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ABSTRACT

Geo-temporal understanding, the ability to identify the location, time, and con-
textual features of an image from visual cues alone, is a fundamental aspect of
human intelligence with wide-ranging applications, from disaster response to au-
tonomous navigation and geography education. While recent vision—language
models (VLMs) have shown progress in image geo-localization using conspicuous
cues like landmarks or road signs, their ability to understand temporal signals
and related spatial reasoning cues remains underexplored. To address this gap,
we introduce TIMESPOT, a comprehensive benchmark for evaluating real-world
geo-temporal reasoning in VLMs. TIMESPOT comprises 1,455 images spanning
80 countries, where models must infer temporal attributes (season, month, time of
day, daylight phase) and geolocation attributes (continent, country, climate zone,
environment type, latitude—longitude coordinates) directly from the visual input.
In addition, it includes spatial reasoning tasks that require integrating geographical,
spatial, and temporal cues to solve complex understanding problems. Unlike prior
benchmarks that emphasize obvious cues or iconic imagery, TIMESPOT prioritizes
diverse and subtle settings, reflecting the difficulty of reasoning under real-world
uncertainty. Our evaluation of state-of-the-art VLMs, including both open- and
closed-source models, reveals consistently low performance across tasks, highlight-
ing substantial challenges in achieving robust temporal and geographic reasoning.
These findings underscore the pressing need for improved methods to enable re-
liable and trustworthy geo-temporal understanding in VLMs, paving the way for
future research in this critical domain.

1 INTRODUCTION

Determining where and when a photograph was captured, using only its visual content, is a core aspect
of human cognition, enabling situational awareness, memory coordination, and contextual reasoning.
This capacity, which we term geo-temporal understanding, integrates a rich tapestry of visual
cues: physical illumination and shadows; seasonal vegetation; architectural styles and materials;
clothing and traffic patterns; and broader geographic regularities (Lin et al., | 2013; Workman et al.|
2015bj; |Arandjelovic et al., 2016; [Hu et al.;2018; [Hu & Leel [2020). Beyond its cognitive significance,
geo-temporal reasoning underpins critical applications in disaster response (Mirowski et al., 2018)),
environmental and climate monitoring (Zhai et al.,|2017)), autonomous navigation (Lynen et al.,|2020;
Sarlin et al.l [2019), and media forensics (Tian et al.| [2017).

In the geospatial domain, substantial progress has been made through cross-view and street-view
benchmarks (Vo & Hays [2016)), evolving from early ground-to-aerial matching to large-scale,
geographically diverse corpora and unified embeddings such as VIGOR (Zhu et al.| [2021)), GeoCLIP
(Vivanco Cepeda et al., 2023), OpenStreetView 5M (Astruc et al.l [2024), Global Streetscapes
(Hou et al., 2024), CV, Cities (Huang et al.l [2024)), panoramic cross-view settings (Xia et al.|
2025)), and embedding advances (Cai et al.| [2025). However, geo-temporal understanding—joint
inference of geographic and temporal attributes from visual input—remains underexplored. Existing
geolocation benchmarks typically assess where via retrieval accuracy or coordinate error (Hu & Leel
2020), without requiring explicit when predictions (e.g., season, month, local time) or enforcing
internal consistency (e.g., “July” paired with “winter” in the Northern Hemisphere). Temporal
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Primary Temporal Cue = Vegetation;
Primary Geolocation Cue = Natural Biome;
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Predictions:
Season = Fall;
N Month = September;
Primary Time of Day = 15:00;
Geolocation Cue Daylight Phase = Afternoon;
Continent = Asia;
Country = Kyrgyzstan;
Climate Zone = Continental (D);
Environment Type = Mountain;
Coordinates = (41.9295497, 69.955033).

Primary
Temporal Cues

1. Temporal Understanding (When was the photo taken?) 2. Geolocation Understanding (Where was it taken?)
o Lighting and Shadows: Estimate sun position, shadow length, and orientation = approximate time * Landmarks: Recognize monuments, architecture, mountains, coastlines.
of day. + Vegetation and Ecology: Palm trees (tropics), pine forests (cold regions), rice

o Sky and Weather Cues: Cloud color, sunset hues, or twilight - morning, noon, evening, or night. paddies (Asia), savanna grasslands (Africa).

o Seasonal Indicators: * Cultural Markers: Language on signs, traffic direction, building styles, vehicles,
o Vegetation state (blossoms -> spring, fallen leaves - autumn). clothing.
o Snow, frost, or ice = winter. + Infrastructure Patterns: Road markings, license plates, public transport designs.
o Dry ground, strong sunlight - summer. * Geocoordinate Estimation: Use visual grounding + satellite-trained priors -

o Human and Social Cues: Clothing styles, holiday decorations, festivals. approximate latitude/longitude.

Figure 1: Illustration of the TIMESPOT benchmark for geo-temporal understanding. Models must
infer temporal attributes (season, month, time of day, daylight phase) and geolocation attributes (continent,
country, climate zone, environment type, coordinates) directly from visual input. Left: example images. Center:
distributions of primary temporal cues (e.g., architecture, natural biome, topography) and geolocation cues (e.g.,
sun/shadows, vegetation, snow/ice). Right: an example prediction, showing how diverse and subtle cues must be
integrated for reliable reasoning.

cues, when studied, are often isolated or reduced to proxy tasks such as navigation (Mirowski et al.

2018} [Lynen et al., [2020), place recognition (Sarlin et al.l 2019), or change detection (Sarlin et al.
2024)), which do not yield structured temporal outputs. Recent geospatial VLM benchmarks in

remote sensing (HRVQA 2024b), GEOBench-VLM (Danish et al.| [2024)) focus on aerial
imagery for classification, counting, and segmentation, but do not require fine-grained temporal
fields or a comprehensive geographic schema (continent, country, climate, environment type, latitude,
longitude) for ground-level photos. The field thus lacks a unified testbed evaluating time and place
together, emphasizing subtle non-iconic cues over landmarks or text, and incorporating trustworthiness
measures such as schema validity, calibration, and robustness to distribution shift (Astruc et al.} 2024}

Hou et al., 2024} [Huang et al.} 2024} Xia et al., [2025).

This gap is critical for three reasons. First, temporal cues are often decisive for disambiguation:
solar geometry depends on hemisphere (Ye et al., 2024), vegetation phenology distinguishes climates
at similar latitudes 2024c), and daylight phases modulate urban lighting and activity
patterns (Shi et all, [2020; Zhu et al., 2022). Second, reliable deployment in real-world settings
demands structured, verifiable outputs—minute, level precision for local time, kilometer, range
thresholds for coordinates, and cross, field consistency checks (e.g., rejecting “snow in July” for
a Northern Hemisphere location)—which current retrieval, centric protocols lack, risking over-
reliance on superficial cues. Third, robust global generalization requires diversity and stress testing:
hemisphere flips, climate-region shifts, and out, of, distribution (OOD) splits expose biases that iconic
or text-dependent benchmarks fail to reveal (Astruc et al.,[2024).

