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Abstract

Despite recent advances of AI, story un-001
derstanding remains an open and under-002
investigated problem. We collect, prepro-003
cess, and publicly release a video-language004
story dataset, Synopses of Movie Narratives005
(SYMON), containing 5,193 video summaries006
of popular movies and TV series. SYMON007
captures naturalistic storytelling videos for hu-008
man audience made by human creators, and009
has higher story coverage and more frequent010
mental-state references than similar video-011
language story datasets. Differing from most012
existing video-text datasets, SYMON features013
large semantic gaps between the visual and the014
textual modalities due to the prevalence of re-015
porting bias and mental state descriptions. We016
establish benchmarks on video-text retrieval017
and zero-shot alignment on movie summary018
videos. With SYMON, we hope to lay the019
groundwork for progress in multimodal story020
understanding.021

1 Introduction022

Stories are complex artifacts that succinctly encode023

the human experience. The understanding of story024

content involves high-level semantic concepts such025

as character motivations and intentions (Emelin026

et al., 2020; Rashkin et al., 2018), events structures027

(Chambers and Jurafsky, 2008; Li et al., 2013; Pi-028

chotta and Mooney, 2016; Ferraro and Van Durme,029

2016; Martin et al., 2018; Wang et al., 2021; Caselli030

et al., 2021), as well as social relationships among031

story characters (Elson et al., 2010; Chaturvedi032

et al., 2016; Kim and Klinger, 2019). To this day,033

understanding of story semantics remains an open034

and under-investigated problem.035

The recent emergence of user-generated, “a036

movie in X minutes” videos offers a rich source of037

naturalistic storytelling videos. These videos usu-038

ally select clips that depict key story events from039

a movie or a TV series. The narrator recounts the040

story alongside the video. These videos provide041
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Figure 1: An example video with narration text from
SYMON. The video has been automatically segmented
into three scenes. We show the boundary timestamps.

condensed yet complete storylines that are carefully 042

assembled for human viewers by human creators. 043

We identify, collect, preprocess, and publicly 044

release a video-language story dataset, named 045

Synopses of Movie Narratives (SYMON). The 046

dataset includes 5,193 user-generated video sum- 047

maries of popular movies and TV series for a to- 048

tal length of 869 hours. For 857 movies, multi- 049

ple summary videos are available, which may be 050

used as references for generation or summariza- 051

tion. In Figure 1, we show an example video and 052

text description from SYMON. We empirically ver- 053

ify SYMON as the prototypical story dataset, as 054

it has higher coverage of plotlines and more fre- 055

quent mental-state references than several similar 056

video-language story datasets. 057

However, the nature of storytelling poses unique 058

obstacles for computational understanding due to 059

the semantic divergence between the video and 060

text. First, in the phenomenon known as report- 061

ing bias (Gordon and Van Durme, 2013), human 062

narrators tend to avoid stating the obvious. For 063

example, in Figure 1, the video shows Harry Pot- 064
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ter lying on the floor, while the narrator states “...065

