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Abstract
Neural computations underlying processes such
as decision-making, working memory, and mo-
tor control are thought to emerge from neural
population dynamics. But estimating these dy-
namics remains a significant challenge. Here
we introduce Flow-field Inference from Neural
Data using deep Recurrent networks (FINDR),
an unsupervised deep learning method for infer-
ring low-dimensional, nonlinear, stochastic dy-
namics underlying neural population activity. Us-
ing spike train data from frontal brain regions
of rats performing an auditory decision-making
task, we demonstrate that FINDR performs com-
petitively with existing methods in capturing the
heterogeneous responses of individual neurons.
When trained to disentangle task-relevant and ir-
relevant activity, FINDR uncovers interpretable
low-dimensional dynamics. These dynamics can
be visualized as flow fields and attractors, en-
abling direct tests of attractor-based theories of
neural computation. We suggest FINDR as a pow-
erful method for revealing the low-dimensional
task-relevant dynamics of neural populations and
their associated computations.

1. Introduction
How do neurons work together in large populations to solve
a task? Experimental evidence suggests that neural popula-
tion activity lies on a low-dimensional manifold across mul-
tiple brain regions in different species, including rodents,
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monkeys, humans, and even nematodes (e.g., Kato et al.
(2015); Nieh et al. (2021); Churchland et al. (2012); Pan-
darinath et al. (2015); Safaie et al. (2023)). One influential
premise in systems neuroscience is that the low-dimensional
dynamics on this manifold mediate the computations per-
formed by neural populations (Vyas et al., 2020; Duncker
& Sahani, 2021).

Several methods—here referred to as “neural population
dynamics inference methods”—have been developed to in-
fer these dynamics directly from neural population activity
measured from an animal performing a computational task.
These methods typically make certain assumptions about
the dynamics, either to facilitate inference or to increase
model capacity. For example, the dynamics are assumed to
be autonomous (Duncker et al., 2019), linear (Macke et al.,
2011; Gao et al., 2016), switching linear (Linderman et al.,
2017; Nassar et al., 2019; Zoltowski et al., 2020), determin-
istic except at specific time points (Pandarinath et al., 2018;
Kim et al., 2021; Keshtkaran et al., 2022), one-dimensional
(Genkin et al., 2021), or high-dimensional (Pandarinath
et al., 2018; Keshtkaran et al., 2022).

While these methods can capture neural population activity
effectively, there are two key areas where improvements can
be made. Here, we propose to make these improvements
with a new method called FINDR (Flow-field Inference
from Neural Data using deep Recurrent networks; Sec-
tion 2).

1) We relax the assumptions on dynamics by using a gated
multilayer perception (MLP) as FINDR’s dynamics model
(Kim et al., 2023), enabling it to learn a wide range of com-
plex dynamical systems, including those that are difficult to
learn using existing methods. In Section 3.1, we construct
an example of a dynamical system that is difficult to learn
with existing methods, and show that FINDR can accurately
infer its dynamics from simulated spike trains generated by
this system.

2) The complex response patterns observed in real neurons
may be decomposed into task-relevant and -irrelevant com-
ponents (Rigotti et al., 2013; Gallego et al., 2018; Sani et al.,
2021). However, many currently available methods do not
explicitly take this into account. FINDR distinguishes be-
tween the task-relevant and -irrelevant dynamics, and infers
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them separately. This allows us to more easily interpret
the inferred dynamics, and demonstrate a link between the
dynamics and task computation. We show this by applying
FINDR to spike trains from rat frontal cortical regions in-
volved in decision-making (Sections 3.2– 3.3). We find that
task-relevant dynamics in these regions are low-dimensional
(Extended Data Figure 3), and even though we can capture
the heterogeneous responses of individual neurons well us-
ing the existing approaches when we use a sufficient number
of latent dimensions in these models, we show that a promi-
nent alternative deep learning-based method infers dynamics
that are inconsistent across different training and test splits
of the same dataset, whereas FINDR infers dynamics that
are consistent and also low-dimensional (Section 3.3).

Because FINDR can represent neural population activity in
low dimensions, even as low as two or three dimensions,
we can explicitly visualize the flow field (or the velocity
vector field) underlying neural population activity. We show
that when we visualize the flow field formed by the frontal
cortical neural population during decision-making, we con-
sistently see two slow points, one associated with stimulus
favoring a leftward choice and the other favoring a rightward
choice (Section 3.3).

While we showcase our method with a neural population
dataset in decision-making, we expect this method to be
applicable to a wide range of neuroscience datasets.

2. Methods
Neural population dynamics inference methods 1) compress
the activity of a large population of neurons at time t to an
abstract low-dimensional representation, and 2) learn the
“rules” of how this representation evolves over time. We call
these rules the dynamics of the system (Figure 1a).

Given population spike train data from N neurons in an
animal performing an experimental task, FINDR achieves
1) by inferring their underlying neural population firing
rates λt ∈ RN

≥0 at time step t (= 1, 2, 3, ..., T , where T
is the total number of steps taken in a trial) using a low-
dimensional task-relevant latent representation zt ∈ RL.
This map from zt to the firing rates λt is given by

λt = softplus(Czt + dt), (1)

where C ∈ RN×L is a loading matrix and dt ∈ RN is
some task-irrelevant time-varying bias. Here, the softplus
nonlinearity prevents the firing rates from being negative.
Instead of Equation (1), we could have used a more general
mapping λt = softplus(Ψκ(zt)), where Ψ is a differen-
tiable map with parameters κ, and could, for example, be
a deep neural network. However, for simplicity and for
interpretability, we confine our map to be affine. Notably, if
C is semi-orthogonal, this makes the distance and angle in

the latent space RL equivalent to the distance and angle in
the inverse-softplus rate space RN (see Section 2.2). Also,
by learning a task-irrelevant time-varying representation dt,
we encourage the low-dimensional representation zt to be
more task-relevant, and therefore more interpretable. The
observed population spike counts yt at time bin t of width
∆t are modeled by yt ∼ Poisson(∆tλt).

To achieve 2), FINDR models the dynamics of the latent
representation zt as a stochastic differential equation (SDE)
discretized with the Euler-Maruyama method:

zt = zt−1 +
∆t

τ
µ(zt−1,ut) +

√
∆t

τ
ξt. (2)

Here, τ is a fixed time constant of the SDE, and ut ∈ RM

is the external input to the system at t, typically a set of
task variables that the experimenter has control over. The
drift function µ describes the “rules” used by zt to evolve
over time. Therefore, µ represents the dynamics used by the
neural population while the animal is performing the task.
We can visualize the dynamics by plotting the flow field (or
the velocity vector field) of µ (Figure 1).

In Equation (2), we model potential noise that may be
present in the dynamics, represented as ξt ∼ N (0,Σ).
Here, the noise covariance Σ is a diagonal matrix, with each
element a learnable parameter in the model. Noise ξt can
be a crucial component in modeling neural computation.
As an example, in perceptual decision-making, we observe
that even when an animal is presented with identical stimuli,
the animal’s choice behavior can vary from trial to trial. If
we are given spiking observations from a neural population
that represents the animal’s choice, we can model variability
in the animal’s behavior with noise in the dynamics of the
neural population. Poisson noise does not model noise in
the dynamics and is not sufficient to capture this variability.

The drift function µ in Equation (2) is parameterized by

µ(z,u) = σ(G(z,u))⊙ [−z + F (z,u)] , (3)

where σ is the sigmoid function that acts element-wise, and
F and G are multilayer perceptions (MLPs). Function µ
parameterized this way is practically more expressive and
trainable compared to models without the gating network
σ(G(z,u)) (Kim et al., 2023).

