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Abstract

Despite recent advances of Al, story un-
derstanding remains an open and under-
investigated problem. We collect, prepro-
cess, and publicly release a video-language
story dataset, Synopses of Movie Narratives
(SYMON), coﬁining 5,193 video summaries
of popular movies and TV series. SYMON
captures naturalistic storytelling videos for hu-
man audience made by human creators, and
has higher story coverage and more frequent
mental-state references than similar video-
language story datasets. Differing from most
existing video-text datasets, SYMON features
large semantic gaps between the visual and the
textual modalities due to the prevalence of re-
porting bias and mental state descriptions. We
establish benchmarks on video-text retrieval
and zero-shot alignment on movie summary
videos. With SYMON, we hope to lay the
groundwork for progress in multimodal story
understanding.

1 Introduction

Stories are complex artifacts that succinctly encode
the human experience. The understanding of story
content involves high-level semantic concepts such
as character motivations and intentions (Emelin
et al., 2020; Rashkin et al., 2018), events structures
(Chambers and Jurafsky, 2008; Li et al., 2013; Pi-
chotta and Mooney, 2016; Ferraro and Van Durme,
2016; Martin et al., 2018; Wang et al., 2021; Caselli
etal., 2021), as well as social relationships among
story characters (Elson et al., 2010; Chaturvedi
et al., 2016; Kim and Klinger, 2019). To this day,
understanding of story semantics remains an open
and under-investigated problem.

The recent emergence of user-generated, “a
movie in X minutes” videos offers a rich source of
naturalistic storytelling videos. These videos usu-
ally select clips that depict key story events from
amovie or a TV series. The narrator recounts the
story alongside the video. These videos provide
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Figure 1: An example video with narration text from
SYMON. The video has been automatically segmented
into three scenes. We show the boundary timestamps.

condensed yet complete storylines that are carefully
assembled for human viewers by human creators.

We identify, collect, preprocess, and publicly
release a video-language story dataset, named
Synopses of Movie Narratives (SYMON). The
dataset includes 5,193 user-generated video sum-
maries of popular movies and TV series for a to-
tal length of 869 hours. For 857 movies, multi-
ple summary videos are available, which may be
used as references for generation or summariza-
tion. In Figure 1, we show an example video and
text description from SYMON. We empirically ver-
ify SYMON as the prototypical story dataset, as
it has higher coverage of plotlines and more fre-
quent mental-state references than several similar
video-language story datasets.

However, the nature of storytelling poses unique
obstacles for computational understanding due to
the semantic divergence between the video and
text. First, in the phenomenon known as report-
ing bias (Gordon and Van Durme, 2013), human
narrators tend to avoid stating the obvious. For
example, in Figure 1, the video shows Harry Pot-



ter lying on the floor, while the narrator states ...
knocking him unconscious”. To recognize that ly-
ing on the floor is a consequence of being knocked
unconscious requires event-level cause-and-effect
reasoning, which may prove difficult for today’s
Al (Sap et al., 2019). Second, the story texts con-
tain frequent mentions of story characters’ mental
states (§5.2), which may not be easily recogniz-
able from video. This contrasts with crowdsourced
datasets like Charades (Sigurdsson et al., 2016)
where humans are asked to follow textual instruc-
tions, or LSMDC (Rohrbach et al., 2017) where
the narration meticulously describes the imagery
for audience with visual impairment.

To examine the cross-modality semantic gap, we
design a simple task that temporally orders two
video segments. A large pretrained UniVL model
(Luo et al., 2020) demonstrates mediocre perfor-
mance and limited utilization of textual informa-
tion, highlighting the challenge posed by SYMON.

As benchmarks for future research, we estab-
lish baselines for text-to-video and video-to-text
retrieval on SYMON and a zero-shot video-text
alignment baseline using the YMS dataset as test.
Together, the weakly supervised SYMON and the
fully annotated YMS form a complete benchmark,
serving as a new challenge for the multimodal re-
search community.

Our contributions are three-fold:

* We collect, preprocess, and publish a large-
scale movie summary dataset, which can sup-
port various multimodal tasks such as re-
trieval, captioning, and summarization.

* We preform extensive experiments to quantify
the characteristics of SYMON, including its
coverage of major plotlines, the amount of
mental-state descriptions, and the semantic
divergence between text and video.

¢ To facilitate future research, we establish base-
lines for text-video retrieval on SYMON and
zero-shot transfer to the YouTube Movie Sum-
mary dataset (YMS) (Dogan et al., 2018).

2 Related Work

Datasets for Event and Story Understanding.
Events and story structures are closely related
(Caselli et al., 2021). Existing datasets provided
annotations for the the temporal aspects, such as
temporal precedence and duration (UzZaman et al.,

2013; Chambers et al., 2014; Ning et al., 2020;
Zhou et al., 2021; Vashishtha et al., 2019, 2020),
and causal relations between events (O’Gorman
et al., 2016; Roemmele et al., 2011).