knocking him unconscious”. To recognize that ly-066

ing on the floor is a consequence of being knocked067

unconscious requires event-level cause-and-effect068

reasoning, which may prove difficult for today’s069

AI (Sap et al., 2019). Second, the story texts con-070

tain frequent mentions of story characters’ mental071

states (§5.2), which may not be easily recogniz-072

able from video. This contrasts with crowdsourced073

datasets like Charades (Sigurdsson et al., 2016)074

where humans are asked to follow textual instruc-075

tions, or LSMDC (Rohrbach et al., 2017) where076

the narration meticulously describes the imagery077

for audience with visual impairment.078

To examine the cross-modality semantic gap, we079

design a simple task that temporally orders two080

video segments. A large pretrained UniVL model081

(Luo et al., 2020) demonstrates mediocre perfor-082

mance and limited utilization of textual informa-083

tion, highlighting the challenge posed by SYMON.084

As benchmarks for future research, we estab-085

lish baselines for text-to-video and video-to-text086

retrieval on SYMON and a zero-shot video-text087

alignment baseline using the YMS dataset as test.088

Together, the weakly supervised SYMON and the089

fully annotated YMS form a complete benchmark,090

serving as a new challenge for the multimodal re-091

search community.092

Our contributions are three-fold:093

• We collect, preprocess, and publish a large-094

scale movie summary dataset, which can sup-095

port various multimodal tasks such as re-096

trieval, captioning, and summarization.097

• We preform extensive experiments to quantify098

the characteristics of SYMON, including its099

coverage of major plotlines, the amount of100

mental-state descriptions, and the semantic101

divergence between text and video.102

• To facilitate future research, we establish base-103

lines for text-video retrieval on SYMON and104

zero-shot transfer to the YouTube Movie Sum-105

mary dataset (YMS) (Dogan et al., 2018).106

2 Related Work107

Datasets for Event and Story Understanding.108

Events and story structures are closely related109

(Caselli et al., 2021). Existing datasets provided110

annotations for the the temporal aspects, such as111

temporal precedence and duration (UzZaman et al.,112

2013; Chambers et al., 2014; Ning et al., 2020; 113

Zhou et al., 2021; Vashishtha et al., 2019, 2020), 114

and causal relations between events (O’Gorman 115

et al., 2016; Roemmele et al., 2011). 116

Several datasets explore individual components 117

of stories, including sentence ordering (Gangal 118

et al., 2021), social norms and moral consequences 119

(Emelin et al., 2020), plausible antecedent (Bha- 120

gavatula et al., 2020), intentions and effects on 121

mental states (Rashkin et al., 2018), high-level 122

story structures (Ouyang and McKeown, 2015; Li 123

et al., 2018), and story character descriptions (Brah- 124

man et al., 2021). Sap et al. (2019) consider rela- 125

tions between events, persona, and mental states. 126

Some datasets aim at summarization for screen- 127

plays or conversation transcripts (Gorinski and La- 128

pata, 2015; Papalampidi et al., 2020; Chen et al., 129

2021). Notably, Sadhu et al. (2021) annotate event 130

relations from video. 131

Researchers also develop general-purpose QA 132

datasets conditioned on comprehension of story 133

texts, such as MCTest (Richardson et al., 2013), 134

NarrativeQA (Kočiský et al., 2018), and FriendsQA 135

(Yang and Choi, 2019). Multimodal counterparts 136

like MovieQA (Tapaswi et al., 2016), TVQA (Lei 137

et al., 2018), and Pororo (Kim et al., 2017) are 138

available. However, not every question in the QA 139

datasets requires in-depth narrative understanding. 140

Video-Text Movie Story Datasets. A number 141

of datasets supply story content extracted from 142

movies. The Large-Scale Movie Description Chal- 143

lenge (LSMDC) (Rohrbach et al., 2017) combined 144

the efforts of MPII-MD (Rohrbach et al., 2015) 145

and M-VAD (Torabi et al., 2015) and provide de- 146

tailed language descriptions initially intended for 147

the visual impaired. Although these descriptions 148

are highly accurate, they may not be representative 149

of real-world storytelling. 150

YouTube Movie Summary (YMS) (Dogan et al., 151

2018) contains 94 YouTube movie summary videos 152

with human-narrated storylines. The Condensed 153

Movies Dataset (CMD) (Bain et al., 2020) gath- 154

ers 7 to 11 key clips from each movie with one- 155

sentence descriptions for each clip. Pororo (Kim 156

et al., 2017) captures 20-minute cartoon episodes, 157

in-show conversations, and human-written descrip- 158

tions. MovieNet (Huang et al., 2020) annotate 2000 159

hours of movies with extensive annotations and 160

aligned movies scripts. However, due to copyright, 161

legal clearance for the video release is still pending 162

at the time of writing. 163
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Video
hours

#Videos (#Clips) #Sent Vocab.

CMD 1,270 3,605 (33,976) 35,681 15,272
MovieNet (video release
pending)

2,000 1,100

LSMDC 147 200 (128,085) 128,118 22,500
Pororo 20.5 171 (16,066) 43,394
MovieGraph 94.0 51 (7,637) 20,849
SYMON (Ours) 869 5,193 683,611 40,116

Table 1: Comparison of video description datasets with story content.