FINDR achieves 1) and 2) by finding the optimal parame-
ters for the networks F and G in the drift function µ, the
diagonal noise covariance Σ, the loading matrix C, and the
time-varying bias dt that best capture the observed yt. We
will denote these parameters as Θ = {θF , θG,Σ,C,d1:T }.
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2.1. FINDR optimization

To obtain the optimal parameters Θ∗, we minimize the neg-
ative log-likelihood of the spike trains given Θ:

L = − log pΘ(y1:T ). (4)

We approach this problem by first optimizing for d1:T and
then optimizing the rest of the parameters θ = Θ\d1:T . To
obtain the optimal dt = [d

(1)
t ;d

(2)
t ; ...;d

(n)
t ; ...;d

(N)
t ], we

fit a linear basis function model (Bishop, 2007) for each
neuron n with

d
(n)
t =

Dn∑
j=1

wjφj(t), (5)

where φ = {φ1, φ2, ..., φDn
} is a set of raised cosine basis

functions (Pillow et al., 2005; 2008; Park et al., 2014). In
this setup, we are approximating Equation (4) as a problem
of minimizing the mean squared error (MSE) between the
observed y

(n)
t and d

(n)
t for all time steps t and all neurons n.

This time-varying bias d(n)
t is meant to capture fluctuations

in an individual neuron n’s firing rate within and across
trials of the task that are not directly relevant to performing
the task itself. See Appendix A.1.1 for details.

After fitting this linear basis function model to obtain dt,
we proceed to optimize θ. Minimizing Equation (4) directly
with respect to θ can be computationally expensive. There-
fore, we instead compute an approximate upper bound of L,
which we denote as L̃ (see Appendix A.1.2 for derivation;
Kingma & Welling (2014); Chung et al. (2015); Krishnan
et al. (2017)):

L̃ =

T∑
t=1

[
log pθ(yt|z̃t,dt)

− βDKL (qϕ(zt|z̃t−1, et)||pθ(zt|z̃t−1,ut))
]
,

(6)

where z̃t ∼ qϕ(zt|z̃t−1, et), and et is some time-
varying representation that summarizes the entire sequence
[u1:T ;y1:T ]. q is the variational approximation of the pos-
terior p(zt|zt−1,u1:T ,y1:T ), with ϕ being the variational
parameters of q. z̃ is a sample from the variational posterior
q.

Minimizing L̃ has two effects: optimizing neural activity
reconstruction (due to the first term in Equation (6)) and
inferring the low-dimensional flow field that generated the
neural activity (due to the second term in Equation (6)). The
coefficient β in front of the second term is an important
hyperparameter that determines the trade-off between the
accuracy of the reconstructed neural activity and the discov-
ered flow field. When β is too low, the reconstructed neural
activity may be accurate, but it becomes unlikely that the
inferred latent trajectory z̃1:T is generated from the flow

field µ(z,u). If β is too high, the inferred latent trajectory
z̃1:T becomes more irrelevant to the observed neural activ-
ity, but it becomes highly likely that it is generated from our
inferred flow field µ(z,u). It has been observed that using
β > 1 can help arrive at interpretable latent representations
(Higgins et al., 2017; Burgess et al., 2018). We let β = 2
to put slightly more weight on the vector-field inference at
the cost of less accurate reconstruction of neural activity.
However, as we will show in Section 3.2, we find that under
many conditions, FINDR outperforms existing methods in
reconstructing neural population activity.

We minimize L̃ by training a sequential variational autoen-
coder (VAE), where we model pθ(yt|zt,dt) in the first term
of Equation (6) as yt ∼ Poisson(∆tλt) with λt given by
Equation (1). We model pθ(zt|zt−1,ut) in the second term
with Equations (2–3). Finally, we model qϕ(zt|zt−1, et)
with

zt = zt−1 +
∆t

τ
ν(zt−1,ut, et) +

√
∆t

τ
ξt,

ν(z,u, e) = σ(G̃(z,u, e))⊙
[
−z + F̃ (z,u, e)

]
,

(7)

where F̃ and G̃ are MLPs (separate from F and G), and et
is the output at every time step t of a bidirectional gated re-
current unit (GRU) (Cho et al., 2014) that gets the sequence
[ut;yt] at t as its input. When we model the variational
posterior q this way, the KL divergence term in Equation (6)
has an analytical form. Note that in principle, having u in
addition to e as input to ν is redundant. Nevertheless, we
choose to have u as an extra input to ν because we find that
this parameterization is empirically superior to the model
without u in terms of performance. Figure 1b presents a
graphical overview of the FINDR model, and Figure 1c
shows schematics of the model architecture.

We train FINDR with mini-batch gradient descent with
warm restarts (Loshchilov & Hutter, 2017), where the gra-
dient of the loss L̃ is taken with respect to both θ and the
variational parameters ϕ (which include parameters of the
bidirectional GRU, F̃ , and G̃) (see Section A.1.5 for de-
tails). The gradient is obtained by backprogation through
time (BPTT).

2.2. Identifiability and interpreting the learned latent
representation

Following Wang et al. (2021), we define latent variable
z as identifiable if z1 ̸= z2 implies that pθ(y|z1,d) ̸=
pθ(y|z2,d) in the first term of Equation (6). Since we use
a linear projection C for pθ(y|z,d), this is satisfied if C is
injective. Note that z is identifiable only up to a linear trans-
formation because for any invertible A ∈ RL×L, we can
re-write Cz such that Cz = CAA−1z = C ′z′, where
C ′ = CA and z′ = A−1z. Therefore, for all models
with pθ(y|z,d) = softplus(Cz + d) as in Equation (1),
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Figure 1. A graphical description of FINDR. a, FINDR infers the firing rates λ underlying N -dimensional spike trains y and compresses
λ to L-dimensional representation z (L ≪ N ). Based on the trajectory formed by z over time (“latent trajectory” over tA → tB →
tC → tD), FINDR infers the dynamics of z, more specifically the “flow field” showing the rules of how z moves in the latent space. b,
FINDR is a sequential VAE that models the probability density functions in the loss L̃ in Equation (6). FINDR’s encoder network models
the variational posterior qϕ(zt|zt−1, et), and the decoder network models p(yt|zt,dt). An additional network models p(zt|zt−1,ut)
to infer the flow field. FINDR minimizes a loss for neural activity reconstruction (the first term in Equation (6)) and a loss for flow-field
inference (the second term in Equation (6)). c, The encoder network (in blue) processes data with a bidirectional GRU and infers the
single-trial latent trajectories using a gated neural SDE discretized with the Euler-Maruyama scheme (Equation (7)). The decoder network
(in red) transforms the latent trajectories to firing rates (Equation (1)). FINDR reconstructs the observed neural activity using the firing
rates from the low-dimensional latent trajectories and the time-varying bias. At the same time, FINDR infers the most likely flow field
that generated the inferred latent trajectories using a gated MLP (in green).

including FINDR, and those with a rectifying nonlinearity
other than the softplus, we perform singular value decom-
position (SVD) on C = USV ⊤, where U ∈ RN×L is
a semi-orthogonal matrix, S ∈ RL×L is a diagonal ma-
trix with its entries populated by the singular values and
V ∈ RL×L is an orthogonal matrix. Then, we set C ← U
and z ← SV ⊤z post-training. This makes the distance
and angle in the new latent space RL and the distance and
angle in the inverse-softplus rate space RN the same, i.e.,
||Cz||2 = z⊤C⊤Cz = z⊤z = ||z||2 for all z. We then
rotate the latent space of z so that the axes are its prin-
cipal components. The latents z after this post-training
transformation (effectively equivalent to a model with a
semi-orthogonal C) are thus identifiable up to an orthogo-
nal transformation. We did not place soft or hard constraints
on C to be semi-orthogonal during training, as this wors-
ened performance as reported in other contexts (Vorontsov
et al., 2017). See Appendices A.2–A.3 for more details.