Several datasets explore individual components
of stories, including sentence ordering (Gangal
et al., 2021), social norms and moral consequences
(Emelin et al., 2020), plausible antecedent (Bha-
gavatula et al., 2020), intentions and effects on
mental states (Rashkin et al., 2018), high-level
story structures (Ouyang and McKeown, 2015; Li
et al., 2018), and story character descriptions (Brah-
man et al., 2021). Sap et al. (2019) consider rela-
tions between events, persona, and mental states.
Some datasets aim at summarization for screen-
plays or conversation transcripts (Gorinski and La-
pata, 2015; Papalampidi et al., 2020; Chen et al.,
2021). Notably, Sadhu et al. (2021) annotate event
relations from video.

Researchers also develop general-purpose QA
datasets conditioned on comprehension of story
texts, such as MCTest (Richardson et al., 2013),
NarrativeQA (Kodisky et al., 2018), and FriendsQA
(Yang and Choi, 2019). Multimodal counterparts
like MovieQA (Tapaswi et al., 2016), TVQA (Lei
et al., 2018), and Pororo (Kim et al., 2017) are
available. However, not every question in the QA
datasets requires in-depth narrative understanding.

Video-Text Movie Story Datasets. A number
of datasets supply story content extracted from
movies. The Large-Scale Movie Description Chal-
lenge (LSMDC) (Rohrbach et al., 2017) combined
the efforts of MPII-MD (Rohrbach et al., 2015)
and M-VAD (Torabi et al., 2015) and provide de-
tailed language descriptions initially intended for
the visual impaired. Although these descriptions
are highly accurate, they may not be representative
of real-world storytelling.

YouTube Movie Summary (YMS) (Dogan et al.,
2018) contains 94 YouTube movie summary videos
with human-narrated storylines. The Condensed
Movies Dataset (CMD) (Bain et al., 2020) gath-
ers 7 to 11 key clips from each movie with one-
sentence descriptions for each clip. Pororo (Kim
et al., 2017) captures 20-minute cartoon episodes,
in-show conversations, and human-written descrip-
tions. MovieNet (Huang et al., 2020) annotate 2000
hours of movies with extensive annotations and
aligned movies scripts. However, due to copyright,
legal clearance for the video release is still pending
at the time of writing.



Video

hours #Videos (#Clips) #Sent Vocab.
CMD 1,270 3,605 (33,976) 35,681 15,272
M0V1-eNet (video release 2000 1,100
pending)
LSMDC 147 200 (128,085) 128,118 22,500
Pororo 20.5 171 (16,066) 43,394
MovieGraph 94.0 51 (7,637) 20,849
SYMON (Ours) 869 5,193 683,611 40,116

Table 1: Comparison of video description datasets with story content.

Other types of video annotations have been ex-
plored, including semantic roles and event relations
(Sadhu et al., 2021), character relationships and
types of speech (Wu and Krahenbuhl, 2021), and
movie graphs (Vicol et al., 2018).

In this work, we collect a large-scale, readily
available, multi-reference dataset of human-curated
movie summaries, named SYMON. The dataset
can be leveraged for various story understanding
and generation tasks such as sequential text local-
ization, story generation from video, and movie
summarization. To our knowledge, SYMON is
the largest dataset for short naturalistic storytelling
videos.

3 Dataset Collection and Statistics

We apply the following procedure for data collec-
tion. First, we manually identify relevant YouTube
channels by searching with keywords such as
“movie summary”’, ‘“movie recap”’, and “movie
shortened”. We download all videos from the iden-
tified channels and accompanying subtitles, which
may be written by humans or automatically gen-
erated by YouTube. Videos without subtitles are
excluded. Finally, we perform rule-based extrac-
tion of movie names from metadata and subtitles
and discard videos that are not movie summaries.
This yields a total of 5,193 videos with an av-
erage length of 9.5 minutes and a total length of
869 hours. On average, the narration in one video
contains 1,717 words or 131 sentences. The overall
vocabulary size is 40,116. SYMON contains sum-
maries for 2,440 movies and TV series, of which
857 have more than 1 summary. The most popular
TV series, The Walking Dead, has 84 summaries.
On average, one movie or TV series in the 857 has
4.21 summaries. Compared to existing datasets
(see Table 1) SYMON is one of the largest movie

narrative datasets with most diverse vocabulary. In
addition, SYMON has more complete coverage of
story events than LSMDC and CMD (§5.1).

4 Preprocessing

Subtitle Masking. Some videos have subtitles
embedded in the video. In tasks like text-to-video
retrieval, the embedded subtitles may become a
shortcut feature, causing networks to learn only
optical character recognition.

