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ABSTRACT

As the field of multi-agent reinforcement learning (MARL) progresses towards
larger and more complex environments, achieving strong performance while main-
taining memory efficiency and scalability to many agents becomes increasingly
important. Although recent research has led to several advanced algorithms, to
date, none fully address all of these key properties simultaneously. In this work, we
introduce Sable, a novel and theoretically sound algorithm that adapts the retention
mechanism from Retentive Networks to MARL. Sable’s retention-based sequence
modelling architecture allows for computationally efficient scaling to a large num-
ber of agents, as well as maintaining a long temporal context, making it well-suited
for large-scale partially observable environments. Through extensive evaluations
across six diverse environments, we demonstrate how Sable is able to significantly
outperform existing state-of-the-art methods in the majority of tasks (34 out of
45, roughly 75%). Furthermore, Sable demonstrates stable performance as we
scale the number of agents, handling environments with more than a thousand
agents while exhibiting a linear increase in memory usage. Finally, we conduct
ablation studies to isolate the source of Sable’s performance gains and confirm its
efficient computational memory usage. Our results highlight Sable’s performance
and efficiency, positioning it as a leading approach to MARL at scale.1
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Figure 1: Performance, memory, and scaling properties of Sable, aggregated over 45 cooperative
MARL tasks. Left: Sable ranks first in 34 out of 45 tasks, outperforming state-of-the-art MARL
algorithms across 6 environments: RWARE (Papoudakis et al., 2021), LBF (Christianos et al., 2020),
MABrax (Peng et al., 2021), SMAX (Rutherford et al., 2023), Connector (Bonnet et al., 2023) and
MPE (Lowe et al., 2017). Middle: Sable exhibits superior throughput, processing up to 6.5 times
more steps per second compared to the attention-based MAT (Wen et al., 2022) as we scale to 512
agents. Right: Sable scales efficiently to thousands of agents, maintaining stable performance, while
using GPU memory as efficiently as independent systems, in this case IPPO (Witt et al., 2020), and
significantly more efficiently than MAT.

1All experimental data and code is made available at: https://sites.google.com/view/sable-marl.
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1 INTRODUCTION

When considering large-scale practical applications of multi-agent reinforcement learning (MARL)
such as autonomous driving (Lian & Deshmukh, 2006; Zhou et al., 2021; Li et al., 2022) and
electricity grid control (Kamboj et al., 2011; Li et al., 2016), it becomes increasingly important to
maintain three key properties for a system to be effective: strong performance, memory efficiency,
and scalability to many agents. Although many existing MARL approaches exhibit one or two of
these properties, a solution effectively encompassing all three remains elusive.

To briefly illustrate our point, we consider the spectrum of approaches to MARL in terms of (1)
performance (general ability to solve tasks at a moderate scale), (2) memory efficiency (the memory
requirements to perform joint policy inference at execution time) and (3) scalability (the ability to
maintain good performance as the number of agents grows large).

Indepedent learning (IL) — memory efficient but not performant or scalable. On the one end
of the spectrum lies IL, or decentralised methods, where agents act and learn independently. As
intuitively expected, the earliest work in MARL uses this approach (Tan, 1993; 1997). However,
even early on, clear limitations were highlighted due to non-stationarity from the perspective of
each learning agent (Claus & Boutilier, 1998), failing to solve even simple tasks. When deep neural
networks were introduced into more modern MARL algorithms, these algorithms also followed the IL
paradigm (Tampuu et al., 2017; Witt et al., 2020), with reasonable results. IL algorithms demonstrate
proficiency in handling many agents in a memory efficient way by typically using shared parameters
and conditioning on an agent identifier. However, at scale, the performance of IL methods remains
suboptimal compared to more centralised approaches (Papoudakis et al., 2021; Yu et al., 2022; Wen
et al., 2022).

Centralised training with decentralised execution (CTDE) — performant and memory efficient
but not yet scalable. As a solution to the failings of independent learning and lying between
decentralised and centralised methods, is CTDE (Kraemer & Banerjee, 2016). Here, centralisation
improves learning by removing non-stationarity, while decentralised execution maintains memory
efficient deployment. CTDE follows two main branches: value-based and actor-critic. In value-based
methods, centralisation is achieved through a joint value function used during training which has
a factorisation structure adhering to the individual-global-max (IGM) principle. This means that
if each agent acts greedily at execution time it is equivalent to the team acting greedily according
to the joint value function. Seminal work along this line include VDN (Sunehag et al., 2017) and
QMIX (Rashid et al., 2018), with many followup works (Son et al., 2019; Rashid et al., 2020b; Wang
et al., 2020a; Son et al., 2020; Yang et al., 2020; Rashid et al., 2020a). In actor-critic methods, a
centralised critic is used during training, and at execution time, policies are deployed independently.
Many popular single-agent actor-critic algorithms have CTDE MARL versions including MADDPG
(Lowe et al., 2017), MAA2C (Papoudakis et al., 2020) and MAPPO (Yu et al., 2022), and have been
combined with factorised critics (Wang et al., 2020b; Peng et al., 2021). Although CTDE helps
during training to achieve better performance at execution time, centralised training may remain
prohibitively expensive, especially if the size of the global state is agent dependent. Furthermore,
independent policies, even when trained jointly, are often limited in their coordination capabilities
when deployed at larger scale (Long et al., 2020; Christianos et al., 2021; Guresti & Ure, 2021).

CTDE policy optimisation with theoretical guarantees — theoretically sound, performant and
memory efficient but not yet scalable. Until fairly recently, both value-based and actor-critic MARL
had limited theoretical guarantees. This changed for actor-critic methods with a series of papers
developing first trust region learning methods (Kuba et al., 2022a), and subsequently, mirror learning
(Kuba et al., 2022b) for MARL, culminating in the Fundamental Theorem of Heterogeneous-Agent
Mirror Learning (Kuba et al., 2022c) (Theorem 1). The theorem states that for specifically designed
methods, that utilise a particular heterogeneous-agent update scheme during policy optimisation,
monotonic improvement and convergence is guaranteed. Stemming from this work, a class of
heterogeneous agent RL algorithms (Zhong et al., 2024) have been proposed including HATRPO,
HAPPO, HAA2C, HADDPG and HASAC (Liu et al., 2023a). Although theoretically sound, these
algorithms generally suffer from the same drawbacks as conventional CTDE methods in terms of
practical performance at scale, for similar reasons (Guo et al., 2024)

Centralised learning — theoretically sound with state-of-the-art performance but not yet memory
efficient or scalable. On the other end of the spectrum lie centralised algorithms. These include
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classical RL algorithms that treat MARL as a single-agent problem with an expanded action space,
as well as approaches that condition on global information during execution, e.g. graph-based
communication methods (Zhu et al., 2022). A particularly interesting line of work has been to employ
the use of transformers (Vaswani et al., 2017; Hu et al., 2021; Gallici et al., 2023; Yang et al., 2024)
and re-frame MARL as a (typically offline) sequence modeling problem (Chen et al., 2021; Meng
et al., 2021; Tseng et al., 2022; Zhang et al., 2022; Liu et al., 2023b; Forsberg et al., 2024). One
such approach for online learning is the Multi-Agent Transformer (MAT) (Wen et al., 2022) which
achieves state-of-the-art (SOTA) performance in cooperative MARL tasks. Although MAT is highly
performant and theoretically sound (from Theorem 1 in Kuba et al. (2022c)), it has limitations:
(1) MAT lacks the ability to scale to truly large multi-agent systems due to the inherent memory
limitations of the attention mechanism (Katharopoulos et al., 2020), and (2) MAT lacks the ability to
condition on observation histories. These limitations significantly impact what is possible to achieve
at scale and in partially observable settings, commonly encountered in the real world.

Our work — theoretically sound, state-of-the-art performance, memory efficient and scalable. We
seek to develop an approach capable of SOTA performance, while being memory efficient and able to
scale to many agents. To achieve this, we take inspiration from the MAT architecture and recent work
in linear recurrent models in RL (Lu et al., 2024; Morad et al., 2024b) to develop an online sequence
modeling approach to MARL but one that is significantly more memory efficient and scalable. Our
key innovation is to replace the attention mechanism in MAT with an RL adapted version of the
retention mechanism used in the recently proposed Retentive Networks (RetNets) (Sun et al., 2023).
We call our approach Sable. Sable has theoretical convergence guarantees, is able to handle settings
with up to a thousand agents and can process entire episode sequences as memory, crucial for learning
in partially observable settings. Through comprehensive benchmarks across 45 different tasks, we
empirically verify that Sable significantly outperforms SOTA methods in the majority of cases (34
out of 45). This includes outperforming the SOTA fully centralised MAT, while being as memory
efficient as fully decentralised IPPO, achieving the best of both sides of the MARL spectrum. We
concretely summarise our contributions below:

• We develop (to the best of our knowledge) the first encoder-decoder RetNet that uses cross-
retention. We further extend this encoder-decoder RetNet to have resettable hidden states
over a temporal sequence to ensure that information does not flow across episode boundaries.
This produces a RetNet-based architecture suitable for RL.

• We use the above innovations to build Sable which achieves SOTA performance, is able
to reason over multiple timesteps, is memory efficient, scales to many agents and is by
design theoretically sound. We believe Sable is the first demonstration of successfully using
RetNets for learning policies in RL and more specifically, the first successful use of RetNets
as a sequence modelling approach to online MARL. Sable provides the best trade-off in
terms of memory efficiency when compared to independent learning, while significantly
surpassing CTDE methods and MAT in terms of performance and scalability (Figure 1).

2 BACKGROUND

Problem Formulation Cooperative MARL in partially observable settings can be modeled using
a decentralised-POMDP with ⟨N,O,A, R, P, γ⟩. Here N is the number of agents, O =

∏N
i=1Oi

is the joint observation space of all agents, A =
∏N

i=1Ai is the joint action space of all agents,
R : O × A → R is the joint reward function, P : O × A × O → [0, 1] is the environment
transition probability function and γ ∈ [0, 1) is a discounting factor. At timestep t, each agent
receives a separate observation oit ∈ Oi, collectively forming the joint observation ot ∈ O, and
executes a separate action ait ∈ Ai, forming the joint action at ∈ A, sampled from a joint policy
π(a|o) =

∏N
i=1 π(a

i|oi). All agents receive a shared reward rt = R(ot,at). The goal is to learn an
optimal joint policy which maximises the expected joint discounted reward J = Eπ[

∑∞
t=0 γ

trt].

Retention Retention as used in Retentive networks (RetNets) introduced by Sun et al. (2023),
eliminates the softmax operator from attention and instead incorporates a time-decaying causal
mask (decay matrix) with GroupNorm (Wu & He, 2018) and a swish gate (Hendrycks & Gimpel,
2016; Ramachandran et al., 2017) to retain non-linearity. This reformulation allows for the same
computation to be expressed in three distinct but equivalent forms:

3
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1. Recurrent which operates on a single input token at a time via a hidden state

hs = κhs−1 +KT
sVs

Retention(xs) = Qshs, s = 1, . . . , S
(1)

where Qs,Ks, Vs are per token query, key and value matrices, respectively. Each of these is computed
by applying learned projection matrices WQ, WK , and WV on the embedded input sequence x. The
decay factor κ ∈ (0, 1) determines the rate at which information from earlier parts of the sequence is
retained.

2. Parallel which operates on a batch of tokens in parallel akin to attention, given as

Retention(x) = (QKT ⊙D)V, Dsm =

{
κs−m, if s ≥ m

0, if s < m,
(2)

where D is referred to as the decay matrix.

3. Chunkwise which is a hybrid between the parallel and recurrent forms and allows for efficient
long-sequence modeling. The approach involves splitting the sequence into i smaller chunks, each of
length B and can be written as:

Q[i] = QB(i−1):Bi, K[i] = KB(i−1):Bi, V[i] = VB(i−1):Bi

hi = KT
[i](V[i] ⊙ ζ) + κBhi−1, ζij = κB−i−1

Retention(x[i]) = (Q[i]K
T
[i] ⊙D)V[i] + (Q[i]hi−1)⊙ ξ, ξij = κi+1.

(3)

The above equivalent representations enable two key advantages over transformers: (1) it allows for
constant memory usage during inference while still leveraging modern hardware accelerators for
parallel training, and (2) it facilitates efficient handling of long sequences by using the chunkwise
representation during training, which can be re-expressed in a recurrent form during inference.

3 METHOD

In this section, we introduce Sable, our approach to MARL as sequence modelling using a modified
version of retention suitable for RL. Sable enables parallel training and memory-efficient execution
at scale, with the ability to capture temporal dependencies across entire episodes. We explain how
Sable operates during both training and execution, how we adapt retention to work in MARL, and
provide different strategies for scaling depending on the problem setting.

Execution Sable interacts with the environment for a defined rollout length, L, before each training
phase. During this interaction, the encoder uses a chunkwise representation, processing the obser-
vation of all agents at each timestep in parallel. A hidden state henc maintains a memory of past
observations and is reset at the end of each episode. During execution, the decay matrix, D, is set to
all ones, allowing for full self-retention over all agents’ observations within the same timestep. These
adjustments to retention, particularly the absence of decay across agents and the resetting of memory
at episode termination, result in the following encoder formulation during execution:

Retention(õt) = Qth
enc
t , t = l, . . . , l + L

where henc
t = δ(κhenc

t−1 +KT
t Vt), δ =

{
0, if the episode has ended
1, if the episode is ongoing

(4)

where Qt,Kt, Vt are query, key and value matrices of all agents’ observations at timestep t within
the rollout that started at lth timestep and õt is the embedded observation sequence.

