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Abstract

Graphical User Interface (GUI) agents are de-001
signed to automate complex tasks on digital002
devices, such as smartphones and desktops.003
Most existing GUI agents interact with the en-004
vironment through extracted structured data,005
which can be notably lengthy (e.g., HTML)006
and occasionally inaccessible (e.g., on desk-007
tops). To alleviate this issue, we propose a008
novel visual GUI agent – SeeClick, which only009
relies on screenshots for task automation. In010
our preliminary study, we have discovered a011
key challenge in developing visual GUI agents:012
GUI grounding – the capacity to accurately lo-013
cate screen elements based on instructions. To014
tackle this challenge, we propose to enhance015
SeeClick with GUI grounding pre-training and016
devise a method to automate the curation of017
GUI grounding data. Along with the efforts018
above, we have also created ScreenSpot, the019
first realistic GUI grounding benchmark that020
encompasses mobile, desktop, and web envi-021
ronments. After pre-training, SeeClick demon-022
strates significant improvement in ScreenSpot023
over various baselines. Moreover, comprehen-024
sive evaluations on three widely used bench-025
marks consistently support our finding that ad-026
vancements in GUI grounding directly corre-027
late with enhanced performance in downstream028
GUI agent tasks. The model, data and code029
will be open-sourced.030

1 Introduction031

A perennial topic in machine intelligence is the de-032

velopment of Graphical User Interface (GUI) agent033

systems, like Siri and Copilot, to automate com-034

plex tasks on computing devices, thereby reduc-035

ing human workload (Shi et al., 2017; Li et al.,036

2020a). Recent advances in Large Language037

Models (LLMs) such as GPT-4 (OpenAI, 2023)038

have significantly propelled the evolution of GUI039

agents (Gur et al., 2023; Zhou et al., 2023). These040

agents interact with the environment by interpret-041

ing structured texts, e.g., HTML from webpages,042

<form element_id="200">
    ...
 <label element _id="205">Last Name:</label>
    <input type="text" name="lastname" element 
_id="206">
    ...
    <input type="submit" value="Get Receipt" element 
_id="210">
...

Instruction: Download the e-receipt with the last name Smith and 
confirmation number X123456989.
Text-based:

Simplified HTML Code

Vision-based:

{“action”: “click”, “loc”: [0.46, 0.62]}

Element: <element_id=206>
Action: CLICK

SeeClick’s next action

Text-based agent’s next action

GUI Screenshot

# Selenium Code
element = driver.find_element(By.XPATH, 
'//*[@element_id="206"]’)
element.click()

Figure 1: Text-based agents select target elements from
structured texts, occasionally augmented with screen-
shots. SeeClick employs a vision-based methodology to
predict action locations solely relying on screenshots.

then elicit LLM for planning, reasoning, and exe- 043

cution (Kim et al., 2023; Zheng et al., 2023). 044

However, GUI agents depend on structured text 045

face three inherent limitations: (1) Structured text 046

is not always accessible, especially for iOS or desk- 047

top applications where acquiring such information 048

is challenging (Shaw et al., 2023); (2) The verbose 049

nature of structured text constitutes an inefficient 050

context for LLMs, while also omitting crucial in- 051

formation such as layout, images, and icons (Deng 052

et al., 2023); (3) The variety of structured text - 053

including HTML, DOM, and Android VH - ne- 054

cessitates the curation of task-specific observation 055

and action spaces (Kim et al., 2023; Zhou et al., 056

2023). These entrenched deficiencies in text-based 057

approaches call for an alternative solution. 058

In this paper, we introduce SeeClick, a visual 059

GUI agent built on Large Vision-Language Mod- 060

els (LVLMs). Inspired by human interaction with 061

GUIs, as illustrated in Figure 1, SeeClick is de- 062

signed to perform low-level actions like clicking 063

or typing directly by observing interface screen- 064

shots. This innovative approach bypasses the inter- 065

action with cumbersome structured text, empower- 066

ing SeeClick to universally adapt to various GUI 067
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platforms. Building such visual agents presents a068