To eliminate shortcuts, we locate embedded sub-
titles and mask them out. For efficiency, we ran-
domly sample 100 frames from each video and
apply an accurate text detection technique (Baek
et al., 2019). Observing that the subtitles are almost
always at the same location in a single video, we
take the minimum bounding box that can cover all
embedded subtitles in all 100 frames as the masked
region; we set all pixels in the region to black.

Punctuation Restoration. We acquire subtitle
texts from YouTube directly. Sometimes the texts
are the result of automatic speech recognition,
which cannot recognize punctuation. To fix this,
for every unpunctuated narration text, we generate
punctuation with (Alam et al., 2020).

Scene Segmentation. Later experiments require
temporal segmentation of videos based on camera
cuts. For this purpose, we run the dataset through
the network of Soucek and Lokoc¢ (2020), which
detects hard camera cuts. A scene, defined as the
continuous shot between two cuts, lasts 2.2 sec-
onds on average. This is similar to CMD, another
movie dataset, whose scenes last 2.4 seconds on
average. However, average scenes in ActivityNet
(Caba Heilbron et al., 2015) and Kinetics-400 (Kay
et al., 2017) last for 11.1 seconds and 30 seconds
respectively. This shows camera cuts in movies are



much more frequent than the user-generated videos
in ActivityNet and Kinetics.

5 Characteristics of SYMON Stories

5.1 Story Coverage

To facilitate story understanding, it is desirable that,
despite their short lengths, the videos in SYMON
provide sufficient coverage (Bain et al., 2020) over
major plot points of the original movies or TV
shows. In this experiment, we treat Wikipedia plot
summaries (WikiPlots)! as ground truth and esti-
mate the extent the stories in CMD, LSMDC, and
SYMON cover the sentences in WikiPlots.

We use a three-step procedure for computing
story coverage. First, we match movie summary in
our dataset to their WikiPlots summaries by name.
Second, we estimate if a sentence from the video
narration is equivalent to a sentence in WikiPlots us-
ing the natural language inference (NLI) classifier
from Nie et al. (2020). From two input sentences a
and b, the NLI classifier predicts one of three pos-
sibilities: a entails b; a contradicts b; and neither is
true. As entailment is asymmetric, we use the aver-
age probability for both directions (a entails b and
b entails a) as the probability that a and b are equiv-
alent. Finally, we find the best correspondence
between two texts using Dynamic Time Warping
(DTW) (Berndt and Clifford, 1994), which opti-
mizes correspondence over entire sequences.

Briefly, DTW is a dynamic programming algo-
rithm that seeks minimum-cost correspondence be-
tween two sequences, the WikiPlots sentence se-
quence A, and the narration sentence sequence B.
We refer readers to the Appendix for a detailed de-
scription of the DTW algorithm. Using manually
labeled sentence correspondences, we determine
two model parameters, d4 and dp, which denote
the respective costs for skipping a sentence in se-
quences A and B.

We manually labeled the correspondence be-
tween around 500 sentences in CMD with
Wikiplots stories, and did the same for SYMON.
For LSMDC, we labeled around 1300 sentences
because LSMDC texts are much longer. A second
annotator labeled a small portion of data from each
dataset to compute inter-rater reliability. The Co-
hen Kappa on SYMON, CMD and LSMDC are
0.86, 0.59, and 0.33 respectively. We believe the

"https://github.com/markriedl/
WikiPlots

CMD LSMDC SyMoN
10.8% 18.1% 37.9%

Story Coverage

Table 2: Estimated story coverage with sentence entail-
ment and Dynamic Time Warping.

low agreement on LSMDC is caused by the mis-
match in the text lengths. Texts in LSMDC are
longer than all other story texts, which led to diffi-
culties in precisely locating the correspondence.

With a grid search, we find the optimal J 4 and
dp as those that cause DTW to identify matched
sentences the most accurately. The accuracy is
defined as

1 Twiki Ttext
Accuracy = 3 (]VWlkl + Ntext) . (1)

Here TV and N% are the number of correctly
matched and the total number of WikiPlots sen-
tences, respectively. 7' and N'*" are the number
of correctly matched and the total number of video
narration sentences. We do not directly optimize
story coverage because doing so results in incor-
rectly matched sentences that artificially inflate the
story coverage measurement.

With the optimal d 4 and 65, we perform DTW
again and calculate story coverage as the propor-
tion of WikiPlots sentences matched with narration
sentences,

K

1 M;
Coverage = Ve Z NTfkl, )
i i

where K is the number of WikiPlots movies ap-
pearing in the video dataset. In the i WikiPlots
text, M; denotes the number of matched sentences
and N ki denotes the total number of sentences.

