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Abstract

In this paper, we propose a self-supervised prototypical contrastive audio-visual1

masked autoencoder (PCAV-MAE) to learn a joint and coordinated audio-visual2

representation. Different from conventional techniques, we calculate prototypes3

as latent variables and reconstruct the masked tokens by encouraging them to be4

closer to their assigned prototypes with contrastive learning. This design not only5

allows us to learn a joint representation but also helps to learn the intrinsic semantic6

information of videos. We demonstrate the transferability of our representations,7

achieving state-of-the-art audio-visual results in downstream tasks. As a result,8

our fully self-supervised pre-trained CAV-MAE achieves a new SOTA accuracy of9

69.9% on AudioSet and is comparable with the previous best supervised pre-trained10

model on VGGSound over audio-visual event classification.11

1 Introduction12

Acoustic and visual modalities have different properties, yet humans can seamlessly connect and13

integrate them to perceive the world. Developing deep learning algorithms to replicate these abilities,14

especially for multi-modal audio-visual fusion and retrieval, is of great interest (1; 2). Since manually15

annotating audio and video is expensive and difficult to scale, utilizing web-scale unlabeled video16

data in a self-supervised manner has become a core research question. Recent advances, such as17

the development of contrastive learning techniques (3; 4), have significantly enhanced the capability18

of models to learn from multi-modal data in a self-supervised manner. Audio-visual representation19

learning leverages the complementary nature of audio and visual information to improve the per-20

formance of various downstream tasks, including speech recognition (5), video understanding (6),21

and emotion recognition (7). By integrating data from both modalities, models can achieve a more22

comprehensive understanding of the environment or context (2), leading to more robust and accurate23

results.24

Despite their advancements, audio-visual models (1; 8) share a common weakness: the representation25

is not encouraged to encode the semantic structure of data. For example, Gong et al. combine masked26

data modeling and contrastive learning, two major self-supervised learning frameworks, to learn a27

fused audio-visual representation (3). However, two separate amples are treated as a negative pair28

as long as they are from different instances, regardless of their semantic similarity. This issue is29

magnified by the fact that thousands of negative samples are generated to form the contrastive loss,30

leading to many negative pairs that share similar semantics but are undesirably pushed apart in the31

embedding space.32

To overcome this drawback, in this paper, we propose a prototypical contrastive audio-visual masked33

autoencoder (PCAV-MAE) to learn a joint audio-visual representation that encodes the semantic34

structure of data into the embedding space. First, we tokenize input video frames and audio spectra35

and mask the majority of them. Only the remaining visible subsets are fed into the visual encoder36

and audio encoder. Moreover, different from conventional techniques, we calculate prototypes as “a37
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representative embedding for a group of semantically similar instances” and assign several prototypes38

of different granularity to each instance. We reconstruct the masked tokens by encouraging them to39

be closer to their assigned prototypes with contrastive learning. In practice, we find prototypes by40

performing clustering on the embeddings. The goal of prototypical contrastive learning is to find the41

network parameters that best describe the data.42

2 Proposed Method43

Our proposed framework is presented in Figure 1.44

Figure 1: Proposed prototypical contrastive audio-visual masked autoencoder (PCAV-MAE).

2.1 Pre-processing, Tokenization and Masking45

In this work, we utilize 10-second videos (with parallel audios) from VGGSound (9) and AudioSet46

(10) for pre-training and fine-tuning the model. Each 10-second video is sampled at 1 frame per47

second (FPS). In the training stage, one RGB frame is randomly selected as the training data. We48

resize and center crop each RGB frame to 224 × 224, and then split it into 196 16 × 16 square49

patches v = [v1...v196]. For audio, we convert each 10-second audio waveform into a sequence of50

128-dimensional log Mel filterbank features, computed with a 25ms Hanning window every 10ms51

(11). Then, we split the obtained 1024 (time) × 128 (frequency) spectrogram into 512 16 × 16 square52

patches a = [a1...a512]. In the inference stage, we average the model’s prediction for each RGB53

frame to produce the video prediction. Inspired by (12; 4), we randomly mask 75% of video vma and54

50% of audio ama tokens.55

2.2 Prototypical Joint Enocder56

Given a full-set of video data v and audio data a, in the global representation learning routine (i.e.,57

black arrows), we input them into the visual encoder and audio encoder to obtain the representation zv58

and za, respectively. We then calculate global prototypes of the full-set data which are latent variables.59