Other types of video annotations have been ex-164

plored, including semantic roles and event relations165

(Sadhu et al., 2021), character relationships and166

types of speech (Wu and Krahenbuhl, 2021), and167

movie graphs (Vicol et al., 2018).168

In this work, we collect a large-scale, readily169

available, multi-reference dataset of human-curated170

movie summaries, named SYMON. The dataset171

can be leveraged for various story understanding172

and generation tasks such as sequential text local-173

ization, story generation from video, and movie174

summarization. To our knowledge, SYMON is175

the largest dataset for short naturalistic storytelling176

videos.177

3 Dataset Collection and Statistics178

We apply the following procedure for data collec-179

tion. First, we manually identify relevant YouTube180

channels by searching with keywords such as181

“movie summary”, “movie recap”, and “movie182

shortened”. We download all videos from the iden-183

tified channels and accompanying subtitles, which184

may be written by humans or automatically gen-185

erated by YouTube. Videos without subtitles are186

excluded. Finally, we perform rule-based extrac-187

tion of movie names from metadata and subtitles188

and discard videos that are not movie summaries.189

This yields a total of 5,193 videos with an av-190

erage length of 9.5 minutes and a total length of191

869 hours. On average, the narration in one video192

contains 1,717 words or 131 sentences. The overall193

vocabulary size is 40,116. SYMON contains sum-194

maries for 2,440 movies and TV series, of which195

857 have more than 1 summary. The most popular196

TV series, The Walking Dead, has 84 summaries.197

On average, one movie or TV series in the 857 has198

4.21 summaries. Compared to existing datasets199

(see Table 1) SYMON is one of the largest movie200

narrative datasets with most diverse vocabulary. In 201

addition, SYMON has more complete coverage of 202

story events than LSMDC and CMD (§5.1). 203

4 Preprocessing 204

Subtitle Masking. Some videos have subtitles 205

embedded in the video. In tasks like text-to-video 206

retrieval, the embedded subtitles may become a 207

shortcut feature, causing networks to learn only 208

optical character recognition. 209

To eliminate shortcuts, we locate embedded sub- 210

titles and mask them out. For efficiency, we ran- 211

domly sample 100 frames from each video and 212

apply an accurate text detection technique (Baek 213

et al., 2019). Observing that the subtitles are almost 214

always at the same location in a single video, we 215

take the minimum bounding box that can cover all 216

embedded subtitles in all 100 frames as the masked 217

region; we set all pixels in the region to black. 218

Punctuation Restoration. We acquire subtitle 219

texts from YouTube directly. Sometimes the texts 220

are the result of automatic speech recognition, 221

which cannot recognize punctuation. To fix this, 222

for every unpunctuated narration text, we generate 223

punctuation with (Alam et al., 2020). 224

Scene Segmentation. Later experiments require 225

temporal segmentation of videos based on camera 226

cuts. For this purpose, we run the dataset through 227

the network of Souček and Lokoč (2020), which 228

detects hard camera cuts. A scene, defined as the 229

continuous shot between two cuts, lasts 2.2 sec- 230

onds on average. This is similar to CMD, another 231

movie dataset, whose scenes last 2.4 seconds on 232

average. However, average scenes in ActivityNet 233

(Caba Heilbron et al., 2015) and Kinetics-400 (Kay 234

et al., 2017) last for 11.1 seconds and 30 seconds 235

respectively. This shows camera cuts in movies are 236
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much more frequent than the user-generated videos237

in ActivityNet and Kinetics.238

5 Characteristics of SYMON Stories239

5.1 Story Coverage240

To facilitate story understanding, it is desirable that,241

despite their short lengths, the videos in SYMON242

provide sufficient coverage (Bain et al., 2020) over243

major plot points of the original movies or TV244

shows. In this experiment, we treat Wikipedia plot245

summaries (WikiPlots)1 as ground truth and esti-246

mate the extent the stories in CMD, LSMDC, and247

SYMON cover the sentences in WikiPlots.248

We use a three-step procedure for computing249

story coverage. First, we match movie summary in250

our dataset to their WikiPlots summaries by name.251

Second, we estimate if a sentence from the video252

narration is equivalent to a sentence in WikiPlots us-253

ing the natural language inference (NLI) classifier254

from Nie et al. (2020). From two input sentences a255

and b, the NLI classifier predicts one of three pos-256

sibilities: a entails b; a contradicts b; and neither is257

true. As entailment is asymmetric, we use the aver-258

age probability for both directions (a entails b and259

b entails a) as the probability that a and b are equiv-260

alent. Finally, we find the best correspondence261

between two texts using Dynamic Time Warping262

(DTW) (Berndt and Clifford, 1994), which opti-263

mizes correspondence over entire sequences.264

Briefly, DTW is a dynamic programming algo-265

rithm that seeks minimum-cost correspondence be-266

tween two sequences, the WikiPlots sentence se-267

quence A, and the narration sentence sequence B.268

We refer readers to the Appendix for a detailed de-269

scription of the DTW algorithm. Using manually270

labeled sentence correspondences, we determine271

two model parameters, δA and δB , which denote272

the respective costs for skipping a sentence in se-273

quences A and B.274

We manually labeled the correspondence be-275

tween around 500 sentences in CMD with276

Wikiplots stories, and did the same for SYMON.277

For LSMDC, we labeled around 1300 sentences278

because LSMDC texts are much longer. A second279

annotator labeled a small portion of data from each280

dataset to compute inter-rater reliability. The Co-281

hen Kappa on SYMON, CMD and LSMDC are282

0.86, 0.59, and 0.33 respectively. We believe the283

1https://github.com/markriedl/
WikiPlots

CMD LSMDC SYMON

Story Coverage 10.8% 18.1% 37.9%

Table 2: Estimated story coverage with sentence entail-
ment and Dynamic Time Warping.

low agreement on LSMDC is caused by the mis- 284

match in the text lengths. Texts in LSMDC are 285

longer than all other story texts, which led to diffi- 286

culties in precisely locating the correspondence. 287

With a grid search, we find the optimal δA and 288

δB as those that cause DTW to identify matched 289

sentences the most accurately. The accuracy is 290

defined as 291

Accuracy =
1

2

(
Twiki

Nwiki +
T text

N text

)
. (1) 292

Here Twiki and Nwiki are the number of correctly 293

matched and the total number of WikiPlots sen- 294

tences, respectively. T text and N text are the number 295

of correctly matched and the total number of video 296

narration sentences. We do not directly optimize 297

story coverage because doing so results in incor- 298

rectly matched sentences that artificially inflate the 299

story coverage measurement. 300

With the optimal δA and δB , we perform DTW 301

again and calculate story coverage as the propor- 302

tion of WikiPlots sentences matched with narration 303

sentences, 304

Coverage =
1

K

K∑
i

Mi

Nwiki
i

, (2) 305

where K is the number of WikiPlots movies ap- 306

pearing in the video dataset. In the ith WikiPlots 307

text, Mi denotes the number of matched sentences 308

and Nwiki
i denotes the total number of sentences. 309

Table 2 shows the story coverage results. Of 310

the three datasets, SYMON provides the highest 311

coverage. LSMDC comes in second place, partially 312

because it contains significantly longer descriptions 313

for each movie than the other datasets. 314

5.2 Mental State Descriptions 315

A crucial component of story understanding is to 316

develop theory of mind for the story characters, that 317

is, to understand their mental states, such as emo- 318

tions, motivations, and intentions (Bruner, 1986; 319

Happé, 1994; Pelletier and Beatty, 2015). How- 320

ever, these concepts tend to be under-represented 321
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Emotion Motivation Intention