Table 2 shows the story coverage results. Of
the three datasets, SYMON provides the highest
coverage. LSMDC comes in second place, partially
because it contains significantly longer descriptions
for each movie than the other datasets.

5.2 Mental State Descriptions

A crucial component of story understanding is to
develop theory of mind for the story characters, that
is, to understand their mental states, such as emo-
tions, motivations, and intentions (Bruner, 1986;
Happé, 1994; Pelletier and Beatty, 2015). How-
ever, these concepts tend to be under-represented
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Emotion Motivation Intention
CMD 38.9 1.41 94
LSMDC 33.5 0.62 2.8
AcitivityNet Cap- 27.5 0.51 2.7
tions
SYMON (Ours) 57.6 1.58 23.9

Table 3: Frequency of words related to emotion, moti-
vation, and intention per one thousand words in the text
corpora.

in the textual descriptions from commonly used
video-language datasets.

In this experiment, we measure the frequency
of words related to emotions, motivations, and in-
tentions in the text associated with the videos. For
emotional words, we adopt the WordNet-feelings
dataset (Siddharthan et al., 2018), which includes
11387 emotion-related words identified by human
experts. For motivation and intention words, we
find 200 nearest neighbors of the words “motiva-
tion” and “intention” using 300-dimensional fast-
Text embedding (Bojanowski et al., 2017) trained
on Wikipedia and Common Crawl?. We select 200
words as we find additional neighbors to be irrele-
vant to motivation and intention.

Table 3 reports word frequencies for every thou-
sand words in four video-language datasets. We ob-
serve that SYMON employs mental-state words the
most frequently and uses intention-related words
2.5 times as often as the next dataset, CMD. Activ-
ityNet Captions (Krishna et al., 2017), containing
matter-of-fact descriptions of actions in generic
user-uploaded videos, uses the least of such words.
LSMDC, which contains literal descriptions of
movie clips, is ranked the third. CMD has a fo-
cus on the story content and is ranked the second.
Overall, we find the ranking consistent with the
nature of the datasets, as story text describes men-
tal states more often than literal descriptions of
generic videos. SYMON appears to be the most
prototypical story dataset of the four.

6 Understanding Video-Text Divergence
by Sequencing Videos

As discussed earlier, SYMON are characterized by
large gaps between the textual and visual modal-
ities due to the reporting bias, or the tendency to

2Acquired from https://github.com/
facebookresearch/fastText/blob/master/
docs/crawl-vectors.md.

avoid stating what can be easily observed from the
video, and the prevalence of mental state descrip-
tions, which are often not visible from the video. In
this section, we report an experiment designed to
estimate the extent of video-text correspondence.

Problem Definition. Similar to event/sentence
ordering (Liu et al., 2018; Devlin et al., 2019),
we predict the correct ordering of two consecu-
tive video segments separated by a hard camera cut.
The network predicts one of two classes: video
segment 1 precedes segment 2 or vice versa. To
create balanced classification, we randomly flip the
ordering of the two video segments. We extract
the text description that spans the same duration
as the two video segments and expand the text to
sentence boundaries.

We design two networks, one utilizing the unal-
tered textual description and the other solely rely-
ing on visual input. This setup allows us to estimate
the amount of information provided by text. That
is, if the text provides grounding to elements in
both video segments, it should help the text-aware
network predict the correct ordering.

Network Architecture. We adopt three pre-
trained modules, the text encoder, the video
encoder, and the cross-modality encoder from
UniVL (Luo et al., 2020), which are pretrained
on HowTol100M (Miech et al., 2019), and finetune
the weights. The two video segments are encoded
separately and their features are concatenated with
the encoded text feature. After that, the two groups
of features go through the cross encoder indepen-
dently, yielding feature vectors fi and f>. With
parameter w, the prediction is

Plii=1)=o(w' fi—w'fo). (3)

where o(-) is the sigmoid function and ¢ is the
predicted class index. Figure 2 shows the overall
network architecture.

As a baseline, we also create a network that relies
on only the visual input, in which we replace the
textual feature fed into the cross encoder with an
all-zero vector. The rest of the network architecture
remains the same.

Experimental Setup. To cover as much data as
possible, we adopt a special dataset split, contain-
ing Set A of 2,444 videos, Set B of 2,289 videos,
and a validation set of 500 videos. Each network
is trained on Set A and tested on Set B, and then
trained on Set B and tested on A. We report the
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[cls] As Mordor crumbles,

Frodo departs Middle-Earth for the
undying lands with his uncle Bilbo,
Gandalf and the elves. [sep]
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Figure 2: The network architecture for the temporal ordering task. The double vertical lines indicate weight sharing

between modules.

average test accuracy. We tuned hyperparameters
extensively on the validation set and select the train-
ing epoch with the highest validation accuracy. To
avoid test data leak, we put all videos of the same
movie or movie franchise to the same set. More
settings can be found in the Appendix.