foundational challenge: GUI grounding - the capac-069

ity to accurately locate screen elements based on070

instructions, which is absent in current LVLMs.To071

tackle this challenge, SeeClick enhances LVLM072

with a GUI grounding pre-training strategy. We073

devise a method to automate the curation of web074

grounding data and adapt public mobile UI datasets075

to obtain mobile grounding data. SeeClick employs076

the above-curated dataset for continual pre-training077

of the LVLM, enabling it to accurately locate ele-078

ments such as text, widgets, and icons in various079

GUI environments.080

Given GUI grounding is a fundamental yet un-081

derexplored capacity for GUI agents, we establish082

ScreenSpot, the first realistic GUI grounding eval-083

uation benchmark across various GUI platforms.084

ScreenSpot contains over 600 screenshots and 1200085

instructions from iOS, Android, macOS, Windows,086

and webpages, and specifically includes both text-087

based elements and a variety of widgets and icons.088

Evaluation results confirm SeeClick’s superiority089

over current LVLMs, validating the effectiveness090

of GUI grounding pre-training.091

Finally, we adapt SeeClick to mobile and web092

agent tasks, including MiniWob (Shi et al., 2017),093

AITW (Rawles et al., 2023), and Mind2Web (Deng094

et al., 2023). As a purely vision-based agent,095

SeeClick achieves impressive performance. It sur-096

passes the strong visual baseline Pix2Act while097

utilizing merely 0.3% training data. Moreover, ex-098

perimental results on these three benchmarks con-099

sistently support our findings that improvement in100

GUI grounding directly correlates with enhanced101

agent task performance.102

Our main contributions are as follows:103

• We develop a unified visual GUI agent SeeClick,104

which solely relies on interface screenshots to105

perform clicking and typing actions across di-106

verse GUI platforms.107

• We prospectively explore GUI grounding for vi-108

sual GUI agents, and enhanced SeeClick with109

proposed GUI grounding pre-training strategy.110

• We create a realistic GUI grounding benchmark111

ScreenSpot, encompassing more than 1200 in-112

structions from various GUI platforms.113

• Experimental results on ScreenSpot and three114

agent tasks demonstrate that enhancing agents’115

grounding capacity is key to improving perfor-116

mance in downstream agent tasks.117

2 Related work 118

Autonomous GUI Navigation Early research ex- 119

plored task automation in simplified web (Shi et al., 120

2017; Liu et al., 2018; Gur et al., 2018) and mobile 121

UI (Li et al., 2020a; Burns et al., 2022; Li and Li, 122

2022). With LLM advancements (OpenAI, 2023; 123

Touvron et al., 2023; Xu et al., 2023; Sun et al., 124

2023; Wu et al., 2024, inter alia), LLM-centric 125

agents have become the dominant paradigm. A line 126

of works focused on prompting ChatGPT and GPT- 127

4 for web tasks, via in-context learning (Zheng 128

et al., 2023) and self-refine (Kim et al., 2023). 129

Other research explored training LLMs as special- 130

ized agents. Deng et al. (2023) devised a two-stage 131

method for identifying target elements within intri- 132

cate HTML. Gur et al. (2023) proposed to interact 133

with websites via programming. 134

Given the constraints of LLM to only process 135

text, recent efforts have attempted vision-based 136

GUI navigation (Shaw et al., 2023; Zhan and 137

Zhang, 2023; Hong et al., 2023). These methods 138

primarily utilize GPT-4V (Yan et al., 2023; Gao 139

et al., 2023) and also require GUI metadata as in- 140

put (Yang et al., 2023a; Zheng et al., 2024). In this 141

paper, we construct a universal visual GUI agent 142

SeeClick by customizing open-sourced LVLM, ca- 143

pable of operating across various GUI platforms 144

without needing any GUI metadata. 145

Large Vision-Language Models Recent research 146

has invested tremendous effort in constructing 147

LVLMs capable of jointly processing image and 148

text (Liu et al., 2023a; Zhu et al., 2023; Ye et al., 149

2023; Li et al., 2023), integrating vision encoders 150

with LLMs through connecting layers, inheriting 151

LLMs’ linguistic and reasoning skills to perform 152

vision-language tasks. A series of studies focused 153

on grounding with LVLMs (Wang et al., 2023; Bai 154

et al., 2023; Chen et al., 2023a), such as provid- 155

ing bounding boxes for objects when generating 156

responses (Chen et al., 2023b; Peng et al., 2023). 157

Nonetheless, these efforts primarily addressed nat- 158

ural images and did not explore GUI contexts. This 159

paper focuses on grounding in GUIs and explores 160

the potential of LVLMs as visual agents. 161

3 Approach 162

Our preliminary study highlights a major challenge 163

in developing visual GUI agents: GUI grounding, 164

the capacity to locate screen elements based on 165

instructions. Although recent LVLMs have claimed 166

grounding capability on natural images (Bai et al., 167
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Vision
Encoder

(ViT)
Large Vision-Language Model (LVLM)

Vision-Language 
Adapter

Instruction:
“View the new album of Jony J”

Next action: click (0.49, 0.40)Mobile UI Related

Web UI Related

General VL Data

VQA Visual Reasoning

Widget Captioning UI Summarization

Mobile UI Grounding

Web OCR Web UI Grounding

Instruction: open the
low power mode
Source: Mobile (iOS)
Type: Icon/Widget

Instruction: See more 
options for Dark Mode
Source: Mobile (Android)
Type: Text

Instruction: Change font 
size to 20
Source: Desktop (macOS)
Type: Text

Instruction: Likes on this
issue
Source: Web (Development)
Type: Icon/Widget

Instruction: Create a new
merge request
Source: Web (Development)
Type: Text

Instruction: Switch to 
OneDrive path
Source: Desktop (Windows)
Type: Text

GUI Grounding Benchmark: ScreenSpot

(a) Overview of SeeClick‘s framework and GUI grounding pre-training.

(b) Examples of the proposed GUI grounding benchmark ScreenSpot.

(c) SeeClick as a visual GUI agent in downstream task.

Instruction: Find a list of shorthaired dogs available for adoption with 100 miles of zip code 
94587 that are good with kids and cats, and have been on Petfinder for over 30 days.

Figure 2: Overview of our universal visual GUI agent SeeClick. (a) depicts the framework of SeeClick and GUI
grounding pre-training. (b) provides examples of ScreenSpot across various GUIs and types of instructions. (c)
displays the real-world application of SeeClick when adapted to downstream web agent tasks.

2023; Wang et al., 2023), GUI screenshots differ168

significantly with dense text and numerous icons169

and widgets. These differences impair existing170

LVLMs’ grounding performance in GUI contexts171

and limit their potential as visual GUI agents.172

This paper seeks to harness LVLMs with GUI173

grounding skills, paving the way for a visual GUI174

agent that executes instructions only relying on175

screenshots. As presented in Figure 2, SeeClick176

is a foundational model for GUIs, and tailored for177

adaption to agent tasks. Next, we introduce the178

birth of SeeClick, including the formalization of179

GUI grounding task, the construction of continual180

pre-training data, and training details.181

3.1 GUI grounding for LVLMs 182

As GUI grounding is the core capability of 183

SeeClick, we first elucidate how to train LVLM for 184

language generation to perform grounding tasks. 185

Given an interface screenshot s and a collection 186

of elements {(xi, yi)|i} on it, where xi denotes 187

the textual description of the i-th element and yi 188

indicates the element’s location (represented as a 189

bounding box or point). As depicted in Figure 2(a), 190

LVLM predicts the location of the element y based 191

on the interface screenshot s and its textual descrip- 192

tion x, i.e. calculating p(y|s, x). 193

A potential challenge is how LVLMs predict 194

numerical coordinates in a language generation for- 195
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mat. Previous studies (Chen et al., 2021; Wang196

et al., 2023; Shaw et al., 2023) divide the image197

into 1000 bins, and creating a new 1,000-token198

vocabulary {< p0 >,< p1 >, ..., < p999 >} to199

represent the x and y coordinates. In this work,200

we adopt a more intuitive manner used in LVLMs201

(Chen et al., 2023b; Bai et al., 2023), treating nu-202

merical values as natural languages without any ad-203

ditional tokenization or pre-/post-processing. For204

instance, in Figure 2(a), for a smartphone screen-205

shot and the instruction “View the new album of206

Jony J”, we craft a query prompt: “In the UI, where207

should I click if I want to <instruction>?”. Subse-208

quently, we normally compute the cross-entropy209

loss between the model output and the ground truth210

“click (0.49, 0.40)” to optimize the LVLM.211

3.2 Data Construction212

We train SeeClick using three collections of data:213

web UI data crawled from the internet, mobile UI214

data reorganized from public datasets and general215

vision-language instruction-following data.216

Web Data. Web UIs, featuring a variety of lay-217

outs and design styles across websites, are ideal for218

training LVLMs’ general recognition and ground-219

ing capabilities across different GUI contexts. We220

collect approximately 300k web pages from the221

latest Common Crawl repository to serve as our222

training data for web UI. For each webpage s, we223

collect two types of elements from the HTML code224

as exemplified in Figure 3: (1) elements that dis-225

play visible text content; and (2) elements with226

a special “title” attribute that display descriptive227

text when hovering. This method ensures that we228

gather a series of interactable elements y and their229

corresponding instructions x, while encompassing230

a wide range of text and icon elements. In addition231

to the grounding task p(y|s, x), we also include232

web OCR task p(x|s, y), predicting text descrip-233

tion based on coordinates.234

Mobile Data. For mobile UI, we include three235

types of data: widget captioning, mobile UI ground-236

ing, and mobile UI summarization. The widget237

captioning dataset provides language descriptions238

for mobile UI elements; for example, the descrip-239

tion “play music” for the play button on a music240

player interface. We utilize the training split of the241

dataset provided by (Li et al., 2020b), containing242

nearly 20k screenshots, 40k widgets, and 100k de-243

scriptions. We derive mobile UI grounding data by244

reversing the process of widget captioning, treat-245

ing language descriptions as instructions and corre-246

<div class="header">
    <ul class="menu">

<li>...</li>
</ul>

</div>
<div class="container">
    <div class=“product-thumbnails”><a href=“#” title=“Previous image"></a></div>
    <div class="product-detail">

<div>...</div>
        <button>ENQUIRE NOW</button>
        <div class=“product-share”>…</div>
    </div>
</div>

Figure 3: Example of two types of elements automati-
cally collected from the webpage.