To address these challenges, we introduce TIMESPOT, a benchmark for evaluating real-world geo-
temporal understanding in VLMs. TIMESPOT comprises 1,455 natural, non-iconic images spanning
80 countries, curated to minimize landmark dependence and emphasize low-salience cues. For each
image, models must predict a structured schema with four temporal attributes (season, month, local
time, daylight phase) and five geographic attributes (continent, country, climate zone, environment
type, latitude, longitude). This design encourages models to fuse illumination, material, and contextual
evidence beyond textual shortcuts. Beyond per, field predictions, TIMESPOT includes fusion questions
requiring integrated spatial and temporal reasoning, mirroring real-world scenarios where time and
place are interdependent. Our key contributions are threefold:

1. A challenging joint geo-temporal benchmark. To our knowledge, TIMESPOT is the first to
require simultaneous prediction of four temporal and five geographic attributes from natural
images, producing structured, interpretable outputs that probe fine-grained spatiotemporal
reasoning beyond retrieval or classification.

2. Rigorous, verifiable evaluation of modern VLMs. We evaluate diverse open, and closed,
source models under uniform, metadata-free, and fully open, ended Q&A condition, en-
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Figure 2: Global coverage of TIMESPOT. Locations of all 1,455 ground, level photos across 80 countries.
Each marker denotes an image coordinate; colors indicate country (top contributors listed; “Others” aggregates
the remainder). The dataset spans all inhabited continents and diverse climate zones and environments, providing
non, iconic scenes for evaluating geo-temporal reasoning.

forcing precise metrics for time and coordinates, schema consistency (e.g., month/season
vs. hemisphere; climate plausibility), and calibration analysis. Our evaluation reveals low
temporal accuracy and frequent geo-temporal inconsistencies, highlighting that reliable joint
understanding remains an unsolved scientific challenge.

3. Comprehensive error analysis and root-cause investigation. We systematically analyze
model failures, identify patterns in temporal and spatial errors, and propose mitigation
strategies to guide future research.

Our evaluation framework is verifiable, enforcing precise window accuracy for time and
mean/thresholded distance for coordinates; constrained, ensuring schema consistency (e.g., month,
season, hemisphere); robust, testing hard/OOD splits without auxiliary metadata; and calibrated, mea-
suring expected calibration error and risk—coverage trade-offs. Applying it to state-of-the-art open-
and closed-source VLMs reveals substantial gaps in joint geo-temporal reasoning: even the strongest
models achieve 77.59% country accuracy (Gemini 2.5, Flash, Thinking) yet a median geodesic
error of 892.54 km, indicating reliance on coarse heuristics. Time-of-day prediction reaches only
33.74% accuracy (GLM 4.1V, 9B, Thinking), highlighting fragile temporal grounding. TIMESPOT
complements existing geolocation and remote-sensing benchmarks by offering joint, diversity-aware,
trust-focused evaluation of time and place. Our results show that authentic geo-temporal understand-
ing remains an open challenge and emphasize urgent directions for improving robustness, calibration,
and real-world applicability.

2 PRELIMINARIES AND RELATED WORK

TIMESPOT targets the geo-temporal inference problem for ground, level scenes, where conspicuous
textual cues are minimized and models must fuse weak, distributed signals. For each image, systems
must output a structured schema with four temporal attributes (season, month, local time in HH:MM,
daylight phase) and five geographic attributes (continent, country, climate zone, environment type,
latitude and longitude), shifting evaluation from retrieval (cf. Vivanco Cepeda et al., 2023} |Astruc
et al., [2024; Hou et al., 2024} |Huang et al., 2024) to interpretable, verifiable fields. Formally, we
describe each image z € X’ as containing observable cues (e.g., illumination, vegetation, materials,
activity patterns) that map to a schema y = (y**™P, 48°°) with temporal fields y**™P = (s, m, T, ¢)
for season, month, local time, and daylight phase, and geographic fields y&*° = (C, k, z, ¢, (A, ¢))
for continent, country, climate zone, environment type, and coordinates. The task is to evaluate a
fixed vision, , language model via a mapping f : X — ), where ) denotes predicted schemas in
the same structured space. This design probes capabilities that generic VLMs (Radford et al., 2021}
Li et al.||2022; |[Kim et al.| 2021)) and RS benchmarks do not explicitly test, reading solar/sky cues,
phenological signatures, material styles, and context patterns to locate scenes in both space and time.
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Benchmark / Dataset (year) Temp FineGeo Subtle HS/OOD FusionQs Schema Calib Verif Globality

OpenStreetView—5M |Astruc et al. (2024
Global Streetscapes/Hou et al. |(2024)
CV-CitiesHuang et al.|(2024)

VIGOR [Zhu et al. |(2021]

CVACT |Liu & Li}(2019)
CVUSA|Workman et al. |(2015a)
University—1652|Zheng et al. (2020}
GeoText—1652|Chu et al. |(2024)

GeoCLIP Eval|Vivanco Cepeda et al. (2023
Panoramic Cross—View Xia et al. (2025

HRVQA |Li et al. [(2024b)

VRSBench|Li et al. |(2024c¢)
GEOBench—VLM Danish et al. (2024)
EarthVQA |Wang et al.[(2024b]

FIT-RSFG /RSRC]|Luo et al. (2024
RemoteCount|Liu et al. (2024

SkyEyeGPT / SkyBench|Zhan et al. [(2025]
EO-VLM Benchmark|Zhang & Wang (2024}
RS5M|Zhang et al. |(2024}
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MapBench|Hao et al. {(2024)
MapQA |Chang et al.|(2022)]
MaplQ|Srivastava et al. (2025}
CulturalVQA [Nayak et al. [(2024)

AMOS Time-lapse|Jacobs et al. (2009}
Transient Attributes|Laffont et al.|(2014)
TimeSpot (Ours, 2025)
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Table 1: Comparison along TIMESPOT axes. 7Zemp: Season/Month/Time/Daylight phase. FineGeo:
Continent/Country/Climate/Environment/Lat—Lon. Subtle: non-iconic cue emphasis. HS/OOD: hemisphere
sanity or hard/OOD splits. FusionQs: geo-temporal fusion tasks. Schema: structured field outputs. Calib:
calibration/uncertainty metrics. Verif: GPS/OSM-verifiable scoring. Globality: multi-continental coverage.
Symbols: v = explicit support; A = partial/limited; — = not present.

General multimodal benchmarks stress breadth of perception and reasoning across images, text, and
diagrams, but offer limited leverage for geo, , temporal competence. Suites such as MMMU (Yue
et al., | 2024), M3Exam (Zhang et al.}[2023)), M4U (Wang et al., 2024a), MM, Vet (Yu et al., [2023)),
MME (Fu et al., [2023), MMBench (Liu et al., [2025), MMSTAR/Sphinx (Lin et al.,|[2023), SEED,
Bench (Li et al., 2023)), and SEED, Bench, 2 (Li et al., 2024a) probe diverse skills, from domain
knowledge to chart/map understanding and free, form reasoning, yet they neither require predicting
when and where a scene occurs nor enforce cross, field geographic constraints. Vision, language
pretraining works (e.g., CLIP (Radford et al.| 2021), ViT (Dosovitskiy et al., 2020), ViLT (Kim et al.}
2021), BLIP (Li et al.l [2022), MGP/SigLIP (Zhai et al., [2023), Long, CLIP (Zhang et al.,|2025))
supply strong visual, textual priors but remain agnostic to solar geometry, phenology, or cartographic
validity that determine time and place.