Results and Discussion. Table 4 lists the predic-
tive accuracy. The network based solely on video
has an accuracy of 63.4%. The incorporation of
textual information improves prediction accuracy
by 5.7%. Noting that chance level is at 50%, we
find the performance to be mediocre. Since UniVL
has been pretrained on HowTo100M and provides
a good initialization, the results underscore the ef-
fects of the semantic gap between video and text.
Without text, 36.6% of data points cannot be
correctly sequenced. Out of these, 5.7/36.6 =
15.6% can be correctly classified with text. As
the 36.6% are difficult data samples, we estimate
the probability that (1) the text makes reference to
both video segments and (2) the network correctly
recognizes the references to be at least 15.6%.

Data Samples. In Figure 3, we present two data
points, one from the 5% most helpful text cluster
and one from the 5% least helpful text cluster. We
observe that the helpful text mentions objects such
as cauldron and book that appear in both video
segments. As a result, both video segments can be
grounded in the text, which provides ordering infor-
mation. In comparison, the unhelpful text mentions
rare object and action such as cat costume and jew-
elry robbery, which are difficult for the network to
learn. Similarly, connecting the text “the mother

Text + Video
Accuracy 69.1%

Only Video
63.4%

Table 4: Temporal order prediction accuracy of the text-
aware and visual-only models.

refuses her son” and the discussion shown in video
is not straightforward and would require identity
tracking and event understanding.

Object and Action Analysis. We examine the
match between text and video with contemporary
technology on object detection and action recog-
nition. First, for every data point, we compute the
confidence of the ground-truth class from the two
models. If the text-aware model has higher confi-
dence than the visual-only model, we consider the
text to be helpful. We rank the data points by the
confidence difference between the two models, and
take 5% data with the most helpful text and 5%
data with the least helpful text.

Next, we run Faster-RCNN (Girshick, 2015)
trained on Open Images V4 (Kuznetsova et al.,
2020) to detect 600 object classes on video frames,
and 3D-ResNet (Hara et al., 2018) trained on
Kinetics-700 (Kay et al., 2017) to detect 700 action
classes. After that, we match the identified objects
and actions to the texts. The Appendix contains
more details.

Table 5 shows that the most helpful texts con-
tain relatively 18.8% more recognizable objects
and 25.0% more actions than the most unhelpful
texts. This suggests that textual references to ob-
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be ordered.
Objects Actions
Detected Recognized
Helpful Text 0.19 0.20
Unhelpful Text 0.16 0.16

Table 5: Number of words that match exactly the de-
tected object names or action names per text description.

jects and actions in the video may have contributed
to the temporal ordering task. Noting that a text
description in this experiment contains 83 words
on average, the detected objects and actions ap-
pear rather scarce. We once again attribute this
observation to the reporting bias in the dataset.

7 Multimodal Retrieval

In this section, we establish baselines on the task of
video-text retrieval on SYMON and the YouTube
Movie Summary (YMS) (Dogan et al., 2018),
which serve as benchmarks for future research.

7.1 Network Architecture

We employ pretrained UniVL encoders without the
cross encoder. We encode the i text with the text
encoder, producing feature ¢;, and encode the i
video segment with the video encoder, producing
feature v;. The similarity between the two is simply
their dot product. With randomly sampled negative
text features t;, k # ¢ and video features vy, k # 1,
we use the NCELoss (Gutmann and Hyvérinen,

2010):

N
1
LncE = N g —vi—rti + log (exp 'viTti
o “)

K K
+ Z exp v;tk + Z exp 'vat,-)
ki ki

where N is the total number of training samples
and K the number of negative samples.

7.2 Retrieval on SYMON

For the retrieval task, we create training, valida-
tion, and test sets with 4,191, 500 and 502 videos,
respectively. No movies or movie franchises ap-
pear in two sets simultaneously. The videos are
divided into non-overlapping clips, each consisting
of two scenes and having mean duration of 4.4 sec-
onds. YouTube videos often contain introduction
and channel information at the beginning and the
end, so we exclude 5% at each end of the videos.

In Table 6, we report recall at 1, 5, and 10 items
(R@1, R@5, and R@10), and Median Rank (MR).
As the video and the text are not exactly matched
by time, given a video clip, we consider the three
closest sentences as correct answers and vice versa.
As we expect, the UniVL network finetuned on
SYMON (UniVL-SYMON) outperforms the origi-
nal UniVL weights.