sponding widgets as target elements. To improve 247

diversity, we also incorporate the automatically col- 248

lected elements and instructions from RICO (Li 249

et al., 2020a). The mobile data involves diverse 250

elements and instructions, facilitating the general- 251

ization of SeeClick’s grounding proficiency to di- 252

verse GUI contexts. We finally include mobile UI 253

summarization data (Wang et al., 2021) to enhance 254

overall interface comprehension. 255

General Data. To maintain LVLM’s general capac- 256

ities on natural images, we incorporate the general 257

vision-language instruction-following data from 258

LLaVA (Liu et al., 2023a), covering conversation, 259

detailed description, and complex reasoning. 260

Finally, we mix the data above and craft 30 task- 261

specific prompts for each added GUI task, resulting 262

in a 1M dataset to train SeeClick. 263

3.3 Training Details 264

We build SeeClick through continual pre-training 265

on a recent advanced LVLM, Qwen-VL (Bai et al., 266

2023), which possesses grounding capabilities and 267

a higher resolution of 448*448. We train Qwen-VL 268

on the dataset we constructed (as described in Sec- 269

tion 3.2) for about 10k steps (around 1 epoch) to 270

obtain our GUI base model SeeClick. During train- 271

ing, we employ LoRA (Hu et al., 2021) to fine-tune 272

both the visual encoder and LLM. Further details 273

and task examples are provided in Appendix A. 274

4 ScreenSpot: A Grounding Benchmark 275

We recognize GUI grounding proficiency as es- 276

sential for constructing visual GUI agents. How- 277

ever, the constrained capabilities of earlier vision- 278

language models resulted in limited attention, with 279
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LVLMs Model
Size

GUI
Specific

Mobile Desktop Web
Average

Text Icon/Widget Text Icon/Widget Text Icon/Widget
MiniGPT-v2 7B ✗ 8.4% 6.6% 6.2% 2.9% 6.5% 3.4% 5.7%

Qwen-VL 9.6B ✗ 9.5% 4.8% 5.7% 5.0% 3.5% 2.4% 5.2%
GPT-4V - ✗ 22.6% 24.5% 20.2% 11.8% 9.2% 8.8% 16.2%

Fuyu 8B ✓ 41.0% 1.3% 33.0% 3.6% 33.9% 4.4% 19.5%
CogAgent 18B ✓ 67.0% 24.0% 74.2% 20.0% 70.4% 28.6% 47.4%
SeeClick 9.6B ✓ 78.0% 52.0% 72.2% 30.0% 55.7% 32.5% 53.4%

Table 1: Results of different LVLMs on ScreenSpot. The best results in each column are highlighted in bold.
Benefiting from efficient GUI grounding pre-training, SeeClick significantly enhanced LVLMs’ ability to locate
GUI elements following instructions, and surpassed the strong baseline CogAgent with a smaller model size.

21%

21%

13%

15%

8%

6%

6%

10%

iOS Android Windows macOS

Development Shopping Forum Tools

ScreenSpot

278
198 210

232

140 151

Different types of elements 
in ScreenSpot

Text Icon/Widget

Mobile Desktop Web

20%

19%

13%
14%

7%

9%

7%

11%

iOS Android Windows macOS
Development Shopping Forum Tools

ScreenSpot

273
194 230

229

140

206

Different types of elements 
in ScreenSpot

Text Icon/Widget

Mobile Desktop Web

Figure 4: Statistic of our proposed GUI grounding
benchmark ScreenSpot. The left illustrates the diverse
GUI environments included. The right displays the
types of elements within each GUI category.

scant research (Li et al., 2021; Li and Li, 2022;280

Zhang et al., 2023) largely confined to an Android281

dataset (Deka et al., 2017) collected in 2017.282

To address this research gap, we introduce283

ScreenSpot, an up-to-date, realistic grounding eval-284

uation benchmark encompassing various GUI plat-285

forms. It is designed to assess vision-language286

models’ ability to locate screen elements based on287

instructions (Figure 2(b) provides some examples).288

ScreenSpot has two distinctive features: (1) Vari-289

ous GUI platforms. It includes over 600 interface290

screenshots from mobile (iOS, Android), desktop291

(macOS, Windows), and web platforms, along with292

1200+ instructions and corresponding actionable293

elements; (2) Icons/Widgets. ScreenSpot includes294

a substantial number of icons and widgets in each295

GUI, which is more challenging to locate than texts296

(statistics are in Figure 4). See Appendix B for297

annotation details and examples.298

To measure models’ effectiveness in real-world299

scenarios, ScreenSpot is carefully curated to ensure300

the samples are novel and not included in existing301

training resources. We recruited experienced anno-302

tators to collect GUI interfaces and label instruc-303

tions along with the bounding boxes for actionable304

elements. For mobile and desktop, annotators were305

asked to select commonly used apps and opera- 306

tions; for web, we chose several types of websites 307

(development, shopping, forum, and tools) from the 308

web environment WebArena (Zhou et al., 2023). 309

5 Experiments 310

In this section, we first evaluate the GUI grounding 311

capabilities of representative LVLMs and our pro- 312

posed SeeClick. Subsequently, we adapt SeeClick 313

to mobile and web agent tasks, analyzing the cor- 314

relation between the advanced grounding capacity 315

and downstream task performance, while exploring 316

the potential of purely vision-based GUI agents. 317

5.1 GUI Grounding on ScreenSpot 318

As the foundation of visual GUI agents, GUI 319

grounding has not received adequate attention in 320

current LVLMs evaluations (Liu et al., 2023b; Yu 321

et al., 2023). Therefore, we evaluate LVLMs on 322

our GUI-specific benchmark ScreenSpot. 323

Compared LVLMs & Evaluation. We primar- 324

ily evaluated two types of LVLMs: (1) Generalist 325

LVLMs capable of tasks such as dialogue, recogni- 326

tion and grounding, including MiniGPT-v2 (Chen 327

et al., 2023a), Qwen-VL (Bai et al., 2023) and 328

GPT-4V; (2) Recently released LVLMs specifically 329

designed for GUI tasks, including Fuyu (Bavishi 330

et al., 2023) and CogAgent (Hong et al., 2023). 331

Considering that GUI agents require clicking on 332

the correct position, we calculate the click accuracy 333

as the metric, defined as the proportion of test sam- 334

ples where the model predicted location falls in the 335

ground truth element bounding box (Li et al., 2022; 336

Zhang et al., 2023). More details about evaluation 337

on ScreenSpot is in Appendix B. 338

Results. As shown in Table 1, while generalist 339

LVLMs have excelled in natural image grounding, 340

their GUI grounding performance on ScreenSpot 341

is poor due to the significant differences between 342
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GUIs and natural images. Even GPT-4V struggles343

with accurately locating screen elements.344

In comparison, GUI-specific LVLMs have sig-345

nificant improvements. SeeClick achieved the best346

average performances across GUI platforms and347

two types of elements, even with fewer parameters348

than CogAgent. This demonstrates the efficiency349

of our GUI grounding pre-training; with the rich UI350

elements and diverse instructions collected from351

the web and mobile, SeeClick quickly learns to un-352

derstand human instructions for element localiza-353

tion, even in completely unseen scenarios like iOS354

and desktop. SeeClick exhibits slightly inferior per-355

formance in locating text within desktop and web356

compared to CogAgent, possibly due to lower reso-357

lution and much smaller training data. Notably, all358

models struggle with locating icons/widgets, high-359

lighting the difficulty of identifying and grounding360

non-text elements on GUIs, which is the unique361

challenge posed by ScreenSpot.362

5.2 Visual GUI Agent Tasks363

This section explores SeeClick’s application to mo-364

bile and computer agent tasks: MiniWob, AITW,365

and Mind2Web. We trained SeeClick on the re-366

spective training splits and tested it on the test sets.367

Across these tasks, with provided instructions and368

memory of previous actions, SeeClick determines369

the next action solely by observing interface screen-370

shots. The detailed task settings, action formats and371

interaction examples are in Appendix C.372

5.2.1 MiniWob373

MiniWob (Shi et al., 2017) comprises about 100374

types of web automation tasks, where the agent is375

asked to interact with a simplified web environment376

to accomplish human instructions. Existing open-377

source training data often lacks corresponding in-378

terface screenshots (Furuta et al., 2023). Therefore,379

we rollout 50 successful episodes using an LLM380

strategy for each task in (Zheng et al., 2023), re-381

sulting in a 2.8K episodes dataset to train SeeClick.382

Compared Methods & Evaluation. We com-383

pared SeeClick with a range of offline training384

methods. Among these, the state-of-the-art method385

WebGUM (Furuta et al., 2023) uses screenshots as386

auxiliary input but still selects HTML elements as387

actions. Pix2Act (Shaw et al., 2023) is the only388

prior vision-based approach, trained with extensive389

demonstration data to perform actions. To verify390

the effectiveness of GUI grounding pre-training, we391

also report the results of the LVLM baseline Qwen-392

Methods Modality Dataset Score
Compared with text-based models over 45 tasks
CC-Net (SL) DOM+Image 2.4M 35.6%