In TIMESPOT, we score categorical fields with top-1 accuracy; local time with minute-window
accuracy and MAE; and coordinates with great circle distance (mean/median and thresholded ranges),
following geolocation practice (Tian et al., 2017} [Vo & Hays, 2016} |Arandjelovic et al.| 2016)
for auditable spatial error while extending it to time. To promote trustworthiness, we add cross,
field constraints and diagnostics, hemisphere, season agreement, daylight, phase compatibility with
predicted time and coordinates, and climate plausibility at (1at, 1on), as seen in large, scale cross,
view/geolocation setups (Zhu et al.,[2021; |Astruc et al., 2024} [Hou et al., [2024)). We further report
calibration (ECE, risk, coverage) to quantify confidence quality in multi, field outputs, addressing
failure modes observed in cross, view and place, recognition systems (Lin et al., 2013} [Workman
et al.,|2015b; Hu & Leel [2020) where predictions can be confident yet inconsistent.

To assess generalization, TIMESPOT provides stratifications by continent, climate zone, and en-
vironment type, plus hemisphere flips and hard/OOD splits that reduce landmark shortcuts and
amplify reliance on physical and ecological cues (Astruc et al., 2024; [Hou et al., 2024; |Huang et al.,
2024; Xia et al., [2025)). We also include fusion questions requiring models to integrate spatial and
temporal evidence coherently, exposing independence assumptions that often surface in modular
VLM decoders (Lin et al., {2013} |Hu et al., [2018; Zhu et al., [2021). Compared to generic multimodal
evaluations and RS, focused geospatial suites, TIMESPOT fills a specific and currently missing role: a
ground, level, joint geo, , temporal benchmark with structured outputs, internal, consistency checks,
calibration analysis, and robustness diagnostics. Empirically, we find that strong open/closed VLMs,
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despite impressive progress on broad benchmarks (Vivanco Cepeda et al., 2023)) and cross, view
geolocation (Lin et al.| [2013; [Workman et al., |2015bj; Hu & Lee, 2020), exhibit low accuracy on
temporal fields and frequent geo-temporal inconsistencies, underscoring substantive headroom for
physically grounded reasoning. In Appendix [B] we provide an extended related work.

3 TIMESPOT BENCHMARK

TIMESPOT is designed to rigorously evaluate geo-temporal reasoning capabilities in vision, language
models (VLMs) using natural, non, iconic, ground, level imagery. Unlike existing benchmarks
that focus on either geolocation or isolated temporal cues, often relying on iconic landmarks or
textual artifacts, TIMESPOT emphasizes subtle, low, salience cues such as illumination and shadow
geometry, sky state, vegetation phenology, architectural style, and activity patterns. The benchmark
comprises 1,455 photographs from 80 countries and requires models to output a structured schema
spanning nine fields: four temporal attributes, season, month, local time (HH:MM), daylight phase,
and five geographic attributes, continent, country, climate zone (Koppen, Geiger classes A, E
(Peel et all |2007)), environment type, and latitude, longitude. By coupling spatial with temporal
inference, TIMESPOT stresses physically grounded reasoning under real, world uncertainty, extending
geolocation evaluations beyond retrieval accuracy and coordinate error (Tian et al.,|2017;|Vo & Hays,
2016} |Arandjelovic et al., [2016)). Table[Z]presents the dataset statistics of the TIMESPOT benchmark.

3.1 BENCHMARK CONSTRUCTION

To ensure scientific reproducibility and minimize annotation bias, we adopt a hybrid labeling method-
ology combining deterministic programmatic derivation with rigorous human verification. This
dual approach ensures both scalability and semantic fidelity, particularly in ambiguous cases where
automated rules must be reconciled with visual evidence.

Image collection and curation. We first collect non, iconic photographs from a mix of public
internet sources and manually captured snapshots, ensuring broad global coverage. To avoid shortcut
exploitation, we deliberately suppressed landmark, dominated and text, rich content during curation.
Instead, we prioritized scenes where inference requires synthesizing fine, grained physical evidence,
e.g., distinguishing summer vs. winter foliage, estimating solar elevation from shadow vectors,
or inferring climate class from vegetation and built environment. Sampling followed principled
coverage goals: balancing hemispheres, latitude bands, climate zones, and environment types. This
design ensures diversity across geography and seasonality while avoiding overrepresentation of iconic
settings that VLMs may have memorized during training.

Programmatic labels derivation. Ground, truth labels were derived deterministically from meta-
data and geographic priors. Months were obtained from capture dates; seasons were assigned via
meteorological definitions with hemisphere correction; daylight phases were computed from solar
elevation/azimuth using civil, nautical, and astronomical twilight thresholds; and local time was
derived from time zone, adjusted ephemerides. Climate zones were mapped using a global Koppen,
Geiger layer (Peel et al.,[2007); continent and country boundaries were assigned from coordinates;
and latitude, longitude were recorded as continuous targets. This deterministic procedure ensures
reproducibility and provides physically consistent labels across the dataset.

Human verification. Labels undergo two, stage verification. Annotators first collect auxiliary
geographic context (locality, land, water adjacency, road layout, Street View when available) and
cross, check programmatic labels against visual cues (e.g., illumination, shadows, vegetation). A
senior annotator resolves edge cases (e.g., sunrise/sunset ambiguity, artificial lighting) and validates
labels against ephemeris data and scene consistency.

Schema and normalization. All ground truth labels are stored in a canonical JSON schema.
To ensure consistency and enable exact per, field scoring, model outputs are normalized (e.g.,
“Autumn”—*Fall”; signed decimal degrees for coordinates). Checks include month, season, hemi-
sphere consistency, daylight, phase compatibility, and climate plausibility at (1at, Lon), providing
auditable failure modes beyond retrieval accuracy.

3.2 ANNOTATION AND QUALITY CONTROL

Roles and pipeline. Although many targets are programmatically derived, human roles are explicit
and sequential. (i) Context collection: trained annotators gather map, level context at the recorded
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Axis Field Categories (top shown)
Season Summer (400), Fall (399), Spring (335), Winter (321)
Daylight phase Afternoon (584), Night (287), Sunset (210), Morning (203), Midday (124), Sunrise
@7)
Temporal Month 12 months represented; top: August (163), September (146), July (145), March
(131)
Hemispheric tag Northern Hemisphere Summer (703), Northern Hemisphere Winter (615), Southern
Hemisphere Winter (81), Southern Hemisphere Summer (56)
Time coverage Day (1182), Night (273)
Hour range Full 0-23; densest 08—18
Continents Asia (529), Europe (430), North America (326), South America (170)
Countries 82 unique; top: USA (196), Russia (97), Japan (67), Italy (65), China (58)
Geography Climate Temperate (C) (582), Continental (D) (396), Tropical (A) (274), Arid (B) (180),
Polar (E) (23)
Environment type Urban (648), Rural (202), Mountain (193), Coastal (181), Suburban (118), Desert
(113)
Lat/Lon span lat -54.80 to 71.96, lon -173.24 to 170.31

Primary temporal cues Sun/Shadows (573), Vegetation (325), Other (289), Snow/Ice (122), Human Clothing
(95), Agricultural Activity (51)

Primary geolocation cues  Architecture (355), Natural Biome (354), Topography (Mountains/Coast) (295),
Road Signage/Language (236), Vehicles (156), Other (58)

Table 2: Dataset statistics. We report coverage across temporal, geographic, cue, and environment axes.