7.3 Transfer to YMS

Without in-domain finetuning, we directly test the
model trained on SYMON on the YMS dataset,
which contains 94 YouTube movie summary videos



Model R@l1 R@5 R@10 MR Clip Acc. Sent. IoU
Text-to-video Retrieval Original Data Split and Segmentation

UniVL 0.11 039 0.63 4818  UniVL 3.7 1.5

UniVL-SYMoON 0.73 2.02 3.07 1785 NeuMATCH-MD (Supervised) 4.0 24
Video-to-text Retrieval UniVL-SYMON 54 2.6

UniVL 0.03 0.11 0.19 5687 New Data Split and Segmentation

UniVL-SYMON 0.89 2.03 293 1843  UniVL 4.3 2.1

UniVL-SYMoN 6.2 24

Table 6: Retrieval performance on SYMON

with manual annotation of fine-grained video-text
alignment. To prevent test data leak, we remove
any summary videos for the 94 YMS movies from
the training set used in this experiment.

Evaluation. In YMS, a text segment may corre-
spond to multiple video clips, whereas a video clip
may correspond to one or zero text segment. Dur-
ing inference, we align every video clip to the text
segment with the highest similarity, as computed
by the neural network. This creates the desired
many-to-one alignment. If the highest similarity
falls below a threshold, tuned on the validation
set, the video clip is considered as not matching
anything.

Following Dogan et al. (2018), we use clip ac-
curacy (i.e. the temporal proportion of correctly
aligned video segments), and sentence IoU (i.e.
the intersection-over-union metric between aligned
video durations and ground-truth durations) as eval-
uation metrics.

Baselines. Using the network described in §7.1,
we compare the original UniVL weights, UniVL
finetuned on SYMON data (UniVL-SYMON), as
well as the supervised NeuMATCH network with-
out the sequential context (i.e., the minimum dis-
tance (MD) baseline from Dogan et al. (2018)).
Note that UniVL-SYMON is trained with two
video scenes as the basic unit for retrieval and
NeuMATCH-MD uses more finely segmented units.
As YMS contains fine-grained annotations, it is
likely that this comparison puts our network at a
disadvantage.

Test Data Split and Segmentation. For fair com-
parison with NeuMATCH-MD, we use the original
test set of 15 videos and the original video seg-
mentation. In addition, we also create a new split
using 70% of the entire YMS as the test set and
30% as the validation set. In this new setting, the

Table 7: Zero-shot alignment performance on YMS.

videos are segmented into scenes as detected in our
preprocessing (§4).

Results. Table 7 shows the results. Despite the
difference in segmentation and the weak supervi-
sion from SYMON, UniVL-SYMON outperforms
the supervised NeuMATCH-MD baseline. This
shows that UniVL-SYMON learns a superior cross-
modality distance metric, demonstrating the util-
ity of the large-scale SYMON dataset. UniVL-
SYMON also outperforms the original UniVL by
1.7% / 1.1% in the original setting and 1.9% /
0.3% in the new setting. Considering UniVL was
trained on the gigantic HowTol00M dataset, we
attribute the improvement to the similarity between
SYMoN and YMS, which highlights the effective-
ness of SYMON in the domain of story video un-
derstanding.

8 Conclusion

In this work, we collect and process a story un-
derstanding SYMON. We compare SYMON with
existing video-language datasets and quantitatively
analyze the story coverage, the amount of mental-
state descriptions, and the semantic divergence be-
tween video and text. Furthermore, we establish
multimodal retrieval baselines for SYMON and a
zero-shot alignment baseline on YMS to demon-
strate the effectiveness of SYMON in story under-
standing. We believe SYMON will serve as a new
challenge for the research community and inspire
new advances of multimodal machine learning.

9 Potential Ethical Impact

In this paper, we collect user-uploaded videos from
YouTube, which are summaries of mostly western
movies and TV shows in the English language. We
recognize that movies and TV shows are fictional
in nature, and often prioritize dramatic events over



faithful representation of real-life scenarios. In ad-
dition, the videos may reflect particular bias of the
creators of the movie and TV shows or the creators
of the summary videos, as well as bias from partic-
ular cultures or the time periods of production.

For these reasons, we urge researchers to take
caution when attempting to learn social norms from
such videos. For example, events of bank robberies
may be over-represented in these videos, and a
machine learning model may inadvertently infer
that robbing a bank is part of the social norm. In
addition, the model may incorrectly learn from
disproportional association of certain groups of
people with certain social status, occupations, and
other cultural constructs.

We further note that most relations between
events are probabilistic and neither necessary nor
sufficient. For example, though it is common for
someone with a medical emergency to call for an
ambulance, it does not always happen. We sug-
gest researchers to similarly qualify any learned
relations. The dataset is intended for fundamental
research and not real-world deployment.
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A Story Coverage

Dynamic Time Warping We present the DTW
problem formulation: given the WikiPlots se-
quence of sentences A = (aq,...,ay) and the
video narration sentences B = (by,...,byr), we
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i=1°
where the function g(i) € {¢,1,..., M} returns
the index in sequence B that matches sentence a; in
A. Setting g(i) = e indicates that a; is not matched
with any sentence in B.