The decoder operates recurrently over both agents and timesteps, decoding actions auto-regressively
per timestep as follows:

Retention(ãit) = Qi
tĥi,

where ĥi = ĥi−1 + (Ki
t)

TV i
t , i = 1, . . . , N,

(5)

4
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X
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Encoder

Decoder

Figure 2: Sable architecture and execution. The encoder receives all agent observations o1t , ..., o
N
t

from the current timestep t along with a hidden state henc
t−1 representing past timesteps and produces

encoded observations ô1t , ..., ô
N
t , observation-values v(ô1t ), ..., v(ô

N
t ) and a new hidden state henc

t .
The decoder performs recurrent retention over the current action am−1

t , followed by cross attention
with the encoded observations, producing the next action amt . The initial hidden states for recurrence
over agents in the decoder at the current timestep are (hdec1

t−1 , h
dec2
t−1 ) and by the end of the decoding

process, it generates the updated hidden states (hdec1
t , hdec2

t ).

with ĥ1 = hdec
t−1+(K1

t )
TV 1

t and hdec
t = δ(κĥN ). Here, Qi

t,K
i
t , V

i
t are query, key and value matrices

and ãit the embedded action of the ith agent at timestep t. The hidden state hdec is carried across
timesteps, decaying at the end of each timestep and resetting to zero when an episode ends. Within
each timestep, the intermediate variable ĥi is sequentially passed from one agent to the next and is
used exclusively in the retention calculation. It is this auto-regressive action selection which leverages
the advantage decomposition theorem to give Sable theoretically grounded convergence guarantees.

Training During training, Sable samples entire trajectories τ from an on-policy buffer and randomly
permutes the order of agents within timesteps. The encoder takes as input a sequence of flattened agent-
timestep observations from an entire trajectory: [o1l , o

2
l , ..., o

N−1
l+L , oNl+L], representing a sequence of

observations that start at timestep l. The decoder takes a similar sequence but of actions instead
of observations as input. Sable uses the chunkwise representation for both encoding and decoding
during training, allowing it to process entire trajectories in parallel while using a hidden state to
maintain the memory of previous trajectories.

To implement the chunkwise formulation, Sable applies the decaying factor over time (not across
agents), and resets the memory at the end of each episode through the D, ζ and ξ matrices. This
results in the following chunkwise training equation:

hτ = KT
[τ ](V[τ ] ⊙ ζ) + δκLhτprev , ζ = DNL,1:NL

Retention(x[τ ]) = (Q[τ ]K
T
[τ ] ⊙D)V[τ ] + (Q[τ ]hτprev )⊙ ξ,

where ξij =

{
κ⌊i/N⌋+1, if i ≤ Ntd0

0, if i > Ntd0

.

(6)
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The floor operator in ξ, ⌊i/N⌋, ensures that all agents from the same timestep share the same decay
values. The input x[τ ] is the sequence of observations from τ for the encoder and the sequence of
actions for the decoder. We represent the index of the first terminal timestep in x[τ ] as td0

and use hτ

to denote the hidden state at the end of the current trajectory τ . Finally, the matrix D is a modified
version of the decay matrix from standard retention, with dimensions (NL,NL), which we define in
more detail below.

In practice, rather than computing h during training, we reuse the hidden states from the final step of
the previous execution trajectory τprev , which means that we replace hτprev with henc

l−1 in the case of
the encoder and hdec

l−1 in the case of the decoder.

Adapting the decay matrix for MARL In order for RetNets to work in RL, we make three key
adaptations to the decay matrix used during training. First, we ensure that each agent’s observations
are decayed by the same amount within each timestep. Second, we ensure that the decay matrix
accounts for episode termination so that information is not allowed to flow over episode boundaries.
Third, we construct an agent block-wise decay matrix for the encoder to ensure that there is full
self-retention over agents within each timestep. A more detailed discussion on the construction of the
decay matrices as well as an illustrative example are given in Appendix E.

Scaling and efficient memory usage In practical applications, there might be different axes of
interest in terms of memory usage. For example, scaling the number of agents in the system, or
efficiently handling the sequence length that can be processed at training time, i.e. the number of
timesteps per update. We propose slightly different approaches for efficient memory use and scaling
across each axis.

• Scaling the number of agents. Scaling to thousands of agents requires a significant amount
of memory. Therefore, in this setting, we use MAT-style single-timestep sequences to
optimise memory usage and reserve chunking to be applied across agents. This requires
only changing the encoder during execution, as the decoder is already recurrent over both
agents and timesteps. However, this change to the encoder makes it unable to perform full
self-retention across agents, as it cannot be applied across chunks. During training, the
process mirrors that of execution but is applied to both the encoder and decoder.

• Scaling the trajectory context length. Since the training sequence will grow proportional
to NL in the case where Sable maintains memory over trajectories, training could become
computationally infeasible for tasks requiring long rollouts. In order to accommodate this,
we chunk the flattened agent-timestep observation along the time axis during training with
the constraint that agents from the same timestep must always be in the same chunk. This
allows sable to process chunks of rollouts several factors smaller than the entire rollout
length while maintaining a memory of the full sequence during processing.

Theoretical monotonic improvement and convergence guarantees Sable inherits strong per-
formance and convergence guarantees by design through its choice of using the Proximal Policy
Optimisation (PPO) objective with autoregressive policy updates. These guarantees stem from recent
theoretical results which we briefly outline here (for a more detailed discussion we refer the reader to
the Appendix). First, is the advantage decomposition theorem/lemma (Kuba et al., 2021) (Lemma 1),
which was used to develop trust region learning approaches for MARL with monotonic performance
improvement guarantees (Kuba et al., 2022a) (Theorem 2). Even though PPO-style algorithms with
autoregressive updates do not strictly adhere to trust region learning theory, and therefore, do not
have strict monotonic improvement, more recent work has placed PPO within a class of mirror learn-
ing algorithms that indeed enjoy monotonic improvement and theoretical convergence guarantees
(Kuba et al., 2022b) (Theorem 3.6). This work has since been extended to the multi-agent setting
(Kuba et al., 2022c), (Theorem 1), and in particular, HAPPO (multi-agent PPO with heterogeneous
autoregressive updates), was shown to be an instance of multi-agent mirror learning, and therefore
theoretically sound. To obtain an instance of mirror learning requires defining a valid drift functional,
neighbourhood operator and sampling distribution. In both MAT and Sable, these design choices
are exactly as they are for HAPPO, and therefore, we claim that Sable inherits the same theoretical
monotonic improvement and convergence guarantees as HAPPO, and by extension, MAT.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
1e6

10

5

0

5

10

15

Sable (ours) MAT MAPPO IPPO QMIX MASAC HASAC

0 2.5 5 7.5 10 12.5 15 17.5 20
Timesteps [Millions]

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n 

ep
iso

de
 re

tu
rn

0.7 0.8 0.9
MAPPO

IPPO
MAT

(a) RWARE

0 2.5 5 7.5 10 12.5 15 17.5 20
Timesteps [Millions]

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
ep

iso
de

 re
tu

rn

0.2 0.4 0.6
MAPPO

IPPO
MAT

MASAC
HASAC

(b) MABrax

0 2.5 5 7.5 10 12.5 15 17.5 20
Timesteps [Millions]

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
ep

iso
de

 re
tu

rn

0.65 0.70 0.75
MAPPO

IPPO
MAT

QMIX

(c) SMAX

0 2.5 5 7.5 10 12.5 15 17.5 20
Timesteps [Millions]

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
ep

iso
de

 re
tu

rn

0.900 0.925 0.950 0.975
MAPPO

IPPO
MAT

(d) Connector

0 2.5 5 7.5 10 12.5 15 17.5 20
Timesteps [Millions]

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
ep

iso
de

 re
tu

rn

0.68 0.70 0.72 0.74
MAPPO

IPPO
MAT

(e) LBF

0 2.5 5 7.5 10 12.5 15 17.5 20
Timesteps [Millions]

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n 
ep

iso
de

 re
tu

rn

0.8 0.9 1.0
MAPPO

IPPO
MAT

MASAC
HASAC

(f) MPE

Figure 3: Sample efficiency curves and probability of improvement scores aggregated per environment
suite. For each environment, results are aggregated over all tasks and the min-max normalised
inter-quartile mean with 95% stratified bootstrap confidence intervals are shown. Inset plots indicate
the overall aggregated probability of improvement for Sable compared to other baselines for that
specific environment. A score of more than 0.5 where confidence intervals are also greater than 0.5
indicates statistically significant improvement over a baseline for a given environment (Agarwal et al.,
2021).

Code Our implementation of Sable is in JAX (Bradbury et al., 2023), and all code is available at:
https://sites.google.com/view/sable-marl.

4 EXPERIMENTS

We validate the performance, memory efficiency and scalability of Sable by comparing it against
several SOTA baseline algorithms from the literature. These baselines can broadly be divided into
two groups. The first group consists of heterogeneous agent algorithms that leverage the advantage
decomposition theorem. To the best of our knowledge, the Multi-Agent Transformer (MAT) (Wen
et al., 2022) represents the current SOTA for cooperative MARL on discrete environments, and
Heterogeneous Agent Soft Actor-Critic (HASAC) (Liu et al., 2023a) the current SOTA on continuous
environments. The second group includes well-established baseline algorithms, including IPPO (Witt
et al., 2020), MAPPO (Yu et al., 2022), QMIX (Rashid et al., 2020a) and MASAC. For all baselines,
we use the JAX-based MARL library Mava (de Kock et al., 2023).

Evaluation protocol We train each algorithm for 10 independent trials for each task. Each training
run is allowed 20 million environment timesteps with 122 evenly spaced evaluation intervals. At each
evaluation, we record the mean episode return over 32 episodes and, where relevant, any additional
environment specific metrics (e.g. win rates). In line with the recommendations of Gorsane et al.
(2022), we also record the absolute performance. For task-level aggregation, we report the mean
with 95% confidence intervals while for aggregations over entire environment suites, we report the
min-max normalised inter-quartile mean with 95% stratified bootstrap confidence intervals. Following
from Agarwal et al. (2021), we consider algorithm X to have significant improvement over algorithm
Y if the probability of improvement score and all its associated confidence interval values are greater
than 0.5. All our evaluation aggregations, metric calculations and plotting leverages the MARL-eval
library from Gorsane et al. (2022).

Environments We evaluate Sable on several JAX-based benchmark environments including Robotic
Warehouse (RWARE) (Papoudakis et al., 2021), Level-based foraging (LBF) (Christianos et al., 2020),
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Table 1: Per environment episode return. Inter-quartile mean of the absolute episode returns with
95% stratified bootstrap confidence intervals. Bold values indicate the highest score per environment
and an asterisk indicates that a score overlaps with the highest score within one confidence interval.

Environment Sable (Ours) MAT MAPPO IPPO MASAC HASAC QMIX
RWARE 0.81(0.79,0.83) 0.69(0.67,0.71) 0.51(0.47,0.54) 0.15(0.11,0.2) / / /
MABrax 0.56(0.53,0.58) 0.45(0.42,0.47) 0.6(0.57,0.64) 0.5(0.49,0.52) 0.82(0.77,0.86) 0.8∗(0.76,0.83) /
SMAX 0.94(0.92,0.95) 0.92∗

(0.91,0.94) 0.86(0.84,0.87) 0.93∗
(0.91,0.94) / / / 0.86(0.84,0.88)

Connector 0.95(0.95,0.95) 0.88(0.88,0.89) 0.91(0.91,0.92) 0.93(0.92,0.93) / / /
LBF 1.0(1.0,1.0) 0.99(0.98,0.99) 1.0(1.0,1.0) 0.99∗(0.99,1.0) / / /
MPE 0.95(0.94,0.95) 0.69(0.68,0.71) 0.81(0.8,0.81) 0.79(0.78,0.8) 0.76(0.72,0.8) 0.79(0.76,0.82) /

Connector (Bonnet et al., 2023), The StarCraft Multi-Agent Challenge in JAX (SMAX) (Rutherford
et al., 2023), Multi-agent Brax (MABrax) (Peng et al., 2021) and the Multi-agent Particle Environment
(MPE) (Lowe et al., 2017). All environments have discrete action spaces with dense rewards, except
for MABrax and MPE, which have continuous action spaces and RWARE which has sparse rewards.
Furthermore, we compare to HASAC and MASAC only on continuous tasks given their superiority
in this setting and QMIX only on SMAX as it has been shown to perform suboptimally in other
discrete environments (most notably in spare reward settings such as RWARE) (Papoudakis et al.,
2020). Finally, we highlight that our evaluation suite comprised of 45 tasks represents nearly double
the amount of tasks used by prior benchmarking work (Papoudakis et al., 2020) and substantially
more than conventional research work recently published in MARL (Gorsane et al., 2022).

Hyperparameters All baseline algorithms as well as Sable were tuned on each task with a tun-
ing budget of 40 trials using the Tree-structured Parzen Estimator (TPE) Bayesian optimisation
algorithm from the Optuna library (Akiba et al., 2019). For a discussion on how to access all task
hyperparameters and for all tuning search spaces, we refer the reader to Appendix D.

4.1 PERFORMANCE

In Figure 1, we report the amount of times that an algorithm had a significant probability of im-
provement over all other algorithms on a given task. Furthermore, we present the per environment
aggregated sample efficiency curves, probability of improvement scores and episode returns in Figure
3 and Table 1. Our experimental evidence shows Sable achieving SOTA performance across a wide
range of tasks. Specifically, Sable exceeds baseline performance on 34 out of 45 tasks. The only
environment where this is not the case is on MABrax. For continuous robotic control tasks SAC is
a particularly strong baseline, typically outperforming on-policy methods such as PPO (Haarnoja
et al., 2018; Huang et al., 2024; Freeman et al., 2021a). Given that Sable uses the PPO objective for
training, this performance is unsurprising. However, Sable still manages to achieve SOTA perfor-
mance in continuous control tasks on MPE. We note that previous benchmarking and evaluation work
(Papoudakis et al., 2020; Gorsane et al., 2022) has recommended training off-policy algorithms for a
factor of 10 less environment interactions than on-policy algorithms due to more gradient updates for
the same number of environment interactions. In our case, we find that off-policy systems do roughly
15 times more gradient updates for the same amount of environment interactions. If we had done this
the performance of HASAC, MASAC and QMIX would have been less performant than reported
here. Additional tabular results, task and environment level aggregated plots are given in Appendix C.