3. Experimental Results
3.1. FINDR can accurately infer approximately

continuous attractors in synthetic neural
populations

To examine the validity of FINDR, we generated simulated
population spike trains from a known low-dimensional dy-
namical system and checked whether FINDR can infer la-
tent dynamics that are similar to the ground truth. The
low-dimensional dynamical system we use is inspired by
the “n-bit flip-flop task” (Sussillo & Barak, 2013). In this
task, the system receives transient pulse inputs from n dif-
ferent channels and needs to memorize the value of the most
recent pulse in each channel. It is known that a dynamical
system can use attractors to solve this task and that the at-
tractor structure of the system reflects the statistics of the
pulses (Kim et al., 2023). For example, in Figure 2a, we let
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the system memorize the pulse values from two channels,
where the pulse value in channel 1, c1, and the value in
channel 2, c2, are constrained to satisfy 1 ≤

√
c21 + c22 ≤ 2.

For the system to have robust memory of the pulses in the
two channels, it should form a 2-dimensional continuous
attractor that has the shape of a disk (Kim et al., 2023).

We simulated our data from 500 different Poisson spiking
neurons, with the task-irrelevant dynamics being a constant
bias with around 5 spikes/s of firing rates (Figure 2b). The
latent trajectories ztrue trace, with some small noise, the
optimal solution to the task, given external inputs utrue (Fig-
ure 2a). Then we asked whether FINDR, given the neural
population activity and external inputs utrue, can reconstruct
a 2-dimensional disk attractor (Figure 2c-d) needed to solve
this task. This task was constructed such that methods that
assume autonomous dynamics (e.g., (Duncker et al., 2019))
or linear dynamics (e.g., (Macke et al., 2011)) cannot dis-
cover the disk attractor. Methods assuming switching linear
dynamics (e.g., Linderman et al. (2017)) may have difficulty
approximating the disk with a few interpretable discrete
states because the latent space is typically partitioned lin-
early in these models. Methods learning a high-dimensional
dynamical system (e.g., Pandarinath et al. (2018)) may have
difficulty inferring the true latent dimensionality (in this
case L = 2), and may use dynamical features not present in
the data (Sedler et al., 2023).

To identify whether FINDR correctly captures the true la-
tent dimensionality (L = 2) of the population spike trains,
we trained multiple FINDR models, each assuming differ-
ent latent dimensions (L = 1, 2, ..., 6), on 600 trials of the
simulated population spike trains. For each of the FINDR
models assuming different latent dimensions, we did a grid
search over the hyperparameters (see Section A.1.6 for de-
tails) and found the best-performing model by evaluating
the normalized log-likelihood score (Pei et al., 2021) on
200 validation trials not used during training. We find that
the log-likelihood, evaluated on 200 test trials (which are
separate from the validation trials), saturates around L = 2
(Figure 2c). Consistent with this result, we also find that
when we do principal component analysis (PCA) on the
FINDR-inferred latent trajectories z, we see that two prin-
cipal components (PCs) are sufficient to explain more than
99% of the variance in each model that assumes a different
L (= 2, 3, ..., 6) (Figure 2d). Furthermore, when we project
the flow field inferred from FINDR onto the first two PCs,
we find an approximate disk attractor across FINDR models
assuming L = 2, 3, ..., 6 (Figure 2d).

When we do similar analyses with simulated population
spike trains generated from a 2-dimensional system with a
continuous attractor that has the shape of a rectangle, we
find that FINDR discovers these structures (Extended Data
Figure 1). Furthermore, for the dynamical system with a

rectangular attractor, the width and length of the rectangle
were roughly preserved in the inferred latent representation
(Extended Data Figure 1c). We find similar results for a
3-dimensional dynamical system with a continuous attractor
of the rectangular prism shape (Extended Data Figure 1d-
g). These results suggest that FINDR accurately infers
latent dynamics with attractors of different geometries and
dimensionalities, while preserving distance in latent space.

3.2. FINDR performs competitively against existing
methods in capturing real neural population
responses

To evaluate FINDR’s performance relative to existing meth-
ods in predicting the heterogenous responses of individual
held-out neurons, we applied FINDR, switching linear dy-
namical systems model (SLDS; Linderman et al. (2017)), re-
current switching linear dynamical systems model (rSLDS;
Linderman et al. (2017)), autoLFADS (Keshtkaran et al.,
2022; Sedler & Pandarinath, 2023), and Gaussian Process
Factor Analysis model (GPFA; Yu et al. (2008)) to a dataset
comprising 67 choice-selective neurons, selected from a
larger population of 464 simultaneously recorded neurons
from dorsomedial frontal cortex (dmFC) and medial pre-
frontal cortex (mPFC) of a rat engaged in a decision-making
task across 448 trials (Luo et al., 2023). On each trial, the
rat listens to two simultaneous, randomly timed auditory
click trains played from loudspeakers on its left and right.
At the end of the stimulus, it turns to the side that had the
greater total number of clicks for water reward. The spike
trains and the auditory click times given to the models were
aligned to the stimulus onset (Figure 3a; for a more detailed
description of the task and the selection criteria for neu-
rons, see Luo et al. (2023)). The spike trains and auditory
click times were binned using a bin width of 10ms, and the
binned click times from the left and the right speakers were
provided to the model as a 2-dimensional external input u.

We held out 13 neurons (about 20%) from this dataset, and
partitioned the dataset into 5 different folds, each containing
a subset of trials in random order. Following Pei et al.
(2021), we held out 20% of the neurons by supplying the
encoder with the remaining 80% of the held-in neurons.
Then, the decoder in Equation 1 reconstructed all neurons.
We used 3 of these folds for training, 1 fold for validation,
and the remaining 1 fold for testing. We evaluated the 5-fold
cross-validated log-likelihood of held-out neural activity to
measure model performance. This is a standard metric for
evaluation known as co-smoothing (Macke et al., 2011; Pei
et al., 2021). When we assess model performance on 5-
fold cross-validated co-smoothing across latent dimensions
from L = 1 to L = 6, we find that the log-likelihood for
FINDR is consistently higher than existing models when
L < 3 (Figure 3b; left). We also use the 5-fold cross-
validated coefficient of determination (R2) to evaluate the
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Figure 2. FINDR infers approximately continuous attractors that reflect how the synthetic neural population stores external inputs. a, An
example trial with external inputs utrue in each channel shown in black, and the state trajectory of the dynamical system that maintains the
previous pulse value shown in gray. b, An example trial of the simulated population spike trains. c, normalized log-likelihood evaluated
on the test data as a function of the latent dimensions (L) assumed by FINDR. d, Principal component analysis (PCA) on the inferred
latent trajectories across FINDR models assuming L = 2, 3, ..., 6 show that the first two PCs are sufficient to capture most of the variance
in the latent trajectories. The inferred flow fields projected onto the first two PCs are also consistent across FINDR models assuming
L = 2, 3, ..., 6. Gray lines represent latent trajectories.

match between observed and model-predicted peristimulus
time histograms (PSTHs) of held-out individual neurons
(Figure 3b; right). We included further details on model
evaluation metrics in Appendix A.4.