The DTW algorithm can be understood as find-
ing the shortest path in a graph, where each node
(1, 7) in the graph represents matching sentence a;
and sentence b;. The graph contains dummy nodes
(0,0) and (N + 1, M + 1). From node (i, j), we
can transit to node (¢ + 1,5 + 1), which would
match a; 1 with b;1 and incur cost ¢(i + 1, j +1).

seek the best set of correspondence {(a;, by(;)) ¥

C(i+1,j+1) :1—P(ai+1<:>bj+1). &)
Here P(ait+1 < bj4+1) denotes the probability that
sentences a;+1 and b1 are equivalent, as deter-
mined by the Natural Language Inference classifier.

Similarly, we can transit from (i, 7) to (i + 1, j),
which would match a;; with b; and incur cost
¢(i+1, 7). The transition from (i, j) to (i, j+1) is
symmetric. Additionally, we can transit from (3, j)
to (i,j + 1,€), which prevents b4 from match-
ing anything. From (i, + 1, €), we may transit
to (4,7 + 2,€), (3,7 +2),0or (i + 1,7 + 2). The
costs of ignoring a sentence in A and B are d4
and dp respectively. With this setup, the best cor-
respondence can be found as the path from (0, 0)
to (N + 1, M + 1) with minimum cost. We find
optimal 6 4 and ¢ g using manually labeled sentence
correspondence.

Annotation instructions Fig. 4 shows the in-
structions we give to our annotator. Here column
A is the WikiPlot summary and column B is the
summary from SYMON or CMD or LSMDC.

B Video Temporal Ordering

Hyperparameters. We sample each video seg-
ment at 16 frames per second (FPS) and extract
features with S3D (Xie et al., 2018) pretrained on
HowTo100M. Each video video segment last ex-
actly 8 seconds. We extract S3D features every
second (i.e. from 16 frames), yielding 8 1024-
dimensional video features for each video segment.
For video features extraction we use frame size of
112 x 112.

We extract the text between the start of the first
video segment and the end of the second video seg-
ment. To ensure completeness, the text is extended
to the nearest sentence boundaries. The maximal
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Instructions

Columns A and B are different narratives of the same story. For
each sentence is column A try to find an equivalent sentence in
column B and put it’s index in the brackets. If there’s not
equivalent sentence to be found, leave the bracket empty.

A

[0]Audrey Burke (Halle Berry)
and her warm and loving
husband Brian (David
Duchovny) have been happily
married 11 years.( )

B

[O]JAudrey (Halle Berry) and
Jerry (Benicio Del Toro)
reunite at her husband's
funeral.

[1]Audrey (Halle Berry) and
Brian (David Duchovny)
share their final moment
together just hours before
Brian is murdered.

[1]they have a 10-year-old
daughter named Harper
(Alexis Llewellyn) and a 6-
year-old son named Dory
(Micah Berry).( )

Figure 4: Annotation Instruction

number of text tokens is 128. For longer texts, we
remove extra tokens from the start and end of the
text. For shorter texts, we add zero padding to the
end.

The text encoder, video encoder, and cross en-
coder consist of 12, 6, 2 Transformer layers, re-
spectively. The models are trained for 30 epochs
with learning rate warm-up in the first 6 epochs.
Hyperparameters are tuned on the validation set.
The text-aware model is trained with a batch size
of 128 and learn rate of 5e — 6 and the visual-only
model is trained with a batch size of 256 and initial
learning rate of 1e — 5. We apply cosine learning
rate decay and the Adam optimizer to all models.

The model contains 217,185,539 parameters and
is trained for 2.7 hours on 4 Nvidia 3090 GPUs.
The results reported in the main paper are on a
single run.

Calculating overlap between text description
and object/action class We first tokenize the text
description and use part-of-speech tagging to iden-
tify nouns and verbs in the text description (Bird
et al., 2009). For matching with object and action
detection, we retain the nouns and verb from text
description, respectively. We also lemmatize the
retained words to remove variations and remove
common nouns and verbs (“men”, “women”, “per-
son”, and “clothing” for nouns and “is”, “go”, “to”,
“get”, “have”, “look”, “walk”, “play”, and “take”
for verbs). For object detection we retain the top
10 class predictions for each clip. For action detec-
tion we divide the clip into scenes and retain the
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Figure 5: Retrieval Model

top 3 class prediction for each scene. Finally, we
calculate the number of time the retained nouns or
verbs appear in the detected object or action class
names.