WebN-T5 HTML 12K 55.2%
MM-WebN-T5 HTML+Image 347K 63.4%

WebGUM HTML+Image 2.8K 65.5%
WebGUM HTML+Image 347K 86.1%
SeeClick Image 2.8K 73.6%

Compared with vision-based models over 35 tasks
CC-Net (SL) Image 2.4M 23.4%

Pix2Act Image 1.3M 64.6%
Qwen-VL Image 2.8K 48.4%
SeeClick Image 2.8K 67.0%

Table 2: Average scores of different methods on Mini-
Wob. The best results in each setting are bold. Methods
achieving the highest performance with limited data
are underlined. SeeClick outperforms a range of offline
training methods as a purely vision-based model.

VL when trained with the same 2.8K dataset. 393

Due to the variance in evaluation task sets among 394

different methods (Liu et al., 2018; Furuta et al., 395

2023; Shaw et al., 2023), for fairness, we report 396

performance in two groups based on the overlap- 397

ping MiniWob tasks. We compute the success rate 398

over 50 random seeds for each task and then com- 399

pute the mean over all tasks as the final score. We 400

provided task-wise scores in Appendix C.2. 401

Results. As depicted in Table 2, purely vision- 402

based SeeClick surpassed strong baselines with 403

substantially less training data. Notably, with an 404

equivalent amount of 2.8K training data, it outper- 405

formed the offline sota WebGUM, which uses both 406

HTML and screenshots as input. Moreover, thanks 407

to LVLM’s powerful reasoning and planning abili- 408

ties and our GUI grounding pre-training, SeeClick 409

exceeded the sota visual method Pix2Act, using 410

less than 0.3% training data. 411

Furthermore, SeeClick significantly surpassed 412

the LVLM baseline Qwen-VL by nearly 20 per- 413

centage points, underscoring the importance of 414

GUI grounding in boosting LVLM’s performance. 415

To analyze in detail, we provide task-level com- 416

parisons in Figure 5. SeeClick notably excelled 417

in tasks with dynamic interface layouts and ele- 418

ment positions, confirming our hypothesis that gen- 419

eral LVLMs struggle with accurately clicking, and 420

SeeClick markedly improves this aspect. 421

5.2.2 AITW 422

We evaluate SeeClick in smartphone environments 423

with Android automation dataset Android In The 424
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Figure 5: Comparison of SeeClick and Qwen-VL on MiniWob. Tasks marked with yellow shadows feature
dynamic webpage layouts, simulating real-world GUI agent applications (details in appendix Figure 11). SeeClick
outperformed Qwen-VL in most tasks, highlighting the effectiveness of GUI grounding pre-training.

Methods Modality General Install GoogleApps Single WebShopping Overall ClickAcc
ChatGPT-CoT Text 5.9 4.4 10.5 9.4 8.4 7.7 -
PaLM2-CoT Text - - - - - 39.6 -

GPT-4V Image 41.7 42.6 49.8 72.8 45.7 50.5 -
Qwen-VL Image 49.5 59.9 46.9 64.7 50.7 54.3 57.4
SeeClick Image 54.0 66.4 54.9 63.5 57.6 59.3 66.4

Table 3: Average scores of different methods on AITW. ClickAcc calculates the accuracy of click operation. The
best results in each column are bold. SeeClick exhibits the best performance among competing baselines.

Wild (AITW) (Rawles et al., 2023), which encom-425

passes 30k instructions and corresponding 715k426

operation trajectories. Previous approaches split427

train/val/test episode-wise, which poses a clear428

risk of overfitting due to: (1) instructions in the429

test set have appeared in training, and (2) an aver-430

age of 20 similar trajectories per instruction. In431

this work, we opt for an instruction-wise split,432

with 545/688/306/700/700 instructions from Gen-433

eral/Install/GoogleApps/Single/WebShopping re-434

spectively, and retain one trajectory per instruction.435

We selected 80% for training and the remaining for436

testing in each subset. This split avoids overfitting437

and reflects the performance of agents on unseen438

instructions. Further details are in Appendix C.3.439

Compared Methods & Evaluation. We com-440

pare SeeClick with two types of baselines: (1)441

API-based LLMs such as ChatGPT-CoT (Zhan and442

Zhang, 2023), PaLM2-CoT (Rawles et al., 2023)443

and the latest GPT-4V (Yan et al., 2023); (2) Our444

trained LVLM baseline Qwen-VL.445

We follow Rawles et al. (2023) to adopt the446

screen-wise action matching score as the main met-447

ric and additionally compute the click accuracy448

(ClickAcc), which calculates the accuracy when449

both reference and prediction are click operations.450

Results. As illustrated in Table 3, SeeClick451

achieved the best average performance among both452

API-based LLMs and trained LVLMs. Specifi-453

cally, SeeClick exhibited a 9% increase in click454

accuracy over Qwen-VL, supporting the idea that 455

GUI grounding enhances agent task performance 456

through precise clicking. 457

5.2.3 Mind2Web 458

To assess SeeClick’s capabilities in web naviga- 459

tion, we utilize the recently introduced Mini2Web 460

dataset (Deng et al., 2023), which comprises over 461

2000 open-ended tasks collected from 137 real web- 462

sites, each with high-level instruction and corre- 463

sponding human action trajectory. Mind2Web was 464

originally designed for text-based agents, which 465

select actionable elements from simplified HTML 466

in each step. This work explores visual web agents 467

that predict click positions directly from screen- 468

shots. For this purpose, we parsed screenshots and 469

target element bounding boxes from the raw dump 470

of Mind2Web. To the best of our knowledge, this 471

is the first attempt of web agents relying solely on 472

screenshots as inputs for navigating real websites. 473

Compared Methods & Evaluation. We compare 474

with html-based web agents Mind2Act (Deng et al., 475

2023) and our visual baseline Qwen-VL. Mind2Act 476

employs a two-stage method, where a small LM 477

first generates candidate elements from raw HTML, 478

then a large LM selects the target via multi-choice 479

QA; Mind2Act (gen) directly generates the target 480

element instead. GPT-3.5 and GPT-4 adopt the 481

same multiple-choice QA formulation and include 482

three demonstrations for in-context learning. 483
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Methods w/o HTML
Cross-Task Cross-Website Cross-Domain

Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR Ele.Acc Op.F1 Step SR
MindAct (gen) ✗ 20.2 52.0 17.5 13.9 44.7 11.0 14.2 44.7 11.9

MindAct ✗ 55.1 75.7 52.0 42.0 65.2 38.9 42.1 66.5 39.6
GPT-3.5-Turbo ✗ 20.3 56.6 17.4 19.3 48.8 16.2 21.6 52.8 18.6

GPT-4 ✗ 41.6 60.6 36.2 35.8 51.1 30.1 37.1 46.5 26.4
Qwen-VL ✓ 15.9 86.7 13.3 13.2 83.5 9.2 14.1 84.3 12.0
SeeClick ✓ 28.3 87.0 25.5 21.4 80.6 16.4 23.2 84.8 20.8

Table 4: Comparsion of methods on Mind2Web. The best results in each column are bold. Improvements of
SeeClick over LVLM baseline are underline, with GUI grounding pre-training nearly doubling the step success rate.