4.2 MEMORY USAGE AND SCALABILITY

We assess Sable’s ability to efficiently utilise computational memory, focusing primarily on scaling
across the agent axis.

Challenges in testing scalability using standard environments Testing scalability and memory
efficiency in standard MARL environments poses challenges, as many environments such as SMAX,
MPE and Connector, expand the observation space as the number of agents grows. MABrax has
uniquely assigned roles per agent making it difficult to scale up and RWARE does not have a
straightforward way to ensure task difficulty as the number of agents increases. For these reasons,
the above environments are difficult to use when testing algorithmic scalability without significantly
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(d) LBF - 128 agents
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(f) Neom - 32 agents
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Figure 4: Memory usage and agent scalability. When scaling to many agents, Sable is able to achieve
superior converged performance while maintaining memory efficiency.

modifying the original environment code. Among these, LBF is unique because it is easier to adjust
by reducing agents’ field of view (FOV) while maintaining reasonable state size and offering faster
training. However, it still requires modifications to ensure a fixed observation size beside the FOV (see
Appendix B.3 for more details). Despite these adjustments, LBF could not fully demonstrate Sable’s
scaling capability, as it could not scale past 128 agents due to becoming prohibitively slow. Therefore,
to explore scaling up to a thousand agents, we introduce Neom, a fully cooperative environment
specifically designed to test algorithms on larger numbers of agents.

A new environment for testing agent scalability in cooperative MARL A task in Neom is
characterised by a periodic, discretised 1-dimensional pattern that is repeated for a given num-
ber of agents. Each agent observes whether it is in the correct position and the previous ac-
tions it has taken. Agents receive a shared reward which is calculated as the Manhattan distance
between the team’s current pattern and the underlying task pattern. We design three task pat-
terns: (1) simple-sine: {0.5, 0.7, 0.8, 0.7, 0.5, 0.3, 0.2, 0.3}, (2) half-1-half-0: {1, 0}, (3)
quick-flip: {0.5, 0,−0.5, 0}. For more details, see Appendix B.7.

Experimental setup We evaluate the performance of Sable, MAT, and IPPO on the LBF and
Neom environments. For LBF, experiments involve tasks with 32, 64, and 128 agents, while for
Neom we include tasks with 32, 512 and 1024 agents. Given the slower throughput of these tasks,
hyperparameter tuning was not feasible. Instead, we take the optimal hyperparameters found on
reasonably sized tasks and apply these across all larger tasks. For example, for LBF we use the
15x15-3p-5f task as it appears to be one of the hardest (See Appendix Figure 11) and for
Neom we use simple-sine-16-ag, half-1-half-0-16-ag and quick-flip-16-ag
as reference tasks. To measure the memory usage efficiency on both LBF and Neom environments on
the agents’ axis, we select 32 as the fixed chunk size, which corresponds to the smallest number of
agents used in our experiments.

Results We observe the following from the results in Figure 4. First, although IPPO scales well
from a memory perspective, it is unable to learn with many agents. It achieves a high reward initially
but its performance degrades as training continues. Second, we find that Sable can consistently
outperform MAT. Although the margin is small, this performance is achieved while maintaining
comparable computational memory usage to IPPO, whereas MAT scales poorly and requires more
than the maximum available GPU memory (80GB) on Neom tasks with 1024 agents. Notably, for
Neom with 1024 agents, Sable sustains a stable mean episode return of around 25, indicating that
approximately 40% to 50% of the agents successfully reached the target location. This result is
significant given the shared reward structure, which poses a difficult coordination challenge for such
a large population of agents.
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Figure 5: Ablation studies on RWARE and SMAX. (a) Comparing Sable with MAT with modifications
from Sable’s implementation details. (b) Showing the relationship between chunk size, performance
and memory usage on RWARE.

4.3 ABLATIONS

We aim to better understand the source of Sable’s performance gains compared to MAT. There are
two specific implementation details that Sable inherits from the retention mechanism that can easily
be transferred to attention, and therefore to MAT. The first is using root mean square normalization
(RMSNorm) (Zhang & Sennrich, 2019) instead of layer normalization (Lei Ba et al., 2016) and the
second is using SwiGLU layers (Shazeer, 2020; Ramachandran et al., 2017) instead of feed forward
layers. Other than implementation details, the difference between MAT and Sable is that Sable uses
retention instead of attention and it conditions on histories instead of on single timesteps. To determine
the reason for the performance difference between Sable and MAT, we adapt MAT to use the above
implementation changes, both independently and simultaneously and we compare MAT to a version
of Sable with no memory that only conditions on the current timestep. We test all three variants of
MAT and the Sable variant on two RWARE tasks (tiny-4ag and medium-4ag) and two SMAX
tasks (3s5z and smacv2 5 units) and compare them with the original implementation. We tune
all methods using the same protocol as the main results.

In Figure 5a, we see that the above implementation details do make a difference to MAT’s performance.
In RWARE, MAT’s variants slightly increase in both performance and sample efficiency. However,
Sable still achieves significantly higher performance while maintaining a similar sample efficiency.
The same cannot be said for Sable without memory which performs similarly to the default MAT
and significantly worse than MAT with the implementation improvements. In SMAX, we observe
a marked increase in sample efficiency for MAT equalling the sample efficiency of Sable and
outperforming Sable’s sample efficiency without memory, but no increase in overall performance.
This is likely due to the fact that both MAT and Sable already achieve close to the maximum
performance in these SMAX environments. In summary, we find that these implementation details
do matter and improve the performance and sample efficiency of MAT, although not to the level of
Sable’s performance. When we compared MAT, Sable, and Sable without memory, we discovered
that Sable’s performance improvement stems from its ability to use temporal memory, rather than
from the retention mechanism itself. This is evident because Sable without memory (which performs
similarly to MAT) differs from Sable only in how the input sequence is structured.

In Figure 5b, we see that even when dividing the rollout trajectories into chunks that are up to a factor
of 16 smaller than the full rollout length, Sable’s performance remains consistent, while its memory
usage decreases.

5 CONCLUSION

In this work, we introduced Sable, a novel cooperative MARL algorithm that employs retentive net-
works to achieve significant advancements in memory efficiency, agent scalability and performance.
Sable’s ability to condition on entire episodes provides it with an enhanced temporal awareness, lead-
ing to SOTA performance. This is evidenced by our extensive evaluation, where Sable significantly
outperforms other leading approaches in 75% of tasks tested. Moreover, Sable’s memory efficiency
complements its performance by addressing the significant challenge of scaling MARL algorithms as
it is able to maintain stable performance even when scaled to over 1000 agents. Looking ahead, we
aim to explore Sable’s integration into more complex, larger-scale, real-world environments.
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6 REPRODUCIBILITY STATEMENT

We have explained our hyperparameter tuning procedure and outlined all search spaces and default
hyperparameters for all algorithms in Appendix D. We make all our code and raw experiment data
available. Along with our code, we include all final hyperparameter values and scripts to relaunch all
training runs. Aside from what we make available, our code is written in JAX which supports manual
random state handling, this should make training runs more reproducible.
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Shengyi Huang, Quentin Gallouédec, Florian Felten, Antonin Raffin, Rousslan Fernand Julien
Dossa, Yanxiao Zhao, Ryan Sullivan, Viktor Makoviychuk, Denys Makoviichuk, Mohamad H.
Danesh, Cyril Roumégous, Jiayi Weng, Chufan Chen, Md Masudur Rahman, João G. M. Araújo,
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APPENDIX

A SEQUENCE MODELLING RELATED WORK

Linear recurrent models Recent work in RL has leveraged structured state space models (Lu et al.,
2024) for efficient long context memory. It has also been shown that various linear recurrent models
including Linear Transformers (Katharopoulos et al., 2020), Fast and Forgetful Memory (Morad
et al., 2024a), and Linear Recurrent Units (Orvieto et al., 2023) can be used for temporal memory in
RL (Morad et al., 2024b). Sable falls into this category of algorithms due to leveraging the RetNet
architecture, a linear recurrent model, instead of the Transformer.

Transformers and RetNets in reinforcement learning Other works have applied Transformers in
the context of MARL (Hu et al., 2021; Wen et al., 2022). The closest to our work is MAT (Wen et al.,
2022). In single-agent RL, transformers have been used to enable long range memory (Parisotto
et al., 2020; Esslinger et al., 2022), most notably the Gated Transformer-XL (Parisotto et al., 2020).
Sable differs from these works for two main reasons: (1) it is a distinctly multi-agent algorithm
and (2) it has no need for appending observation histories to input sequences since it can retain all
necessary information from previous timesteps with a hidden state. Moreover, and to the best of our
knowledge, Sable is the first architecture to leverage RetNets for learning policies in RL. The only
other application of RetNets has been to learn an efficient world model (Cohen et al., 2024).

B ENVIRONMENT DETAILS

B.1 ROBOT WAREHOUSE

Figure 6: Environment rendering for Robot Warehouse. Task name: tiny-2ag.

The Robot Warehouse (RWARE) environment simulates a warehouse where robots autonomously
navigate, fetching and delivering requested goods from specific shelves to workstations and then
returning them. Inspired by real-world autonomous delivery depots, the goal in RWARE is for a team
of robots to deliver as many randomly placed items as possible within a given time budget.

The version used in this paper is a JAX-based implementation of the original RWARE environment
(Papoudakis et al., 2021) from the Jumanji environment suite (Bonnet et al., 2023). For this reason,
there is a minor difference in how collisions are handled. The original implementation has some
logic to resolve collisions, whereas the Jumanji implementation simply ends an episode if two agents
collide.

Naming convention The tasks in the RWARE environment are named according to the following
convention:

<size>-<num agents>ag<diff>
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Each field in the naming convention has specific options:

• <size>: Represents the size of the Warehouse which defines the number of rows and
columns of groups of shelves within the warehouse (e.g. tiny, small, medium, large).

• <num agents>: Indicates the number of agents.

• <diff>: Optional field indicating the difficulty of the task, where ‘easy’ and ‘hard’ imply
2N and N/2 requests (shelves to deliver) respectively, with N being the number of agents.
The default is to have N requests.

In this environment, we introduced an extra grid size named “xlarge” which expands the default
“large” size. Specifically, it increases the number of rows in groups of shelves from three to four,
while maintaining the same number of columns.

Observation space In this environment observation are limited to partial visibility where agents
can only perceive their surroundings within a 3x3 square grid centred on their position. Within this
area, agents have access to detailed information including their position and orientation, as well as
the positions and orientations of other agents. Additionally, they can observe shelves and determine
whether these shelves contain a package for delivery.

Action space The action space is discrete and consists of five total actions that allow for navigation
within the grid and delivering the requested shelves. These actions include no operation (stop),
turning left, turning right, moving forward, and either loading or unloading a shelf.

Reward Agents receive a reward of 1 for each successful delivery of a requested shelf, coloured in
green in Figure 6, to a designated goal (in black) and 0 otherwise. Achieving this reward demands a
sequence of successful actions, making it notably sparse.

B.2 SMAX

Figure 7: Environment rendering for SMAX. Task name: 2s3z.

SMAX, introduced by Rutherford et al. (2023), is a re-implementation of the StarCraft Multi-agent
Challenge (SMAC) (Samvelyan et al., 2019) environment using JAX for improved computational
efficiency. This redesign eliminates the necessity of running the StarCraft II game engine, thus results
on this environment are not directly comparable to results on original SMAC. In this environment,
agents collaborate in teams composed of diverse units to win the real-time strategy game StarCraft.
For an in-depth understanding of the environment’s mechanics, we refer the reader to the original
paper (Samvelyan et al., 2019).

Observation space Each agent observes all allies and enemies within its field of view, including
itself. The observed attributes include position, health, unit type, weapon cooldown, and previous
action.
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Action space Discrete action space that includes 5 movement actions: four cardinal directions, a
stop action, and a shoot action for each visible enemy.

Reward In SMAX, unlike SMAC, the reward system is designed to equally incentivise tactical
combat and overall victory. Agents earn 50% of their total return from hitting enemies and the other
50% from winning the episode which ensures that immediate actions and ultimate success are equally
important.

B.3 LEVEL BASED FORAGING

3

3

1

2

Figure 8: Environment rendering for Level-Based Foraging. Task name: 2s-8x8-2p-2f.

In the Level-Based Foraging environment (LBF) agents are assigned different levels and navigate
a grid world where the goal is to collect food items by cooperating with other agents if required.
Agents can only consume food if the combined level of the agents adjacent to a given item of food
exceeds the level of the food item. Agents are awarded points when food is collected.

The version used in the paper is a JAX-based implementation of the original LBF environment
(Christianos et al., 2020) from the Jumanji environment suite (Bonnet et al., 2023). To the best
of our knowledge, there are no differences between Jumanji’s implementation and the original
implementation.

Naming convention The tasks in the LBF environment are named according to the following
convention:

<obs>-<x size>x<y size>-<n agents>p-<food>f<force c>

Each field in the naming convention has specific options:

• <obs>: Denotes the field of view (FOV) for all agents. If not specified, the agents can see
the full grid.

• <x size>: Size of the grid along the horizontal axis.
• <y size>: Size of the grid along the vertical axis.
• <n agents>: Number of agents.
• <food>: Number of food items.
• <force c>: Optional field indicating a forced cooperative task. In this mode, the levels

of all the food items are intentionally set equal to the sum of the levels of all the agents
involved. This implies that the successful acquisition of a food item requires a high degree
of cooperation between the agents since no agent is able to collect a food item by itself.

Observation space As shown in Figure 8, the 8x8 grid includes 2 agents and 2 foods. In this case,
the agent has a limited FOV labelled ”2s”, indicating a 5x5 grid centred on itself where it can only
observe the positions and levels of the items in its sight range.
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Action space The action space in the LBF is discrete, comprising six actions: no-operation (stop),
picking up a food item (apple), and movements in the four cardinal directions (left, right, up, down).