Figure 3c shows example neurons’ activity averaged across
trials sorted by whether the stimulus favors a leftward or a
rightward choice (evidence-sign conditioned PSTH), and the
held-out prediction of this conditioned PSTH from FINDR
with L = 6. The R2 between the observed PSTH and
FINDR’s 5-fold cross-validated prediction is computed for
each held-out neuron, and shown as a histogram, with mark-
ers indicating where the example neurons fall within this
distribution (Figure 3c; with neuron 2 being the median of
this distribution and what is shown as the blue circle in the

right panel of Figure 3b for L = 6). We repeat this proce-
dure for SLDS, rSLDS, autoLFADS, and GPFA across dif-
ferent latent dimensions, and find that FINDR consistently
outperforms competing models under this metric (Figure 3d,
Extended Data Figure 2). These results together suggest
that FINDR can predict held-out neural population activity
from latent dynamics with fewer dimensions compared to
existing methods.

3.3. FINDR reveals dynamically consistent latent
representations across cross-validation folds

That FINDR can capture neural population activity using
a latent representation with a lower number of dimensions
compared to existing methods allows us to inspect the nature
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Figure 3. FINDR outperforms SLDS, rSLDS, autoLFADS, and GPFA in reconstructing the neural population activity of a rat performing
perceptual decision-making. a, Neurons from dorsomedial frontal cortex (dmFC) and medial prefrontal cortex (mPFC) were recorded
while the rat listened to a stream of click trains from its left and right sides of the operant chamber, and oriented to the side that had more
clicks to receive water reward. b, 5-fold cross-validated normalized log-likelihood difference score (Pei et al. (2021); also known as
“co-smoothing”; left) and 5-fold cross-validated median evidence-sign conditioned PSTH R2 (right) on held-out neurons across different
latent dimensions for FINDR, SLDS, rSLDS, autoLFADS, and GPFA. For SLDS and rSLDS, we consider only the best-performing model
among models assuming the number of discrete latent states = {1, 2, 3, 4}. For autoLFADS, L corresponds to the factor dimension, not
the size of the generator recurrent neural network (RNN). AutoLFADS with L = 1 fails to train. The baseline model here is defined as a
constant firing rate model with the constant being the mean of the observed neural activity. c, FINDR with L = 6 captures the complex
trial-averaged temporal profiles of individual neurons in mPFC and dmFC. The goodness-of-fit is measured using the R2. d, We perform
an analysis similar to c for other models and compare the R2 obtained from these models and the R2 from FINDR.

of the learned representation in an intuitive and interpretable
manner. When we compute the R2 between the observed
and FINDR-reconstructed PSTHs for all neurons in the
dataset in Figure 3a, we find that two latent dimensions
are sufficient to describe the data (Extended Data Figure 3).
Therefore, we focus on L = 2 for analyses of the learned
dynamics.

In Figure 4b, we explicitly visualize the flow field inferred
by FINDR with L = 2, and evaluate consistency in a manner
similar in spirit to Genkin & Engel (2020). We find that
FINDR learns dynamical representations that are consistent
across 5 different folds (i.e., different training and test splits
of the same data). Specifically, across all folds, we find
that they consistently have two slow points. We see that

on average, given enough time (4–5s), the latent state falls
into the slow point in the upper part of the state space when
the stimulus favors rightward choice and that it falls into
the slow point in the bottom part of the state space when
the stimulus favors leftward choice (Extended Data Figure
4). Furthermore, we find that the learned representations
were similar for the FINDR model with the second-best
set of hyperparameters, and across different random seeds
for network initialization and the order in which the mini-
batches of the dataset were supplied to the model during
training (Extended Data Figure 7). All of our analyses with
FINDR in this Section involved learning the task-relevant
and -irrelevant components separately (Section 2.1). We
find that we get less consistent and interpretable dynamical
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representations when we do not learn the task-irrelevant
component (Extended Data Figure 5).

Do we find similar slow-point structures across folds for
alternative dynamical models? We evaluate this in autoL-
FADS, which performs similarly to FINDR in predicting
neural responses (Figure 4a). For each fold’s autoLFADS,
we ran the trained generator forward in time for 5s, starting
from the initial conditions inferred from the encoder. We
found that while the majority of autoLFADS states reached
approximate steady-states by 5s, they did not form two clus-
ters as would be expected from bistable attractors, both for
folds 1 and 2 (Extended Data Figure 8).

To quantify consistency across folds, we sorted single-trial
trajectories by evidence sign and computed the trial average
of each group. Then, we calculated Pearson’s |r| of these
trajectories between fold 1 and 2 for each latent axis and
took the average of |r| across the axes (we will refer to
this metric as ⟨|r|⟩). Note that the axes here are defined by
the principal components of the latents. With this, FINDR
folds were consistent by 0.99, while autoLFADS folds were
consistent by 0.53. The consistency score for autoLFADS
increased to 0.99 if we linearly transform autoLFADS fold
1 to match fold 2. However, this linear transform stretches
and rotates the latent space, so the distance in latent space
is no longer preserved in the neural space (ignoring soft-
plus). This suggests that while autoLFADS is topologically
consistent, it is not geometrically consistent as in FINDR.
To further quantify dynamical consistency, i.e., to quantify
whether we consistently find two slow points across folds,
we evaluated whether the distribution of the fold-1 states
in approximate steady-state match the distribution of the
fold-2 states. We affine transformed the autoLFADS latent
trajectories from 4–5s in fold 1 to match those in fold 2,
and when we computed ⟨|r|⟩, we found that they were not
consistent (⟨|r|⟩ = 0.22). This suggests that even when
the autoLFADS factor trajectories across folds are topolog-
ically consistent (⟨|r|⟩ = 0.99), this does not guarantee
that the underlying dynamics that generated the trajectories
by autoLFADS are consistent. Using a similar procedure
for FINDR, we found ⟨|r|⟩ = 0.94, consistent with the
visualization in Extended Data Figure 4.

We additionally performed analyses with a prominent latent
representation learning method, CEBRA (Schneider et al.,
2023), and found that the parts of the state space traversed
by the trajectories depend on evidence strength (Figure 4d).
We also saw that the first two folds were topologically con-
sistent by ⟨|r|⟩ = 0.99. However, CEBRA and related
methods (e.g., Chen et al. (2025)) do not learn dynamical
representations (i.e., Equation (2)), and, unlike FINDR, it
is difficult to perform fixed-point analysis on the latents or
evaluate dynamical consistency. Another key distinction
between FINDR and CEBRA is that, for this dataset, we

find that sensory inputs perturb dynamics roughly along PC
1 in the latent space of FINDR, but this would be difficult to
know using CEBRA.

Similar to the analysis in Figure 2d, when we fit FINDR
models that assume different latent dimensions (L =
2, 3, ..., 6), and project the inferred latent trajectories to the
first two PCs, we also see consistency across dimensions
(Extended Data Figure 6). This suggests that FINDR can
discover consistent and interpretable task-relevant latent
dynamics.

Our analyses suggest that FINDR representations are
consistent across folds—not only topologically but also
geometrically—and reveal dynamical consistency, specif-
ically two slow points associated with left/right choices.
Among all methods tested, only FINDR achieves both 1)
strong performance on neural data, and 2) discovery of con-
sistent low-D dynamical representation, with interpretable
slow points. While we find empirical evidence that FINDR
can discover consistent representations, consistency is not
theoretically guaranteed and should be verified empirically
on new datasets.

4. Discussion
With recent advances that enable recording from a large
population of neurons (Jun et al., 2017; Steinmetz et al.,
2021; Stringer et al., 2019; Siegle et al., 2021), many meth-
ods (e.g., Macke et al. (2011); Linderman et al. (2017);
Pandarinath et al. (2018)) have been introduced to infer the
dynamics underlying the recorded population activity (e.g.,
Vinograd et al. (2024); Liu et al. (2024)). Benchmarks (Pei
et al., 2021; Versteeg et al., 2025) have also been introduced
to facilitate rigorous and standardized comparisons between
these methods.