We calculate element accuracy (Ele.Acc), Oper-484

ation F1 (Op.F1) and step success rate (Step SR).485

For vision-based methods, a prediction is consid-486

ered correct if the predicted coordinate falls in the487

target element’s bounding box. All other settings488

are following (Deng et al., 2023).489

Results. As displayed in Table 4, SeeClick nearly490

doubled the Ele.Acc and Step SR compared to491

Qwen-VL. This indicates that SeeClick’s improve-492

ment in GUI grounding correlates with enhanced493

performance in web agent tasks. HTML-based494

methods yield lower Op.F1 as around 20% of495

groundturth elements are filtered out during can-496

didate generation. Although SeeClick can operate497

without extra HTML information, its performance498

trails sota HTML-based methods, since predicting499

click coordinates is much more difficult than choos-500

ing from HTML candidates. This highlights the501

difficulty of grounding in intricate interfaces, sug-502

gesting substantial room for improvement in visual503

agents for real-world application.504

5.2.4 Grounding and Agent Performance505

To investigate the correlation between grounding506

and agent performance, we analyze the average507

score improvements of several SeeClick’s check-508

points on ScreenSpot and three downstream tasks.509

As depicted in Figure 6, enhanced GUI ground-510

ing capacity consistently boosts agent task perfor-511

mance, highlighting its crucial role in developing512

advanced visual GUI agents.513

5.2.5 SeeClick as Unified GUI Agent514

To access the potential of vision-based solutions515

in unifying GUI agent tasks, we evaluated jointly516

training SeeClick on three downstream tasks. As517

shown in Table 5, the unified model exhibited a518

slight performance decline, possibly due to the sig-519

nificant distinct interface of different GUIs.520

Figure 6: The correlation between agent tasks perfor-
mance improvement and enhanced grounding ability.

MiniWob AITW Mind2web
Qwen-VLseparate 48.4 54.3 11.5
SeeClickseparate 67.0 59.3 20.9
SeeClickunified 64.1 57.1 19.5

Table 5: Separate v.s. unified training performance.

6 Conclusion 521

In this paper, we introduce a visual GUI agent - 522

SeeClick, which only relies on screenshots for GUI 523

task automation. We found a key challenge in de- 524

veloping such visual GUI agents: GUI grounding 525

- the capacity to accurately locate screen elements 526

based on human instructions. To address this chal- 527

lenge, we propose to enhance SeeClick via GUI 528

grounding pre-training, and devise methods to au- 529

tomate the curation of GUI grounding data from 530

web and mobile. For benchmarking the progress 531

in GUI grounding, we created ScreenSpot, the first 532

realistic evaluation dataset encompassing mobile, 533

desktop, and web platforms. Results on ScreenSpot 534

demonstrate a significant improvement of SeeClick 535

over LVLM baselines. Moreover, comprehensive 536

evaluations across three GUI automation tasks con- 537

sistently support our finding that advancements in 538

GUI grounding directly correlated with improved 539

performance in downstream agent tasks. 540
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Limitations541

SeeClick currently simplifies the GUI action space542

to mainly focus on clicking and typing, excluding543

complex actions like dragging and double-clicking.544

Additionally, limited by the performance of open-545

source LVLMs, training on agent-specific data is546

necessary for SeeClick to execute multi-step tasks547

on interfaces like mobile and computer.548

Ethical considerations549

GUI agents are developed to automate tasks and550

enhance efficiency on digital devices. These tech-551

nologies are especially significant for individuals552

with visual impairments. Here are some ethical553

considerations:554

Privacy Issues. The operation of GUI agents in-555

volves accessing and interacting with user inter-556

faces that may contain personal or sensitive infor-557

mation. Ensuring data protection and user consent558

are paramount to maintaining privacy integrity.559

Safety in Read-World Interactions. When GUI560

agents interact with the real world, there’s a risk of561

unintended harmful actions. Ensuring these agents562

operate within safe parameters is crucial to prevent563

negative outcomes.564

Bias. The development of GUI agents must address565

potential biases in their algorithms, which could566

result in unequal performance across different user567

groups or interface designs. Mitigating bias is es-568

sential for equitable access and effectiveness.569

Addressing these concerns requires ongoing re-570

search and development efforts, ensuring that the571

benefits of GUI agents are realized without com-572

promising ethical standards.573
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A Details of SeeClick Pre-training 790

A.1 Pre-training Tasks 791

SeeClick employs pre-training tasks as outlined 792

in Table 6. For the grounding task, we incorpo- 793

rate two forms: predicting center point coordi- 794

nates (text_2_point) and predicting bounding box 795

(text_2_bbox). For the task of generating text 796

for elements (similar to OCR), we also include 797

two categories: predicting text based on center 798

point (point_2_text, widget captioning) coordinates 799

and based on bounding boxes (bbox_2_text). Our 800

preliminary experiments indicated that predicting 801

points was slightly better than bounding boxes, 802

likely due to the variable sizes of UI elements. Con- 803

sequently, we increased the proportion of data with 804

point localization. Finally, about 1 million samples 805

are used for the continual pre-training of SeeClick. 806

For tasks involving coordinates, positions are 807

represented as either the point (x,y) or the bounding 808

box of (left, top, right, down), where each value 809

is a two-decimal place number in the range [0,1] 810

indicating the ratio of the corresponding position to 811

the width or height of the image. Figure 7 provides 812

some examples of the pre-training data. 813

Domain Task Sample Num

Web

text_2_point 271K
text_2_bbox 54K
point_2_text 54K
bbox_2_text 54K

Mobile

text_2_point 274K
text_2_bbox 56K

UI summarization 48K
widget captioning 42K

General LLaVA 145K

Total 1M

Table 6: All training data used by SeeClick.

A.2 Training Configurations 814

We employed the aforementioned data for continual 815

pre-training of Qwen-VL-Chat to develop SeeClick. 816

To enhance LVLM’s understanding of GUI images, 817

we unlocked the gradients of its visual encoder and 818

applied LoRA for fine-tuning. We adopt AdamW 819

as the optimizer and use a cosine annealing sched- 820

uler with an init learning rate of 3e-5 and a global 821

batch size of 64. All training takes around 24 hours 822

on 8 NVIDIA A100 GPUs. 823
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User: In the provided screenshot, 
I‘ll describe webpage elements for 
you to locate (with point).
User: Additional information
Assistant: (0.66,0.86)
User: USB Flash Drive
Assistant: (0.37,0.17)
User: Qty
Assistant: (0.63,0.41)
User: GAMING ACCESSORIES 
(AUSTRALIA)
Assistant: (0.30,0.13)
……
User: Add to Wishlist
Assistant: (0.52,0.57)

User: In this digital interface, 
to initiate "click to start a 
search", where is my point of 
interest (with point)?
Assistant: (0.88,0.87)

Task: Web text_2_point
User: In this screenshot, I'll give 
coordinates and ask you to describe 
the text of the elements there (with 
bbox).
User: (0.61,0.84,0.71,0.88)
Assistant: Additional information 
User: (0.34,0.16,0.40,0.18)
Assistant: USB Flash Drive
User: (0.61,0.40,0.64,0.43)
Assistant: Qty
User: (0.26,0.16,0.33,0.18)
Assistant: GAMING ACCESSORIES 
(AUSTRALIA)
……
User: (0.48,0.56,0.55,0.58) 
Assistant: Add to Wishlist

Task: Web bbox_2_text

Task: Mobile text_2_point

User: Can you provide a detailed 
description of the interface 
screenshot shown?
Assistant: An app home that 
displays a daily learning goal 
punch list

Task: Mobile UI summarization

Figure 7: Examples of SeeClick pre-training tasks.