Reward The reward is equal to the sum of the levels of collected food divided by the level of the
agents that collected them.

Adapting the LBF environment for scalability experiments In the original Level-Based Foraging
(LBF) implementation, agents processed complete grid information, including items outside their
FOV, managed by masking non-visible items with the placeholder (-1, -1, 0) where each element of
this triplet stands for (x, y, level). To improve computational efficiency, we revised the implementation
to completely remove non-visible elements from the observation data, significantly reducing the
observation size and ensuring agents process only relevant information within their FOV.

For instance, with a standardised FOV of 2, as illustrated in Figure 8, an agent sees a 5x5 grid centred
around itself. Non-visible items are now excluded from the observation array which makes it easy
to convert the agent’s vector observation with level one from [1, 2, 3, -1, -1, 0, 2, 2,
1, -1, -1, 0] to [ 1, 2, 3, 2, 2, 1]. However, in tasks with numerous interacting
agents, where the dynamics of visible items consistently change, fixed array sizes are required. We
address this by defining the maximum number of visible items as (2× FOV + 1)2, filling any excess
with masked triplets to keep uniform array dimensions.

We designed three scenarios to test scalability on LBF using the standardised FOV of 2, ensuring a
maximum of 25 visible items within the 5x5 grid, including each agent’s information. To manage
agent density as the environment scales, we created the following configurations for our experiments:
2s-32x32-32p-16f, 2s-45x45-64p-32f, and 2s-64x64-128p-64f.

B.4 CONNECTOR

Figure 9: Environment rendering for Connector. Task name: con-10x10-10a.

The Connector environment consists of multiple agents spawned randomly into a grid world with each
agent representing a start and end position that needs to be connected. The goal of the environment is
to connect each start and end position in as few steps as possible. However, when an agent moves it
leaves behind a path, which is impassable by all agents. Thus, agents need to cooperate to allow the
team to connect to their targets without blocking other agents.

Naming convention In our work, we follow this naming convention for the Connector tasks:

con-<x size>x<y size>-<num agents>a

Each field in the naming convention means:

• <x size>: Size of the grid along the horizontal axis.
• <y size>: Size of the grid along the vertical axis.
• <num agents>: Indicates the number of agents.
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Observation space All agents view an n× n square centred around their current location, within
their field of view they can see trails left by other agents along with the target locations of all agents.
They also observe their current (x, y) position and their target’s (x, y) position.

Action space The action space is discrete, consisting of five movement actions within the grid
world: up, down, left, right, and no-operation (stop).

Reward Agents receive +1 on the step where they connect and −0.03 otherwise. No reward is
given after connecting.

B.5 MUTLI-AGENT PARTICLE ENVIRONMENTS

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0
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0.0
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2.0 Step: 0

Figure 10: Environment rendering for Mutli-Agent Particle. Task name: simple spread 3ag.

The Multi-Agent Particle Environments (MPE) comprises physics-based environments within a 2D
world, where particles (agents) move, interact with fixed landmarks, and communicate. We focus
exclusively on the ”simple-spread” tasks, the only non-communication, non-adversarial setting in the
suite where agents cooperate instead. In this setting, agents aim to cover landmarks to gain positive
rewards and avoid collisions, which result in penalties. We employ a JAX-based clone of the original
environment from the JaxMARL suite (Rutherford et al., 2023).

Contrary to the suggestions made by Gorsane et al. (2022), we only experiment on the
simple-spread for the previous reasons, thus, we go beyond only the recommended version of
simple-spread (simple-spread-3ag) and also test on 5 and 10 agents variants.

Naming convention In our case, the simple-spread tasks used in the MPE environment are
named according to the following convention:

simple spread <num agents>ag

<num agents>: Indicates the number of agents in the simple spread task where we set the number
of landmarks equal to the number of agents.

Observation space Agents observe their own position and velocity as well as other agents positions
and landmark positions.

Action space Continuous actions space with 4 actions. Each action represents the velocity in all
cardinal directions.

Reward Agents are rewarded based on how far the closest agent is to each landmark and receive a
penalty if they collide with other agents.
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B.6 MABRAX

MaBrax (Rutherford et al., 2023) is an implementation of the MaMuJoCo environment (Peng et al.,
2021) in JAX, from the JAXMARL repository. The difference is that it uses BRAX (Freeman
et al., 2021b) as the underlying physics engine instead of MuJoCo. Both MaMuJoCo and MaBrax
are continuous control robotic environment, where the robots are split up so that certain joints are
controlled by different agents. For example in ant 4x2 each agent controls a different leg of the ant.
The splitting of joints is the same in both MaBrax and MaMuJoCo.

The goal is to move the agent forward as far and as fast as possible. The reward is based on how far
the agent moved and how much energy it took for the agent to move forward.

Observation space Observations are separated into local and global observations. Globally, all
agents observe the position and velocity of the root body. Locally agents observe the position and
velocity of their joints as well as the position and velocity of their neighboring joints.

Action space A continuous space where each agent controls some number of joints n. Each of the n
actions are bounded in the range [−1, 1] and the value controls the torque applied to a corresponding
joint.

Reward Agents receive the reward from the single agent version of the environment. Positive
reward is given if the agent moves forward and negative reward is given when energy is used to move
the joints. Thus, agents are incentivised to move forward as efficiently as possible.

B.7 NEOM

Neom tasks require agents to match a periodic, discretised 1D pattern that is repeated across the given
number of agents. These tasks are specifically designed to assess the agents’ ability to synchronise
and reproduce specified patterns in a coordinated manner and in a limited time frame.

Naming convention The tasks in the Neom environment are named according to the following
convention:

<pattern-type>-<num agents>ag

Each field in the naming convention has specific options:

• <pattern-type>: Represents the selected pattern for the agents to create ( ”simple-sine”,
”half-1-half-0”, and ”quick-flip”).

• <num agents>: Indicates the number of agents.

Observation space The observation space consists of a binary indicator showing whether the agent
is in the correct position, concatenated with the agent’s previous actions.
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Action space The action space consists of unique elements in the pattern, with each element
defining an actions:

• simple-sine: {0.2, 0.3, 0.5, 0.7, 0.8}
• half-1-half-0: {1, 0}
• quick-flip: {0.5, 0, -0.5}

Reward The reward function is calculated using the mean Manhattan distance between the team’s
current pattern and the target pattern. The reward ranges from 1 for a perfect match to -1 for
the maximum difference, with normalization applied. Additionally, if the pattern is correct, the
agents receive a bonus that starts at a maximum value of 9.0 and gradually decreases as the episode
progresses, based on how much time has passed.

C FURTHER EXPERIMENTAL RESULTS

C.1 ADDITIONAL PER TASK AND PER ENVIRONMENT RESULTS

In Figure 11, we give all task-level aggregated results. In all cases, we report the mean with 95%
bootstrap confidence intervals over 10 independent runs. In Figure 12, we give the performance
profiles for all environment suites.

C.2 ADDITIONAL TABULAR RESULTS

When reporting tabular results, it can be challenging to represent information from an entire training
run as a single value for a given independent trial. For this reason we give all tabular results for
different aggregations. In all cases here, the aggregation method we refer to is the method that was
used to aggregate a given training run into a point estimate. For aggregation over these point estimates
we always compute the mean over independent trials along with the 95% bootstrap confidence
interval.

C.2.1 MEAN OVER THE FULL TIMESERIES
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Figure 11: Mean episode return with 95% bootstrap confidence intervals on all tasks.
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Figure 12: Per environment performance profiles.

Table 2: Mean episode return over training with 95% bootstrap confidence intervals for all tasks.
Bold values indicate the highest score per task and an asterisk indicates that a score overlaps with the
highest score within one confidence interval.

Task Sable (Ours) MAT MAPPO IPPO MASAC HASAC QMIX

R
w

ar
e

tiny-2ag 15.33(14.91,15.69) 11.32(9.93,12.47) 7.20(4.83,9.28) 4.01(1.92,6.01) / / /
tiny-2ag-hard 12.03(11.37,12.56) 8.30(6.14,10.11) 9.43(9.04,9.93) 4.28(1.74,7.05) / / /
tiny-4ag 29.95(29.10,30.85) 22.93(22.71,23.16) 16.15(13.47,18.29) 9.93(7.53,11.76) / / /
tiny-4ag-hard 20.65(18.83,21.87) 13.10(6.99,18.96)

∗ 14.15(13.60,14.72) 5.94(2.44,9.61) / / /
small-4ag 9.90(6.22,13.14)

∗ 11.70(11.44,11.98) 6.18(5.57,6.63) 2.57(0.94,4.29) / / /
small-4ag-hard 7.10(6.28,7.79) 5.77(4.28,6.88)∗ 4.68(4.48,4.90) 1.27(0.35,2.22) / / /
medium-4ag 7.71(6.45,8.60) 3.74(2.23,5.28) 4.04(2.71,5.13) 1.27(0.73,1.75) / / /
medium-4ag-hard 3.49(2.69,4.18) 2.11(1.22,2.97)∗ 1.03(0.31,1.84) 1.41(0.56,2.26) / / /
large-4ag 3.90(2.75,4.80) 3.48(3.10,3.80)∗ 1.26(0.66,1.84) 1.19(0.46,1.93) / / /
large-4ag-hard 1.84(1.12,2.49) 1.20(0.58,1.83)∗ 0.00(0.00,0.00) 0.01(0.00,0.01) / / /
xlarge-4ag 2.03(1.11,2.90)

∗ 2.85(2.51,3.13) 1.34(0.87,1.76) 0.00(0.00,0.01) / / /
xlarge-4ag-hard 0.40(0.01,0.99) 0.16(0.00,0.46)∗ 0.00(0.00,0.00) 0.00(0.00,0.00) / / /
medium-6ag 8.72(7.45,9.69) 8.65(7.77,9.34)∗ 6.39(6.02,6.74) 2.29(1.05,3.50) / / /
large-8ag 7.97(7.79,8.16) 10.13(9.75,10.45) 5.08(4.63,5.54) 2.97(1.72,4.16) / / /
large-8ag-hard 5.87(5.54,6.18) 4.75(4.20,5.24) 1.42(0.56,2.35) 1.59(0.81,2.35) / / /

M
aB

ra
x hopper 3x1 1421.60(1406.21,1439.54) 1394.73(1341.52,1442.51) 1463.84(1375.77,1552.98)

∗ 1358.66(1321.78,1398.55) 1553.56(1365.02,1712.54)∗ 1556.21(1509.13,1608.98) /
halfcheetah 6x1 2092.89(1938.95,2223.71) 1899.52(1635.11,2133.49) 2335.33(2225.48,2456.97) 2272.93(2123.10,2402.57) 2833.44(2663.34,3017.65)∗ 3229.46(2988.55,3484.62) /
walker2d 2x3 663.16(588.64,741.08) 763.42(672.33,861.29) 1330.90(1186.47,1467.49)∗ 623.44(569.29,671.57) 1448.05(1323.51,1584.77) 1200.39(1104.48,1289.15) /
ant 4x2 2004.15(1826.76,2192.74) 1564.84(1397.74,1672.30) 2138.03(2016.37,2258.42) 2998.59(2824.27,3163.46) 3553.26(3204.93,3899.81)∗ 3964.94(3641.01,4260.67) /
humanoid 9—8 2066.41(2010.90,2117.48) 390.82(385.95,395.77) 463.74(462.19,465.39) 453.42(447.78,459.02) 4029.01(3763.57,4206.90) 3095.01(2899.63,3294.38) /

Sm
ax

2s3z 1.96(1.96,1.96) 1.64(1.63,1.66) 1.93(1.92,1.93) 1.78(1.74,1.81) / / 1.80(1.78,1.81)

3s5z 1.91(1.91,1.91) 1.69(1.66,1.72) 1.84(1.84,1.85) 1.81(1.80,1.83) / / 1.68(1.67,1.69)

3s vs 5z 1.85(1.85,1.86) 1.64(1.61,1.67) 1.66(1.65,1.67) 1.51(1.48,1.55) / / 1.68(1.66,1.70)

6h vs 8z 1.92(1.92,1.93)
∗ 1.93(1.93,1.94) 1.74(1.73,1.76) 1.70(1.68,1.73) / / 1.53(1.31,1.69)

5m vs 6m 1.18(0.95,1.42) 1.17(0.99,1.36) 0.81(0.65,0.99) 1.58(1.50,1.65) / / 1.35(1.22,1.48)

10m vs 11m 1.61(1.44,1.76)
∗ 1.30(1.26,1.35) 1.16(1.11,1.20) 1.63(1.59,1.67) / / 1.39(1.33,1.43)

3s5z vs 3s6z 1.62(1.59,1.65) 1.56(1.49,1.61)∗ 1.38(1.35,1.42) 1.38(1.32,1.44) / / 1.42(1.38,1.46)

27m vs 30m 1.93(1.91,1.95) 1.61(1.56,1.66) 1.63(1.58,1.67) 1.71(1.62,1.79) / / 1.28(1.17,1.40)

smacv2 5 units 1.62(1.61,1.63) 1.61(1.60,1.62)∗ 1.54(1.53,1.55) 1.55(1.54,1.56) / / 1.50(1.49,1.51)

smacv2 10 units 1.33(1.29,1.36) 1.42(1.42,1.43) 1.48(1.48,1.49) 1.33(1.31,1.34) / / 1.30(1.28,1.32)

smacv2 20 units 1.11(1.05,1.16) 1.23(1.22,1.24) 1.22(1.21,1.24)∗ 0.87(0.85,0.88) / / 0.85(0.80,0.91)