To achieve that, we use the local peaks of the density (13) as the prototype, in other words, the most60

representative data samples of v and a. The goal of the proposed prototypical joint encoder (PJE) is61

to find a network parameter that maximizes the log-likelihood function between representation of62

visible video and audio patches by a prototype-wise contrastive audio-visual learning (PCAV). The63

loss, namely LPJE, is defined as:64

LPJE =
1

τ |M|
∑

p+
vi∈M

− log
exp

(
z∗aj · p

+
vi/γ

)∑
p−
vi∈N exp

(
z∗aj · p

−
vi/γ

) (1)

M and N are prototype collections of the positive and negative samples, respectively. The prototype65

of the i-th visual patch and the visible representation of the j-th audio patch are denoted as pvi and66

zaj , respectively. We set the temperature τ to 0.1 as shown in Sec. ??. Inspired from previous67

supervised learning work (14)(15), we find different levels of concentration distributes around each68

prototype embeddings. Therefore, we exploit γ as the concentration level around the joint prototype69

pm within I × J potential combinations of audio and video patches as:70

γ =

∑I
i=1

∑J
j=1(∥pm − z∗vi∥2 +

∥∥pm − z∗aj
∥∥
2
)

IJ log(I + J + β)
(2)
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where the momentum features are denoted as {vmi }ni=1 within the same cluster as a prototype p. We71

set a smooth parameter β to ensure that small clusters do not have an overly-large γ. In the proposed72

prototype clustering, γ acts as a scaling factor on the similarity between an embedding v and its73

prototype p.74

2.3 Prototypical Joint Decoder75

In conventional masked autoencoder frameworks (12; 8; 16), decoders utilize Transformers that76

reconstruct the masked tokens given the encoded tokens as context, audio, and images. These77

Transformer-based decoders have less capacity than encoders to force encoders learn discriminative78

features which can be utilized for reconstruction. Moreover, this also improves training efficiency,79

as masked tokens are also processed by decoders. Therefore, we follow a vanilla Transformer (17)80

architecture, whilst also being shallower, to build up the joint decoder.81

Different from decoders in previously mentioned masked autoencoders, we propose to use prototypes82

of masked tokens to assist the reconstruction. As described previously, the representation is not83

encouraged to encode the semantic structure of data. However, two samples are treated as a negative84

pair as long as they are from different instances, regardless of their semantic similarity. Therefore, to85

address the limitation and achieve a high accuracy of reconstruction, we learn the semantic structure86

of data.87

During reconstruction, the contrastive learning objective aligns the features of the masked patches88

with their closest prototypes, ensuring that the reconstructed patches are accurate and semantically89

consistent. The loss, namely LPCPE, is defined as:90

1

τ |M|
∑

p+
vi,p

+
aj∈M

− log
exp((z∗paj

· z+paj
+ z∗pvi

· z+pvi
)/γ)∑

p−
vi,p

−
aj∈N

exp((z∗paj
· z−paj

+ z∗pvi
· z−pvi

)/γ)
(3)

This method enhances the PCAV-MAE’s ability to handle complex scenes, ultimately leading to91

better video reconstruction by effectively linking masked patches to their corresponding positions92

through the use of prototypes. Our reconstruction loss function computes the mean squared error93

(MSE) between the masked patches of the reconstructed and original images as:94

Lr =

J∑
j=1

(â∗j − a∗j )
2 +

I∑
i=1

(v̂∗i − v∗i )
2 (4)

where â∗j and v̂∗i are reconstructed unmasked tokens. Our overall objective in the pre-training is the95

sum of equations (1), (3) and (4) as LPCAV-MAE = LPJE +LPCPE +Lr. After pre-training, we abandon96

the decoder and only keep the encoders of the model for downstream tasks. We can use the sum of the97

single-modality stream output and the multi-modal modality stream output, or just the multi-modal98

stream output for fine-tuning. They perform similarly in our experiments.99

3 Experiments100

3.1 Datasets and Attacks101

We use the full training set (unbalanced + balanced) of AudioSet (10) pre-training. In the AS-2M102

task, we fine-tune on the full training set. In the AS-20K task, we fine-tune only on the 20K balanced103

training set. We randomly select 170,000 clips from VGGSound (9) for fine-tuning and 14,448 clips104

for inference.105

3.2 Implementation Details106

In the pre-training, we use two 11-layer Transformers (each is 768-dimensional) as the audio and107

visual encoders, respectively. The decoder is a shallower vanilla Transformer with a hidden dimension108

of 384, 4 layers, 6 attention heads, and an MLP dimension of 1536. The joint decoder is discarded109

after pre-training. We set β = 10. We pre-train the model using the AdamW optimizer with a110

momentum of 0.9, an accumulated batch size of 512, and a learning rate of 0.0002. We pre-train for111