Cues

coordinates and note evidence relevant to temporal cues (e.g., horizon occlusion, canyoning). (ii)
Verification: annotators validate programmatic labels against the image and context under written
guidelines that formalize season, , hemisphere rules, solar, elevation thresholds with tolerated twilight
windows, and the environment rubric; low, confidence items are flagged. (iii) Expert timing review:
a senior annotator adjudicates flagged items, cross, checking ephemerides with observed shadow
vectors and horizon occlusion; deterministic temporal labels remain tied to metadata/ephemerides
unless a metadata error is documented, whereas non, deterministic fields (e.g., environment type) can
be updated with rationale. (iv) Constraint audit: authors and annotators apply machine, enforced
integrity constraints (month, , season, , hemisphere, phase, , time alignment within tolerance, climate
plausibility at coordinates) and finalize a versioned JSON record containing ground truth, validation
outcomes, human notes, adjudications, and the active constraint set.

Evaluation affordances. The schema supports interpretable outputs and verifiable metrics: top—1
accuracy for categorical fields (e.g., country, season); minute—window accuracy and mean absolute
error (MAE) for local time; and great—circle distance (mean/median and thresholded ranges) for
coordinates (Tian et al., 2017 |Vo & Hays| 2016; |Arandjelovic et al., 2016), aligning with spatial
error practices in geolocation while extending them to time. We additionally report calibration
(ECE, risk—coverage) and provide robustness stratifications—hemisphere flips; hard/OOD splits by
continent, climate, and environment—to surface shortcutting behaviors that can arise in cross—view
and global datasets (Zhu et al.,|2021}; |Astruc et al., 2024} Hou et al. 2024} Huang et al., [2024).

By construction, TIMESPOT thus isolates capabilities that generic VLM benchmarks (e.g., CLIP
(Radford et al.l [2021)), VILT (Kim et al., 2021)), BLIP (Li et al.| |2022)) and RS—focused geospa-
tial suites (e.g., GEOBench—VLM (Danish et al.,|2024)) do not explicitly test—namely, coherent,
calibrated prediction of when and where from subtle ground—level cues.

4 EXPERIMENTS AND EVALUATION

We benchmark a diverse set of vision—language models (VLMs) to provide a comprehensive assess-
ment of geo-temporal reasoning capabilities. The models are grouped into four families: (i) propri-
etary VLMs (GPT-40/mini, 03/04-mini, Gemini-2/2.5-Flash, Claude 3.5 Haiku, Mistral Medium)
(OpenAlL 2024; 2025}, [Team, |2025a}; |Anthropicl 2024); (ii) open-source VLMs spanning compact
and large scales (InternVL3, Qwen2.5-VL, Llama-3.2-Vision, Gemma-3, GLM-4.5V) (Zhu et al.,
2025} Bai et al., 2025} |Grattafiori et al.l 2024} | Gemma Team, Google DeepMind, 2025}, |Team et al.,
2025); (iil) reasoning-augmented variants exposing native “thinking” tokens but returning final
structured answers (03/04-mini, Gemini-2/2.5-Flash-Thinking, GLM-4.1V-Thinking, Kimi-VL-A3B-
Thinking, Step-3) (OpenAl, 2025;|Team, 2025a; [Team et al.,| 2025} Team, [2025b; |StepFun, 2025). For
open-source models we report two size buckets: small (<11B) and large (>11B). We evaluate with
categorical accuracy (continent/country/climate/environment), local-time accuracy within <1 hour
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\ Geo-location Understanding \ Temporal Understanding
Model | Cnt.  Cou Clim. Env. Lat°  Long® Dist(km) | Season Month Time Time  DLP

| Ac(D)  Ac(h) Ac() Ac(h) MAE(l) MAE(l) MDD | Ac() Ac(h) Ac(t) MAE() Ac(])
Proprietary Models
GPT-40-mini 82.68 49.14 5093 57.87 12.40 24.70 2827.07 47.08 2234 3032 3:54 31.55
GPT-5-mini 83.62 6827 7247 60.01 4.72 15.64 1389.79 5843  34.27 2155 4:10 44.60
Gemini-2.0-Flash 89.07 7691 6852  60.96 3.32 11.23 994.30 49.76  22.89 2735 4:22 30.24
Gemini-2.5-Flash 90.51 77.25 7134 6432 3.05 10.38 917.61 50.92 2391 25.15 3:56 41.92
Claude 3.5 Haiku 7725 5553 61.86 5574 6.85 27.51 2269.86 44.12 19.04  23.09 4:14 30.93
Mistral Medium 3.1 7588 52.85 66.67 61.72 6.37 22.62 2045.61 36.84 1526  30.73 3:36 36.01
Open-Source Models
InternVL3.5-1B 43.02 14.15 3250 5354 44.68 4378.92 7700.42 30.65 3.78 777 11:45 35.80
InternVL3.5-2B 60.00 2941 51.82 57.80 13.11 43.71 3959.29 36.29 5.70 27.80 4:30 24.05
Qwen-VL2.5-3B-Instruct 2240 1347 1883 4453 16.18 130.98 8231.18 27.49 9.96 22.06 4:34 8.52
InternVL3.5-4B 60.79  30.12 57.77 56.74 15.34 44.15 4236.77 37.55 12.03 29.33 4:10 41.61
Qwen-VL2.5-7B-Instruct 85.70 73.96 70.86 75.21 32.94 21.46 4719.95 61.46 44.96  25.68 3:47 64.09
Llama-3.2-11B-Vision-Instruct 7422 5573  57.12  57.61 5.85 26.57 2072.35 43.50 16.68  25.74 4:18 43.57
Gemma-3-27B-it 79.59 5402 6041 53.12 6.83 23.58 2063.93 44.81 17.11 2634 4:28 30.86
Qwen-VL2.5-32B-Instruct 7856 57.11 6295 60.82 6.27 24.02 2010.12 44.81 17.86  31.10 344 4454
InternvI3-78b 7746 5326 71.61 61.37 7.42 23.63 2180.29 4591 1643 29.64 4:07 3491
Qwen-VL2.5-72B-Instruct 7794 5828 65.15 58.14 5.11 19.33 1711.42 44.47 1828  28.71 4:00 36.84
Llama-3.2-90B-Vision-Instruct ~ 78.08  53.54  63.85 59.04 7.05 26.79 2284.85 45.15 19.72  23.33 4:29 33.88
GLM-4.5V-106B-MoE 8532 69.68 62.09 6251 4.23 14.09 1280.87 5755  36.04 3051 4:09 42.45
Reasoning Models
04-mini 8239 7182 73.06 66.64 4.85 15.39 1359.96 65.81 4820 2391 4:04 51.79
Gemini-2-Flash-Thinking 88.66 7622 66.73 59.93 3.44 11.70 1024.14 49.28  22.68 2749 4:22 29.76
Gemini-2.5-Flash-Thinking 9031 77.59 70.86 64.47 3.04 9.85 892.54 5113 2426  22.19 4:03 36.56
Kimi-VL-A3B-Thinking-2506 5890 40.69 54.84 5931 16.00 39.83 4034.15 39.72 12.65 3223 4:18 25.70
GLM-4.1V-9B-Thinking 8444 6834 70.19 68.54 434 23.01 1788.77 58.02 38.88  33.74 3:58 47.76

