2020; Bannur et al., 2024) and we therefore
also include classical clinical metrics. The RGER score (Delbrouck et al., 2022), based on the
RadGraph model (Jain et al., 2021), evaluates entity-relationship graphs extracted from reports by
matching entities and verifying relationships. Additionally, we report the CheXpert F1 score (Irvin
et al., 2019), utilizing the CheXbert model (Smit et al., 2020) to predict 14 common pathologies
in chest X-rays and calculating the harmonic mean of precision and recall between generated and
reference texts. Following recommendations (Miura et al., 2020; Tu et al., 2024; Hyland et al.,
2023), we provide micro- and macro-averaged scores over five key observations—atelectasis, car-
diomegaly, consolidation, edema, and pleural effusion—as well as the F1-14 score encompassing
all observations.
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RadFact — A robust evaluation framework for radiology Natural language generation (NLG)
metrics are insufficient to appropriately assess radiology report generations as they do not ac-
count for the clinical significance of each sentence, and instead treat all words equally (Bannur
et al., 2024). Conversely, radiology-specific metrics are often based on specialised models such as
CheXbert (Smit et al., 2020; Irvin et al., 2019) or RadGraph (Yu et al., 2023; Jain et al., 2021; Del-
brouck et al., 2022), which are themselves limited in that rely on specialised models (Yu et al., 2023),
pre-specified findings classes (Smit et al., 2020; Bannur et al., 2024), and/or error types (Chaves
et al., 2024; Wang et al., 2024). To this end, Bannur et al. (2024) proposed the RadFact framework
which leverages LLMs to assess the factuality of each sentence by use of bi-directional entailment
verification with the ground-truth reference report. RadFact does not rely on pre-specified error
types or radiology-specialized models and is therefore significantly more robust for use to assess the
quality of generated radiology reports.

B.3 SAE-RAD ADDITIONAL EXPERIMENTAL SETUP DETAILS

In our instantiation of the SAE-Rad framework (described in Sections 4.1 and 4.2), all bias terms
benc,bgate, and bmag were initialized to zeros. The elements of the shared encoder weights matrix
W gate were initialized such that all rows point in random directions. The decoder weights W dec

were initialized to W gate⊤. For a dataset of size S, we trained our SAE on the class tokens Z ∈
RS×768 produced by the Rad-DINO vision transformer (Pérez-Garcı́a et al., 2024), a fine-tuned
Dino V2 (Oquab et al., 2023) on a large dataset of chest X-rays. We use the model weights released
at https://huggingface.co/microsoft/rad-dino. The dataset was shuffled and scaled by a
constant such that Ez∈Z[∥z∥2] =

√
dim(z), where dim(z) = 768. We used an expansion factor of

64 and thus the latent dimension of our SAE is 49, 152. We used the Adam optimization algorithm
(Kingma, 2014) with β1 = 0.9, β2 = 0.999, and no weight decay. Our learning rate was increased
linearly over the first 1% of training to 5 × 10−5 and then decayed linearly to zero over the final 20%
of training. Our sparsity penalty λ was linearly increased over the first 5% of training to 8 × 10−3.
We trained our model for 200, 000 steps. We used a batch size of 2048. We did not use ghost
gradients or resampling strategies as none of our features were dead at the end of training — in
other words, all learned concept directions were activated at least once when passing the dataset
through the SAE. We trained all models on a single NVIDIA A6000 GPU. We used Claude 3.5
Sonnet (Anthropic, 2024) for our automated interpretability pipeline; for a given SAE feature, we
retrieved the 10 highest activating images for that feature and passed their ground-truth reference
report to Claude with the task of extracting the most consistent information across the reports. The
output description was used to label the feature. The full prompts are described in Appendix B.4.

To generate a report from SAE features, we accrued all activating features and their descriptions,
and passed them to Claude for concatenation into a full ‘findings’ paragraph. The full prompts are
describe in Appendix B.5. We evaluate RadFact using Llama3-70B-Instruct.

B.4 PROMPT USED TO ANNOTATE SAE FEATURES

In this section we describe the prompt used to instruct Claude 3.5 Sonnet (Anthropic, 2024) to
annotate SAE features. Overall, we instruct Claude to identify commonalities between radiological
reports corresponding to the 10 maximally activating examples for a given SAE feature. The prompt
encourages the model to use chain-of-thought (Wei et al., 2022) reasoning in-order to ensure the
quality of the feature annotations.

1 You are an expert radiologist specializing in chest radiographs. We’re
studying neurons in an image neural network, where each neuron
detects specific features in chest X-rays. I’ve identified the
radiology images that most strongly activate a particular neuron and
will provide you with their associated text radiology reports. Your
task is to analyze these reports and determine the common feature
that this neuron is detecting.

2 To arrive at the most accurate and precise explanation of what this
neuron is detecting, you must engage in explicit chain of thought
reasoning. Begin by thoroughly examining all provided radiology
reports, noting any patterns or commonalities. Pay close attention to
recurring terminology, described anatomical structures, and

consistent pathological findings. Consider how these elements might
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interrelate to form a singular, distinctive feature that the neuron
could be identifying. Evaluate the context of chest radiographs and
consider which aspects would be most significant or unique within
this imaging modality.

3 As you progress through your analysis, verbalize your thought process.
Explain each step of your reasoning, from initial observations to
intermediate conclusions, and finally to your overall assessment.
This chain of thought approach will help ensure a comprehensive and
well -reasoned final explanation.

4 After this detailed analytical process, formulate a single, specific
explanation of what the neuron is detecting. Your explanation should
be as precise and fine -grained as possible, avoiding vague or general
statements. Focus on specific features or combinations of features,

using ’and ’ to connect multiple elements if necessary. Avoid using ’
or’ to list multiple possibilities. Refrain from explaining the
pathology itself (e.g., avoid statements like "This feature
represents X, which is characterized by..."). Base your explanation
solely on the information provided in the reports, without additional
medical knowledge that might not be captured by the neuron.

5 It is crucial that you present your final explanation in the following
format:

6 *This feature represents [your specific, detailed description of what the
neuron is detecting].

7 The asterisk is absolutely essential. Your explanation must begin
immediately after the asterisk, without any additional text,
numbering, or preamble. The presence of this asterisk is critical for
the proper processing of your response.

8 Below are the radiology reports, listed in order of how strongly they
activate the neuron. Use these to inform your analysis and final
explanation:

9 Report number 1: ...
10 Report number 2: ...
11 ...
12 Report number 10: .

Below is an example output from Claude in response to the above prompt.