B ScreenSpot Annotation & Evaluation824

B.1 Human Annotation825

We convened four experienced annotators, all ei-826

ther Ph.D. or master students in computer science,827

proficient in using mobile phones and computers828

and familiar with GUI operations. Initially, we as-829

signed different GUI types to the annotators, such830

as iOS, Windows, and Web. Then, annotators were831

required to capture screenshots during their routine832

use (e.g., various apps) and subsequently annotate833

the clickable regions of frequently interacted ele-834

ments using bounding boxes with annotation tool835
1. Finally, these annotators were instructed to write836

1http://makesense.bimant.com

corresponding English text commands for the an- 837

notated screen elements. All annotated interfaces 838

and operational elements were in English and post- 839

processed to remove personal information. 840

B.2 Sample Showcase 841

Figure 10 provides more examples of ScreenSpot, 842

which contains a variety of common GUI scenarios 843

for mobile, desktop, and web platforms. 844

B.3 Evaluation Detail 845

For comparing baselines, we tested the models’ 846

grounding capabilities using their officially recom- 847

mended approach. For instance, with CogAgent, 848

we randomly selected prompts from the official set 849

provided, such as "What steps do I need to take 850

to <instruction>? (with grounding)", then the out- 851

put coordinates (or the centers of bounding boxes) 852

were taken as predicted points. For GPT-4V, we 853

follow Yang et al. (2023b) to enable it to locate 854

screen elements based on instructions. SeeClick’s 855

predictions with points were marginally better than 856

bounding boxes, thus we selected point prediction 857

for final evaluation. 858

B.4 SeeClick Case Study & Error Analysis 859

Figure 8 presents some examples of SeeClick on 860

ScreenSpot. SeeClick can comprehend human in- 861

structions and accurately locate screen elements. 862

To conduct a detailed analysis of localization per- 863

formance, we quantified the distances between pre- 864

dicted points and ground truth (the center of target 865

elements) in Figure 9. It’s noteworthy that even 866

incorrect predictions mostly occur near the target 867

bounding box, suggesting the model recognizes 868

the target but needs improvement in fine-grained 869

localization. 870

C Downstream Agent Tasks 871

In this section, we first detail the formulation of 872

SeeClick as a visual GUI agent, then separately 873

introduce the settings for three downstream tasks, 874

and finally show SeeClick’s interaction cases with 875

the GUI across these tasks. 876

C.1 Formulation of SeeClick as Visual GUI 877

Agent 878

Action Space SeeClick involves common human- 879

UI interaction operations. Following AITW, we 880

assigned an action_type id to each action 881

type for model prediction. 882
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Instruction:
open settings

Instruction:
add a new slide

Instruction:
display 
calendar in 
week view

Instruction:
choose the 
red pen

Instruction:
enable 
notifications

Instruction:
close

Figure 8: SeeClick on ScreenSpot. Blue dashed boxes represent the ground truth bounding boxes, while green and
red pointers indicate correct and incorrect predictions.

Figure 9: Distance distribution of prediction point to
ground truth. Most incorrect predictions are also close to
the answer, suggesting the model recognizes the target
but needs improvement in fine-grained localization.

• click(x,y): 4. A click action at (x,y),883

where each value is a [0,1] number indicating884

the ratio of the corresponding position to the885

width or height of the image.886

• type("typed_text"): 3. An action of887

typing a piece of text.888

• select("value"): 2. An action for se-889

lecting an option from a dropdown menu on a890

webpage.891

• swipe(direction): Swipe actions for892

the screen, swipe up/down/left/right are as-893

signed the ids 1, 0, 8, and 9 respectively.894

• PRESS BACK: 5. The action for returning to895

the previous step.896

• PRESS HOME: 6. The action for returning to897

the homepage.898

• PRESS ENTER: 7. The action of pressing899

the ENTER key to submit input content.900

The first two actions, clicking and typing, are uni- 901

versally applicable across various GUIs. The third 902

action, select, is defined according to the specifica- 903

tions in Mind2Web. The latter four actions, along 904

with two additional states, TASK COMPLETE and 905

TASK IMPOSSIBLE, are defined following the 906

AITW framework for Android environments. 907

Agent Formulation SeeClick is an autonomous 908

agent capable of executing human instructions on 909

GUIs. It takes as input the instruction, a screen- 910

shot of the current interface and a series of (k=4 911

in our setting) previous actions, to predict the next 912

action to be taken. Specifically, SeeClick uses the 913

following prompt to execute each step of the agent: 914

User: In the provided screenshot, 
I‘ll describe webpage elements for 
you to locate (with point).
User: Additional information
Assistant: (0.66,0.86)
User: USB Flash Drive
Assistant: (0.37,0.17)
User: Qty
Assistant: (0.63,0.41)
User: GAMING ACCESSORIES 
(AUSTRALIA)
Assistant: (0.30,0.13)
……
User: Add to Wishlist
Assistant: (0.52,0.57)

User: In this digital interface, 
to initiate "click to start a 
search", where is my point of 
interest (with point)?
Assistant: (0.88,0.87)

Task: Web text_2_point
User: In this screenshot, I'll give 
coordinates and ask you to describe 
the text of the elements there (with 
bbox).
User: (0.61,0.84,0.71,0.88)
Assistant: Additional information 
User: (0.34,0.16,0.40,0.18)
Assistant: USB Flash Drive
User: (0.61,0.40,0.64,0.43)
Assistant: Qty
User: (0.26,0.16,0.33,0.18)
Assistant: GAMING ACCESSORIES 
(AUSTRALIA)
……
User: (0.48,0.56,0.55,0.58) 
Assistant: Add to Wishlist

Task: Web bbox_2_text

Task: Mobile text_2_point

User: Can you provide a detailed 
description of the interface 
screenshot shown?
Assistant: An app home that 
displays a daily learning goal 
punch list

Task: Mobile UI summarization

<img>Image</img>
User: Please generate the next move according to the 
UI screenshot, instruction and previous actions.
Instruction:
<instruction>
Previous actions:
Step1: <step1>
Step2: <step2>
Step3: <step3>
Step4: <step4>
SeeClick: <next action>

During training and testing, we organize the data 915

by step into the format described above. 916

C.2 MiniWob 917

MiniWob is a classic simplified web agent environ- 918

ment, built on Chrome, allowing low-level oper- 919

ations such as clicking and typing. It comprises 920

around 100 tasks, where each task can templatize 921
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Gen. Inst. GApps. Sing. WShop. Ovr.
Auto-UI 68.2 76.9 71.4 84.6 70.3 74.3

CogAgent 65.4 78.9 75.0 93.5 71.1 76.9
SeeClick 67.6 79.6 75.9 84.6 73.1 76.2

Table 7: Comparison on the origin split of AITW.