FINDR improves on the previous methods by enabling flexi-
ble inference of stochastic, nonlinear latent dynamics, while
also separating task-relevant and -irrelevant components. In
a population spike train dataset from frontal cortex of the
rat during perceptual decision-making, these two features
allowed FINDR to capture the complex, heterogeneous neu-
ronal responses, and discover dynamically consistent and
interpretable latent representations that we can easily relate
to the task computation.

FINDR is a general dynamical inference framework that
goes beyond the particular use case shown here (perceptual
decision-making), and supports broader application to other
types of neural computation, such as orientation tuning in
visual cortex (Hubel & Wiesel, 1959) or rotational trajec-
tories in motor cortex during movement (Churchland et al.,
2012). The precise dynamics underlying orientation tuning
or motor control remain unclear (Khona & Fiete, 2022).
FINDR provides a new tool for investigating dynamics in
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Figure 4. FINDR reveals slow points in the latent dynamics of frontal cortex during perceptual decision-making, consistently across
different training and test splits of the same data. a, FINDR with L = 2 and autoLFADS with L = 20 are similar in how well they capture
the heterogeneous responses of individual neurons, when we evaluate their performance using the 5-fold cross-validated evidence-sign
conditioned PSTH R2. b, To show how the decision process depends on the input, trials are sorted by their evidence strength, and we
show the trial-averaged trajectories as colored lines. FINDR-inferred flow fields consistently reveal slow points across 5 different folds
used for computing the PSTH R2 in a. To focus on the portion of the state space that is relevant to computation, we show only the
region occupied by at least 50 of 5000 simulated single-trial latent trajectories—generated from the learned dynamics in Equation (2)
for 1s—outlined by the dotted line. c, Trial-averaged trajectories from autoLFADS, projected onto the first two PCs. d, Trial-averaged
trajectories from CEBRA, projected onto the first two PCs.

these domains.

While we expect FINDR to be generally applicable to a
broad range of neural population data, its performance
may vary across datasets. As a deep learning-based model,
FINDR performs best with datasets that have a large num-
ber of simultaneously recorded neurons and many repeated
trials. While the exact neuron and trial count that give good
performance may vary depending on the dynamics in the
dataset and the firing rates, generally an increase in the
number of neurons should make FINDR’s estimate of each
single-trial dynamical trajectory more accurate, while an in-
crease in the number of trials should make FINDR’s estimate
of the flow field more accurate, because FINDR has more
latent trajectories that traverse the latent space to infer the
flow field from. Future work could incorporate uncertainty
estimates of the inferred flow field, as demonstrated by the
recent Gaussian process-based switching linear dynamical
system model (Hu et al., 2024).

Additional extensions may include inferring external inputs
(Schimel et al., 2022), developing more expressive decoders
(Gao et al., 2016; Versteeg et al., 2024; Abbaspourazad
et al., 2024), supporting online learning of nonlinear dy-
namics (Zhao & Park, 2020), or integrating the learning

of representational similarity between dynamical systems
(Gosztolai et al., 2025) into the framework presented here.

The low-dimensional dynamical representation of neural
population activity discovered by FINDR can serve as a
bridge between the more fine-grained, neuronal-level rep-
resentation and the higher-level, algorithmic representation
of task computation. Future work could strengthen these
cross-level connections. For example, recent studies have
started to examine the relationship between the low-rank
connectivity structure of a recurrent neural network (RNN)
and its low-dimensional dynamics when trained on tasks and
neural data (Valente et al., 2022; Pals et al., 2024; Langdon
& Engel, 2025). In Luo et al. (2023), the authors show that
low-dimensional dynamical representations inferred from
data can facilitate the design of parsimonious, algorithmic-
level models of neural computation, such as their multi-
mode drift-diffusion model (MMDDM). Integrating these
levels of description into a unified framework is an inter-
esting future direction. These directions highlight how new
neural population dynamics inference methods like FINDR
are a promising approach for bridging the gap between
neuronal-level mechanistic descriptions and the higher-level
algorithmic descriptions of neural function.
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A. Appendix
A.1. Model Specification

Dynamics in a neural population may be associated with not only the task that the animal performs but also other factors that
are not relevant to the task. Therefore, in FINDR, we distinguish between the task-irrelevant dynamics dt and task-relevant
low-dimensional dynamics zt and use a separate inference procedure for the two. These latent variables and task stimulus
ut generate spike trains yt from N recorded neurons. We assume that the total length of a trial is T , and we bin T into
T bins, with each of the bins having the same width ∆t. We assume that there are a total of M trials in an experimental
session. We denote t ∈ {1, ..., T} representing the t-th time bin within a trial, and m ∈ {1, ...,M} representing the m-th
trial. In all tasks that we consider in this work, T = 1 second, with ∆t = 0.01 second. In Section 3.3, we only analyzed the
epoch of a trial from stimulus onset to right before movement initiation, which was variable across trials and less than or
equal to 1 second. In Section 3.2, for each trial, we looked at the first 1 second from stimulus onset. Thus, if the stimulus
duration was less than 1 second on a given trial, we also considered spiking activity during movement. We fixed the lengths
of all trials to be the same in this Section to allow comparisons to existing models (datasets with variable trial lengths are not
yet supported in some model implementations we consider).

A.1.1. INFERENCE OF TASK-IRRELEVANT DYNAMICS

To model task-irrelevant fluctuations in an individual neuron’s firing rate across a total of M trials, we first compute each
neuron n’s average firing rate for each trial m with

ȳ(n)
m =

# of spikes in neuron n in trial m
duration of trial m (in seconds)

. (8)

Here we let the n-th element of the N -dimensional vector ȳm to be ȳ
(n)
m . We partition M randomized trials into 5 equal

subsets, where 3/5 of the M trials are used for training (Dtrain), 1/5 for validation (Dval), and 1/5 for testing (Dtest). For
each neuron n, we fit a linear basis function model (Bishop, 2007) with the following loss function:

min
w

across,(n)

1:Dacross
n

∑
m∈Dtrain

||ȳ(n)
m − dacross,(n)

m ||2 + pacross
Dacross

n∑
j=1

||wacross,(n)
j ||2, (9)

where

dacross,(n)
m =

Dacross
n∑

j=1

w
across,(n)
j φ

across,(n)
j (m),

φ
across,(n)
j (m) =

1

2

(
cos

(
H

(
π(Dacross

n − 1)

2Smax
(S(m)− dispacross[j])

))
+ 1

)
,

dispacross[j] = linspace(Smin, Smax, D
across
n )[j].

(10)

Here,

H(x) =


π, if π < x

x, if − π ≤ x ≤ π

−π if x < −π
, (11)

and S(m) is the time stamp of the onset of trial m (which lies between the beginning of the session, Smin = 0s, and Smax =
10, 000s, and rounded to the nearest second; we assume no session runs more than Smax). Here, linspace is a function that
returns Dacross

n evenly spaced numbers over the interval (Smin, Smax). The hyperparameters Dacross
n ∈ {4, 5, ..., 10} and

pacross ∈ {0.1, 0.12, 0.13, 0.14, 0.15} are optimized by evaluating the loss on Dval.