1 Thank you for providing these detailed radiology reports. I’ll analyze
them to determine the common feature that this neuron is detecting.
Let me walk you through my thought process:

2
3 1. First, I’ll review each report, noting recurring elements:
4 - Report 1: Mentions cardiomegaly and atherosclerotic calcifications

in the thoracic aorta.
5 - Report 2: Notes mild cardiomegaly and a moderately tortuous, mildly

calcified aorta.
6 - Report 3: Describes an enlarged cardiomediastinal silhouette and a

calcified, unfolded aorta.
7 - Report 4: Mentions moderate enlargement of the cardiac silhouette.
8 - Report 5: No specific mention of heart or aorta abnormalities.
9 - Report 6: Notes moderate cardiomegaly.

10 - Report 7: Mentions moderately enlarged cardiac silhouette.
11 - Report 8: Describes moderate cardiomegaly and moderate tortuosity of

the thoracic aorta.
12 - Report 9: No specific mention of heart or aorta abnormalities.
13 - Report 10: Notes an enlarged cardiac silhouette and a tortuous

descending thoracic aorta.
14
15 2. Analyzing these observations, I notice two recurring themes:
16 a) Enlarged cardiac silhouette or cardiomegaly
17 b) Abnormalities of the thoracic aorta (tortuosity, calcification,

unfolding)
18
19 3. Considering the context of chest radiographs, both of these features

would be significant and distinctive within this imaging modality.
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20
21 4. The frequency of these observations is notable:
22 - Cardiomegaly or enlarged cardiac silhouette is mentioned in 7 out of

10 reports.
23 - Aortic abnormalities are mentioned in 5 out of 10 reports.
24
25 5. Given that cardiomegaly is mentioned more frequently, it might be the

primary feature the neuron is detecting. However, the aortic
abnormalities are often mentioned in conjunction with cardiomegaly.

26
27 6. It’s possible that the neuron is detecting a combination of these

features, as they often co-occur and are related to cardiovascular
changes.

28
29 7. The neuron might be sensitive to the overall appearance of an enlarged

cardiac silhouette combined with changes in the adjacent thoracic
aorta, which together create a distinctive pattern on chest
radiographs.

30
31 Based on this analysis, I believe the most precise and specific

explanation for what this neuron is detecting is:
32
33 *This feature represents an enlarged cardiac silhouette (cardiomegaly) in

conjunction with thoracic aortic abnormalities, particularly
tortuosity and calcification.

Finally, we use regex to parse the description using the asterisk as a separator.

B.5 PROMPT USED TO COMPOSE FINDING SECTIONS VIA SAE FEATURES

In this section we describe the prompt used to instruct Claude to compose the finding sections of
a radiology report based on: 1) a patient’s past radiology reports, if they exist, 2) the features that
SAE-Rad has identified are present within the image and 3) the indication for the radiograph. Each
feature is associated to an importance score in accordance to the magnitude of the SAE dimension
of provenance — the higher the magnitude, the higher the importance score. The scores were nor-
malised to the interval between 0 and 1. Our prompt encourages Claude to focus on features with
the highest scores as these were likely to be more significant. See Appendix C.1 for more example
outputs following this prompt, alongside their corresponding radiographs.

1 You are an expert radiologist specializing in chest radiographs. Your
task is to write the findings section for a radiology report based on
a chest X-ray image. To assist you, I may provide up to three of the
patient ’s past radiology reports, if available. These might contain

useful information related to the features of the current scan. I
will also give you the indication (reason) for the current X-ray.
Additionally, you ’ll receive text descriptions of features present in
the current X-ray image, along with importance scores for each

feature. Your primary focus should be on producing the findings
section for the latest scan, given the features about that scan.
Focus on features with higher importance scores, as these are more
prominent in the image and should be emphasized. Assess the current
features, and then judge whether it would be appropriate to relate
them to information in previous scans, if provided. Do not explicitly
mention dates and times from previous reports. Discuss the features

present in the X-ray, along with their implications and any
deductions you can make. Your response should constitute the ’
findings ’ section of the radiology report, providing a comprehensive
analysis of the current X-ray. All of the information is provided
below:

2 <patient_history >
3 <past_report >
4 Report number 1. This report was written 0 years, 2 days, 16 hours and 28

minutes before the current chest x-ray
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5 INDICATION: Left -sided pleuritic chest pain ...
6 COMPARISON: Chest radiograph ___ and chest CT ___ ...
7 IMPRESSION: Ill -defined patchy opacities in lung bases which may

represent ...
8 </past_report >
9 </patient_history >

10
11 <current_chest_x_ray >
12 <feature 1>
13 Feature number 1. Relative importance score 1.0:
14 This feature represents the absence of pneumothorax, characterized by

normal lung appearance at the pleural margins.
15 </feature 1>
16 ...
17 <feature n>
18 </current_chest_x_ray >
19 Using the information provided, compose the findings section of the

radiology report. Be aware that some of the described features may be
inaccurate or only loosely related to the actual characteristics

present in the X-ray. When faced with conflicting information, rely
on the importance scores or a majority consensus to determine which
features are most likely correct. In your report, refrain from simply
listing the features. Avoid using the word ’feature ’ entirely in

your report. Keep the radiology report brief and to the point. The
reason for the current x-ray examination is provided below:

20
21 <indication >
22 Status post CABG.
23 </indication >
24
25 Now write the findings section. This should be a single contiguous

paragraph with the findings of the X-ray radiology report. No more
than 5 to 6 sentences. Be concise and avoid simply listing the
features. Do not respond with any additional text other than the
findings. Do not add any concluding statements at the end, only
include findings.

B.6 BASELINE EXPERIMENTAL SETUP

In this section, we provide details on the experimental details of our baseline report generation
method. In summary, the baseline approach returns the ‘closest’ report in the train split. Explicitly,
we encode a given radiograph using Rad-DINO into a single embedding vector z ∈ R768 by select-
ing the class token. Then, we identify the radiograph y with the closest Rad-DINO class token from
the MIMIC-CXR train split X as measured by the Frobenius norm y = argminp∈X ||z(x)−z(p)||2.
We then return the original findings section from y as our predicted, baseline report.