random variants and corresponding instructions922

controlled by a random seed, creating up to bil-923

lions of possible task instances. We use 50 success-924

ful trajectories for each task provided in (Zheng925

et al., 2023) for training and test each task with 50926

random seeds, following standard practices.927

We report the average success rate across ran-928

dom seeds and tasks, automatically provided by929

the MiniWob environment. A task is considered930

successfully completed if executed correctly, while931

incorrect executions or exceeding the maximum932

number of actions (set as 30 here) are counted as933

failures. For the baselines in Table 2, we use the934

task-wise scores provided in their papers to calcu-935

late the average score for tasks overlapping with936

SeeClick. We also provided a task-wise comparison937

in Table 8.938

C.3 AITW939

AITW is a recently collected dataset for Android940

smartphone automation, where each sample com-941

prises an instruction and an action trajectory with942

screenshots. AITW is divided into five subsets:943

General, Install, GoogleApps, Single, and Web-944

Shopping, totally including over 30K instructions945

and 700K episodes.946

Despite AITW’s large scale, as stated in Sec-947

tion 5.2.2, the current train-test split poses a sig-948

nificant risk of overfitting, leading to experimental949

results that do not accurately reflect an agent’s gen-950

eralization ability in the real world. We also con-951

ducted experiments on SeeClick using the origin952

split, as shown in Table 7, SeeClick is comparable953

to CogAgent’s performance. We believe that due to954

the severe overfitting, designing new agent frame-955

works or enlarging model size is unlikely to yield956

much improvements on this split.957

To address the aforementioned issue, we958

propose to divide the train/val/test in an959

instruction-wise manner. Specifically, we selected960

545/688/306/700/700 instructions from the Gen-961

eral/Install/GoogleApps/Single/WebShopping sub-962

sets, and retained only one annotated episode for963

each instruction. To avoid imbalance in joint train-964

ing, we randomly chose 700 instructions from Sin-965

gle and WebShopping. Given the similarity among 966

instructions within Single and WebShopping, these 967

700 instructions are representative of performance 968

on these two subsets. Next, we allocate 80% for 969

training and the remaining 20% for testing, and 970

select additional 5*100 episodes to form the val- 971

idation set from the origin data. The data used 972

for training, validation, and testing will be open- 973

sourced to serve as an effective evaluation. 974

The other settings are consistent with previous 975

work, calculating a screen-wise matching score 976

that considers both the correctness of the action 977

type and its value (e.g., the click point or typed 978

text). The screen-wise matching score is correlates 979

with the task completion score judged by humans 980

(Rawles et al., 2023). 981

C.4 Mind2web 982

Mind2Web is a recently proposed dataset for devel- 983

oping generalist web agents for real-world web- 984

sites, originally designed for text-based agents. 985

Therefore, the origin observation in each step 986

only includes the HTML code of the current web- 987

page. To train and evaluate visual-based agents, 988

we extracted web screenshots and the bounding 989

boxes of target operational elements for each step 990

from Mind2Web’s raw dump. One issue with 991

Mind2Web’s original HTML observation is that 992

it captures the entire page, including scrolling, 993

with its screenshots being long captures (e.g., 994

1920*12000). Predicting operational positions 995

from such high-resolution long screenshots is im- 996

practical for current LVLMs and does not align 997

with human operations. To address this, for target 998

elements not at the top, we randomly crop around 999

their location, maintaining a consistent screenshot 1000

resolution of 1920*1080 for all observed interfaces. 1001

Mind2Web first calculates Element Accuracy 1002

(Ele.Acc) which compares the predicted element 1003

with groundtruth, and Operation F1 (Op.F1) which 1004

calculates the token-level F1 score for the predicted 1005

operation. Operation F1 is equivalent to the accu- 1006

racy of click operations but takes into account the 1007

correctness of input values for type and select op- 1008

erations. For our vision-based approach, Element 1009

Accuracy is computed as the accuracy of predicted 1010

click points falling in the groundtruth elements’ 1011

bounding box. Then, a step is considered success- 1012

ful (Step SR) if both the predicted element and 1013

operation are correct. 1014
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C.5 Case Study1015

MiniWob Figure 11(a) illustrates the difference1016

between static and dynamic layout tasks. Static1017

layout tasks have fixed element positions during1018

training and testing, while dynamic layout tasks1019

display varying interfaces and element positions1020

with instructions, further challenging the agent’s1021

ability to accurately locate the target. Figure 11(b)1022

provides examples of SeeClick’s interaction with1023

MiniWob. SeeClick relies solely on the interface1024

screenshot for arithmetic, reasoning, etc.1025

AITW Figure 12 provides SeeClick’s operations1026

on AITW. Predictions marked in red below indi-1027

cate that they were computed as incorrect in AITW.1028

Some errors occur because the current step’s an-1029

swer is not unique. For example in step 5, the1030

model’s predicted input "DuckDuckGo Privacy1031

Browser" is also a potentially correct action.1032

Mind2Web Figure 13 shows several examples1033

of SeeClick on the real-world website benchmark1034

Mind2Web. SeeClick can comprehend instructions1035

and click on the correct elements within complex1036

interfaces.1037
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CC-Net (SL) WebN-T5 WebGUM Pix2Act Qwen-VL SeeClick
Choose-date 0.12 0.00 0.13 0.06 0.0 0.02
Click-button 0.78 1.0 1.0 0.32 0.42 0.96
Click-button-sequence 0.47 1.0 1.0 1.0 0.08 0.86
Click-checkboxes 0.32 0.96 1.0 0.99 0.44 0.78
Click-checkboxes-large 0.0 0.22 0.99 1.0 0.0 0.02
Click-checkboxes-soft 0.04 0.54 0.98 0.91 0.06 0.22
Click-checkboxes-transfer 0.36 0.63 0.99 0.76 0.60 0.70
Click-collapsible-2 0.17 0.00 0.95 0.31 0.0 0.48
Click-collapsible 0.81 0.00 0.98 0.80 1.0 1.0
Click-color 0.82 0.27 0.34 0.88 0.96 1.0
Click-dialog 0.95 1.0 1.0 0.12 0.96 1.0
Click-dialog-2 0.88 0.24 0.43 0.73 0.84 1.0
Click-link 0.59 1.0 1.0 0.86 0.0 0.90
Click-option 0.21 0.37 1.0 0.0 0.70 1.0
Click-pie 0.15 0.51 0.99 0.81 0.16 0.80
Click-shades 0.04 0.0 0.0 0.76 0.0 0.02
Click-shape 0.11 0.53 0.72 0.19 0.04 0.52
Click-tab 0.95 0.74 1.0 0.54 1.0 1.0
Click-tab-2 0.27 0.18 0.95 0.52 0.0 0.60
Click-tab-2-hard 0.19 0.12 0.95 0.0 0.16 0.42
Click-test 1.0 1.0 1.0 1.0 1.0 1.0
Click-test-2 0.95 1.0 1.0 1.0 0.72 0.94
Click-widget 0.56 1.0 1.0 0.87 0.38 0.58
Count-shape 0.21 0.41 0.68 0.0 0.20 0.28
Copy-paste 0.04 - - - 0.96 0.80
Copy-paste-2 0.01 - - - 0.96 0.80
Email-inbox 0.09 0.38 0.99 - 0.08 0.80
Email-inbox-forward-nl 0.0 0.6 1.0 - 0.24 0.74
Email-inbox-forward-nl-turk 0.0 0.33 1.0 - 0.16 0.56
Email-inbox-nl-turk 0.05 0.23 0.98 - 0.40 0.68
Enter-date 0.02 0.0 1.0 0.59 1.0 1.0
Enter-password 0.02 0.97 1.0 - 1.0 1.0
Enter-text 0.35 0.89 1.0 - 1.0 1.0
Enter-text-dynamic 0.39 0.98 1.0 - 0.96 1.0
Focus-text 0.99 1.0 1.0 - 1.0 1.0
Focus-text-2 0.96 1.0 1.0 - 0.84 0.96
Find-word 0.05 - - - 1.0 0.10
Grid-coordinate 0.66 0.49 1.0 0.97 0.96 0.52
Guess-number 0.21 0.0 0.11 - 1.0 1.0
Login-user 0.0 0.82 1.0 - 1.0 1.0
Login-user-popup 0.02 0.72 0.99 - 0.86 0.98
Multi-layouts 0.00 0.83 1.0 - 0.44 0.72
Multi-orderings 0.0 0.88 1.0 - 0.42 0.86
Identify-shape 0.68 - - 0.94 1.0 0.68
Navigate-tree 0.32 0.91 1.0 0.07 0.60 0.82
Search-engine 0.15 0.34 0.96 - 0.56 0.84
Simple-algebra 0.03 - - 0.99 0.48 0.38
Simple-arithmetic 0.38 - - 0.67 0.92 0.78
Text-transform 0.19 - - 0.91 0.36 0.46
Tic-tac-toe 0.32 0.48 0.56 0.76 0.30 0.58
Unicode-test 0.86 0.64 0.54 0.98
Use-autocomplete 0.07 0.22 0.98 0.95 0.72 0.82
Use-slider 0.18 - - 0.69 0.38 0.32
Use-spinner 0.47 0.07 0.11 - 0.24 0.16
Read-table 0.01 - - - 0.90 0.72
Average 0.336 (55) 0.552 (45) 0.861 (45) 0.646 (35) 0.564 (55) 0.712 (55)