To model task-irrelevant fluctuations in an individual neuron’s firing rate within each trial, we again fit, for each neuron n, a
linear basis function model (Bishop, 2007) with the following loss function:

min
w

within,(n)

1:Dwithin
n

∑
m∈Dtrain

||y(n)
m,t − d∗,across,(n)

m − d
within,(n)
t ||2 + pwithin

Dwithin
n∑
j=1

||wwithin,(n)
j ||2, (12)
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Figure 5. Examples of raised cosine basis functions (Pillow et al., 2005; 2008; Park et al., 2014) used in the inference of task-irrelevant
dynamics. a, φacross,(n)

j (m) when Dacross
n = 5. b, φwithin,(n)

j (t) when Dwithin
n = 5.

where

d
within,(n)
t =

Dwithin
n∑
j=1

w
within,(n)
j φ

within,(n)
j (t),

φ
within,(n)
j (t) =

1

2

(
cos

(
H

(
π(Dwithin

n − 1)

2 arsinh(11.88)
(arsinh(0.12(t− 1))− dispwithin[j])

))
+ 1

)
, for t ∈ {1, ..., T},

dispwithin[j] = linspace(0, arsinh(11.88), Dwithin
n )[j].

(13)

Here, d∗,across,(n)
m is the solution to Equation (9). The hyperparameters Dwithin

n ∈ {5, 6, ..., 10} and pwithin ∈
{0.1, 0.12, 0.13, 0.14, 0.15} are optimized by evaluating the loss on Dval. After obtaining the solution of Equation (12),
d
∗,within,(n)
t , we set d(n)

m,t = d∗,across,(n)
m + d

∗,within,(n)
t . Once we do this procedure for all neurons n, we get dm,t, which is

used in the task-relevant dynamics inference in Appendix A.1.2.

A.1.2. INFERENCE OF TASK-RELEVANT DYNAMICS

For simplicity, going forward we suppress m in our notation whenever we can. To maximize the log-likelihood of observing
the population spike trains y given the task-related external inputs u, the task-irrelevant baseline inputs d and the model
parameters θ, we need to compute

log pθ(y1:T |u1:T ,d1:T ) = log

(∫ T∏
t=1

pθ(yt|zt,dt)pθ(zt|zt−1,ut)dz

)
. (14)

Here, pθ(yt|zt,dt) is given by Equation (1). The term pθ(zt|zt−1,ut) is given by Equation (2). We call Equation (2) the
prior process. Here, we assume that the initial condition of the latent z0 = 0. Equation (14) does not have a closed-form
solution, and computing this quantity can be computationally expensive. Therefore, we instead compute the evidence lower
bound (ELBO) (Kingma & Welling, 2014):

log pθ(y1:T |u1:T ,d1:T ) ≥ Eqϕ

[
log pθ(y1:T |z1:T ,d1:T )

]
−DKL (qϕ(z1:T |y1:T ,u1:T )∥pθ(z1:T |u1:T )) , (15)

by introducing a variational posterior qϕ. Here, DKL is the Kullback-Leibler divergence between the prior pθ and the
variational posterior qϕ. We can further decompose the first term into:

Eqϕ [log pθ(y1:T |z1:T ,d1:T )] = Eqϕ

[
T∑

t=1

log pθ(yt|zt,dt)

]
. (16)
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Figure 6. Estimated dwithin
t closely matches the observed PSTH, and estimated dacross

m matches the true across-trial firing rate fluctuations.
a, 5-fold cross-validated PSTH reconstruction from FINDR (in bold line) plotted against observed PSTH (in shading; 95% confidence
interval) for three example neurons. b, Histogram of the cross-validated R2 between the observed and FINDR PSTHs (median=0.82). c,
5-fold cross-validated firing rate prediction from FINDR plotted against the observed firing rate across trials for three example neurons.
d, Histogram of the cross-validated R2 between the observed and FINDR firing rates across trials (median=0.05). For the majority of
neurons, having a time-varying baseline across trials instead of a constant baseline improves goodness-of-fit.

The KL term can also be decomposed into:

DKL (qϕ(z1:T |y1:T ,u1:T )||pθ(z1:T |u1:T )) =

∫
dz1:T qϕ(z1:T |y1:T ,u1:T ) log

qϕ(z1:T |y1:T ,u1:T )

pθ(z1:T |u1:T )

=

T∑
t=1

[
Eqϕ [DKL (qϕ(zt|zt−1,y1:T ,u1:T )||pθ(zt|zt−1, ,ut))]

]
.

(17)

Therefore, our objective becomes:

log pθ(y1:T |u1:T ,d1:T ) ≥
T∑

t=1

Eqϕ

[
log pθ(yt|zt,dt)−DKL (qϕ(zt|zt−1,y1:T ,u1:T )∥pθ(zt|zt−1,ut))

]
. (18)

We specify qϕ with Equation (7), and call Equation (7) the posterior process. The initial condition z0 is again set to be 0
here. We also let the diagonal matrix Σ be the same in both the prior and posterior processes to make the KL divergence
finite (Li et al., 2020). et ∈ R2HRNN encodes representations of y1:T and u1:T using a bidirectional GRU (Cho et al., 2014):

ft = GRUf ,ϕ (ft−1,yt,ut) , bt = GRUb,ϕ (bt+1,yt,ut) , et = [ft;bt], (19)

where ft ∈ RHRNN and bt ∈ RHRNN . To train FINDR, we compute the gradient of

L̃(θ, ϕ) =
T∑

t=1

[
− log pθ(yt|z̃t,dt) + βDKL (qϕ(zt|z̃t−1, et)∥pθ(zt|z̃t−1,ut))

]
, (20)

with respect to θ and ϕ using backpropagation through time (BPTT), where we sampled z̃k once from qϕ(zk|zt−1, et) for
t ∈ {1, ..., T}. Note that we included β to the KL term in our loss L̃(θ, ϕ).
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With the m included back into our notation, Equation (20) can be re-written as

L(θ, ϕ) =
∑
m

∑
t

− log pθ(ym,t|z̃m,t,dm,t)

+
∑
m

∑
t

βDKL

(
qϕ(zm,t|z̃m,t−1,ym,1:T ,um,1:T )||pθ (zm,t|z̃m,t−1,um,t)

)
,

(21)

where ∑
m

∑
t

βDKL

(
qϕ(zm,t|z̃m,t−1,ym,1:T ,um,1:T )||pθ (zm,t|z̃m,t−1,um,t)

)
(22)

is equal to: ∑
m

∑
t

β∆t
1

2
(ν − µ)

⊤
Σ−1 (ν − µ) , (23)

where the arguments of the functions ν and µ are (z̃m,t−1, em,t,um,t) and (z̃m,t−1,um,t), respectively.

A.1.3. MODEL ARCHITECTURE

For G and F in Equation (3), we use

G(z,u) = WG,0z + VG,0u+ bG,0

F (z,u) = WF,1SiLU(WF,0z + VF,0u+ bF,0) + bF,1

Σ = σ (diag(s)) ,
(24)

Similarly, for G̃ and F̃ in Equation (7), we use

G̃(z,u, e) = WG̃,0z + VG̃,0u+ UG̃,0e+ bG̃,0

F̃ (z,u, e) = WF̃ ,1SiLU(WF̃ ,0z + VF̃ ,0u+ UF̃ ,0e+ bF̃ ,0) + bF̃ ,1

(25)

where WG,0,WG̃,0 ∈ RL×L, VG,0, VG̃,0 ∈ RL×dim(u), UG,0, UG̃,0 ∈ RL×2HRNN , WF,0,WF̃ ,0 ∈ RHFNN×L, WF,1,WF̃ ,1 ∈
RL×HFNN , VF,0, VF̃ ,0 ∈ RHFNN×dim(u), UF̃ ,0 ∈ RHFNN×2HRNN , bG,0, bG̃,0 ∈ RL, bF,0, bF̃ ,0 ∈ RHFNN , bF,1, bF̃ ,1 ∈ RL, and
s ∈ RL are trainable parameters. Here, 2HRNN is a hyperparameter that determines the size of the bidirectional GRU,
and HFNN is a hyperparameter that determines the width of the hidden layer. In Equation (19), f0 and bT+1 are trainable
parameters. We let

pθ(ym,t|z̃m,t,dm,t) = Poisson(∆tλm,t = ∆t · softplus(Cz̃m,t + dm,t)), (26)

where C ∈ RN×L is trainable. For all FNNs in this paper, we use the SiLU (a.k.a. swish) activation function (Ramachandran
et al., 2017; Elfwing et al., 2018).