C ADDITIONAL QUALITATIVE EVALUATIONS

C.1 ADDITIONAL RADIOLOGY REPORT GENERATIONS

In this section we provide additional qualitative examples of SAE-Rad generated findings sections,
highlighting findings jointly described between radiologist generated reports, missing findings by
SAE-Rad, and correct findings highlighted by SAE-Rad not present in the original report. Descrip-
tions and analyses of findings (dis)similarity were produced and reviewed by a clinician.
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A left IJ Swan-Ganz catheter is present. As before, the tip lies relatively distal in 
the right pulmonary artery. Clinical correlation to assess for possible retraction is 
requested. A mesh-like stent extends along the expected course of the left 
subclavian and brachiocephalic vessels. Compared with the earlier film, there 
may have been slight interval improvement in the upper zone redistribution and 
vascular engorgement. Otherwise, no gross interval change is detected. Again 
seen is mild vascular prominence and opacity at the right base which is likely a 
combination of pleural fluid, possible elevated hemidiaphragm, and underlying 
collapse and/or consolidation. There is also increased retrocardiac density, 
consistent with left lower lobe collapse and/or consolidation and a small left 
effusion. The left effusion is slightly more apparent on the current exam. No 
pneumothorax is detected.

A Swan-Ganz catheter is visualized in the pulmonary artery, with its tip positioned 
relatively distally in the right pulmonary system. Bilateral basal opacities are 
present, more pronounced on the right side, consistent with pleural effusions 
and underlying atelectasis. A moderate to large right-sided pleural effusion is 
noted, contributing to the overall asymmetry in lung appearance. The left lung 
demonstrates less extensive effusion, but some fluid accumulation is still 
evident. Despite these findings, there is no evidence of pneumothorax. The 
cardiomediastinal silhouette appears unchanged compared to prior studies, and 
a vascular stent in the left subclavian artery remains in stable position.

A: Ground-Truth Report

B: SAE-Rad Report

Shared findings between reports

Finding missed by SAE-Rad

Finding missed in ground-truth report

Figure 5: Comparison between SAE-Rad Report and the Ground Truth (1). Both reports iden-
tify a Swan-Ganz catheter terminating distally in the right pulmonary artery, a left subclavian stent,
left as well as right (more pronounced) pleural effusion, and no evidence of pneumothorax. SAE-
Rad correctly notes bilateral basal opacities, an asymmetry in lung appearance, consistency in the
cardiomediastinal silhouette with respect to previous studies, and a moderate to large right pleural
effusion. SAE-Rad misses that the stent also extends to the branchiocephalic vessels, and that that
the left effusion is slightly more apparent compared to previous exams.
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The lungs are hyperinflated but clear of consolidation.  Linear opacity in the 
right mid to upper lung is compatible with scarring as well as changes of the 
posterior right ribs which are chronic.  Blunting of the right lateral posterior 
costophrenic angle is chronic, potentially due to scarring or trace effusion.  
Blunting of the left posterior costophrenic angle suggests small pleural 
effusion.  Cardiomediastinal silhouette is within normal limits.  Prominent 
retrocardiac opacity on the right is compatible with a neo esophagus.  No 
acute osseous abnormalities.

The chest radiograph demonstrates linear opacities in the right lung, 
consistent with scarring or subsegmental atelectasis. There are focal areas of 
consolidation or atelectasis noted, which may represent residual changes 
from previous infections or aspiration events. The right posterior pleural 
sulcus appears blunted, possibly due to a small chronic pleural effusion or 
scarring, as noted in prior studies. The cardiac silhouette is within normal 
limits, and there is no evidence of acute pulmonary edema or pneumothorax. 
Emphysematous changes are present, reflecting the patient's known history of 
emphysema. Post-surgical changes from previous esophagectomy and gastric 
pull-through are noted and unchanged from prior examinations.

A: Ground-Truth Report

B: SAE-Rad Report

Shared findings between reports

Finding missed by SAE-Rad

Finding missed in ground-truth report

Figure 6: Comparison between SAE-Rad Report and the Ground Truth (2). Hyperinflation in
the lungs, right lung linear opacities, blunting of the right posterior pleural sulcus and the normal
limits of the cardiac sihloutee are noted in both reports. SAE-Rad detects the presence of focal
areas of consolidation or atelectasis, the patients known history of emphysema, and the gastric pull-
through that remains unchanged from prior exams. SAE-Rad misses the changes of the posterior
right ribs and the lack of acute osseous abnormalities.

The patient is after median sternotomy and CABG with stable appearance of 
heart and mediastinum. Lungs are essentially clear with no pleural effusion or 
pneumothorax. Elevated right hemidiaphragm is unchanged.

The chest radiograph demonstrates normal cardiomediastinal contours and 
clear lung fields without evidence of focal consolidation, pleural effusion, or 
pneumothorax. There are post-surgical changes evident, including median 
sternotomy wires and associated mediastinal clips, indicative of prior cardiac 
surgery. The cardiac silhouette appears normal in size. The right hemidiaphragm 
is mildly elevated with a slight reduction in right lung volume, which may be due 
to the patient's positioning or represent a chronic change. No acute 
cardiopulmonary abnormalities are identified. Overall, the examination reveals 
post-surgical changes without any acute findings in the context of the patient's 
history of melanoma.

A: Ground-Truth Report

B: SAE-Rad Report

Shared findings between reports

Finding missed by SAE-Rad

Finding missed in ground-truth report

Figure 7: Comparison between SAE-Rad Report and the Ground Truth (3). Ground-truth and
SAE-Rad reports identify the normal catdiomediastinal contours, clear lung fields, as well as the lack
of pleural effusion or pneumothorax. SAE-Rad misses that the patient underwent CABG and that
their heart, mediastinum and elevated right hemidiaphraghm remain unchanged. SAE-Rad correctly
comments on the lack of focal consolidation and cardiopulmonary abnormalities, and notes acute
findings with respect to the patients past diagnosis of melanoma. Additionally, SAE-Rad notes the
presence of mediastinal clips and a slight reduction in right lung volume.
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No focal consolidation, pleural effusion, or pneumothorax is seen. Heart and 
mediastinal contours are within normal limits. Lungs are again noted to be 
hyperinflated.

The chest radiograph demonstrates hyperinflated lungs with flattened 
hemidiaphragms and an enlarged retrosternal air space, consistent with chronic 
obstructive pulmonary disease. The lung fields appear clear without evidence of 
focal consolidation, pleural effusion, or pneumothorax. The cardiomediastinal 
silhouette is normal in size and contour. No acute osseous abnormalities are 
identified. Overall, there are no acute intrathoracic abnormalities noted on this 
examination. While small pulmonary nodules and subtle ground-glass opacities 
may be present, they are not well appreciated on this chest radiograph and would 
be better evaluated with CT imaging if clinically warranted.