C Retrieval

Hyperparameters. For video feature extraction
we sample the video at 16 FPS and use S3D pre-
trained on HowTo100m to extract one 1024 dimen-
sional feature every 16 frames. The frame size is
112 x 112. For each clip we extract 4 features, if
the clip is shorter than 4 seconds zero padding is
add and if the clip is longer than 4 seconds we only
use the first 4 second. Likewise, we take 64 text to-
kens for each clip. Text is extracted from between
the start ans end of the video clip and extended to
the nearest sentence boundaries. The video and
text encoders consist of 12 and 6 transformer lay-
ers respectively, and are initialized from UniVL
pretrained on HowTo100m. The outputs are then
averaged into two 768 dimensional embeddings for
video and text. The similarity between a video, text
pair is calculated as the dot product of the video
and text embeddings. The model is finetuned on
SYMON with an initial learning rate of 5e — 5 and
cosine learning rate decay. We use a batchsize of
1024 and train for 20 epoches, the first epoch is
warm up. SGD with momentum of 0.9 is used
for optimization and s weight decay term of 0.5 is
added for regularization.

The model contains 153,784,064 parameters and
is trained for 4 hours on 4 Nvidia 3090 GPUs. The
results reported in the main paper are on a single
run.

D Implementation and Licensing Details

For the subtitle masking in §4 we used EasyOCR
(Baek et al., 2019) for image character recogni-



tion. The model we use is the english_g2 model
fromhttps://www. jaided.ai/easyocr/
modelhub/. EasyOCR (Baek et al., 2019) is li-
censed under the Apache License, Version 2.0.

For the punctuation restoration in §4
we used the network from Alam et al
(2020). The model we use is given here

https://drive.google.com/file/d/
17BPcnHVhpQl1sOTC8LEayIFFJ7WkL0OOcr/
view. The network and model are released under
the MIT license.

For scene segmentation in §4 we used TransNet-
V2 (Soucek and Loko¢, 2020) to identify scene
boundaries, the network weight are from think
link https://github.com/soCzech/
TransNetV2/tree/master/inference/
transnetv2-weights. For every frame, the
network predict the probability of a scene change
occurring immediately after the frame, if the
probability is larger than a threshold of 50%, we
deem a scene change had occured. TransNet-v2
(Soucek and Lokoc, 2020) is released under the
MIT license.

For entailment prediction in §5.1 we use
AdversarialNLI (Nie et al., 2020), specifically the
’roberta-large-snli_mnli_fever_anli_R1_R2_R3-
nli’ model. AdversariaINLI (Nie et al., 2020)
is released under the MIT licence. For this
section we use WikiPlot summaries from https:
//github.com/markriedl/WikiPlots
as ground truth movie summaries. The release does
not include a license. Additionally, we compare
our dataset to the CMD (Bain et al., 2020) dataset
and LSMDC (Rohrbach et al., 2017) dataset,
both are released under the Creative Commons
Attribution 4.0 International License.

For the mental-state description experiment
in §5.2, we collect emotion related words from
WordNet-feelings (Siddharthan et al., 2018)
dataset. The release does not include a license.
We collect intention, motivation related words
from the top 200 nearest neighbors on Fast-
text (Girshick, 2015) word embedding, which
is acquired from https://github.com/
facebookresearch/fastText/blob/
master/docs/crawl-vectors.md. fast-
Text (Girshick, 2015) is released under the MIT
licence. The word embedding is release under
the Creative Commons Attribution-Share-Alike
License 3.0. The ActivityNet dataset (Krishna
et al., 2017) is licensed under the MIT license.
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For the video sequencing experiment in §60,
we use UniVL (Luo et al., 2020) pretrained on
HowTol00m (Miech et al., 2019). The model
weights are initialized from https://github.
com/microsoft/UniVL/releases/
download/v0/univl.pretrained.bin.
UniVL (Luo et al., 2020) and HowTo100m (Miech
et al., 2019) are licensed under MIT and Apache
License 2.0 respectively.

For object recognition in §6, we use Faster-
RCNN (Girshick, 2015) trained on Open Images
V4 (Kuznetsova et al., 2020) to detect objects from
video frames, and 3D-ResNet (Hara et al., 2018)
trained on Kinetics-700 (Kay et al., 2017) to detect
actions. Faster-RCNN (Girshick, 2015) and 3D-
ResNet (Hara et al., 2018) are licensed under the
MIT license. Open Images V4 is released under
Apache License 2.0. Kinetics-700 is licensed un-
der the Creative Commons Attribution 4.0 Interna-
tional License. The text descriptions are processed
with the nltk package (Bird et al., 2009), licensed
under Apache License 2.0.

For the multimodal retrieval task in §7, we
use the YMS dataset (Dogan et al., 2018)
from https://github.com/RubbyJ/
Data-efficient-Alignment.
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