A.1.4. INITIALIZATION

We use the initialization scheme in Kim et al. (2023) for the kernels that transform the hidden states in our gated MLPs.
We use the orthogonal initializer for the kernels that transform the hidden states in the GRUs. We use the Lecun normal
initializer (Klambauer et al., 2017) for the kernels that transform the input in both the GRUs and gated MLPs. Biases are
i.i.d. normal with variance 10−6.

A.1.5. OPTIMIZATION

To train this model, we use the discrete adjoint sensitivity (i.e., standard backpropagation through time) to compute the
gradient of L in Equation (21) with respect to {θ, ϕ}. A few studies (Gholami et al., 2019; Onken & Ruthotto, 2020) show
that the discrete adjoint sensitivity produces more accurate gradients than the continuous adjoint sensitivity used in Chen
et al. (2018). We train for a total of 3000 epochs and minimize loss using mini-batch gradient descent with warm restart
(Loshchilov & Hutter, 2017). The learning rate increases from 0 to η linearly for 10 epochs every Dcyclei = 2i−1D epochs,
where i goes from 1 to iend. After the 10 epochs, the learning rate decays in a cosine manner, where at Dcyclei , the learning
rate becomes 0. iend is determined by the minimum

∑iend
i=1 Dcyclei which is greater than or equal to 3000. D is set to be 200.
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A.1.6. HYPERPARAMETER GRID-SEARCH

For each of the 5-folds in a single experimental session dataset, we do a grid search on the parameters (η,HFNN, HRNN)
to identify the model that performs best when the objective is evaluated using the validation dataset. Here, η ∈
{10−2.0, 10−1.625, 10−1.25, 10−0.875, 10−0.5}, HFNN ∈ {30, 50, 100}, and HRNN ∈ {50, 100, 200}. HFNN is the num-
ber of hidden units in FNNs Fθ and Fϕ, where both networks had a single hidden layer. HRNN represents the number of
units for both GRUf ,ϕ and GRUb,ϕ. Thus the total number of units for the bidirectional GRU is 2HRNN.

A.1.7. FIXED HYPERPARAMETERS

We train FINDR for a total of 3000 epochs. For the first 100 epochs, we train only the first 30 time bins of the trials. Then
for the next 200 epochs, we train only the first 50 time bins of the trials. Afterward, we fit all time bins in the trials. We set
the coefficient of the ℓ2 regularization on the weights of all model parameters to be 10−7. We let Fθ and Fϕ be an FNN with
a single hidden layer. We set the time constant τ = 0.1s. We set β = 2. We set the number of trials in a mini-batch to be 25.
We set the momentum in mini-batch gradient descent to be 0.9. We perform annealing to the KL term in Equation (22).
Specifically, the KL term is multiplied by 1− 0.99iteration #.

A.2. Identifiability of FINDR

We use the definition of latent identifiability in Wang et al. (2021) in the context of FINDR. FINDR is non-identifiable when
pθ(y|z,d) = pθ(y|z̃,d) for all possible z and z̃. For the latent variable to be identifiable, the sufficient condition is for
pθ(y|z,d) to be an injective function of z for some θ at the end of model training (Wang et al., 2021). In FINDR, when
rank(C) = L, Equation (1) becomes injective. Therefore, we check at the end of model training whether the rank of the
learned C matches L, and consider only models that satisfy rank(C) = L at the end of training.

A.3. Post-Modeling Analysis

While we do not constrain C in Equation (26) to be semi-orthogonal (i.e., C⊤C = I) during the training procedure,
a semi-orthogonal C may be desired because distance and angle in the latent space RL are distance and angle in the
inverse-softplus rate space RN . More precisely, ||Cz||2 = z⊤C⊤Cz = z⊤z = ||z||2 for all z. Having a semi-orthogonal,
and therefore a distance-preserving, map C would make the latent trajectories inferred by FINDR more interpretable. We do
not put either the soft or hard constraints on C to be semi-orthogonal because having such constraints is known to worsen
performance in other contexts (Vorontsov et al., 2017). We also find this to be true when we add soft constraints to enforce
orthogonality.

Before we interpret the latent trajectories z and the inferred flow field µθ(z,u), we perform singular value decomposition
(SVD) on C = USV ⊤, where U ∈ RN×L is a semi-orthogonal matrix, S ∈ RL×L is a diagonal matrix with its entries
populated by the singular values and V ∈ RL×L is an orthogonal matrix. Then, we apply a transformation z̃ = SV ⊤z. We
next perform principal component analysis (PCA) on z̃ so that the first component of the transformed z̄ = U pcaz̃ + bpca
corresponds to the first PC, and the L-th component of the transformed z̄ corresponds to the L-th PC. This transformation
by PCA is rigid. Therefore, the distance and angle in the space and axes given by z̄ are still the distance and angle in the
inverse-softplus rate space. The transformed flow field µ̄θ in the space of z̄ is given by:

A = U pcaSV
⊤

z̄ = Az + bpca

µ̄θ(z̄,u) = Aµθ(A
−1(z − bpca),u).

(27)

In all of our analyses that show the latent trajectories and flow fields inferred by FINDR, we plot the transformed z̄ and
µ̄θ(z̄,u). To project the flow field µ̄θ(z̄,u) onto the first two PCs, we assume that the third and later components of z̄ are
zero, and consider the first two components of ˙̄z = µ̄θ(z̄,u).

A.4. Model Evaluation Metrics

In Section 3.2, the normalized log-likelihood difference score (NLL) is defined as:

NLL = Et[Poisson log-likelihood(λt,yt)− Poisson log-likelihood(λ1:T ,yt)], (28)
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similar to the definition in Pei et al. (2021). Here, λ1:T is the mean firing rate estimated from y1:T . We use another model
evaluation metric called evidence-conditioned peristimulus time histogram (PSTH) R2, which is defined for each neuron as:

R2 = 1− SSres

SStot
,

SSres =
∑
t

[(
PSTHR

obs,t − PSTHR
pred,t

)2
+
(
PSTHL

obs,t − PSTHL
pred,t

)2]
,

SStot =
∑
t

[(
PSTHR

obs,t − Et

[
PSTHR

obs,t

])2
+
(
PSTHL

obs,t − Et

[
PSTHL

obs,t

])2]
.

(29)

For a given neuron, we binned the spike train with a 10ms bin-width, and then convolved it with a causal Gaussian linear
filter with a standard deviation of 0.1s and a width of 0.3s. Then, PSTHs were computed by averaging this smoothed spike
train across trials. Here, PSTHL

∗ represents the average firing rate computed from trials where there were more left clicks
than right clicks, and PSTHR

∗ represents the average firing rate computed from trials where there were more right clicks than
left clicks. We computed the PSTHs from the observed and FINDR-predicted firing rates (∗ ∈ {obs, pred}) to compute the
R2.