A: Ground-Truth Report

B: SAE-Rad Report

Shared findings between reports

Finding missed by SAE-Rad

Finding missed in ground-truth report

Figure 8: Comparison between SAE-Rad Report and the Ground Truth (4). In this report, SAE-
Rad captures nearly all elements from the ground truth. Both reports note hyper inflation in the lungs,
no evidence of focal consolidation, pleural effusion, or pneuomothorax. Additionally, both reports
note the normal size and shape of the cardiomediastinal silhoutte. SAE-Rad adds the presence of
flattented hemiadiapharghms, an enlarged retrosternal air space, observes small pulmonary nodules,
and the lack of acute osseous abnormalities. SAE-Rad misses the comparison to the prior patient
history, where lungs were previously noted as hyperinflated.
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Continued mild cardiomegaly. Possible sml pleural effusions. Vasc congestion 
and mild interstitial edema. No focal consolidation. As compared to the prior 
study, there is interval minimal increase in vascular congestion. 
Cardiomediastinal silhouette is stable. There is no change in the appearance of 
the dialysis catheter. Small bilateral effusions are most likely present. There is no 
pneumothorax. No new consolidations to suggest infectious process 
demonstrated.

A central venous catheter is identified with its tip appropriately positioned in the 
superior vena cava or at the cavoatrial junction. There are small bilateral pleural 
effusions noted, with no evidence of pneumothorax. The lung fields demonstrate 
increased pulmonary vascular markings and interstitial thickening, consistent 
with mild to moderate pulmonary vascular congestion and edema. The cardiac 
silhouette appears enlarged, which is consistent with the findings from previous 
examinations and may suggest a waxing and waning pericardial effusion. No 
consolidation or focal airspace opacities are evident. The mediastinal contours 
are unremarkable, and there are no displaced rib fractures visible.

A: Ground-Truth Report

B: SAE-Rad Report

Shared findings between reports

Finding missed by SAE-Rad

Finding missed in ground-truth report

Figure 9: Comparison between SAE-Rad Report and the Ground Truth (5). The presence
of a catheter, as well as small bilateral pleural effusions, an enlarged cardiac silhoutte, and the
presences of medium pulmonary vascular congestion with edema is shared across both reports. Both
reports also note a lack of pneuomothorax, focal consolidations, and focal airspace opacities. SAE-
Rad adds more details on the positioning of the catheter, as well as commenting on the normal
shape of the mediastinal contours with no apparent displaced rib fractures. SAE-Rad misses the
comparative statements with respect to prior studies in relation to the volume of vascular congestion,
the changes in the cardiomediastinal silhouette, and the lack of change of position of the dialysis
catheter between studies.
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In comparison with the study of ___, there is little change and no evidence of 
acute cardiopulmonary disease.  No pneumonia, vascular congestion, or pleural 
effusion.  The cardiac silhouette is at the upper limits of normal in size or slightly 
enlarged.

The cardiac silhouette and mediastinal contours appear prominent, consistent 
with previous examinations. The heart size is at the upper limits of normal to 
mildly enlarged, without evidence of severe cardiomegaly. Lung fields are clear 
and well-expanded, showing no focal consolidations, effusions, or 
pneumothorax. There are no signs of acute pulmonary pathology or fluid 
overload. The absence of pleural effusions and pulmonary edema suggests that 
the cardiac enlargement is not currently associated with significant congestive 
heart failure. Overall, these findings represent a stable appearance compared to 
prior studies, with no acute cardiopulmonary process identified.

A: Ground-Truth Report

B: SAE-Rad Report

Shared findings between reports

Finding missed by SAE-Rad

Finding missed in ground-truth report

Figure 10: Comparison between SAE-Rad Report and the Ground Truth (6). In this example,
SAE-Rad captures a significant portion of features described in the ground truth report. Both reports
note the normal size of the heart, the lack of pleural effusions or acute cardiopulmonary processes,
and the stability of appearance with respect to previous exams. SAE-Rad correctly describes the
clear appearance of the lungs, as well as the prominence of the mediastinal contours and cardiac
silhoutte. Additionally, the lack of severe cardiomegaly, pneumothorax or focal consolidations is
noted by SAE-Rad. Comparatively, SAE-Rad fails to note the lack of pneumonia and vascular
congestion.
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The patient is status post median sternotomy as well as pacemaker placement 
with leads terminating in right atrium and ventricle.  There is also a aortic valve 
prosthesis.  The heart size remains normal.  There are no focal opacities 
concerning for an infectious process.  No pleural effusion and no pneumothorax.

The chest radiograph demonstrates clear lung fields without evidence of focal 
consolidations, pleural effusions, or pneumothorax, suggesting the absence of 
acute pneumonia or other significant pulmonary pathology. The cardiac and 
mediastinal contours appear normal, with no signs of cardiomegaly or 
mediastinal widening. A permanent pacemaker is noted with leads appropriately 
positioned in the right atrium and right ventricle, unchanged from previous 
studies. The metallic component of an aortic valve prosthesis and sternotomy 
wires are again visualized, consistent with the patient's surgical history. Overall, 
the cardiopulmonary structures are stable compared to prior examinations, with 
no acute cardiopulmonary abnormalities identified.

A: Ground-Truth Report

B: SAE-Rad Report

Shared findings between reports

Finding missed by SAE-Rad

Finding missed in ground-truth report

Figure 11: Comparison between SAE-Rad Report and the Ground Truth (7). SAE-Rad cor-
rectly identifies all features in the ground truth. The lack of focal consolidations, pleural effusions
and pneumothorax is noted in both reports. Additionally, SAE-Rad describes the normality of the
cardiac and mediastinal contours, as well as the stability of the cardiac structures. SAE-Rad cor-
rectly identifies reported instrumentation, noting the pacemaker, sternotomy wires in line with the
patient’s history, as well as the location and presence of an aortic valve prosthesis. SAE-Rad addi-
tionally describes the lack of cardiomegaly or mediastinal widening, the stability of the pulmonary
system, and the stability of the image with the respect to previous exams.
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C.2 IMAGE EXAMPLES OF MONOSEMANTIC FEATURES

In this section we showcase highest activating images for a number of features, as well as the cor-
responding feature explanations. We highlight the variety of features captured by SAE-Rad, from
instrumentation features in Fig. 12, Fig. 13, Fig. 14, as well as visual features such as radiograph
inversion in Fig. 16, pathology-related features in Fig. 17, and small details such as piercings in
Fig. 18.