Table 3: Performance of VLMs on TIMESPOT by questions. We bold and underline the best score within each
model category. Cnt. — Continent, Cou. — Country, Clim. — Climate Zone; Env. — Environment Type,
Lat.° — Latitude in degree, Long.° — Longitude in degree, Dist.(km) (MD) — mean distance from actual
location in kilometers, DLP — Day-light phase. Time (Ac.) denotes accuracy, if the model predicted the time
accurately within 1 hour window. Time (MAE) shows mean error in HH:MM format. Ac. denotes accuracy.

and MAE (minutes), coordinate MAE (lat/long, degrees) and mean geodesic distance MD (km), plus
cross-field consistency diagnostics; full definitions appear in Appendix

5 RESULTS AND ANALYSIS

Table [3] reports per-field performance grouped by model family (best results within each family
are highlighted in bold and underlined). Proprietary models lead on country and MD, but all
families show large temporal errors and frequent geo—temporal inconsistencies. Large open-source
models narrow spatial gaps yet remain weaker on time and daylight phase. Reasoning variants
improve month/season modestly, indicating better use of low-salience cues, while coordinate distance
remains challenging under open-ended generation. For ease of comparison in our results table, we

use color coding: proprietary , open-source up to 11B , larger than 11B , proprietary reasoning ,

open-source reasoning .

Overall performance. Results presented in Table[3|suggests that proprietary models lead on spatial
attributes and metric localization. Among non-Thinking models, Gemini-2.5-Flash performs best,
achieving continent 90.51%, country 77.25%, climate 71.34%, environment 64.32%, and the lowest
geodesic error (MD 917.61 km; latitude MAE 3.05°, longitude MAE 10.38°). Its Flash—-Thinking
variant further improves coordinate precision (latitude MAE 3.04°, longitude MAE 9.85°, MD
892.54 km) while maintaining high country accuracy (77.59%). Open—source models show more het-
erogeneous performance. GLM-4.5V-106B—-MOokE reaches competitive country accuracy (69.68%)
with MD 1280.87 km, while Qwen—VL2.5-7B-Instruct shows strong categorical geography (con-
tinent 85.70%, country 73.96%, best environment 75.21%) but struggles with precise coordinates
(latitude MAE 32.94°, MD 4719.95 km), highlighting a gap between place classification and metric
localization. Temporal understanding remains difficult. Time-of-day accuracy remains low across
all models (typically 22-34%), with MAE around four hours (3:36—4:30). Specialization varies:
04-mini leads calendar categoricals (season 65.81%, month 48.20%), GLM-4.1V-9B-Thinking
achieves the top time-of-day accuracy (33.74%), and Qwen—VL2.5-7B-Instruct is strongest on
daylight phase (64.09%). This suggests that while models can usually identify the correct daylight
band, they struggle to infer precise local time from subtle cues like solar elevation, shadows, sky
luminance, and artificial lighting.
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Model Phase & Time>1h (%) Month & Season (%) Season & Month (%) Country & MD>200km (%) Country & MD<200km (%) Continent & Country (%) MD>1000km (%)
Gpt5-Mini 15.95 0.89 25.02 16.98 2.54 17.59 17.25
intern_v13_78B 11.82 0.62 30.10 27.42 3.85 29.00 37.73
QwenVL-3B 0.21 0.82 18.35 12.78 0.00 8.93 95.19

Table 4: Consistency-violation and diagnostic rates across models on TIMESPOT. Lower is better.

Cross-Model Observation. Across models, high continent and country accuracy often coexists with
large geodesic errors, indicating reliance on coarse cues (e.g., script, architecture, vegetation) rather
than precise latitude and longitude. Models marketed as Thinking (e.g., Gemini—2.5-Flash-Thinking,
o4-mini) show better consistency in coordinates and calendar attributes, suggesting improved use
of low-salience cues such as vegetation phenology and illumination patterns. Among open-source
models, larger systems improve classification and reduce distance errors but still lag behind proprietary
models, likely due to pretraining diversity and geo-temporal supervision. Despite decent classification,
precise localization remains challenging, reflected in kilometer-scale errors. Calendar fields (season,
month) and daylight-phase predictions are moderately reliable, but fine-grained time-of-day reasoning
is poor, indicating underuse of solar geometry, shadow, and lighting cues. These limitations affect
downstream tasks like autonomous navigation, scene understanding, and context-aware reasoning,
where fine-grained spatial and temporal perception is critical.

6 ERROR ANALYSIS

Qualitative Error Analysis We summarize the main empirical regularities on TIMESPOT (1,455
images); full diagnostics appear in Appendix [Al (i) Regional vs. national) Continent accuracy is
consistently high while country accuracy drops markedly, indicating under-use of micro-geo cues;
see Table|3| (ii) Temporal precision) Minute-level time is weak despite moderate MAE, consistent
with round-time anchoring; this holds across prompt variants (Table [3). (iii) Spatial tail risk)
Models with similar mean MD can differ sharply in MD>1000 km mass (Table [3), which governs
unusably large errors. (iv) Cross-field incoherence) Phase—time and time—longitude mismatches
persist, revealing missing soft constraints across {phase, time, latitude}. (v) Field-wise cues) Phase
> time; climate/environment sit mid-band with Temperate/Urban defaults; month/season drift reflects
hemispheric priors Constraint-aware joint decoding, micro-geo supervision with hard negatives,
anti-anchor time regression, and hemisphere/biome-aware temporal targets are the most promising
levers (details in Appendix [A).

Quantitative Analysis Figure 3] presents representative successes and failures in geo—temporal
reasoning on TIMESPOT. When salient physical cues are present—e.g., clean solar geometry in arid
landscapes—the model aligns closely with ground truth (desert sunset: |A¢| = 0:15, MD = 3.5
km), indicating effective use of shadow direction and sky color for time/place inference. In contrast,
scenes with low or ambiguous illumination degrade temporal accuracy: at night, predictions collapse
to popular evening anchors (e.g., 20:30), yielding large time errors despite minor spatial drift; around
dawn/dusk, symmetric chromatic cues trigger Sunrise<+Sunset flips (e.g., Uruguay— Argentina,
|At| &~ 11 h), exposing weak phase disambiguation beyond hue.

Urban street views reveal a second pattern. Occlusions and canyon geometry distort shadow cues and
compress apparent sun elevation, pushing hours later than reality (e.g., Turkey morning predicted as
afternoon; |At| = 4 h). Spatially, the model often gets the continent right but swaps the country to
a regional neighbor (e.g., Bangladesh—India), suggesting reliance on broad stylistic features over
micro-geocues such as signage typography, license plates, and utility hardware. We also observe
environment/climate drift under low light (Poland Night predicted as Morning; Continental —
Temperate), and underuse of coastal topology, where visible sea—horizon boundaries are ignored,
producing large MD when predictions move inland.