CMD 38.9 1.41 9.4
LSMDC 33.5 0.62 2.8
AcitivityNet Cap-
tions

27.5 0.51 2.7

SYMON (Ours) 57.6 1.58 23.9

Table 3: Frequency of words related to emotion, moti-
vation, and intention per one thousand words in the text
corpora.

in the textual descriptions from commonly used322

video-language datasets.323

In this experiment, we measure the frequency324

of words related to emotions, motivations, and in-325

tentions in the text associated with the videos. For326

emotional words, we adopt the WordNet-feelings327

dataset (Siddharthan et al., 2018), which includes328

11387 emotion-related words identified by human329

experts. For motivation and intention words, we330

find 200 nearest neighbors of the words “motiva-331

tion” and “intention” using 300-dimensional fast-332

Text embedding (Bojanowski et al., 2017) trained333

on Wikipedia and Common Crawl2. We select 200334

words as we find additional neighbors to be irrele-335

vant to motivation and intention.336

Table 3 reports word frequencies for every thou-337

sand words in four video-language datasets. We ob-338

serve that SYMON employs mental-state words the339

most frequently and uses intention-related words340

2.5 times as often as the next dataset, CMD. Activ-341

ityNet Captions (Krishna et al., 2017), containing342

matter-of-fact descriptions of actions in generic343

user-uploaded videos, uses the least of such words.344

LSMDC, which contains literal descriptions of345

movie clips, is ranked the third. CMD has a fo-346

cus on the story content and is ranked the second.347

Overall, we find the ranking consistent with the348

nature of the datasets, as story text describes men-349

tal states more often than literal descriptions of350

generic videos. SYMON appears to be the most351

prototypical story dataset of the four.352

6 Understanding Video-Text Divergence353

by Sequencing Videos354

As discussed earlier, SYMON are characterized by355

large gaps between the textual and visual modal-356

ities due to the reporting bias, or the tendency to357

2Acquired from https://github.com/
facebookresearch/fastText/blob/master/
docs/crawl-vectors.md.

avoid stating what can be easily observed from the 358

video, and the prevalence of mental state descrip- 359

tions, which are often not visible from the video. In 360

this section, we report an experiment designed to 361

estimate the extent of video-text correspondence. 362

Problem Definition. Similar to event/sentence 363

ordering (Liu et al., 2018; Devlin et al., 2019), 364

we predict the correct ordering of two consecu- 365

tive video segments separated by a hard camera cut. 366

The network predicts one of two classes: video 367

segment 1 precedes segment 2 or vice versa. To 368

create balanced classification, we randomly flip the 369

ordering of the two video segments. We extract 370

the text description that spans the same duration 371

as the two video segments and expand the text to 372

sentence boundaries. 373

We design two networks, one utilizing the unal- 374

tered textual description and the other solely rely- 375

ing on visual input. This setup allows us to estimate 376

the amount of information provided by text. That 377

is, if the text provides grounding to elements in 378

both video segments, it should help the text-aware 379

network predict the correct ordering. 380

Network Architecture. We adopt three pre- 381

trained modules, the text encoder, the video 382

encoder, and the cross-modality encoder from 383

UniVL (Luo et al., 2020), which are pretrained 384

on HowTo100M (Miech et al., 2019), and finetune 385

the weights. The two video segments are encoded 386

separately and their features are concatenated with 387

the encoded text feature. After that, the two groups 388

of features go through the cross encoder indepen- 389

dently, yielding feature vectors f1 and f2. With 390

parameter w, the prediction is 391

P (ŷ = 1) = σ(w⊤f1 −w⊤f2). (3) 392

where σ(·) is the sigmoid function and ŷ is the 393

predicted class index. Figure 2 shows the overall 394

network architecture. 395

As a baseline, we also create a network that relies 396

on only the visual input, in which we replace the 397

textual feature fed into the cross encoder with an 398

all-zero vector. The rest of the network architecture 399

remains the same. 400

Experimental Setup. To cover as much data as 401

possible, we adopt a special dataset split, contain- 402

ing Set A of 2,444 videos, Set B of 2,289 videos, 403

and a validation set of 500 videos. Each network 404

is trained on Set A and tested on Set B, and then 405

trained on Set B and tested on A. We report the 406
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 Frodo departs Middle-Earth for the
undying lands with his uncle Bilbo,

Gandalf and the elves. [sep]

Video
Segment 1

Concat

Concat

Video
Segment 2

Figure 2: The network architecture for the temporal ordering task. The double vertical lines indicate weight sharing
between modules.