C
on

ne
ct

or con-5x5x3a 0.85(0.85,0.85) 0.67(0.66,0.67) 0.81(0.81,0.82) 0.81(0.81,0.82) / / /
con-7x7x5a 0.79(0.79,0.79) 0.66(0.66,0.66) 0.73(0.73,0.73) 0.74(0.74,0.74) / / /
con-10x10x10a 0.71(0.71,0.71) 0.18(0.15,0.19) 0.40(0.39,0.41) 0.49(0.49,0.49) / / /
con-15x15x23a 0.64(0.64,0.64) -0.13(−0.16,−0.10) 0.16(0.14,0.18) 0.24(0.23,0.25) / / /

L
B

F

8x8-2p-2f-coop 1.00(1.00,1.00) 0.95(0.94,0.95) 0.97(0.97,0.97) 0.97(0.96,0.97) / / /
2s-8x8-2p-2f-coop 1.00(0.99,1.00) 0.93(0.93,0.94) 0.97(0.96,0.97) 0.96(0.96,0.97) / / /
10x10-3p-3f 0.99(0.99,0.99) 0.98(0.98,0.98) 0.95(0.94,0.95) 0.95(0.94,0.95) / / /
2s-10x10-3p-3f 0.98(0.98,0.98) 0.91(0.91,0.91) 0.94(0.93,0.94) 0.93(0.93,0.94) / / /
15x15-3p-5f 0.86(0.85,0.87) 0.73(0.72,0.74) 0.73(0.70,0.75) 0.66(0.65,0.68) / / /
15x15-4p-3f 0.97(0.97,0.97) 0.94(0.94,0.94) 0.93(0.92,0.93) 0.92(0.91,0.93) / / /
15x15-4p-5f 0.92(0.92,0.93) 0.84(0.84,0.85) 0.80(0.79,0.81) 0.82(0.81,0.83) / / /

M
PE

simple spread 3ag -6.81(−6.90,−6.71) -9.89(−10.16,−9.66) -9.43(−9.48,−9.39) -11.18(−11.52,−10.81) -5.86(−5.94,−5.77) -6.21(−6.48,−5.98) /
simple spread 5ag -18.50(−18.92,−18.04) -29.75(−30.35,−29.06) -24.25(−24.34,−24.17) -24.33(−24.44,−24.23) -25.59(−27.15,−23.58) -20.89(−22.54,−19.49) /
simple spread 10ag -40.06(−40.22,−39.90) -57.64(−58.21,−57.05) -42.82(−43.08,−42.60) -43.30(−43.46,−43.17) -54.09(−54.42,−53.75) -52.08(−52.68,−51.24) /
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C.2.2 MAX OVER FULL TIMESERIES

Table 3: Maximum episode return over training with 95% bootstrap confidence intervals for all tasks.
Bold values indicate the highest score per task and an asterisk indicates that a score overlaps with the
highest score within one confidence interval.

Task Sable (Ours) MAT MAPPO IPPO MASAC HASAC QMIX

R
w

ar
e

tiny-2ag 22.11(21.32,22.94) 17.94(17.12,18.85) 13.49(9.14,16.90) 8.47(4.15,12.72) / / /
tiny-2ag-hard 16.81(16.43,17.24) 14.14(12.37,15.32) 14.60(14.17,15.06) 6.81(3.08,10.68) / / /
tiny-4ag 46.82(45.40,48.08) 30.69(30.33,31.08) 30.98(28.71,33.13) 20.60(16.25,23.58) / / /
tiny-4ag-hard 33.89(32.67,34.94) 22.20(13.73,29.64) 22.17(21.36,23.12) 10.67(4.65,16.65) / / /
small-4ag 17.98(11.37,22.72)

∗ 19.49(19.20,19.77) 11.99(11.58,12.44) 4.29(1.57,7.27) / / /
small-4ag-hard 13.28(12.48,14.08) 10.72(8.28,12.19) 10.43(10.08,10.76) 2.59(0.80,4.57) / / /
medium-4ag 13.93(12.79,14.75) 8.12(5.52,10.55) 8.78(6.27,10.66) 2.81(1.80,3.75) / / /
medium-4ag-hard 7.37(6.43,8.21) 5.04(3.23,6.59)

∗ 3.17(1.25,5.18) 2.05(0.82,3.29) / / /
large-4ag 6.92(5.67,7.87) 5.38(5.17,5.59) 3.23(1.74,4.62) 1.96(0.78,3.14) / / /
large-4ag-hard 3.82(2.49,4.90) 2.50(1.24,3.72)

∗ 0.05(0.04,0.07) 0.10(0.05,0.15) / / /
xlarge-4ag 4.03(2.47,5.40)

∗ 5.18(4.81,5.50) 3.98(3.16,4.67) 0.04(0.02,0.06) / / /
xlarge-4ag-hard 0.82(0.07,1.94) 0.46(0.04,1.19)

∗ 0.04(0.02,0.05) 0.02(0.01,0.02) / / /
medium-6ag 14.76(13.86,15.45)

∗ 15.28(14.87,15.69) 13.64(13.43,13.87) 3.90(1.85,5.91) / / /
large-8ag 12.68(12.42,13.01) 16.40(15.97,16.83) 9.33(8.88,9.80) 5.42(3.47,6.91) / / /
large-8ag-hard 10.24(9.94,10.51) 9.84(9.43,10.25)∗ 3.88(1.75,6.11) 4.10(2.32,5.68) / / /

M
aB

ra
x hopper 3x1 2210.18(2153.99,2277.06) 1965.98(1885.27,2034.57) 2043.15(1835.76,2244.53) 1684.45(1603.88,1766.18) 2250.96(1922.39,2489.34)∗ 2423.96(2379.64,2465.84) /

halfcheetah 6x1 2768.53(2652.18,2878.64) 2718.06(2527.29,2917.67) 2916.22(2761.25,3090.70) 2790.42(2588.79,2972.60) 3313.08(3065.48,3575.75)∗ 3725.47(3381.70,4059.25) /
walker2d 2x3 1078.64(903.36,1255.63) 1301.76(1095.03,1495.67) 2658.69(2289.04,3013.49) 1093.07(1071.24,1123.98) 2642.20(2447.12,2830.37)∗ 2238.50(2007.02,2493.15)∗ /
ant 4x2 3697.15(3298.29,4093.04) 2822.87(2591.03,3027.88) 3846.86(3622.78,4060.76) 5200.05(4946.75,5447.66) 5454.61(4933.16,5977.32)∗ 5797.08(5484.28,6112.50) /
humanoid 9—8 3795.88(3656.46,3900.63) 434.35(427.70,442.07) 551.26(546.73,556.93) 556.80(545.92,567.29) 6257.01(5880.06,6514.80) 4950.08(4544.66,5402.46) /

Sm
ax

2s3z 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) / / 2.00(2.00,2.00)
3s5z 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) / / 2.00(2.00,2.00)
3s vs 5z 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) / / 2.00(2.00,2.00)
6h vs 8z 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) / / 1.87(1.63,2.00)∗
5m vs 6m 1.61(1.31,1.90) 1.72(1.45,1.97) 1.18(0.87,1.51) 2.00(1.99,2.00) / / 1.87(1.78,1.96)
10m vs 11m 1.88(1.75,2.00)

∗ 1.92(1.81,2.00)
∗ 1.49(1.43,1.55) 1.98(1.97,2.00)∗ / / 2.00(2.00,2.00)

3s5z vs 3s6z 2.00(2.00,2.00) 1.99(1.98,2.00)
∗ 1.99(1.98,2.00)

∗ 1.98(1.97,1.99) / / 1.91(1.87,1.94)
27m vs 30m 2.00(2.00,2.00) 1.96(1.92,1.99) 1.95(1.91,1.99) 1.98(1.95,2.00)∗ / / 1.82(1.76,1.89)
smacv2 5 units 1.96(1.94,1.97) 1.92(1.90,1.94)

∗ 1.93(1.91,1.95)
∗ 1.90(1.89,1.90) / / 1.88(1.86,1.90)

smacv2 10 units 1.79(1.78,1.81) 1.80(1.78,1.82) 1.90(1.88,1.92) 1.81(1.78,1.83) / / 1.79(1.77,1.82)
smacv2 20 units 1.70(1.64,1.77) 1.69(1.65,1.72)

∗ 1.69(1.65,1.73)
∗ 1.29(1.27,1.32) / / 1.28(1.15,1.40)

C
on

ne
ct

or con-5x5x3a 0.89(0.89,0.90) 0.88(0.87,0.88)
∗ 0.89(0.88,0.89) 0.89(0.88,0.89) / / /

con-7x7x5a 0.85(0.85,0.85) 0.82(0.81,0.83) 0.83(0.82,0.83) 0.83(0.83,0.84) / / /
con-10x10x10a 0.79(0.78,0.80) 0.34(0.32,0.37) 0.58(0.57,0.59) 0.64(0.63,0.65) / / /
con-15x15x23a 0.74(0.74,0.75) 0.02(0.00,0.03) 0.34(0.32,0.35) 0.43(0.42,0.44) / / /

L
B

F

8x8-2p-2f-coop 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-8x8-2p-2f-coop 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
10x10-3p-3f 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-10x10-3p-3f 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
15x15-3p-5f 1.00(1.00,1.00) 0.98(0.97,0.99) 0.99(0.98,1.00)

∗ 0.96(0.94,0.97) / / /
15x15-4p-3f 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
15x15-4p-5f 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /

M
PE

simple spread 3ag -4.32(−4.46,−4.16) -5.85(−5.98,−5.73) -5.96(−6.07,−5.84) -7.35(−7.71,−6.92) -4.61(−4.68,−4.54) -4.56(−4.68,−4.46)
∗ /

simple spread 5ag -11.97(−12.50,−11.43) -23.97(−25.04,−22.70) -20.98(−21.22,−20.70) -20.54(−20.71,−20.37) -18.74(−21.05,−16.15) -16.53(−18.18,−15.19) /
simple spread 10ag -35.32(−35.63,−35.02) -48.12(−49.24,−47.17) -38.94(−39.28,−38.55) -39.55(−39.82,−39.28) -49.39(−49.80,−48.93) -47.76(−48.61,−46.40) /
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C.2.3 FINAL VALUE OF THE TIMESERIES

Table 4: Final episode return over training with 95% bootstrap confidence intervals for all tasks. Bold
values indicate the highest score per task and an asterisk indicates that a score overlaps with the
highest score within one confidence interval.

Task Sable (Ours) MAT MAPPO IPPO MASAC HASAC QMIX

R
w

ar
e

tiny-2ag 20.92(19.85,22.02) 17.26(16.10,18.48) 12.01(8.12,15.07) 7.65(3.76,11.51) / / /
tiny-2ag-hard 16.14(15.80,16.46) 13.52(11.68,14.66) 13.77(13.32,14.18) 6.07(2.66,9.66) / / /
tiny-4ag 43.65(42.24,45.10) 28.31(27.52,29.07) 26.60(24.54,28.54) 17.70(13.62,21.07) / / /
tiny-4ag-hard 30.63(28.88,32.44) 20.63(12.79,27.37) 19.11(18.34,19.88) 9.32(3.98,14.58) / / /
small-4ag 17.08(10.82,21.56)

∗ 18.60(17.99,19.12) 10.72(9.87,11.61) 3.82(1.35,6.42) / / /
small-4ag-hard 12.47(11.73,13.20) 9.35(7.17,10.71) 9.13(8.85,9.39) 2.28(0.71,4.03) / / /
medium-4ag 13.05(12.08,13.79) 7.38(5.09,9.45) 7.40(5.32,9.00) 2.59(1.59,3.51) / / /
medium-4ag-hard 6.80(5.93,7.61) 4.69(3.00,6.16)

∗ 2.88(1.13,4.67) 1.86(0.73,2.98) / / /
large-4ag 6.30(5.07,7.25) 4.49(4.16,4.81) 3.07(1.61,4.43) 1.82(0.71,2.97) / / /
large-4ag-hard 3.48(2.24,4.53) 2.37(1.14,3.54)

∗ 0.00(0.00,0.00) 0.04(0.01,0.08) / / /
xlarge-4ag 3.77(2.32,5.03)∗ 4.71(4.44,4.96) 3.67(2.82,4.37) 0.01(0.00,0.02) / / /
xlarge-4ag-hard 0.74(0.02,1.81) 0.37(0.01,1.02)

∗ 0.00(0.00,0.01) 0.00(0.00,0.00) / / /
medium-6ag 12.43(11.33,13.28)

∗ 13.12(12.52,13.68) 12.34(11.73,12.99)
∗ 3.62(1.71,5.49) / / /

large-8ag 10.62(9.77,11.47) 15.08(14.58,15.65) 8.42(7.80,9.05) 4.97(3.17,6.35) / / /
large-8ag-hard 9.52(9.27,9.78) 9.21(8.74,9.66)

∗ 3.58(1.60,5.62) 3.43(1.93,4.79) / / /

M
aB

ra
x hopper 3x1 2090.31(2032.93,2146.79) 1891.11(1806.49,1971.11) 1869.63(1648.22,2081.73)∗ 1562.81(1495.04,1631.14) 1460.16(970.98,1939.99) 1493.91(1132.95,1824.75) /

halfcheetah 6x1 2388.03(1885.96,2751.80) 2552.63(2139.07,2884.05) 2914.90(2762.87,3084.95) 2779.89(2580.41,2957.09) 3272.96(3019.66,3540.14)
∗ 3633.09(3277.97,3977.98) /

walker2d 2x3 1026.17(866.81,1193.51) 1128.18(953.49,1289.64) 2506.84(2141.45,2856.99) 407.46(368.42,451.87) 1564.60(1261.78,1895.57) 1285.74(938.79,1605.32) /
ant 4x2 3006.37(2411.98,3579.62) 2299.52(1882.49,2637.99) 3346.00(2995.72,3682.63) 4397.34(3823.41,4901.51)

∗ 4821.93(4277.66,5350.59) 4627.60(4270.06,4979.85)
∗ /

humanoid 9—8 3368.27(3139.82,3557.73) 385.01(371.68,399.06) 520.27(507.95,535.05) 521.47(500.32,540.73) 5046.19(4316.12,5668.46) 3928.96(3210.23,4559.54)
∗ /