A.5. Fitting FINDR to Synthetic Datasets with Autonomous Dynamics

We found that FINDR correctly captures autonomous limit cycle dynamics in a synthetic dataset (Figure 7). To produce
spike trains from the limit cycle dynamics (Figure 7a), we we used similar settings as the datasets in Section 3.1 and
Extended Data Figure 1 (but with 500 trials, 80 neurons, and a constant bias of 5 spikes/s).

Figure 7. FINDR correctly captures autonomous limit cycle dynamics from simulated spike train data. a, Ground truth dynamics used to
generate the spike trains. b, Dynamics inferred from FINDR. The inferred dynamics captures limit cycle.

B. Software and Data
Our code is available as a GitHub repository: https://github.com/Brody-Lab/findr.

For SLDS and rSLDS, we used code from https://github.com/lindermanlab/ssm. For autoLFADS,
we used code from https://github.com/arsedler9/lfads-torch, with hyperparameter search config-
urations in configs/pbt.yaml. For GPFA, we used Elephant: https://github.com/NeuralEnsemble/
elephant. For CEBRA, we used code from https://github.com/AdaptiveMotorControlLab/cebra.
We fit a Euclidean-distance CEBRA-Time model using hyperparameters from https://cebra.ai/docs/demo_
notebooks/CEBRA_best_practices.html#Items-to-consider, but with changes to three hyperparameters
(model architecture="offset10-model-mse", max iterations=1000, output dimension=2).

C. Author Contributions
T.D.K. conceptualized the method. T.D.K. and T.Z.L. developed the inference method for task-irrelevant dynamics. T.D.K.
developed the inference method for task-relevant dynamics. T.Z.L. collected data. T.D.K., T.C., and K.K. developed the
gated multilayer perceptron (MLP) used in this method. T.D.K. implemented the method as a software package. T.D.K.
wrote the manuscript after discussions among all authors. J.W.P. and C.D.B. supervised the project.
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Extended Data Figure 1

Extended analysis related to Figure 2. a, We generate transient pulse inputs from 2 independent channels and let a 2-
dimensional system maintain the value of the most recent pulse in each channel. The pulse value in channel 1 (c1) satisfies
−2 ≤ c1 ≤ 2 and the pulse value in channel 2 (c2) satisfies −1 ≤ c2 ≤ 1. b–c, Analysis similar to Figure 2c-d. d, We
generate transient pulse inputs from 3 independent channels and let a 3-dimensional system maintain (with some noise) the
value of the most recent pulse in each channel. The pulse value in channel 1 (c1) satisfies −3 ≤ c1 ≤ 3, the pulse value in
channel 2 (c2) satisfies −2 ≤ c2 ≤ 2, and the pulse value in channel 3 (c3) satisfies −1 ≤ c2 ≤ 1. e–f, Analysis similar to
Figure 2c-d. g, The range of values that the latent trajectory z takes along PC 1 is larger than the range of values that z takes
along PC 2 and PC 3. The range of values that z takes along PC 2 is larger than the range of values that z takes along PC 3.
This suggests that distance in this latent space is preserved and reflects the statistics of the pulses.
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Extended Data Figure 2

Extended analysis related to Figure 3c. a, Same as Figure 3c. b, Analysis similar to Figure 3c, but for SLDS (L = 6). c,
Analysis similar to Figure 3c, but for rSLDS (L = 6). d, Analysis similar to Figure 3c, but for autoLFADS (L = 6). e,
Analysis similar to Figure 3c, but for GPFA (L = 6).
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Extended Data Figure 3

Extended analysis related to Figure 4. FINDR with L = 2 is sufficient to describe the data. To show this, we split the
dataset into 5 different folds, where each fold contains a subset of trials in random order. We train FINDR on 3 of the folds,
validate on 1 fold, and test its performance on the remaining 1 fold. a, We compute the 5-fold cross-validated evidence-sign
conditioned PSTH R2 for all neurons in the dataset and take the mean. We see an “elbow” at L = 2. b, We compute the
evidence-sign conditioned PSTH R2’s for FINDR assuming L = 2 and L = 1. Then we take the difference between the R2

obtained from FINDR with L = 2 and R2 obtained from FINDR with L = 1 for each neuron. We find that FINDR with
L = 2 performs significantly better than FINDR with L = 1 (Wilcoxon signed-rank test, p < 0.001). c, Analysis similar b,
but for FINDR with L = 3 and L = 2. d, Analysis similar b, but for FINDR with L = 4 and L = 3. e, Analysis similar b,
but for FINDR with L = 5 and L = 4. f, Analysis similar b, but for FINDR with L = 6 and L = 5.
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Extended Data Figure 4

Extended analysis related to Figure 4. While the maximum duration of the auditory stimulus is 1 second in the data, and we
fit FINDR only to the stimulus period, we can run the model for more than 1 second. When the model was run for 3− 5
seconds, the trial-averaged trajectories reached a steady state either at a point in the upper region of the state space or a point
in the bottom region of the state space. What point the trajectories reached depended on the sign of the evidence (either left
or right evidence), and suggested that these slow points might maintain the memory of the choice. Here, inside the dotted
line represents part of the state space visited by single-trial trajectories, similar to Figure 4.

Extended Data Figure 5

Extended analysis related to Figure 4. When the time-varying task-irrelevant within- and across-trial dynamics are not
learned, and instead dt was set to be a constant bias d for all t and all trials, a, we find that evidence-sign conditioned PSTH
R2’s are significantly lower for this model compared to the FINDR model that learns the task-irrelevant dynamics. b, We
also find that the latent dynamics learned by FINDR are less consistent across folds. Here, inside the dotted line represents
part of the state space visited by single-trial trajectories, similar to Figure 4.
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Extended Data Figure 6

Extended analysis related to Figure 4. The latent trajectories discovered by FINDR with L > 2 are consistent across folds,
and span mainly the first two PCs. a, As in Figure 4b, we plot the trial-averaged trajectories sorted by their evidence strength,
with red indicating leftward evidence and blue indicating rightward evidence. The trial-averaged trajectories are projected
onto the first two PCs. b, The first two PCs of the latent trajectories explain 95% of the variance. c, The latent trajectories in
a are mostly consistent across folds and across dimensions, with an “S”-shape to the trajectories. For those conditions where
there was no prominent S-shape (e.g., fold 3 of L = 3, fold 3 of L = 4, and fold 2 of L = 6), the variance explained by the
3rd component was relatively higher than the other folds (as indicated by black dotted circles in c), and we could find the
“S”-shaped trajectories in the 3-dimensional PC space.
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Extended Data Figure 7

Extended analysis related to Figure 4. a, We find that the second-best hyperparameter choice gives a representation consistent
with the best choice. We also find a consistent representation when we train the model with a different initialization. b, The
“confidence heatmap” showing the single-trial trajectories generated from the posterior. We expect that the dynamics inferred
around regions traversed by more trajectories will be more accurate compared to regions traversed less. c, To directly assess
how well FINDR extrapolates from training data, we trained FINDR to the same dataset used in Figure 4, but held out the
last 0.1s of each trial (= 10 time steps). We then computed 5-fold cross-validated R2 for each time step between z from the
full vs. the held-out models.

Extended Data Figure 8

Extended analysis related to Figure 4. a, For fold 1, we ran the trained generator forward in time for 5s, starting from the
initial conditions inferred from the encoder (448 initial conditions, because there were a total of 448 trials in the dataset in
Section 3.3). We found that the autoLFADS states at 4s and states at 5s are close to each other, suggesting they may have
reached approximate steady-states (black line indicates displacement from state at 4s to state at 5s). However, we found that
the states did not form two clusters as would be expected from bistable attractors. The states are visualized with the first two
PCs. b, We performed the same analysis for fold 2.
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