Overall, these examples highlight a divide between scenes with unambiguous physical constraints
(clear shadows, distinctive biomes) and those requiring integration of subtle cues (phase at twilight,
fine-grained regional markers, shoreline/elevation geometry). Improving robustness likely requires
(1) explicit solar-geometry modules that couple latitude with day-of-year, (ii) phase-aware temporal
heads to resist round-time collapse at night, and (iii) stronger geo-linguistic/topographic priors (script,
plate formats, coastline/elevation fingerprints) to reduce neighbor substitutions and climate drift.
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Poland - Night » 21:36 + Continental (D), Urban
Poland » Morning » 10:30  Temperate (C), Rural
MD: 307.9 ki + [A: 11:06
{8 Urban occlusions corrupt shadow/sky signals, so
the hour is guessed and drifts widely. Mixed
vegetation/architecture nudges climate toward C and
lenvironment toward Rural.

Uruguay » Sunrise » 07:00 » Temperate (C), Urban
) Argentina » Sunset + 18:30 « Temperate (C), Urban

IMD: 205.2 km + [A: 11:30

& Dawn vs dusk is confused because chromatic/sky

lcues are symmetric, causing a ~12-hour flip. Country

shifts to a visually similar neighbor despite

[signage/plate hints.

pain * Afternoon « 19:15 « Temperate (C), Urban
n « Afternoon * 14:30 « Temperate (C), Urban
150.8 km « |At]: 4:45
= Mixed natural + artificial light flattens the solar
lgradient, skewing hours carlier. A bias toward major
lhubs pulls the coordinates city-center-ward.

pain « Nig! « Temperate (C), Urban
Spain * Night « 20:30 » Temperate (C), Urban
MD: 1.0 km * [At]: 19:11
& With solar cues absent at night, the estimate
collapses to popular evening anchors (20:30/22:00).
\Artificial lighting gives weak temporal evidence, so
the hour drifts.

e

e
urkey * Night » 21:01 + Continental (D), Rural
omania » Afternoon * 17:30 » Temperate (C), Rural
415.6 km * [At]: 3:31
(@ Night removes vegetation/terrain signals, drifting

climate from D—C. With few textual/roadside anchors,
the prediction hops to a neighboring country.

Bangladesh » Morning » 11:00 « Tropical (A), Urban
India « Morning * 10: * Tropical (A), Urban

: 1813.9 km « |At]: 0:30

(& Shared subcontinental styles blur borders, so

lguesses default to larger neighbors; only micro-features

like plate formats or road text resolve them.

‘urkey * Morning * 10:27 * Temperate (C), Urban :00 + Arid (B), Desert
& Turkey * Afternoon « 14:30 « Temperate (C), Urban| |& Sunset * 19:15 » Arid (B), Desert
MD: 346.6 km * |At]: 4:03 IMD: 3.5 km + [At]: 0:15
[ Canyon geometry shortens/rotates shadows, [ Shadows are read correctly, and the clock snaps to
pushing the time later than reality. Coordinates drift | |a round 15-minute anchor. Tighter latitude-day-of-
because skyline cues dominate over stable geo year coupling would yield sub-15-minute precision.
janchors.

Grownd Truh  £G5} Gemini 25 Flash

Figure 3: Qualitative results on TIMESPOT (Gemini-2.5-Flash). Each panel pairs the image with ground truth
and model outputs—country, daylight phase, and local time—along with MD and |At¢|. Clear solar geometry
yields accurate estimates (desert sunset). Night scenes and urban canyons cause round time anchoring and phase
drift. Neighbor—country substitutions and limited use of coastline, topography, or micro-cues produce large MD.

xplanation

7 CONCLUSION

Geo-temporal reasoning remains a major challenge for vision—language models in unconstrained,
real-world images. TIMESPOT introduces 1,455 images across 80 countries with structured temporal
(season, month, time, daylight) and geographic (continent, country, climate, environment, coordinates)
fields. Evaluation reveals persistent weaknesses: even top models achieve only 77.6% country
accuracy, 33.7% time-of-day accuracy, and median geodesic errors above 890 km, while weaker
models fall below 50% country accuracy with extreme errors exceeding 4,700 km. Temporal
predictions often conflict with solar and hemispheric constraints, and spatial predictions rely heavily
on coarse priors, causing systematic neighboring-country swaps and climate misclassifications. Low-
light, urban-canyon, and twilight scenes amplify failures, showing underuse of shadows, illumination
gradients, and micro-geographic cues. TIMESPOT highlights the fragility of current VLMs and
underscores that scaling or instruction-tuning alone is insufficient. Future work should target joint,
constraint-aware reasoning, explicit solar modeling, and micro-geography supervision to improve
real-world geo-temporal understanding.

8 ETHICS STATEMENT

TIMESPOT was created to study geo—temporal understanding in everyday, publicly observable scenes
and to benchmark vision-language models on structured, verifiable outputs. Throughout curation
we prioritized privacy and respectful representation. Images were sourced under licenses permitting
research use or captured by the authors; items with unclear rights were excluded, and per-image
license and attribution are recorded in the release. To mitigate privacy risks, we remove EXIF and
other embedded metadata, blur or mask personally identifying details such as faces, license plates,
and house numbers, and exclude scenes where sensitive content dominates. Geographic labels are
reported at city or regional granularity, and exact dwelling locations are never included. Annotation
guidelines prohibit demographic inference or stereotyping, and we audited geographic balance
across continents, countries, climate zones, and environments to reduce bias. Annotators received
training, quality checks, and fair compensation consistent with local norms, and could decline any
image. We recognize dual-use risks in location inference; accordingly, the dataset license limits
use to non-commercial research and prohibits attempts to identify individuals or private property,
and we document salient failure modes to discourage deployment in safety-critical settings. To
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our knowledge, the work does not constitute human-subjects research under institutional policy;
if required by venue or institution, we will obtain approval prior to public release. A takedown
procedure and contact channel are provided so that content owners or affected parties can request
removal.

9 REPRODUCIBILITY STATEMENT

We aim for end-to-end reproducibility of all results reported in the paper. The release will include the
full TIMESPOT image set, annotations for spatial and temporal fields, and official train/validation/test
splits with file hashes and a verification script. The code repository contains data loaders, unified
evaluation utilities, prompt templates, and scripts to regenerate every table and figure directly
from model outputs; a single configuration file specifies paths, random seeds, and metric options.
Categorical fields are evaluated by accuracy; local time is assessed both by accuracy within a one-
hour tolerance and by mean absolute error in minutes; geolocation uses mean geodesic distance
in kilometers computed with the Haversine formula; and consistency diagnostics (e.g., daylight-
phase vs. predicted time, hemisphere/month plausibility) are recomputable from raw predictions.
For open-source models, we specify checkpoints, image preprocessing, resolution, batch size, and
all inference hyperparameters; for API models, we fix temperature and decoding settings, cache
responses, and, where nondeterminism may persist, report mean+standard deviation over repeated
runs. The environment is documented via requirements. txt and a Dockerfile, with OS, Python,
and library versions pinned; experiments reproduce on CPU with longer runtimes and on commodity
GPUs with identical metrics. Upon acceptance, we will release dataset, code, prompts, configuration
files, logs/CSVs used to produce the camera-ready results, and an executable reproduction script that
regenerates the paper’s tables and figures in a single command.
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A  MORE ON ERROR ANALYSIS

Metrics and diagnostics. Definitions for categorical accuracies, time <1 h vs. MAE, MD, and
diagnostic rates (Continenty” & Country x, Country x & MD<200 km, Phasev’ & |At| >120 min,
MD > 1000 km), plus time-MD correlations.