Table 8: Mean scores across 55 MiniWob tasks.
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Instruction: My 
account
Source: Mobile
(iOS)
Type: 
Icon/Widget

Instruction: 
Remove maps 
from the 
Desktop
Source: Mobile
(iOS)
Type: 
Icon/Widget
 

Instruction: 
Disallow 
automatic app 
updates
Source: Mobile
(iOS)
Type: 
Icon/Widget
 

Instruction: 
Search event
Source: Mobile
(iOS)
Type: Text

Instruction: 
Scan QR code
Source: 
Mobile
(Android)
Type: 
Icon/Widget
 

Instruction: 
Continue
Source: Mobile
(Android)
Type: Text 

Instruction: 
Display 15-day 
weather 
forecast
Source: Mobile
(Android)
Type: Text 

Instruction: 
Fold input 
method
Source: Mobile
(Android)
Type: 
Icon/Widget

Instruction: 
Create a new
document
Source:
Desktop
(macOS)
Type: Text 

Instruction: 
Enlarge font 
size
Source:
Desktop
(macOS)
Type:
Icon/Widget

Instruction: 
Add subtitle
Source:
Desktop
(Windows)
Type: Text 

Instruction: Go 
to Beauty & 
Personal Care
Source: Web
(Shop)
Type: Text 

Instruction: Set 
Reminder
Source: Web
(Development)
Type: 
Icon/Widget

Instruction: Reply
to the first post 
Source: Web
(Forum)
Type: Text 

Instruction: Pause the
debugger
Source: Desktop
(macOS)
Type: Icon/Widget

Instruction:
Zoom in on 
the map 
Source: Web
(Tools)
Type: 
Icon/Widget 

Instruction: Open
Fax
Source: Desktop
(Windows)
Type: Text

Figure 10: More examples of GUI grounding benchmark ScreenSpot.
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{“action_type”: 4, “click_point”:
(0.58, 0.3)}

{“action_type”: 4, “click_point”:
(0.25, 0.4)}

{“action_type”: 4, “click_point”:
(0.25, 0.4)}

{“action_type”: 4, “click_point”:
(0.46, 0.55)}

{“action_type”: 4, “click_point”:
(0.47, 0.47)}

{“action_type”: 4, “click_point”:
(0.5, 0.62)}

{“action_type”: 4, “click_point”:
(0.71, 0.78)}

{“action_type”: 4, “click_point”:
(0.81, 0.38)}

{“action_type”: 3, “typed_text”:
“36”}

{“action_type”: 4, “click_point”:
(0.50, 0.64)}

{“action_type”: 4, “click_point”:
(0.69, 0.8)}

{“action_type”: 4, “click_point”:
(0.31, 0.8)}

{“action_type”: 4, “click_point”:
(0.31, 0.49)}

{“action_type”: 4, “click_point”:
(0.14, 0.3)}

{“action_type”: 4, “click_point”:
(0.13, 0.81)}

{“action_type”: 4, “click_point”:
(0.19, 0.76)}

(a) Comparison between static layout (left, click-color) and dynamic layout (right, unicode-test).

Task: simple-arithmetic Task: click-pie

Task: choose-date

···

(b) Example episodes of SeeClick on MiniWob tasks.
Figure 11: Example episodes of SeeClick on MiniWob. The model’s prediction output is below the screenshot, with
action_type 4 indicating a click and action_type 3 indicating typing.
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{“action_type”: 6)} {“action_type”: 4, “click_point”:
(0.12, 0.79)}

{“action_type”: 4, “click_point”:
(0.81, 0.07)}

{“action_type”: 4, “click_point”:
(0.93, 0.06)}

{“action_type”: 3, “typed_text”:
“DuckDuckGo Privacy Browser”}

{“action_type”: 4, “click_point”:
(0.29, 0.12)}

{“action_type”: 4, “click_point”:
(0.87, 0.15)}

{“action_type”: 4, “click_point”:
(0.87, 0.15)}

Reference: {“action_type”: 3,
“typed_text”: “duckduckgo”}

{“action_type”: 4, “click_point”:
(0.45, 0.18)}

Instruction: open app "DuckDuckGo Privacy Browser" (install if not already installed) 
and enter user name: "cleaving@outlook.com" and password: "freighters"

Figure 12: Example episodes of SeeClick on AITW. The model’s prediction output is below the screenshot, with
action_type 4 indicating a click, action_type 3 indicating typing and action_type 6 indicating PRESS HOME. Steps
with the red prediction and green reference indicate a failed step.
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{“action_type”: 4, “click_point”: (0.68, 0.10)} {“action_type”: 4, “click_point”: (0.38, 0.35)} {“action_type”: 3, “click_point”: (0.43, 0.48), “value”: 
“87654321”}

{“action_type”: 3, “click_point”: (0.26, 0.57), “value”: 
“9753”}

{“action_type”: 4, “click_point”: (0.50, 0.79)}

Instruction: Check my AMC gift card balance with gift card number 87654321 and pin number 9753.

Instruction: Find the list of all neighborhood maps for Brooklyn.

{“action_type”: 4, “click_point”: (0.03, 0.05)} {“action_type”: 4, “click_point”: (0.56, 0.68)} {“action_type”: 4, “click_point”: (0.50, 0.41)}

Instruction: Download the e-receipt with the last name Smith and confirmation number X123456989.

{“action_type”: 4, “click_point”: (0.67, 0.08)} {“action_type”: 4, “click_point”: (0.47, 0.36)} {“action_type”: 3, “click_point”: (0.46, 0.62), “value”: 
“Smith”}

{“action_type”: 3, “click_point”: (0.70, 0.65), “value”: 
“X123456989”}

{“action_type”: 4, “click_point”: (0.50, 0.77)}

Figure 13: Example episodes of SeeClick on Mind2Web. The model’s prediction output is below the screenshot,
with action_type 4 indicating a click and action_type 3 indicating typing. Steps with the red prediction and green
reference bounding box indicate a failed step.
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