Sm
ax

2s3z 2.00(2.00,2.00) 1.99(1.98,2.00)
∗ 1.99(1.98,2.00)

∗ 1.99(1.98,2.00)
∗ / / 2.00(1.99,2.00)

3s5z 1.99(1.97,2.00)∗ 2.00(1.99,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) / / 1.99(1.98,2.00)∗
3s vs 5z 1.98(1.97,1.99)∗ 1.95(1.93,1.97)

∗ 1.99(1.97,2.00) 1.99(1.98,2.00) / / 1.94(1.92,1.97)∗
6h vs 8z 2.00(2.00,2.00) 1.99(1.98,2.00)

∗ 2.00(1.99,2.00) 1.99(1.98,2.00)
∗ / / 1.59(1.28,1.85)

5m vs 6m 1.25(0.90,1.62) 1.61(1.29,1.90)
∗ 1.07(0.78,1.41) 1.89(1.86,1.93) / / 1.74(1.62,1.86)∗

10m vs 11m 1.84(1.68,1.98)∗ 1.87(1.74,1.96)
∗ 1.29(1.21,1.37) 1.73(1.64,1.82) / / 1.93(1.90,1.96)

3s5z vs 3s6z 1.94(1.91,1.97) 1.92(1.88,1.95)
∗ 1.92(1.86,1.97)

∗ 1.91(1.86,1.95)
∗ / / 1.68(1.60,1.75)

27m vs 30m 2.00(2.00,2.00) 1.91(1.87,1.95) 1.86(1.81,1.91) 1.91(1.83,1.97) / / 1.42(1.22,1.63)
smacv2 5 units 1.80(1.78,1.83) 1.79(1.75,1.83)

∗ 1.70(1.66,1.74) 1.73(1.69,1.77) / / 1.70(1.66,1.74)
smacv2 10 units 1.59(1.55,1.65) 1.64(1.56,1.70) 1.77(1.74,1.80) 1.61(1.54,1.67) / / 1.58(1.51,1.65)
smacv2 20 units 1.48(1.41,1.56)∗ 1.49(1.43,1.56)

∗ 1.53(1.46,1.59) 1.11(1.05,1.18) / / 1.01(0.87,1.15)

C
on

ne
ct

or con-5x5x3a 0.86(0.84,0.87) 0.81(0.78,0.84)
∗ 0.83(0.82,0.85)

∗ 0.84(0.83,0.85)
∗ / / /

con-7x7x5a 0.80(0.79,0.82) 0.75(0.73,0.77) 0.76(0.75,0.78) 0.77(0.74,0.79)
∗ / / /

con-10x10x10a 0.73(0.72,0.75) 0.24(0.19,0.29) 0.47(0.44,0.50) 0.56(0.55,0.57) / / /
con-15x15x23a 0.70(0.68,0.72) -0.14(−0.21,−0.08) 0.21(0.16,0.26) 0.36(0.32,0.39) / / /

L
B

F

8x8-2p-2f-coop 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-8x8-2p-2f-coop 1.00(1.00,1.00) 0.99(0.99,1.00)

∗ 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
10x10-3p-3f 1.00(1.00,1.00) 1.00(0.99,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-10x10-3p-3f 1.00(0.99,1.00) 0.97(0.96,0.98) 1.00(1.00,1.00) 0.99(0.99,1.00)

∗ / / /
15x15-3p-5f 0.97(0.96,0.99) 0.93(0.91,0.95) 0.96(0.95,0.98)

∗ 0.92(0.89,0.94) / / /
15x15-4p-3f 1.00(1.00,1.00) 1.00(0.99,1.00) 0.99(0.98,1.00)

∗ 0.99(0.98,1.00)
∗ / / /

15x15-4p-5f 0.99(0.99,1.00) 0.97(0.95,0.99)
∗ 0.97(0.95,0.99)

∗ 0.97(0.95,0.98) / / /

M
PE

simple spread 3ag -5.05(−5.32,−4.76) -6.78(−7.06,−6.48) -6.85(−7.22,−6.51) -8.49(−9.19,−7.77) -5.13(−5.26,−4.96)
∗ -6.06(−7.26,−5.15)

∗ /
simple spread 5ag -12.61(−13.11,−12.15) -25.37(−26.60,−23.99) -22.56(−23.05,−22.04) -21.79(−22.27,−21.30) -19.99(−22.78,−17.03) -17.94(−19.39,−16.69) /
simple spread 10ag -36.75(−37.17,−36.32) -49.44(−50.46,−48.36) -41.06(−42.03,−39.98) -41.40(−42.22,−40.53) -52.86(−54.17,−51.69) -50.17(−51.32,−48.47) /
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C.2.4 ABSOLUTE METRIC

Table 5: Absolute episode return over training with 95% bootstrap confidence intervals for all tasks.
Bold values indicate the highest score per task and an asterisk indicates that a score overlaps with the
highest score within one confidence interval.

Task Sable (Ours) MAT MAPPO IPPO MASAC HASAC QMIX

R
w

ar
e

tiny-2ag 21.17(20.42,21.95) 17.06(16.10,18.09) 12.28(8.20,15.48) 7.61(3.68,11.46) / / /
tiny-2ag-hard 15.93(15.50,16.41) 13.44(11.74,14.58) 13.60(13.19,14.08) 6.15(2.76,9.74) / / /
tiny-4ag 43.56(41.80,45.10) 28.19(27.57,28.82) 26.29(24.38,27.92) 16.98(13.42,19.44) / / /
tiny-4ag-hard 30.97(29.91,31.96) 20.54(12.70,27.44) 19.01(18.23,19.85) 9.06(3.98,14.05) / / /
small-4ag 16.47(10.45,20.80)

∗ 18.27(17.92,18.57) 10.52(10.10,11.03) 3.69(1.32,6.27) / / /
small-4ag-hard 12.02(11.28,12.78) 9.68(7.46,10.98) 9.44(9.23,9.66) 2.27(0.69,4.03) / / /
medium-4ag 12.74(11.72,13.41) 7.62(5.17,9.91) 7.82(5.60,9.49) 2.58(1.68,3.41) / / /
medium-4ag-hard 6.79(5.89,7.54) 4.64(2.96,6.09)

∗ 2.80(1.13,4.55) 1.89(0.75,3.05) / / /
large-4ag 6.22(5.03,7.14) 4.61(4.46,4.78) 3.02(1.58,4.39) 1.84(0.73,2.96) / / /
large-4ag-hard 3.46(2.22,4.46) 2.28(1.09,3.40)

∗ 0.00(0.00,0.01) 0.05(0.01,0.09) / / /
xlarge-4ag 3.76(2.27,5.09)

∗ 4.71(4.42,4.96) 3.73(2.94,4.40) 0.01(0.00,0.02) / / /
xlarge-4ag-hard 0.70(0.01,1.74) 0.39(0.01,1.07)

∗ 0.00(0.00,0.00) 0.00(0.00,0.00) / / /
medium-6ag 12.97(12.26,13.52)

∗ 13.32(12.93,13.70) 12.13(11.82,12.48) 3.47(1.65,5.24) / / /
large-8ag 11.01(10.70,11.33) 14.72(14.27,15.24) 8.35(7.95,8.77) 4.87(3.10,6.20) / / /
large-8ag-hard 9.22(8.93,9.52) 9.07(8.61,9.49)

∗ 3.38(1.51,5.35) 3.63(2.04,5.02) / / /

M
aB

ra
x hopper 3x1 2053.29(2012.38,2099.07) 1901.02(1822.85,1963.89) 1933.73(1752.82,2108.94) 1608.52(1545.00,1673.47) 2253.33(1924.08,2492.43)

∗ 2459.92(2400.82,2520.81) /
halfcheetah 6x1 2717.51(2592.24,2830.35) 2709.90(2515.66,2911.42) 2912.64(2758.24,3086.38) 2784.17(2585.20,2963.31) 3311.72(3068.37,3567.81)

∗ 3739.89(3398.86,4071.03) /
walker2d 2x3 1051.15(889.00,1216.13) 1177.26(998.46,1353.89) 2483.05(2117.17,2838.47)

∗ 1086.30(1064.04,1117.18) 2636.95(2421.05,2867.14) 2310.41(2075.84,2555.89)∗ /
ant 4x2 3185.75(2794.94,3599.22) 2428.97(2197.26,2615.22) 3307.23(3105.04,3504.37) 4366.81(4080.06,4636.39) 4751.03(4281.89,5223.50)

∗ 5069.32(4679.84,5442.11) /
humanoid 9—8 3449.78(3279.82,3618.87) 397.25(392.76,401.83) 515.45(509.01,520.98) 512.65(500.90,524.68) 6302.42(5818.37,6646.02) 4983.49(4625.08,5392.85) /

Sm
ax

2s3z 2.00(2.00,2.00) 1.99(1.99,2.00)
∗ 2.00(1.99,2.00) 2.00(2.00,2.00) / / 2.00(1.99,2.00)

3s5z 2.00(1.99,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) 2.00(2.00,2.00) / / 2.00(2.00,2.00)
3s vs 5z 1.98(1.98,1.99)

∗ 1.96(1.95,1.97) 1.98(1.98,1.99)
∗ 1.99(1.98,1.99) / / 1.95(1.93,1.97)

6h vs 8z 2.00(2.00,2.00) 1.99(1.98,1.99)
∗ 2.00(1.99,2.00) 1.99(1.99,2.00)∗ / / 1.85(1.64,1.96)

5m vs 6m 1.47(1.13,1.80) 1.60(1.29,1.88) 1.05(0.75,1.39) 1.91(1.90,1.92) / / 1.75(1.62,1.87)
10m vs 11m 1.80(1.62,1.98)

∗ 1.86(1.70,1.97)
∗ 1.28(1.22,1.32) 1.89(1.87,1.91) / / 1.96(1.93,1.98)

3s5z vs 3s6z 1.94(1.93,1.95) 1.93(1.91,1.95)
∗ 1.90(1.86,1.93)

∗ 1.89(1.87,1.92) / / 1.79(1.75,1.82)
27m vs 30m 2.00(1.99,2.00) 1.87(1.80,1.92) 1.81(1.74,1.87) 1.91(1.84,1.98) / / 1.70(1.63,1.78)
smacv2 5 units 1.72(1.70,1.74) 1.77(1.75,1.78) 1.70(1.68,1.71) 1.69(1.68,1.71) / / 1.68(1.65,1.70)
smacv2 10 units 1.52(1.48,1.56) 1.62(1.59,1.65) 1.70(1.68,1.71) 1.54(1.53,1.56) / / 1.60(1.56,1.63)
smacv2 20 units 1.47(1.40,1.52)

∗ 1.49(1.46,1.53) 1.42(1.38,1.45) 1.07(1.03,1.10) / / 1.11(0.99,1.23)

C
on

ne
ct

or con-5x5x3a 0.85(0.85,0.86) 0.81(0.80,0.82) 0.83(0.82,0.84) 0.83(0.83,0.84) / / /
con-7x7x5a 0.79(0.79,0.80) 0.75(0.74,0.76) 0.75(0.74,0.76) 0.76(0.75,0.77) / / /
con-10x10x10a 0.74(0.74,0.74) 0.65(0.63,0.67) 0.70(0.70,0.70) 0.71(0.71,0.72) / / /
con-15x15x23a 0.70(0.70,0.71) 0.25(0.18,0.31) 0.63(0.62,0.64) 0.67(0.67,0.67) / / /

L
B

F

8x8-2p-2f-coop 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-8x8-2p-2f-coop 1.00(1.00,1.00) 1.00(0.99,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
10x10-3p-3f 1.00(1.00,1.00) 0.99(0.99,1.00)

∗ 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-10x10-3p-3f 0.99(0.99,1.00)

∗ 0.97(0.96,0.97) 1.00(1.00,1.00) 0.99(0.99,0.99) / / /
15x15-3p-5f 0.96(0.96,0.97)

∗ 0.91(0.90,0.92) 0.97(0.95,0.97) 0.90(0.88,0.92) / / /
15x15-4p-3f 1.00(1.00,1.00) 0.99(0.99,1.00)

∗ 1.00(0.99,1.00) 1.00(0.99,1.00) / / /
15x15-4p-5f 0.99(0.99,0.99) 0.97(0.96,0.97) 0.98(0.97,0.98) 0.97(0.97,0.97) / / /

M
PE

simple spread 3ag -4.92(−5.11,−4.74) -6.59(−6.74,−6.46) -6.72(−6.86,−6.59) -8.35(−8.84,−7.81) -5.27(−5.34,−5.20) -5.29(−5.44,−5.14) /
simple spread 5ag -12.75(−13.32,−12.20) -25.30(−26.32,−24.19) -22.84(−22.98,−22.70) -21.97(−22.27,−21.68) -19.89(−22.41,−17.11) -17.85(−19.71,−16.43) /
simple spread 10ag -36.93(−37.13,−36.73) -50.07(−51.20,−49.10) -41.83(−42.15,−41.52) -42.08(−42.37,−41.82) -51.01(−51.52,−50.54) -49.71(−50.72,−48.23) /
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C.2.5 INTER-QUARTILE MEAN OVER TIMESERIES

Table 6: Inter-quartile mean episode return over training with 95% bootstrap confidence intervals for
all tasks. Bold values indicate the highest score per task and an asterisk indicates that a score overlaps
with the highest score within one confidence interval.