Failure modes. Neighboring-country substitutions and near-miss geography; heavy-tail spatial
errors on non-iconic scenes; high-latitude phase/time anomalies; round-time anchoring.

Ablations and remedies. Joint, constraint-aware decoding; micro-geo cue heads (plates, lane/curb
paint, shoreline typology, utility poles); hard negatives across borders and coast—lake lookalikes;
anti-anchor minutes head with photometric perturbations; hemisphere- and biome-aware temporal
targets.

B EXTENDED RELATED WORK

Recent geospatial VLM efforts primarily target aerial understanding (captioning, VQA, detection,
change segmentation), providing valuable Earth observation coverage but leaving ground-level geo-
temporal reasoning underconstrained. EarthVQA (Wang et al., 2024b), RS-LLaVA (Bazi et al.| 2024),
RSBench/VRSBench (Li et al.l [2024c), GeoChat (Kuckreja et al., 2024)), RemoteCLIP (Liu et al.,
2024), RS5M/GeoRSCLIP (Zhang et al., [2024), and HRVQA (L1 et al.| [2024b) assess relational
reasoning, captioning, or perception over remote sensing imagery but do not require joint prediction
of season, month, time, daylight phase, continent, country, climate, environment, and (1lat, lon).
GEOBench-VLM (Danish et al., [2024)) aggregates diverse geospatial tasks, including non-optical
and segmentation, yet emphasizes remote sensing over ground-level photos where temporal cues are
subtle. At ground level, cross-view and place-recognition research has advanced spatial localization
via retrieval and matching—from early ground-to-aerial matching (Lin et al., 2013} [Workman et al.,
2015bj|Tian et al., 2017) and NetVLAD (Arandjelovic et al.,[2016) to large-scale, globally distributed
datasets and methods (CVM/Net (Hu et al.,|2018;Hu & Lee, |[2020)). Benchmarks such as VIGOR
(Zhu et al., 2021), OpenStreetView 5M (Astruc et al.l [2024), Global Streetscapes (Hou et al.,
2024), CV-Cities (Huang et al.}2024), and panoramic cross-view settings (Xia et al., [2025) expand
geographic coverage and stress spatial reasoning under viewpoint and domain gaps, but typically
score where (retrieval/coordinate error (Lin et al., 2013; Workman et al.,[2015b)) without requiring
calibrated predictions of when or validating month/season/hemisphere consistency and daylight
plausibility (Hu & Leel 2020).

C MORE ON EVALUATION METRICS

To ensure rigorous and reproducible evaluation, we adopt metrics tailored to both geographic and
temporal prediction tasks. All metrics are applied uniformly across models, and malformed outputs
(e.g., missing HH : MM fields or unsigned coordinates) are considered incorrect, thereby preventing
models from gaining undue advantage through partial responses.

Geographic Metrics. For categorical geographic attributes—continent, country, climate
(Koppen—Geiger A-E) Peel et al.|(2007)), and environment—we report top-1 accuracy. For continuous
localization, we measure the mean absolute error (MAE) in degrees for latitude and longitude,

N N
MAEj, = & Z|ng - ¢i|, MAEq, = %Zp\l - Ail,

i=1 i=1

and the mean great-circle distance (MD, km) using the haversine formula,

N
MD = % ZR . 2arctan(\/a7, Vv1-— ai>, a; = Sinz% + cos ¢; cos éi sin? A;‘i,
i=1

with Earth radius R=6371km and (¢, \) denoting (lat, lon). These are standard geolocation metrics
(Tian et al., 2017 Vo & Hays, 2016; |Arandjelovic et al., 2016).
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Temporal Metrics. For season, month, and daylight phase we report top-1 accuracy. For local time
we report two complementary metrics: (i) window accuracy within 1 hour of ground-truth,

N
Accqin = % ZH‘(H} —t;] <60 min) ,

i=1

and (ii)) MAE in HH : MM after converting absolute minute errors to clock format.

D PROMPT TEMPLATE

TimeSpot : Direct : Prompt for Answering Model

You are a geo-spatio-temporal understanding assistant.
From the given image, answer every item below in an exact bullet list (one per line), with the format:
- field : value

Answer all fields regardless of certainty. Use one-word season and month where requested.
Fields and formats:

- season : name of the season in 1 word

- month : name of month in 1 word

- time_of_day : HH:MM (24-hour local time)

- daylight_phase : can choose one of: Sunrise, Morning, Midday, Afternoon, Sunset, Night

- continent : value

- country : value

- climate_zone : can choose one of: Tropical (A), Arid (B), Temperate (C), Continental (D), Polar (E)
- environment_type : can choose one of: Urban, Suburban, Rural, Coastal, Mountain, Desert

- coordinates_|latitude : +/-DD.DDDDD (decimal degrees). DO NOT include N/S. Use +/-.

- coordinates_longitude : +/-DDD.DDDDD (decimal degrees). DO NOT include E/W. Use +/-.

Provide only the bullet list lines, nothing else.
(&

TimeSpot : Prompt for Judging Model

You are a strict evaluator.

You will receive the ground truth and a model's answer (both in the same bullet-list format).

Compare each field. Treat abbreviations and long forms as equivalent (for example: USA == United States). Treat seasonal synonyms as
equivalent (for example: Fall == Autumn). DO NOT include E/W. Use +/- in coordinates.

Return a JSON object where each field maps to a nested object:

“field_name": {
"ground_truth": "<ground truth string>",
"model_ans": "<model answer string>",
“evaluation": 1 or 0

}
Include all fields even if the model answer is malformed. Output only valid JSON.

Ground Truth:
{ison_ground_truth}

Model Answer:
{model_response_text}
o

Figure 4: Prompts used for evaluation.
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E DETAILED ANALYSIS

E.1 DAYLIGHT PHASE ANALYSIS (SEE TABLE[3)

P1: Best and worst per phase. From Table[5] Sunrise peaks with gemma 3 27B at 61.7%, while
Intern_v13_4B at 0.0% and qwen 2.5 32B instruct at 6.4% are lowest. Morning is led by gem-
ini_flash_2.5_thinking at 65.0%, with kimi_vl_a3b_thinking at 7.4% the minimum. Midday strongly
favors glm 4.5vs at 87.9% and kimi_vl_a3b_thinking at 74.2%, whereas gemini_flash_2.5_thinking
drops to 3.2%. Afternoon tops with qwen 2.5 32B instruct at 70.6%, while kimi_vl_a3b_thinking at
14.4% and Llama 3.2 90B Vision Instruct at 18.0% trail. Sunset is highest for qwen 2.5 32B instruct
at 55.7%. Night is uniformly difficult, with a 34.8% ceiling (glm 4.5vs and gpt5_mini) and a 20.9%
floor (qwen 2.5 32B instruct).