Figure 12: Maximally activating images for a feature corresponding to deep brain stimulators
which are typically used to treat Parkinson’s disease.
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Figure 13: Maximally activating images for a feature corresponding to orthopaedic rods and
screws.
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Figure 14: Maximally activating images for a feature corresponding to right sided intra-jugular
lines in the presence of sternotomy wires.
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Figure 15: Maximally activating images for a feature corresponding to female radiographs
with no pathology detected.
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Figure 16: Maximally activating images for a feature corresponding to inverted radiographs.
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Figure 17: Maximally activating images for a feature corresponding to bowel obstruction.
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Figure 18: Maximally activating images for a feature corresponding to piercings.
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D IMAGE-BASED FEATURE LOCALIZATION IMPLEMENTATION

Model Training In order to visualise intervention effects, we trained a conditional denoising dif-
fusion probabilistic model (DDPM) Ho et al. (2020) to generate chest radiographs given Rad-DINO
tokens. Our DDPM architecture is a three block, 2D UNet, where each block consists of two resid-
ual sub-units with SiLU activation and group normalisation. The downward path consists of a first
block of 2D convolutions, followed by spatial self-attention for the second and third blocks. The
upward path consists of two spatial self-attention blocks followed by upsampling for the last block.
The DDPM is conditioned by linearly projecting the CLS token z ∈ R768 to a vector v ∈ R1024,
broadcasting the result to a 2D tensor j ∈ R128×128, and concatenating j channel-wise with a sam-
ple n ∈ R128×128 as an input to the UNet. The DDPM was trained for 330 epochs using a 90/10
train/val split of the MIMIC-CXR dataset, with a batch size of 256 and an AdamW optimizer with
a learning rate of 0.001. We follow standard diffusion model training procedures by randomly sam-
pling timesteps {t ∈ Z|0 ≤ t ≤ 1000}, noising an image x0 ⊂ X for t steps to obtain noised image
xt =

√
αtx0 +

√
1− αtϵ, where αt is a scalar controlling the variance of xt as a function of t, and

ϵ ∼ N (0, I). The objective function can be defined over the mean squared error between diffusion
model ϵθ outputs conditioned on class tokens z:

L = argmin
θ

Ex0∼q(x0),t∼U(0,1000),ϵ∼N (0,I)

[
∥ϵ(t)θ (

√
αtx0 +

√
1− αt, z)− ϵ∥22

]
(12)

Training was implemented using PyTorch (Paszke et al., 2019) and the diffusers (Huggingface,
2023) package on a single LambdaLabs 8xNVIDIA H100 cluster.

Intervention Experiments We define a qualitative experiment to assess the visual interpretability
of SAE-Rad features by evaluating whether activating or deactivating particular SAE features results
in the expected visual changes. These inteventions can be defined using a constant reassignment
operator

do(i, β ;h(x)) : h(x) 7→ h̃(x)i,β (13)

which sets a particular feature in the SAE activation h(x) at index i to a desired constant value β.
Following Eq. (9), a given image token z may be reconstructed into an intervention token z̃i,β by
decoding it’s intervened-upon activation h̃(x)i,β

z̃i,β(h(z)) := W decdo(i, β;h(z)) + bdec. (14)

Given a feature of interest i, intervention quantity β, and token z, we can compute a single “coun-
terfactual” image Ĩi,β by reverse denoising z̃i,β + δ using ϵ̂θ, where δ = ẑ − z accounts for the
reconstruction error inherent to the SAE between the original token z and reconstructed ẑ.

Using this framework, we assessed the counterfactual cyclic consistency for a given feature by
performing two sequential interventions: we generated Ĩi,β by activating feature i by β for a token
z, and subsequently reverted the effects of the intervention by deactivating β at i in z̃i,β to generate
Ĩi,0. Intuitively, |Ĩi,0 − Ĩi,β | should represent the visual concepts of interest. In our experiments,
we empirically set β = 15, and select features 311 (pacemaker feature) and 162 (cardiomegaly)
our features of interest. Features were empirically identified by reviewing highest activating feature
subsets for our final SAEs. Results are showcased in Fig. 4.

E READER STUDY

In addition to qualitative analyses performed in Section 5.1, we performed a reader study to assess
radiologist opinions of generated reports compared to currently reported methods. We followed the
reader study design from MAIRA-2 Bannur et al. (2024) - in summary, we presented a radiologist
with a radiograph, the indication for the exam, and the generated report, and subsequently tasked
the radiologist with assessing reports sentence by sentence, where the radiologist could edit, delete
or maintain the sentences. Where changes were made, we additionally tasked the radiologist to
categorise errors as one or multiple of “omission”, “misclassification”, “overspecific”, “incorrect
location”, and “other”. We omitted the category “incorrect progression”, as we do not include past
radiographs for consideration as part of our reader assessment. Additionally, unlike the MAIRA-2
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reader study, errors could be classified as multiple error categories, which allowed for increased
granularity in labelling. Finally, errors were categorised according to their clinical implications -
errors could be “significant”, “minor”, or “none”. The custom user interface (UI) used for the study
is showcased in Fig. 19. For full details on error taxonomy, we refer the reader to Bannur et al.
(2024).

Figure 19: Custom UI for radiograph evaluation.

Overall, a radiologist (ST3) reviewed twenty unique radiographs with findings section extracted
from the ground-truth closest report baseline described in Appendix B.6, as well as findings gener-
ated by CheXagent and SAE-Rad; in total, sixty individual reports were assessed. The radiologist
was blinded to the model that findings originated from during the study.

E.1 RESULTS

Overall, a total of 328 sentences were analysed, with an average of 5.5 sentences per report (CheX-
agent: 5.0, SAE-Rad: 5.9, Baseline: 5.5). Of 328 sentences, 240 (73%) sentences were edited or
deleted, with 88 (27%) sentences maintained as is. Each report, on average, required 4.0 number of
edits. Split by model, CheXagent had 74 (74%) sentences with edits, the baseline totalled 85 (77%)
sentences with edits, and SAE-Rad totalled 81 (69%) sentences with edits.

Of sentences that required edits, 128 (68%) sentences overall had no clinical impact, 72 (30%)
had a minor impact, and 30 (12%) had a significant impact. By model, CheXagent had 38 (51.4%)
sentences with edits with no clinical impact, 23 (31.0%) sentences with minor impact and 13 (17.5%)
sentences with significant clinical impact, the baseline had 44 (51.7%) sentences with edits with no
clinical impact, 30 (35.3%) sentences with minor impact and 11 (13%) sentences with significant
clinical impact, and SAE-Rad had 56 (69.1%) sentences with edits with no clinical impact, 19
(23.5%) sentences with minor impact and 6 (7.4%) sentences with significant clinical impact.