Task Sable (Ours) MAT MAPPO IPPO MASAC HASAC QMIX

R
w

ar
e

tiny-2ag 17.68(17.17,18.07) 12.67(10.68,14.29) 7.80(5.01,10.43) 4.19(2.01,6.30) / / /
tiny-2ag-hard 13.67(12.92,14.25) 9.40(6.53,11.75) 11.40(10.89,12.06) 4.99(1.97,8.29) / / /
tiny-4ag 32.81(31.85,33.78) 25.69(25.51,25.87) 17.36(13.72,20.10) 10.47(7.72,12.55) / / /
tiny-4ag-hard 23.12(20.86,24.59) 14.17(7.18,21.05)

∗ 15.71(15.08,16.35) 6.53(2.40,10.77) / / /
small-4ag 10.75(6.44,14.54)

∗ 13.39(13.02,13.78) 6.75(5.82,7.40) 2.83(1.07,4.71) / / /
small-4ag-hard 7.64(6.67,8.44) 6.40(4.64,7.80)∗ 4.81(4.50,5.13) 1.39(0.35,2.43) / / /
medium-4ag 8.34(6.75,9.50) 3.82(2.11,5.59) 4.27(2.78,5.57) 1.28(0.70,1.83) / / /
medium-4ag-hard 3.69(2.69,4.51) 2.05(1.06,3.07)∗ 0.89(0.21,1.69) 1.68(0.66,2.71)

∗ / / /
large-4ag 4.28(2.82,5.39) 3.91(3.49,4.25)∗ 1.16(0.57,1.77) 1.42(0.55,2.32) / / /
large-4ag-hard 1.96(1.10,2.79) 1.27(0.55,1.96)∗ 0.00(0.00,0.00) 0.00(0.00,0.00) / / /
xlarge-4ag 2.21(1.14,3.22)∗ 3.24(2.77,3.63) 1.06(0.58,1.57) 0.00(0.00,0.00) / / /
xlarge-4ag-hard 0.44(0.00,1.08) 0.14(0.00,0.41)∗ 0.00(0.00,0.00)

∗ 0.00(0.00,0.00)
∗ / / /

medium-6ag 9.58(7.95,10.82) 9.44(8.27,10.35)
∗ 6.72(6.21,7.19) 2.47(1.10,3.86) / / /

large-8ag 9.06(8.87,9.25) 11.26(10.89,11.58) 5.84(5.24,6.43) 3.18(1.63,4.73) / / /
large-8ag-hard 6.76(6.36,7.12) 5.11(4.19,5.91) 1.27(0.47,2.21) 1.52(0.65,2.40) / / /

M
aB

ra
x hopper 3x1 1469.95(1455.05,1487.71)

∗ 1433.88(1363.94,1495.89)∗ 1536.67(1441.48,1636.33)∗ 1437.85(1391.41,1486.83)∗ 1621.99(1419.72,1802.02) 1613.30(1550.07,1682.11)
∗ /

halfcheetah 6x1 2216.42(2059.24,2355.54) 2034.59(1753.67,2284.10) 2485.63(2357.15,2622.30) 2493.34(2311.06,2654.75) 2930.42(2752.13,3123.16)
∗ 3376.90(3107.51,3660.88) /

walker2d 2x3 668.68(593.98,748.42) 766.61(672.31,875.02) 1294.99(1165.42,1420.19)∗ 571.58(509.62,629.28) 1470.89(1345.06,1611.62) 1229.26(1128.54,1322.44) /
ant 4x2 2087.42(1907.36,2285.86) 1585.95(1401.20,1705.86) 2196.26(2048.08,2340.83) 3210.00(3012.26,3390.20) 3828.43(3404.10,4259.06)

∗ 4150.12(3787.47,4476.47) /
humanoid 9—8 2200.64(2142.08,2260.57) 390.75(385.77,395.82) 471.11(469.67,472.49) 458.76(452.74,465.10) 4181.90(3909.18,4369.39) 3255.90(3045.68,3467.54) /

Sm
ax

2s3z 2.00(2.00,2.00) 1.90(1.87,1.91) 2.00(2.00,2.00) 1.99(1.98,1.99) / / 1.99(1.98,1.99)
3s5z 2.00(2.00,2.00) 1.93(1.90,1.95) 1.99(1.99,2.00)

∗ 2.00(2.00,2.00) / / 1.98(1.98,1.99)
3s vs 5z 1.98(1.97,1.98) 1.87(1.84,1.90) 1.92(1.91,1.93) 1.75(1.70,1.80) / / 1.90(1.89,1.91)
6h vs 8z 2.00(2.00,2.00) 1.99(1.99,1.99) 1.99(1.98,1.99) 1.94(1.92,1.96) / / 1.62(1.38,1.80)
5m vs 6m 1.26(0.97,1.56) 1.19(0.95,1.45) 0.87(0.68,1.09) 1.75(1.64,1.83) / / 1.59(1.40,1.77)∗
10m vs 11m 1.73(1.53,1.92) 1.31(1.26,1.35) 1.19(1.13,1.23) 1.72(1.66,1.77)

∗ / / 1.59(1.49,1.67)∗
3s5z vs 3s6z 1.81(1.77,1.84) 1.76(1.66,1.83)∗ 1.52(1.47,1.57) 1.52(1.44,1.61) / / 1.62(1.57,1.66)
27m vs 30m 1.99(1.97,2.00) 1.75(1.69,1.82) 1.73(1.67,1.78) 1.83(1.72,1.92) / / 1.42(1.26,1.58)
smacv2 5 units 1.70(1.69,1.71) 1.67(1.66,1.68) 1.63(1.63,1.64) 1.63(1.63,1.64) / / 1.61(1.60,1.61)
smacv2 10 units 1.40(1.35,1.44) 1.49(1.48,1.50) 1.59(1.58,1.60) 1.38(1.36,1.39) / / 1.41(1.38,1.43)
smacv2 20 units 1.11(1.05,1.19) 1.32(1.30,1.33) 1.29(1.28,1.30)

∗ 0.89(0.87,0.91) / / 0.87(0.82,0.92)

C
on

ne
ct

or con-5x5x3a 0.85(0.85,0.85) 0.75(0.74,0.76) 0.83(0.83,0.83) 0.83(0.83,0.83) / / /
con-7x7x5a 0.79(0.79,0.80) 0.72(0.71,0.72) 0.75(0.75,0.75) 0.76(0.76,0.76) / / /
con-10x10x10a 0.73(0.73,0.73) 0.19(0.17,0.21) 0.43(0.42,0.44) 0.52(0.52,0.53) / / /
con-15x15x23a 0.69(0.68,0.69) -0.11(−0.14,−0.08) 0.18(0.17,0.20) 0.26(0.24,0.27) / / /

L
B

F

8x8-2p-2f-coop 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-8x8-2p-2f-coop 1.00(1.00,1.00) 0.99(0.99,0.99) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
10x10-3p-3f 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) / / /
2s-10x10-3p-3f 0.99(0.99,1.00) 0.95(0.95,0.95) 0.98(0.98,0.99)

∗ 0.98(0.97,0.98) / / /
15x15-3p-5f 0.92(0.91,0.93) 0.77(0.76,0.79) 0.80(0.77,0.83) 0.73(0.71,0.75) / / /
15x15-4p-3f 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(1.00,1.00) 1.00(0.99,1.00) / / /
15x15-4p-5f 0.98(0.97,0.98) 0.91(0.91,0.92) 0.88(0.87,0.89) 0.91(0.90,0.92) / / /

M
PE

simple spread 3ag -5.60(−5.69,−5.50) -8.22(−8.57,−7.95) -8.16(−8.22,−8.10) -10.02(−10.43,−9.57) -5.36(−5.42,−5.30) -5.71(−5.96,−5.49) /
simple spread 5ag -17.15(−17.65,−16.62) -29.51(−30.20,−28.72) -23.65(−23.73,−23.57) -23.47(−23.59,−23.36) -24.98(−26.88,−22.52) -18.96(−20.85,−17.33)

∗ /
simple spread 10ag -38.81(−38.94,−38.68) -57.15(−57.80,−56.47) -42.25(−42.52,−42.02) -42.52(−42.69,−42.37) -53.31(−53.61,−53.01) -51.13(−51.74,−50.23) /

D HYPERPARAMETERS

We make all hyperparameters as well as instructions for rerunning all benchmarks available along with
the code provided at the following link: https://sites.google.com/view/sable-marl. For all on-policy
algorithms on all tasks, we always use 128 effective vectorised environments. For HASAC and
MASAC we use 64 vectorised environments while for QMIX we use 32 vectorised environments.
We leverage the design architecture of Mava which can distribute the end-to-end RL training loop
over multiple devices using the pmap JAX transformation and also vectorise it using the vmap JAX
transformation. For IPPO, MAPPO and Sable we train systems with and without memory. For IPPO
and MAPPO this means that networks include a Gated Recurrent Unit (GRU) (Cho, 2014) layer for
memory and for Sable this means training over full episode trajectories at a time or only one timestep
at a time. For MASAC and HASAC (Liu et al., 2023a) we only train policies using MLPs and for
QMIX (Rashid et al., 2020a) we only train a system with memory due to the original implementations
of these algorithms doing so.

In cases where systems are trained with and without memory, we report results for the version of the
system that performs the best on a given task. In all hyperparameter tables a parameter marked with
an asterisk “*” implies that it is only relevant for the memory version of a given algorithm.

D.1 HYPERPARAMETER OPTIMISATION

We use the same default parameters and parameter search spaces for a given algorithm on all tasks.
All algorithms are tuned for 40 trials on each task using the Tree-structured Parzen Estimator (TPE)
Bayesian optimisation algorithm from the Optuna library (Akiba et al., 2019).

D.1.1 DEFAULT PARAMETERS

For all algorithms we use the default parameters:
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Table 7: Default hyperparameters for Sable.

Parameter Value
Activation function GeLU
Normalise Aavantage True
Value function coefficient 0.5
Discount γ 0.99
GAE λ 0.9
Rollout length 128
Add one-hot agent ID True

Table 8: Default hyperparameters for MAT.

Parameter Value
Activation function GeLU
Normalise advantage True
Value function coefficient 0.5
Discount γ 0.99
GAE λ 0.9
Rollout length 128
Add one-hot agent ID True

Table 9: Default hyperparameters for MAPPO and IPPO.

Parameter Value
Critic network layer sizes [128, 128]
Policy network layer sizes [128, 128]
Number of recurrent layers∗ 1
Size of recurrent layer∗ 128
Activation Function ReLU
Normalise advantage True
Value function coefficient 0.5
Discount γ 0.99
GAE λ 0.9
Rollout length 128
Add one-hot agent ID True

Table 10: Default hyperparameters for MASAC and HASAC.

Parameter Value
Q-network layer sizes [128, 128]
Policy network layer sizes [128, 128]
Activation function ReLU
Replay buffer size 100000
Rollout length 8
Maximum gradient norm 10
Add One-hot Agent ID True
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Table 11: Default hyperparameters for QMIX.

Parameter Value
Q-network layer sizes [128, 128]
Number of recurrent layers∗ 1
Size of recurrent layer∗ 256
Activation function ReLU
Maximum gradient norm 10
Add one-hot agent ID True
Sample sequence length 20
Hard target update False
Polyak averaging coefficient τ 0.01
Minimum exploration value ϵ 0.05
Exploration value decay rate 0.00001
Rollout length 2
Epochs 2
Add one-hot agent ID True

D.1.2 SEARCH SPACES

We always use discrete search spaces and search over the following parameters per algorithm

Table 12: Hyperparameter Search Space for Sable.

Parameter Value
PPO epochs {2, 5, 10, 15}
Number of minibatches {1, 2, 4, 8}
Entropy coefficient {0.1, 0.01, 0.001, 1}
Clipping ϵ {0.05, 0.1, 0.2}
Maximum gradient norm {0.5, 5, 10}
Learning rate {1e-3, 5e-4, 2.5e-4, 1e-4, 1e-5}
Model embedding dimension {32, 64, 128}
Number retention heads {1, 2, 4}
Number retention blocks {1, 2, 3}
Retention heads κ scaling parameter {0.3, 0.5, 0.8, 1}

Table 13: Hyperparameter Search Space for MAT.

Parameter Value
PPO epochs {2, 5, 10, 15}
Number of minibatches {1, 2, 4, 8}
Entropy coefficient {0.1, 0.01, 0.001, 1}
Clipping ϵ {0.05, 0.1, 0.2}
Maximum gradient norm {0.5, 5, 10}
Learning rate {1e-3, 5e-4, 2.5e-4, 1e-4, 1e-5}
Model embedding dimension {32, 64, 128}
Number transformer heads {1, 2, 4}
Number transformer blocks {1, 2, 3}
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Table 14: Hyperparameter Search Space for MAPPO and IPPO.

Parameter Value
PPO epochs {2, 4, 8}
Number of minibatches {2, 4, 8}
Entropy coefficient {0, 0.01, 0.00001}
Clipping ϵ {0.05, 0.1, 0.2}
Maximum gradient norm {0.5, 5, 10}
Critic learning rate {1e-4, 2.5e-4, 5e-4}
Policy learning rate {1e-4, 2.5e-4, 5e-4}
Recurrent chunk size {8, 16, 32, 64, 128}

Table 15: Hyperparameter Search Space for MASAC and HASAC.

Parameter Value
Epochs {32, 64, 128}
Batch size {32, 64, 128}
Policy update delay {1, 2, 4}
Policy learning rate {1e-3, 3e-4, 5e-4}
Q-network learning rate {1e-3, 3e-4, 5e-4}
Alpha learning rate {1e-3, 3e-4, 5e-4}
Polyak averaging coefficient τ {0.001, 0.005}
Discount factor γ {0.99, 0.95}
Autotune alpha {True, False}
Target entropy scale {1, 2, 5, 10}
Initial alpha {0.0005, 0.005, 0.1}
Shuffle agents (HASAC only) {True, False}

Table 16: Hyperparameter Search Space for QMIX.

Parameter Value
Batch size {16, 32, 64, 128}
Q-network learning rate {3e-3, 3e-4, 3e-5, 3e-6}
Replay buffer size {2000, 4000, 8000}
Target network update period {100, 200, 400, 800}
Mixer network embedding dimension {32, 64}
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D.2 COMPUTATIONAL RESOURCES

Experiments were run using various machines that either had NVIDIA Quadro RTX 4000 (8GB),
Tesla V100 (32GB) or A100 (80GB) GPUs as well on TPU v4-8 and v3-8 devices.