average test accuracy. We tuned hyperparameters407

extensively on the validation set and select the train-408

ing epoch with the highest validation accuracy. To409

avoid test data leak, we put all videos of the same410

movie or movie franchise to the same set. More411

settings can be found in the Appendix.412

Results and Discussion. Table 4 lists the predic-413

tive accuracy. The network based solely on video414

has an accuracy of 63.4%. The incorporation of415

textual information improves prediction accuracy416

by 5.7%. Noting that chance level is at 50%, we417

find the performance to be mediocre. Since UniVL418

has been pretrained on HowTo100M and provides419

a good initialization, the results underscore the ef-420

fects of the semantic gap between video and text.421

Without text, 36.6% of data points cannot be422

correctly sequenced. Out of these, 5.7/36.6 =423

15.6% can be correctly classified with text. As424

the 36.6% are difficult data samples, we estimate425

the probability that (1) the text makes reference to426

both video segments and (2) the network correctly427

recognizes the references to be at least 15.6%.428

Data Samples. In Figure 3, we present two data429

points, one from the 5% most helpful text cluster430

and one from the 5% least helpful text cluster. We431

observe that the helpful text mentions objects such432

as cauldron and book that appear in both video433

segments. As a result, both video segments can be434

grounded in the text, which provides ordering infor-435

mation. In comparison, the unhelpful text mentions436

rare object and action such as cat costume and jew-437

elry robbery, which are difficult for the network to438

learn. Similarly, connecting the text “the mother439

Text + Video Only Video

Accuracy 69.1% 63.4%

Table 4: Temporal order prediction accuracy of the text-
aware and visual-only models.

refuses her son” and the discussion shown in video 440

is not straightforward and would require identity 441

tracking and event understanding. 442

Object and Action Analysis. We examine the 443

match between text and video with contemporary 444

technology on object detection and action recog- 445

nition. First, for every data point, we compute the 446

confidence of the ground-truth class from the two 447

models. If the text-aware model has higher confi- 448

dence than the visual-only model, we consider the 449

text to be helpful. We rank the data points by the 450

confidence difference between the two models, and 451

take 5% data with the most helpful text and 5% 452

data with the least helpful text. 453

Next, we run Faster-RCNN (Girshick, 2015) 454

trained on Open Images V4 (Kuznetsova et al., 455

2020) to detect 600 object classes on video frames, 456

and 3D-ResNet (Hara et al., 2018) trained on 457

Kinetics-700 (Kay et al., 2017) to detect 700 action 458

classes. After that, we match the identified objects 459

and actions to the texts. The Appendix contains 460

more details. 461

Table 5 shows that the most helpful texts con- 462

tain relatively 18.8% more recognizable objects 463

and 25.0% more actions than the most unhelpful 464

texts. This suggests that textual references to ob- 465
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later on that night, elaine is in her apartment preparing a concoction of some sort, with ingredients
being thrown into a small cauldron. she reads the ingredient list from an old apothecary book. as she
turns the page, we see that she is preparing for a love spell.

Helpful Text

a weirdo in a cat costume, walks in. he is actually the housekeeper's son, and comes there for shelter
because he just robbed a jewelry store and escaped from the police. he wants the doctor to change his
face to avoid being caught and sent to jail, but the mother refuses her son, believing that he's too crazy
for that.

Unhelpful Text

Figure 3: Examples from the most and least helpful text clusters. Bound boxes of the same color in text and video
frame denote video-text correspondence. The black line denotes the boundary between the two video segments to
be ordered.

Objects
Detected

Actions
Recognized

Helpful Text 0.19 0.20
Unhelpful Text 0.16 0.16

Table 5: Number of words that match exactly the de-
tected object names or action names per text description.

jects and actions in the video may have contributed466

to the temporal ordering task. Noting that a text467

description in this experiment contains 83 words468

on average, the detected objects and actions ap-469

pear rather scarce. We once again attribute this470

observation to the reporting bias in the dataset.471

7 Multimodal Retrieval472

In this section, we establish baselines on the task of473

video-text retrieval on SYMON and the YouTube474

Movie Summary (YMS) (Dogan et al., 2018),475

which serve as benchmarks for future research.476

7.1 Network Architecture477

We employ pretrained UniVL encoders without the
cross encoder. We encode the ith text with the text
encoder, producing feature ti, and encode the ith

video segment with the video encoder, producing
feature vi. The similarity between the two is simply
their dot product. With randomly sampled negative
text features tk, k ̸= i and video features vk, k ̸= i,
we use the NCELoss (Gutmann and Hyvärinen,

2010):

(4)

LNCE =
1

N

N∑
i=1

−v⊤
i ti + log

(
expv⊤

i ti

+
K∑
k ̸=i

expv⊤
i tk +

K∑
k ̸=i

expv⊤
k ti

)
where N is the total number of training samples 478

and K the number of negative samples. 479

7.2 Retrieval on SYMON 480

For the retrieval task, we create training, valida- 481

tion, and test sets with 4,191, 500 and 502 videos, 482

respectively. No movies or movie franchises ap- 483

pear in two sets simultaneously. The videos are 484

divided into non-overlapping clips, each consisting 485

of two scenes and having mean duration of 4.4 sec- 486

onds. YouTube videos often contain introduction 487

and channel information at the beginning and the 488

end, so we exclude 5% at each end of the videos. 489

In Table 6, we report recall at 1, 5, and 10 items 490

(R@1, R@5, and R@10), and Median Rank (MR). 491

As the video and the text are not exactly matched 492

by time, given a video clip, we consider the three 493

closest sentences as correct answers and vice versa. 494

As we expect, the UniVL network finetuned on 495

SYMON (UniVL-SYMON) outperforms the origi- 496

nal UniVL weights. 497

7.3 Transfer to YMS 498

Without in-domain finetuning, we directly test the 499

model trained on SYMON on the YMS dataset, 500

which contains 94 YouTube movie summary videos 501
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Model R@1 R@5 R@10 MR