Sentences with edits were manually reviewed to assess their hallucinatory potential based off of the
radiologist’s feedback. We define hallucination as the presence of a clinical fact that is not verifi-
able or incorrect. This obviates edits which, for example, arise due to referencing previous studies,
or edits resulting from minor grammatical differences or re-wording of clinical facts. Overall, we
find that 124 (53.4%) of edits were classified as hallucinations, whilst 108 (46.5%) of edits were
not classified as hallucinations. Of these edits, SAE-Rad produced the fewest hallucinations, with
the baseline generating the most. Specifically, SAE-Rad produced 50 (64.1%) non-hallucinatory
sentences, and 28 (35.9%) sentences that were classified as hallucinations. CheXagent produced
30 (41.1%) non-hallucinatory sentences, and 43 (58.9%) sentences that were classified as halluci-
nations. The baseline method produced 28 (34.5%) non-hallucinatory sentences, and 53 (65.4%)
sentences that were classified as hallucinations.
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In total, 160 (46.6%) errors were classified partly as “other”, representing the majority class. 52
(15.1%) errors were omissions, 59 (17.2%) errors were mis-classifications, 57 (16.6%) errors were
overspecific, and 15 (4.4%) errors were incorrect location. Error type and severity distribution are
visualised in Fig. 20. Notably, whilst many “other” type errors were observed, the majority of
these errors carried no clinical risk. In contrast, the “omission” and “misclassification” categories
convey much higher risk, with a comparatively higher proportion of minor and significant severity
categories. Overall, for sentences with edits, each sentence was labelled with an average 1.40 ±
0.68 error categories (SAE-Rad: 1.42 ± 0.70, CheXagent: 1.35 ± 0.69, baseline: 1.42 ± 0.66 error
categories per edited sentence).
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Figure 20: Distribution of error types for different models. Notably, SAE-Rad achieves the
lowest number of “significant” errors in comparison to alternate methods.

Overall, SAE-Rad requires 7% fewer edits than the baseline, and 5% fewer edits than CheXagent.
Additionally, significant clinical impact error rates are almost half for reports generated using our
method compared to other models, whilst maintaining comparable minor and no impact error types.
Similarly to results reported by Bannur et al. (2024), the majority of errors have no clinical impact.
Overall, this showcases the potential our proposed method for radiology report generation in a real
clinical scenario.

F COMPUTE EFFICIENCY COMPARISONS

In this section we provide and discuss the compute estimates for training and inference of SAE-Rad
in comparison to both MAIRA 2 and CheXagent. In Table 4 we provide quantitative estimates of the
compute efficiency - we estimate that SAE-Rad uses approximately 1000x less train compute, 100x
less parameters and 4x less data. We note that while in this paper we combine the SAE text features
into a report using Claude, our method enables the generation of reports using a much smaller LLM,
or alternately without an LLM — for example, by concatenating the SAE feature text explanations
into a report using only regex. This reduces the inference FLOPs and cost to a negligible quantity.
In Table 4, we have estimated the lower bound inference compute requirements for SAE-Rad using
this assumption.

SAE-Rad cheXagent MAIRA 2
Number of unique training images 239,931 1,100,000 510,848
Active training parameters 76M 8B 7B
Estimated training Tera-FLOPs 60,000 NA 100,000,000
Estimated training cost $3.25 NA $4000
Estimated inference Tera-FLOPs per report 0.1 8 7
Estimated inference cost per report $0.00005 $0.001 $0.001

Table 4: Comparison of compute resources for different models.
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G LIMITS OF AUTOMATED QUALITY ASSESSMENT FOR RADIOLOGY REPORTS

As described in Appendix B.2, NLG metrics such as BLEU-4 (Papineni et al., 2002), ROUGE-L
(Lin, 2004), and METEOR (Banerjee & Lavie, 2005) do not account for the clinical relevance of the
sentences composing a radiology report. Radiology-specific metrics such as the RGER score (Del-
brouck et al., 2022) and the CheXpert F1 score (Smit et al., 2020) were consequently developed,
seeking to improve upon these limitations by using radiology-specialized models as backbones
to compute clinically relevant commonalities between generated and reference reports. However,
CheXpert and RGER rely on pre-specified findings classes and error types (Bannur et al., 2024),
which limits their ability to assess the quality of generated reports when elements outside these
specified categories are present. RadFact (Bannur et al., 2024) was recently proposed to address
this limitation; by relying on the logical inference capabilities of large language models (LLMs),
RadFact evaluates the correctness and completeness of generated reports outside of pre-specified
classes.

RadFact introduces two key metrics: RadFact logical precision and RadFact logical recall, hence-
forth denoted as RadFact precision and recall. RadFact precision calculates the proportion of gener-
ated sentences that are entailed by the ground-truth report, assessing the truthfulness of the model’s
outputs by penalizing hallucinations. RadFact recall measures the proportion of ground-truth sen-
tences that are entailed by the generated report, evaluating the completeness of the generated report
by penalizing omissions.

However, RadFact has several limitations. Firstly, it relies on an LLM to extract discrete statements
from reports, which may introduce inaccuracies. The LLM must also perform bi-directional en-
tailment verification—a challenge for models like Llama3-70B-Instruct (RadFact’s backbone) given
the complex medical reasoning in the reports. Furthermore, LLMs face the reversal curse (Berglund
et al., 2023): they excel at forward relationships (e.g., ’France’s capital is Paris’) but struggle with
reverse ones (’Paris is the capital of what country?’), compounding the difficulty of bi-directional
entailment verification. A particularly important limitation of RadFact is that it relies on the as-
sumption that the ground-truth report used as a basis for evaluation is a gold-standard label which
exhaustively captures clinically relevant detail.

Therefore, in cases where a predicted report correctly includes findings present in the image but
omitted from the ground-truth report, RadFact precision will drop. This means that the metric may
not fully reflect the model’s ability to generate clinically accurate and comprehensive reports, when
the ground-truth reports are incomplete.

We illustrate potential pitfalls of RadFact in Fig. 21 below. In this case, the ground-truth report fails
to report several clinically relevant details observed in the SAE-Rad report, including, for example,
the normal size of the cardiac silhouette, and the increased density in the right upper lung field. We
provide additional examples of this phenomenon in Appendix C.1.

We note that the level of detail for radiographic reports is likely impacted by multiple factors, such
as report indication, patient history, urgency of the request, and care setting of the radiograph. Given
we perform evaluation on MIMIC-CXR —a dataset of radiographs captured at an emergency depart-
ment (Johnson et al., 2019)— SAE-Rad is likely to report clinically correct and relevant statements
which are not explicitly mentioned by radiologists. Therefore, reported metrics must be interpreted
with care, and may be underestimates of actual clinical factuality and relevance of generated reports.