E SABLE IMPLEMENTATION DETAILS

E.1 PSEUDOCODE

A useful note when reading this pseudocode is that bold inputs represent that the item is joint, in
other words, it applies to all agents. For example: a is the joint action and v is the value of all agents.

The clipped PPO policy objective can be given as:

Lp(θ, Â,ot,at) = min
(
rt(θ)Ât, clip(rt(θ), 1± ϵ)Ât

)
where rt(θ,ot,at) =

πθ (at|ot)

πθold (at|ot)

(7)

The encoder is optimised using the mean squared error:

Lv(ϕ,v, v̂) = (vϕ(ot)− v̂t)
2 (8)

where v̂t is the value target computed as v̂t = rt + γv(ot+1). We always compute the advantage
estimate and value targets using generalised advantage estimation (GAE) (Schulman et al., 2015).
We denote dt as a binary flag indicating whether the current episode has ended or not, with dt = 1
signifying episode termination and dt = 0 indicating continuation.

Algorithm 1 Sable

Require: rollout length (L) updates (U ) agents (N ) epochs (K) minibatches (M )
1: hact

joint ← hact
enc, h

act
dec ← 0 ▷ Initialize hidden state for encoder and decoder to zeros

2: for Update = 1, 2, . . . , U do
3: htrain

joint ← hact
joint ▷ Store initial hidden states for training

4: for t = 1, 2, . . . , L do ▷ Performed in parallel with multiple environments
5: ôt,vt, h

act
enc ← encoder.chunkwise(ot, h

act
enc)

6: for i = 1, 2, . . . , N do ▷ Auto-regressively decode each agent’s action
7: ait, π

i
old(a

i
t|ôit), hact

dec ← decoder.recurrent(ôit, a
i−1
t , hact

dec)

8: Step environment using joint action at to produce ot+1, rt, dt
9: Store (ot,at, dt, rt,πold(at|ôt)) in buffer B

10: if episode terminates then hjoint ← 0 else hjoint ← κhjoint

11: Use GAE to compute advantage estimates Â and value targets v̂
12: for 1, 2, . . . ,K do
13: Sample trajectories τ = (ob1:L ,ab1:L , db1:L , rb1:L ,πold(ab1:L |ôb1:L)) from B
14: Within each trajectory τ shuffle all items along the agent dimension
15: for 1, 2, . . . ,M do
16: Generate Denc, Ddec given Equations 9 and 10, and db1:L
17: ô1:L,vb1:L ← encoder.chunkwise(ob1:L , h

train
enc , Denc)

18: π(ab1:L |ôb1:L)← decoder.chunkwise(ab1:L , ô1:L, h
train
dec , Ddec)

19: θ ← θ +∇θ Lp(θ, Â1:L, ô1:L,a1:L)

20: ϕ← ϕ+∇ϕ Lv(ϕ, rb1:L ,vb1:L , v̂b1:L)
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E.2 ADDITIONAL IMPLEMENTATION INSIGHTS

E.2.1 RETENTIVE ENCODER-DECODER ARCHITECTURE

RetNet is a decoder-only architecture designed with only causal language modelling in mind. This
is illustrated by the assumption in Equations 1, 2 and 3 that the key, query and value inputs are
identical, as they are all represented by the single value x. However, MAT uses an encoder-decoder
model to encode observations and decode actions. In order to extend retention to support the cross-
retention used decoder, Sable takes a key, query and value as input to a retention block in place of X .
Additionally, it uses the key as a proxy for X in the swish gate used in multi-scale retention (Sun
et al., 2023) and the query as a proxy for X for the skip connection in the RetNet block (Sun et al.,
2023).

E.2.2 ADAPTING THE DECAY MATRIX FOR MARL

Since the decay matrix represents the importance of past observations, it is critical to construct
it correctly during training, taking into account multiple agents and episode terminations, so that
no agent is “favoured” and memory doesn’t flow over episode boundaries. To achieve this, we
make three modifications to the original decay matrix formula. First, in cooperative MARL, a joint
action is formed such that all agents act simultaneously from the perspective of the environment.
This means the memory of past observations within the same timestep should be weighted equally
between agents; therefore, Sable uses equal decay values for these observations. Second, unlike
self-supervised learning, RL requires algorithms to handle episode termination. During acting this
is trivial for Sable: hidden states must be reset to zero on the first step of every episode as seen in
Equations 4 and 5. However, during training, resetting needs to be performed over the full trajectory
τ in parallel using the decay matrix. If there is a termination on timestep td, then the decay matrix
should be reset from index (Ntd, Ntd). Combining these two modifications, we obtain the following
equation, given a set of terminal timesteps Td, then ∀td ∈ Td:

Dij = Mij ⊙ D̃ij , Mij =

{
0 if i ≥ Ntd > j

1 otherwise
, D̃ij =

{
κ⌊(i−j)/N⌋, if i ≥ j

0, if i < j
(9)

This updated equation makes sure that Sable does not prioritise certain agent’s past observations
because of their arbitrary ordering and ensures that all observations before the terminal timestep are
forgotten.

The final decay matrix modification is only required in the encoder to allow for full self-retention
over all agents’ observations in a single timestep, to match the full self-attention used in MAT’s
encoder. Since RetNet is a decoder only model where the decay matrix acts as a causal mask, we
had to adjust Sable’s architecture to be able to perform self-retention. We do this by creating N ×N
blocks within the decay matrix, where each block represents a timestep of N agents. This leads to
the final modification of the decay matrix specifically for the encoder:

Dij = Mij ⊙ D̂ij , D̂ij =

{
κ⌊(i−j)/N⌋, if ⌊i/N⌋ ≥ ⌊j/N⌋
0, otherwise

(10)

In this case, the floor operator in the first condition creates the blocks that enable full self-retention.
Examples of both the encoder and decoder decay matrices used during training can be found in
appendix E.3.3.

E.2.3 POSITIONAL ENCODING

Positional encodings are crucial for Sable to obtain a notion of time. Previous works in single-
agent reinforcement learning (RL) that utilize transformers or similar architectures (Parisotto et al.
(2020); Lu et al. (2024)) have demonstrated the importance of positional encoding. Empirical results
showed that the best method for sable is absolute positional encoding, as introduced by Vaswani et al.
(2017). In this method, the agent’s timestep is encoded and added to the key, query, and value during
processing. Importantly, we discovered that providing all agents within the same timestep with the
same positional encoding is pivotal for performance. When agents were assigned sequential indices
(e.g., agent i at step t receiving index N × t+ i), as is commonly done with tokens in NLP tasks, the
performance was significantly worse.
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E.3 ALGORITHMIC WALKTHROUGH: CONCRETE EXAMPLE

Sable processes full episodes as sequences, chunking them into segments of defined rollout lengths.
During each training phase, it processes a chunk and retains hidden states, which are passed forward
to subsequent updates. In this section, we provide a concrete example to illustrate how the algorithm
works in practice.

E.3.1 EXAMPLE SETUP

To illustrate Sable’s chunkwise processing, consider a simple environment with 3 agents, and rollout
length (L) of 4 timesteps. The goal of this setup is to demonstrate how Sable processes the execution
and training phases of a trajectory τ , starting at timestep l. For this example, we will assume that an
episode termination happened at l + 1, which means at the second step of the trajectory.

E.3.2 EXECUTION PHASE

During this phase, Sable interacts with the environment to build the trajectory τ . Each timestep
t ∈ {l, ..., l + 3} is processed sequentially. At each timestep t, the encoder takes as input the
observation of all the agents at t, along with the hidden state from previous timestep, henc

t−1. If
t = l, indicating the beginning of the current execution phase, the encoder uses henc

l−1. The encoder
then computes the current observation representations ôt, observation values vt, and updates the
hidden state for the next timestep, henc

t . These observation representations are passed to the decoder
alongside hdec

t−1. If t = l, the decoder initialises with hdec
l−1, similar to the encoder. The decoder

processes the input recurrently for each agent, generating actions one by one based on the previous
agent’s action. For the first agent, a start of sequence token is sent to the decoder, signaling that this
is the initial agent and prompting the decoder to begin reasoning for its action independently of prior
agents. As each agent’s action is decoded, an intermediate hidden state ĥ is updated, and once the
decoder iterates over all agents, it generates hdec

t for the timestep t. At the end of each timestep, both
the encoder and decoder hidden states are decayed by the factor κ, reducing the influence of past
timesteps. If the episode ends at timestep t (in our case at t = l + 1), the hidden states are reset to
zero; otherwise, they continue to propagate to the next timestep with the decay applied.

E.3.3 TRAINING PHASE

Once the trajectory τ is collected, the observations from all agents and timesteps are concatenated to
form a full trajectory sequence. In this case, the resulting sequence is [o1l , o

2
l , ..., o

2
l+3, o

3
l+3]. Both

encoder and decoder compute retention over this sequence using Equation 6. However, rather than
recalculating or initialising Hτprev , the encoder and decoder take as input the hidden states from
the final timestep of the previous execution phase, henc

l−1 and hdec
l−1, respectively. Within the retention

mechanism used during training, the decay matrix D and ξ control the decaying and resetting of
information.

The decay matrix, D, has a shape of (NL,NL), which in this case results in a (12,12) matrix, where
each element calculates how much one token retains the information of another token. For example,
D5,3 shows how much information o2l+1 retains from o3l :

Denc =



κ0 κ0 κ0 0 0 0 0 0 0 0 0 0
κ0 κ0 κ0 0 0 0 0 0 0 0 0 0
κ0 κ0 κ0 0 0 0 0 0 0 0 0 0
κ1 κ1 κ1 κ0 κ0 κ0 0 0 0 0 0 0
κ1 κ1 κ1 κ0 κ0 κ0 0 0 0 0 0 0
κ1 κ1 κ1 κ0 κ0 κ0 0 0 0 0 0 0
0 0 0 0 0 0 κ0 κ0 κ0 0 0 0
0 0 0 0 0 0 κ0 κ0 κ0 0 0 0
0 0 0 0 0 0 κ0 κ0 κ0 0 0 0
0 0 0 0 0 0 κ1 κ1 κ1 κ0 κ0 κ0

0 0 0 0 0 0 κ1 κ1 κ1 κ0 κ0 κ0

0 0 0 0 0 0 κ1 κ1 κ1 κ0 κ0 κ0
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Ddec =



κ0 0 0 0 0 0 0 0 0 0 0 0
κ0 κ0 0 0 0 0 0 0 0 0 0 0
κ0 κ0 κ0 0 0 0 0 0 0 0 0 0
κ1 κ1 κ1 κ0 0 0 0 0 0 0 0 0
κ1 κ1 κ1 κ0 κ0 0 0 0 0 0 0 0
κ1 κ1 κ1 κ0 κ0 κ0 0 0 0 0 0 0
0 0 0 0 0 0 κ0 0 0 0 0 0
0 0 0 0 0 0 κ0 κ0 0 0 0 0
0 0 0 0 0 0 κ0 κ0 κ0 0 0 0
0 0 0 0 0 0 κ1 κ1 κ1 κ0 0 0
0 0 0 0 0 0 κ1 κ1 κ1 κ0 κ0 0
0 0 0 0 0 0 κ1 κ1 κ1 κ0 κ0 κ0


As shown in this example the decay matrix D, agents within the same timestep share identical decay
values, ensuring consistent retention for all agents within a given timestep. Additionally, the decay
matrix resets for agents once an episode ends. For instance, after the termination at timestep l + 1,
subsequent timesteps (D7:12,1:12) no longer retain information from the prior episode as can be seen
from the zeros at D7:12,1:6. The encoder decay matrix, Denc enables full self-retention over all agents
in the same timestep as can be seen through the blocks of equal values within the decay matrix. In
contrast, the decoder decay matrix, Ddec, only allows information to flow backwards in time, so
agents can only view the actions of previous agents, as they make decisions sequentially.

The second key variable in the retention mechanism is ξ, which controls how much each token in the
sequence retains information from the hidden state of the previous chunk (henc

l−1 for the encoder and
hdec
l−1 for the decoder). The ξ matrix represents the contribution of past hidden states to the current

timestep, ensuring continuity across chunk boundaries. For this case, ξ is structured as follows:

ξ =



κ1

κ1

κ1

κ2

κ2

κ2

0
0
0
0
0
0


As shown, ξ ensures that after the termination at timestep l+ 1,the tokens in subsequent timesteps no
longer retain information from the hidden states of the prior episode.

E.3.4 HANDLING LONG TIMESTEP SEQUENCES

Consider a trajectory batch τ ′ consisting of 3 agents and 512 timesteps. This results in a sequence
length of 512× 3 = 1536. Given the potential memory limitations of the computational resources,
handling such a large sequence may pose challenges when applying Equation 6, which assumes the
entire sequence is processed as input.

To handle these long sequences, we divide the trajectory into i smaller chunks. However, it’s essential
to maintain the condition that each chunk must be organized by timesteps, meaning all agents from
the same timestep must belong to the same chunk. The first chunk will use the hidden state as
described earlier (henc

l−1 for the encoder and hdec
l−1 for the decoder). For subsequent chunks, when

chunking the trajectory into smaller chunks of size 4, the input hidden state is recalculated using the
following equation:

hi = KT
[i](V[i] ⊙ ζ) + δκ4hiprev , ζ = D12,1:12

Suppose that a chunk B starts at timestep b and there is a termination at b+ 1. In this case, the decay
matrix for B would be structured similarly to the one used in the example of Section E.3.3. And
given that, ζ will be equal the following :

ζ = ( 0 0 0 0 0 0 κ1 κ1 κ1 κ0 κ0 κ0 )

This structure ensures that only tokens from the current episode contribute to the hidden state, while
any information from the previous episode is ignored. Additionally, the term δκLHBprev

is set to
zero, ensuring that once an episode ends, the associated hidden state does not carry over to the next
chunk.
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