Text-to-video Retrieval
UniVL 0.11 0.39 0.63 4818
UniVL-SYMON 0.73 2.02 3.07 1785

Video-to-text Retrieval
UniVL 0.03 0.11 0.19 5687
UniVL-SYMON 0.89 2.03 2.93 1843

Table 6: Retrieval performance on SYMON

with manual annotation of fine-grained video-text502

alignment. To prevent test data leak, we remove503

any summary videos for the 94 YMS movies from504

the training set used in this experiment.505

Evaluation. In YMS, a text segment may corre-506

spond to multiple video clips, whereas a video clip507

may correspond to one or zero text segment. Dur-508

ing inference, we align every video clip to the text509

segment with the highest similarity, as computed510

by the neural network. This creates the desired511

many-to-one alignment. If the highest similarity512

falls below a threshold, tuned on the validation513

set, the video clip is considered as not matching514

anything.515

Following Dogan et al. (2018), we use clip ac-516

curacy (i.e. the temporal proportion of correctly517

aligned video segments), and sentence IoU (i.e.518

the intersection-over-union metric between aligned519

video durations and ground-truth durations) as eval-520

uation metrics.521

Baselines. Using the network described in §7.1,522

we compare the original UniVL weights, UniVL523

finetuned on SYMON data (UniVL-SYMON), as524

well as the supervised NeuMATCH network with-525

out the sequential context (i.e., the minimum dis-526

tance (MD) baseline from Dogan et al. (2018)).527

Note that UniVL-SYMON is trained with two528

video scenes as the basic unit for retrieval and529

NeuMATCH-MD uses more finely segmented units.530

As YMS contains fine-grained annotations, it is531

likely that this comparison puts our network at a532

disadvantage.533

Test Data Split and Segmentation. For fair com-534

parison with NeuMATCH-MD, we use the original535

test set of 15 videos and the original video seg-536

mentation. In addition, we also create a new split537

using 70% of the entire YMS as the test set and538

30% as the validation set. In this new setting, the539

Clip Acc. Sent. IoU

Original Data Split and Segmentation
UniVL 3.7 1.5
NeuMATCH-MD (Supervised) 4.0 2.4
UniVL-SYMON 5.4 2.6

New Data Split and Segmentation
UniVL 4.3 2.1
UniVL-SYMON 6.2 2.4

Table 7: Zero-shot alignment performance on YMS.

videos are segmented into scenes as detected in our 540

preprocessing (§4). 541

Results. Table 7 shows the results. Despite the 542

difference in segmentation and the weak supervi- 543

sion from SYMON, UniVL-SYMON outperforms 544

the supervised NeuMATCH-MD baseline. This 545

shows that UniVL-SYMON learns a superior cross- 546

modality distance metric, demonstrating the util- 547

ity of the large-scale SYMON dataset. UniVL- 548

SYMON also outperforms the original UniVL by 549

1.7% / 1.1% in the original setting and 1.9% / 550

0.3% in the new setting. Considering UniVL was 551

trained on the gigantic HowTo100M dataset, we 552

attribute the improvement to the similarity between 553

SYMON and YMS, which highlights the effective- 554

ness of SYMON in the domain of story video un- 555

derstanding. 556

8 Conclusion 557

In this work, we collect and process a story un- 558

derstanding SYMON. We compare SYMON with 559

existing video-language datasets and quantitatively 560

analyze the story coverage, the amount of mental- 561

state descriptions, and the semantic divergence be- 562

tween video and text. Furthermore, we establish 563

multimodal retrieval baselines for SYMON and a 564

zero-shot alignment baseline on YMS to demon- 565

strate the effectiveness of SYMON in story under- 566

standing. We believe SYMON will serve as a new 567

challenge for the research community and inspire 568

new advances of multimodal machine learning. 569

9 Potential Ethical Impact 570

In this paper, we collect user-uploaded videos from 571

YouTube, which are summaries of mostly western 572

movies and TV shows in the English language. We 573

recognize that movies and TV shows are fictional 574

in nature, and often prioritize dramatic events over 575

8



faithful representation of real-life scenarios. In ad-576

dition, the videos may reflect particular bias of the577

creators of the movie and TV shows or the creators578

of the summary videos, as well as bias from partic-579

ular cultures or the time periods of production.580

For these reasons, we urge researchers to take581

caution when attempting to learn social norms from582

such videos. For example, events of bank robberies583

may be over-represented in these videos, and a584

machine learning model may inadvertently infer585

that robbing a bank is part of the social norm. In586

addition, the model may incorrectly learn from587

disproportional association of certain groups of588

people with certain social status, occupations, and589

other cultural constructs.590

We further note that most relations between591

events are probabilistic and neither necessary nor592

sufficient. For example, though it is common for593

someone with a medical emergency to call for an594

ambulance, it does not always happen. We sug-595

gest researchers to similarly qualify any learned596

relations. The dataset is intended for fundamental597

research and not real-world deployment.598
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A Story Coverage947