400 epochs for the PJE and 200 epochs for the joint decoder.112
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3.3 Results113

The learned representation is evaluated on fine-tuning performance over AS-20K and VGGSound,114

alongside recent competitor models. Tables 1&2 show the results.

Table 1: Top-1 testing classification ac-
curacy (Acc) on VGGSound (VS).

Method A V AV
AV-MAE (8) 57.2 50.3 65.0

TSS (18) 39.1 39.7 53.9
AVS (19) 38.5 39.0 53.4

AV-LLM (6) 42.3 40.3 53.7
CAV-MAE (3) 59.5 47.0 65.5

MAViL (4) 60.8 50.9 67.1
Fusion (1) 47.0 40.9 59.1
MMT (20) 57.6 44.8 66.2

Mirasol3B (21) 59.9 50.1 69.8
Ours 60.5 51.8 69.9

Table 2: Mean Average Precision (mAP) comparison of AV
classification on AudioSet-20K and AudioSet-2M.

Method AudioSet-20K AudioSet-2M

A V A-V A V A-V

AV-MAE (8) 35.8 23.9 45.9 46.6 31.1 51.8
TSS (18) 20.4 14.8 37.3 36.2 21.1 42.5
AVS (19) 22.0 40.3 51.7 34.2 24.7 43.6

AV-LLM (6) 27.5 40.4 52.2 38.3 23.9 46.8
CAV-MAE (3) 37.7 19.8 42.0 46.6 26.2 51.2

MAViL (4) 41.8 24.8 44.9 48.7 30.3 53.3
Fusion (1) 31.5 39.3 54.6 35.6 26.7 50.2
MMT (20) 39.3 40.7 51.1 41.5 26.7 49.0

Mirasol3B (21) 38.6 29.5 52.0 46.7 28.7 53.0
Ours 42.0 42.3 57.8 49.1 33.8 55.4

115

It can be observed that: (1) The proposed PCAV-MAE offers the best effectiveness. In particular,116

PCAV-MAE surpasses CAV-MAE (3) in A, V, and A+V tasks by a large margin. (2) PCAV-MAE117

ranks as the second-best in the audio classification task, showing slightly lower accuracy compared to118

the state-of-the-art model, MAViL (4). This is likely because MAViL incorporates context along with119

audio and video inputs, enabling a better understanding and interpretation of the audio signals.120

Figure 2: T-SNE feature visualization of the unsupervised learned representation for AudioSet
training samples from the first 10 classes.

As qualitative analysis, Figure 2 presents the t-distributed stochastic neighbour embedding (t-SNE)121

visualisation of the baseline and proposed models on AudioSet. Compared to the representation122

learned by AV-MAE and contrastive fusion encoder, the representation learned by PCAV-MAE forms123

more separated clusters, which also suggests representation of lower entropy. In Figure 5(b), it can be124

observed that the feature embeddings within a single prototype are not separable. However, when125

the PCPE is added in Figure 5(c), individual instances become separated. This demonstrates that the126

proposed methods can learn better semantic structure of data that enhances discriminative feature127

representation learning.128

4 Conclusion129

In this paper, we have proposed a self-supervised audio-visual representation learning approach,130

offering an effective alternative to traditional supervised pipelines. We reconstructed masked tokens in131

multi-modal MAE by encouraging them to be closer to their assigned prototypes through contrastive132

learning. The model learned not only joint representation learning but also intrinsic semantic133

information of multi-modal data. Our extensive experiments on multiple benchmarks demonstrated134

the advantage of PCAV-MAE for unsupervised representation learning. Additionally, prototypes135

offered interpretations compared to baselines, enabling PCAV-MAE to provide more insights into136

performance improvement on downstream tasks.137
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