H ABLATION EXPERIMENTAL SETUP

In this section we present the experimental setup for our ablation studies. We evaluated six SAEs on
RadFact across three expansion factors and two sparsity levels. We evaluated the SAEs using a set
of 60 randomly selected radiographs from the MIMIC-CXR test split. RadFact was evaluated using
the “Llama3-70B-Instruct” model. Additionally, we report NLG and clinical metrics to assess the
difference in quality of reports across models. In this study, we used an earlier prompting template
to generate feature explanations and subsequent reports. Overall, we note that this change resulted in
slightly worse quantitative metrics than those that were obtained using the final prompting strategy.

All SAEs were trained for 200,000 steps with a batch size of 2048. Models were trained using an
Adam optimizer with no weight decay and a learning rate of 5 × 10−5, as well as a linear warm-up
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In comparison with study of ___, there are fibronodular changes again seen in the 
upper zones, consistent with the clinical diagnosis of sarcoidosis.  No evidence 
of acute focal pneumonia, vascular congestion, or pleural effusion.

The chest radiograph demonstrates persistent bilateral upper lung reticular 
nodular opacities, consistent with the patient's known history of sarcoidosis. 
There are small, localized areas of increased density in the right upper lung field, 
which may represent calcifications or scarring from previous infection or healed 
processes. The lung fields are otherwise clear, without evidence of focal 
consolidations, pleural effusions, or pneumothorax. The cardiac silhouette is 
normal in size, and mediastinal contours appear unremarkable. No signs of 
pulmonary edema or acute cardiopulmonary process are observed. The overall 
appearance is stable compared to prior imaging, with no new or worsening focal 
or multifocal opacities to suggest acute infection or exacerbation of the 
underlying condition.

A: Ground-Truth Report

B: SAE-Rad Report

Shared findings between reports

Finding missed by SAE-Rad

Finding missed in ground-truth report

Figure 21: Example image for which an SAE-Rad generated report has significantly more
detail than the ground-truth. SAE-Rad captures nearly all features noted in the ground-truth such
as: fibronodular changes, a diagnosis of sarcoidosis and pleural effusions. However SAE-Rad also
notes the lack of pneuomothorax, pulmonary edema and the increased density in the right upper lung
field. Despite the clinical relevance of these elements this report likely scored poorly on RadFact
due to the incompleteness of the ground-truth.

of the learning rate for the first 1% of training, linear warm-down of learning rate for the last 20%
of training, and an L1 coefficient warm-up for the first 5% of training.

We summarise experimental differences between runs in Table 5, as well as resultant L0 and ex-
plained variance metrics. The L0 and explained variance metrics in Table 5 provide insights into
the quality of our SAEs. Notably, the “dense” variants exhibit higher L0 values, indicating reduced
sparsity, but achieve greater explained variance. The different variants therefore represent different
points on the Pareto frontier between sparsity and reconstruction quality.

Table 5: Varying hyperparameters and resulting metrics for the six SAEs.

Expansion factor L1 coefficient L0 ↓ Explained variance (%) ↑
×128 128 6 × 10−3 12.0 90.9
×64 64 8 × 10−3 13.6 84.3
×32 32 9 × 10−3 15.1 79.2
×128 dense 128 3.75 × 10−3 26.0 93.2
×64 dense 64 5 × 10−3 28.4 88.5
×32 dense 32 5.63 × 10−3 31.8 84.7

Results for clinical and NLG metrics for the ablation study are presented in Table 6. Overall, we
find that the ×64 SAE (i.e SAE-Rad) is the maximally performant model for 6/9 of the metrics, with
an additional 2/9 metrics being the second best of all models.

I INTERACTIVE EXPLORATION OF SAE FEATURES

To investigate the geometry of SAE features (Mendel, 2024), we embed the feature directions from
the SAE decoder into a 2-dimensional space using a UMAP (McInnes et al., 2018) (for which we
set the number of neighbors to 50 and the minimum distance to 0.05). This analysis allows us to
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Table 6: Report generation performance with clinical metrics for ablation study radiographs.
BL4 = BLEU-4, RG-L = ROUGE-L, MTR = Meteor. Ma-5 (Macro-F1-5), Ma-14 (Macro-F1-
14), Mi-5 (Micro-F1-5), and Mi-14 (Micro-F1-14) represent the clinical CheXbert labeler scores.
Bolding represents best performance on the development set, and italics represent second best model
for a given metric.

Model RadFact ↑ NLG Metrics ↑ Clinical Metrics ↑
F1 BL4 RG-L MTR RGER Ma-5 Ma-14 Mi-5 Mi-14

×32 dense 30.22 1.5 18.6 23.3 19.5 51.8 33.2 55.0 52.6
×64 dense 29.74 1.9 19.5 23.9 19.5 57.8 31.9 58.7 55.5
×128 dense 29.56 1.7 16.1 22.8 17.3 46.9 33.9 57.5 53.7

×32 29.46 2.2 16.2 23.7 16.6 44.2 25.3 53.5 48.8
×64 33.83 2.4 17.1 24.4 20.7 54.7 33.6 58.9 56.8
×128 32.18 1.8 16.4 24.1 18.9 45.2 25.7 55.8 49.8

visualize whether features which have semantically similar descriptions are clustered in the latent
representations of the SAE. Text information is not used to train the Rad-Dino vision encoder, SAEs,
or the UMAP projections of the features. Therefore, assessing the clustering patterns based on text
descriptions allows us to independently validate the quality of learned representations. We develop
interactive tooling to evaluate the results of this analysis. Clicking on each point will show the text
description of the feature and load highest activating images. The tool can be accessed using the
following link: https://scatter-plot-app.vercel.app/. For convenience, we also illustrate a
number of well-clustered feature categories in Fig. 22.

It can be seen from Fig. 23 that the clustering enables the detection of possibly incorrect feature
descriptions. The figure provides an example relating to a feature that captures the orientation of
radiographs, rather than the currently described pathology. This approach can be used to ensure
hallucination-free feature descriptions.

(a) Breathing Tube (b) Clear Lungs

(c) Pacemaker (d) Post-Surgical

Figure 22: UMAP analysis for several feature categories. Subfigures show examples of UMAP
embeddings for (a) Breathing Tube, (b) Clear Lungs, (c) Pacemaker, and (d) Post-Surgical cases.
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(a) Location of a cluster of sideways orientation X-rays within the UMAP.

(b) An example feature from this cluster illustrating highest activating images with sideways orientation.