Dynamic Time Warping We present the DTW948

problem formulation: given the WikiPlots se-949

quence of sentences A = (a1, . . . , aN ) and the950

video narration sentences B = (b1, . . . , bM ), we951

seek the best set of correspondence {(ai, bg(i))}Ni=1, 952

where the function g(i) ∈ {ϵ, 1, . . . ,M} returns 953

the index in sequence B that matches sentence ai in 954

A. Setting g(i) = ϵ indicates that ai is not matched 955

with any sentence in B. 956

The DTW algorithm can be understood as find- 957

ing the shortest path in a graph, where each node 958

(i, j) in the graph represents matching sentence ai 959

and sentence bj . The graph contains dummy nodes 960

(0, 0) and (N + 1,M + 1). From node (i, j), we 961

can transit to node (i + 1, j + 1), which would 962

match ai+1 with bj+1 and incur cost c(i+1, j+1). 963

964

c(i+ 1, j + 1) = 1− P (ai+1 ⇔ bj+1). (5) 965

Here P (ai+1 ⇔ bj+1) denotes the probability that 966

sentences ai+1 and bj+1 are equivalent, as deter- 967

mined by the Natural Language Inference classifier. 968

Similarly, we can transit from (i, j) to (i+ 1, j), 969

which would match ai+1 with bj and incur cost 970

c(i+1, j). The transition from (i, j) to (i, j+1) is 971

symmetric. Additionally, we can transit from (i, j) 972

to (i, j + 1, ϵ), which prevents bj+1 from match- 973

ing anything. From (i, j + 1, ϵ), we may transit 974

to (i, j + 2, ϵ), (i, j + 2), or (i + 1, j + 2). The 975

costs of ignoring a sentence in A and B are δA 976

and δB respectively. With this setup, the best cor- 977

respondence can be found as the path from (0, 0) 978

to (N + 1,M + 1) with minimum cost. We find 979

optimal δA and δB using manually labeled sentence 980

correspondence. 981

Annotation instructions Fig. 4 shows the in- 982

structions we give to our annotator. Here column 983

A is the WikiPlot summary and column B is the 984

summary from SYMON or CMD or LSMDC. 985

B Video Temporal Ordering 986

Hyperparameters. We sample each video seg- 987

ment at 16 frames per second (FPS) and extract 988

features with S3D (Xie et al., 2018) pretrained on 989

HowTo100M. Each video video segment last ex- 990

actly 8 seconds. We extract S3D features every 991

second (i.e. from 16 frames), yielding 8 1024- 992

dimensional video features for each video segment. 993

For video features extraction we use frame size of 994

112× 112. 995

We extract the text between the start of the first 996

video segment and the end of the second video seg- 997

ment. To ensure completeness, the text is extended 998

to the nearest sentence boundaries. The maximal 999
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Instructions

Columns A and B are different narratives of the same story. For
each sentence is column A try to find an equivalent sentence in
column B and put it’s index in the brackets. If there’s not
equivalent sentence to be found, leave the bracket empty.

[0]Audrey Burke (Halle Berry)
and her warm and loving
husband Brian (David
Duchovny) have been happily
married 11 years.(   )


[1]they have a 10-year-old
daughter named Harper
(Alexis Llewellyn) and a 6-
year-old son named Dory
(Micah Berry).(   )


 ......

A

[0]Audrey (Halle Berry) and
Jerry (Benicio Del Toro)
reunite at her husband's
funeral.

[1]Audrey (Halle Berry) and
Brian (David Duchovny)
share their final moment
together just hours before
Brian is murdered.

 ......

B

Figure 4: Annotation Instruction

number of text tokens is 128. For longer texts, we1000

remove extra tokens from the start and end of the1001

text. For shorter texts, we add zero padding to the1002

end.1003

The text encoder, video encoder, and cross en-1004

coder consist of 12, 6, 2 Transformer layers, re-1005

spectively. The models are trained for 30 epochs1006

with learning rate warm-up in the first 6 epochs.1007

Hyperparameters are tuned on the validation set.1008

The text-aware model is trained with a batch size1009

of 128 and learn rate of 5e− 6 and the visual-only1010

model is trained with a batch size of 256 and initial1011

learning rate of 1e− 5. We apply cosine learning1012

rate decay and the Adam optimizer to all models.1013

The model contains 217,185,539 parameters and1014

is trained for 2.7 hours on 4 Nvidia 3090 GPUs.1015

The results reported in the main paper are on a1016

single run.1017

Calculating overlap between text description1018

and object/action class We first tokenize the text1019

description and use part-of-speech tagging to iden-1020

tify nouns and verbs in the text description (Bird1021

et al., 2009). For matching with object and action1022

detection, we retain the nouns and verb from text1023

description, respectively. We also lemmatize the1024

retained words to remove variations and remove1025

common nouns and verbs (“men”, “women”, “per-1026

son”, and “clothing” for nouns and “is”, “go”, “to”,1027

“get”, “have”, “look”, “walk”, “play”, and “take”1028

for verbs). For object detection we retain the top1029

10 class predictions for each clip. For action detec-1030

tion we divide the clip into scenes and retain the1031

Text Encoder

(12-layer Transformer)

Video Encoder

(6-layer Transformer )

mean pooling mean pooling

dot product

similiarity

Figure 5: Retrieval Model

top 3 class prediction for each scene. Finally, we 1032

calculate the number of time the retained nouns or 1033

verbs appear in the detected object or action class 1034

names. 1035

C Retrieval 1036

Hyperparameters. For video feature extraction 1037

we sample the video at 16 FPS and use S3D pre- 1038

trained on HowTo100m to extract one 1024 dimen- 1039

sional feature every 16 frames. The frame size is 1040

112× 112. For each clip we extract 4 features, if 1041

the clip is shorter than 4 seconds zero padding is 1042

add and if the clip is longer than 4 seconds we only 1043

use the first 4 second. Likewise, we take 64 text to- 1044

kens for each clip. Text is extracted from between 1045

the start ans end of the video clip and extended to 1046

the nearest sentence boundaries. The video and 1047

text encoders consist of 12 and 6 transformer lay- 1048

ers respectively, and are initialized from UniVL 1049

pretrained on HowTo100m. The outputs are then 1050

averaged into two 768 dimensional embeddings for 1051

video and text. The similarity between a video, text 1052

pair is calculated as the dot product of the video 1053

and text embeddings. The model is finetuned on 1054

SYMON with an initial learning rate of 5e− 5 and 1055

cosine learning rate decay. We use a batchsize of 1056

1024 and train for 20 epoches, the first epoch is 1057

warm up. SGD with momentum of 0.9 is used 1058

for optimization and s weight decay term of 0.5 is 1059

added for regularization. 1060

The model contains 153,784,064 parameters and 1061

is trained for 4 hours on 4 Nvidia 3090 GPUs. The 1062

results reported in the main paper are on a single 1063

run. 1064

D Implementation and Licensing Details 1065

For the subtitle masking in §4 we used EasyOCR 1066

(Baek et al., 2019) for image character recogni- 1067
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tion. The model we use is the english_g2 model1068

from https://www.jaided.ai/easyocr/1069

modelhub/. EasyOCR (Baek et al., 2019) is li-1070

censed under the Apache License, Version 2.0.1071

For the punctuation restoration in §41072

we used the network from Alam et al.1073

(2020). The model we use is given here1074

https://drive.google.com/file/d/1075

17BPcnHVhpQlsOTC8LEayIFFJ7WkL00cr/1076

view. The network and model are released under1077

the MIT license.1078

For scene segmentation in §4 we used TransNet-1079

V2 (Souček and Lokoč, 2020) to identify scene1080

boundaries, the network weight are from think1081

link https://github.com/soCzech/1082

TransNetV2/tree/master/inference/1083

transnetv2-weights. For every frame, the1084

network predict the probability of a scene change1085

occurring immediately after the frame, if the1086

probability is larger than a threshold of 50%, we1087

deem a scene change had occured. TransNet-v21088

(Souček and Lokoč, 2020) is released under the1089

MIT license.1090

For entailment prediction in §5.1 we use1091

AdversarialNLI (Nie et al., 2020), specifically the1092

’roberta-large-snli_mnli_fever_anli_R1_R2_R3-1093

nli’ model. AdversarialNLI (Nie et al., 2020)1094

is released under the MIT licence. For this1095

section we use WikiPlot summaries from https:1096

//github.com/markriedl/WikiPlots1097

as ground truth movie summaries. The release does1098

not include a license. Additionally, we compare1099

our dataset to the CMD (Bain et al., 2020) dataset1100

and LSMDC (Rohrbach et al., 2017) dataset,1101

both are released under the Creative Commons1102

Attribution 4.0 International License.1103

For the mental-state description experiment1104

in §5.2, we collect emotion related words from1105

WordNet-feelings (Siddharthan et al., 2018)1106

dataset. The release does not include a license.1107

We collect intention, motivation related words1108

from the top 200 nearest neighbors on Fast-1109

text (Girshick, 2015) word embedding, which1110

is acquired from https://github.com/1111

facebookresearch/fastText/blob/1112

master/docs/crawl-vectors.md. fast-1113

Text (Girshick, 2015) is released under the MIT1114

licence. The word embedding is release under1115

the Creative Commons Attribution-Share-Alike1116

License 3.0. The ActivityNet dataset (Krishna1117

et al., 2017) is licensed under the MIT license.1118

For the video sequencing experiment in §6, 1119

we use UniVL (Luo et al., 2020) pretrained on 1120

HowTo100m (Miech et al., 2019). The model 1121

weights are initialized from https://github. 1122

com/microsoft/UniVL/releases/ 1123

download/v0/univl.pretrained.bin. 1124

UniVL (Luo et al., 2020) and HowTo100m (Miech 1125

et al., 2019) are licensed under MIT and Apache 1126

License 2.0 respectively. 1127

For object recognition in §6, we use Faster- 1128

RCNN (Girshick, 2015) trained on Open Images 1129

V4 (Kuznetsova et al., 2020) to detect objects from 1130

video frames, and 3D-ResNet (Hara et al., 2018) 1131

trained on Kinetics-700 (Kay et al., 2017) to detect 1132

actions. Faster-RCNN (Girshick, 2015) and 3D- 1133

ResNet (Hara et al., 2018) are licensed under the 1134

MIT license. Open Images V4 is released under 1135

Apache License 2.0. Kinetics-700 is licensed un- 1136

der the Creative Commons Attribution 4.0 Interna- 1137

tional License. The text descriptions are processed 1138

with the nltk package (Bird et al., 2009), licensed 1139

under Apache License 2.0. 1140

For the multimodal retrieval task in §7, we 1141

use the YMS dataset (Dogan et al., 2018) 1142

from https://github.com/RubbyJ/ 1143

Data-efficient-Alignment. 1144
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