Figure 23: Illustration of an orientation cluster. Here we show an example of how an automated
description can be manually visualized and corrected. In this the case the feature actually repre-
sents sideways orientation radiographs. To explore this cluster please visit the interactive tool here:
https://scatter-plot-app.vercel.app/

J ADDITIONAL SAE-RAD COMPARISONS

We present additional comparisons to our method by collating reported clinical efficacy metrics and
NLG metrics in Table 7. We find that SAE-Rad broadly outperforms existing methods across all
clinical metrics.
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Table 7: Report generation performance on the official MIMIC-CXR test split on additional
baselines. BL4 = BLEU-4, RG-L = ROUGE-L. Ma-5 (Macro-F1-5), Ma-14 (Macro-F1-14), Mi-5
(Micro-F1-5), and Mi-14 (Micro-F1-14) represent the clinical CheXbert labeler scores as reported in
the original studies. Bolding represents best performance in the current study or between the upper
bound models.

Model NLG Metrics ↑ Clinical Metrics ↑
BL4 RG-L Ma-5 Ma-14 Mi-5 Mi-14

GPT-4V Wu et al. (2023) 1.9 13.2 19.6 20.4 25.8 35.5
LLaVa-Med Wu et al. (2023) 1.0 13.3 16.6 15.5 22.0 27.2
CvT2Dist Codella et al. (2024) 12.7 28.6 - 30.7 - 44.2
LLaVa Codella et al. (2024) 1.3 13.8 17.5 15.4 23.4 22.9
GPT-4o finetune Codella et al. (2024) 17.8 32.1 43.8 33.0 52.7 48.9
GPT-4o mini finetune Codella et al. (2024) 16.2 32.2 42.0 30.8 51.8 47.6
R2GenGPT Wang et al. (2023b) 13.4 16.0 - - - 38.9
METransformer Wang et al. (2023a) 12.4 29.1 - - - 31.1
R2Gen Wang et al. (2023a) 10.3 27.7 - - - 27.6
R2GenCMN Wang et al. (2023a) 17.0 19.1 - - - 27.8
MSAT Yang et al. (2023) 11.1 - - - - 33.9
KIUT Huang et al. (2023) 11.3 28.5 - - - 32.1
RGRG Tanida et al. (2023) 12.6 26.4 - - 54.7 44.7
Flamingo-CXR Tanno et al. (2024b) 29.7 10.1 - 58.0 51.9

SAE-Rad (x64) 1.9 17.1 47.2 34.3 54.4 53.2

K EQUIVALENCE OF LOSS FUNCTIONS BETWEEN SAE ARCHITECTURES

Here, we show that the original SAE loss function in Eq. 3 is isomorphic to the loss introduced by
(Conerly et al., 2024) (displayed in Eq. 7). We show that they are related by a fundamental group of
symmetries in the design of SAEs. In particular, we construct a group of symmetries that preserve
the reconstructed activations of the SAE and leave the (Conerly et al., 2024) loss invariant. The
authors modified the sparsity-inducing part of the loss, which is specified below:

Lsparsity =
∑
i

hi(x) · ∥W dec
·,i ∥2

where W dec
·,i is the decoder weight matrix and hi(x) is the activation value of the ith SAE feature.

For simplicity, we consider SAEs without any biases (though it should be noted that the explanation
provided generalises to SAEs with biases). With this in mind, an SAE has the following architecture:

h(xin) = ReLU(W encxin)

xout = W dech(xin)

where xin ∈ Rn is the input activation vector, W enc ∈ Rm×n is the encoder matrix, W dec ∈ Rn×m

is the decoder matrix, h(xin) is the hidden activation of the SAE, and xout ∈ Rn is the reconstructed
activation. Note that there are no normalisation constraints on the decoder matrix.

K.1 MOTIVATION

Let us begin by highlighting the fact that multiplication by positive constants commutes with the
ReLU activation function:

ReLU(λx) = λReLU(x),∀x ∈ R, λ > 0

Motivated by this expression, we can define a second SAE with weights given by W̃ enc, W̃ dec as
follows:

W̃ enc = diag(λ)W enc
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W̃ dec = W decdiag(
1

λ
)

where λ ∈ Rm is now a vector. This SAE is identical to the original SAE when viewed as a function
xin → xout. The only difference is that the hidden activations h̃(xin) = diag(λ)h(xin) have been
scaled by diag(λ). Since this transformation does not change the output xout, it will not change the
MSE reconstruction loss. This transformation will however change the l1 sparsity loss. The l1 loss
changes by:

l̃1 = |h̃(xin)|1 = |diag(λ)h(xin)|1
It follows that if we do not impose the constraint of normalising the decoder weights, the SAE will
use this symmetry in the limit λ → 0 to reduce l1 to 0. This explains the necessity of normalising
the decoder weights.

K.2 EXPLANATION OF THE CONERLY ET AL. LOSS

Are there alternatives to normalising the decoder bias? What if instead we find a way to penalise the
SAE for the transformation λ → 0 instead? We know that as λ → 0, ||W dec

·,i ||2 → ∞. Could we
penalise the network by weighting the terms in the sum for l1 by the corresponding term ||W dec

·,i ||2?
We know that the l1 loss is given by:

l1 =
∑
i

|hi(xin)|

We also know that the components hi(xin) transform in the opposite (covariant) way to decoder
vectors W dec

·,i . In particular, the product hi(xin)||W dec
·,i ||2 remains invariant under our transformation.

We therefore define an invariant loss function as follows:

Lsparsity =
∑
i

hi(xin) · ∥W dec
·,i ∥2

We have therefore penalised the SAE in such a way that there is no insentive to transform by any
value of λ; both the MSE loss and sparsity loss are now completely invariant. This is precisely
the loss function introduced by Conerly et al. (2024). If we use this loss function, we have found
a group of symmetries that preserve the MSE and sparsity losses. This group is isomorphic to the
direct product of the group (R+,×) with itself m-times.

K.3 EQUIVALENCE TO THE ORIGINAL LOSS

We now construct an equivalence to the old l1 sparsity loss function. Suppose we have an SAE
trained with the loss in Eq. 7. We are now at will to transform with whatever value of λ we like
since they define a group of symmetries preserving the new loss. Let us pick λ as follows:

λi = ||W dec
·,i ||2

By using this transformation, we define an equivalent SAE in which the decoder weights are now
normalised. In addition the resulting (invariant) sparsity loss function has the form of the original
loss function, the l1 loss, since the decoder weights are now unit normalised.

This analysis shows that the Conerly et al. (2024) loss function is equivalent to the original SAE loss
function but now has a natural invariance preserved under our symmetry group.
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