P2: Phase difficulty profile. As summarized in Table[5] Night is the hardest regime for all models
(all at or below mid 30s). Sunrise is volatile (0-61.7%), reflecting sensitivity to low angle illumination
and color temperature. Midday splits systems into very strong versus very weak, consistent with
reliance on explicit shadow geometry versus chroma heuristics.

P3: Model specialization. Table [5|indicates glm 4.5vs is solar geometry competent (dominant
at Midday, competitive at Sunset and Night). gwen 2.5 32B instruct is afternoon centric (70.6%)
and sunset strong (55.7%) but weak at Sunrise and Night, suggesting asymmetric priors. gem-
ini_flash_2.5_thinking is morning specialized yet midday fragile.

P4: Balance versus peaks. Per Table[5] gpt5_mini shows the most balanced profile (roughly high
40s to low 50s across daylight phases, mid 30s at Night), avoiding catastrophic collapses. Several
peers trade balance for sharp peaks (e.g., glm 4.5vs at Midday) with weaker neighboring phases.

P5: Morning versus afternoon asymmetry. Strong diurnal asymmetry in Table 5} gem-
ini_flash_2.5_thinking at 65.0% Morning versus 34.8% Afternoon, and qwen 2.5 32B instruct at
20.2% Morning versus 70.6% Afternoon. This aligns with hemisphere or time of year priors and
color temperature shortcuts rather than robust sun azimuth reasoning.

P6: Sunrise versus Sunset confusability. As seen in Table[5] qwen 2.5 32B instruct and glm 4.5vs
are better at Sunset than Sunrise, consistent with warm toned spectra being easier than pre dawn blues.
gemma 3 27B is a counter example with strong Sunrise performance, implying different colorimetric
priors.

P7: Scale is not destiny. Table[5|shows Llama 3.2 90B Vision Instruct does not dominate; scores
oscillate (e.g., Midday 54.8% vs Afternoon 18.0%). Instruction data and objectives appear more
critical than parameter count.

P8: Two archetypes. We observe in Table|5|geometry driven models (sharp at Midday and often
solid at Sunset) versus color cue models (better at Morning and Sunset but brittle at Midday and Night).
glm 4.5vs and kimi_vl_a3b_thinking align with the geometry driven group; gemini_flash_2.5_thinking
resembles the color cue group.

P9: Nighttime ceiling. The mid 30s ceiling at Night (Table [5) suggests under use of urban lighting,
sky luminance gradients, and activity cues; absent shadows, models default to weak heuristics.

P10: Informative outliers. The 0.0% Sunrise of Intern_vl3_4B and 3.2% Midday of gem-
ini_flash_2.5_thinking (Table[5) indicate brittle mode collapses likely due to data or finetune skew and
prompt sensitivity, rather than uniformly low competence.

E.2 BROADER IMPLICATIONS AND ROOT CAUSES (ANCHORED TO TABLE 3))

Training corpora are likely day biased and lack explicit supervision for clock time and daylight
phase, encouraging color temperature shortcuts that fail under distribution shift. Without objectives
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Model Sunrise Morning Midday Afternoon Sunset Night
Intern_v13_4B 0.00 12.81 27.42 65.69  37.62 28.92
Llama-3.2-90B-Vision-Instruct 23.40 42.36 54.84 17.98  46.67 28.57
gemini_flash_2.5_thinking 25.53 65.02 3.23 3476  48.57 27.53
gemma_3_27B 61.70 56.16 33.06 2226 3190 23.69
glm_4.5vs 29.79 36.14 87.90 3528 5476 34.84
gpt5_mini 38.30 47.03 48.39 4528 52.86 34.84
intern_vI3_78B 25.53 24.63 39.52 36.99 49.52 26.83
kimi_vl_a3b_thinking 21.28 7.39 74.19 1438 4524 27.18
04 _mini 14.89 51.72 31.45 26.71  49.52  28.57
qwen_2.5_32B_instruct 6.38 20.20 12.10 70.55 55.71 2091

Table S: Accuracy by daylight phase (DLP) for each model on TIMESPOT. Values are percentage accuracy;
blank cells indicate insufficient samples.

tied to sun direction and elevation, models learn correlates (hue, saturation) instead of causes (solar
geometry), explaining large morning versus afternoon asymmetries. Nighttime weakness points to
limited nocturnal coverage and weak learning of artificial lighting semantics (streetlamp spacing,
signage glow, skyglow). Instruction tuning may over emphasize textual plausibility and attenuate
geometric priors, yielding inconsistent phase decisions in similar chromatic contexts. Parameter
count alone is insufficient; domain targeted finetunes for shadow vectors, sun angle estimation, and
radiometric invariance should help. Midday collapse in gemini_flash_2.5_thinking suggests color cast
or white balance sensitivity; stronger photometric augmentation and cross camera normalization are
warranted. High Midday scores for glm 4.5vs and kimi_vl_a3b_thinking indicate that short shadows
and high solar zenith cues are learnable when emphasized and unconfounded. Sunrise remains
challenging due to twilight spectra and long penumbras; curricula with pre dawn emphasis and
temporal ordering can improve robustness. We recommend adding consistency constraints during
training (e.g., jointly predicting phase, time within a one hour tolerance, and inferred sun geometry)
to discourage plausible but contradictory outputs, as the discrepancies in Table [5]suggest.

E.3 SEASON ANALYSIS (SEE TABLE[6])

P1: Best and worst per season. From Table[6] Spring is led by gemma 3 27B at 44.48%, followed
closely by gpt5 mini at 43.58% and glm 4.5vs at 42.99%. Summer is decisively won by glm 4.5vs
at 84.92%, with intern v13 78B at 79.75% and gemini_flash_2.5_thinking at 80.25% close behind.
Autumn is uniformly 0.00% across models, indicating a pathological failure mode. Winter peaks at
gpt5 mini 60.31% and llama 3.2 90B Vision Instruct 59.19%, while qwen 2.5 32B instruct trails at
36.45%.

P2: Seasonal difficulty profile. Summer is the easiest season for nearly all models (many above
70%), suggesting strong reliance on high-irradiance cues, saturated foliage, and short shadows.
Spring is mid range (roughly 19-45%), indicating moderate confusion with summer and early
autumn. Winter is moderately hard but tractable (36-60%) likely due to mixed signals across regions,
variable snow presence, and low sun. Autumn is uniquely hard (0% for all), pointing to either
systematic misclassification, label scarcity, or overlapping appearance with late summer and early
winter.

P3: Model specialization. glm 4.5vs is a summer specialist with state of the art 84.92% and solid
winter (55.76%), indicating competence with strong solar geometry and distinct phenology. gemma 3
27B is the spring frontrunner at 44.48% but comparatively weak in summer and winter, suggesting
priors tuned to transitional vegetation but less to high-contrast lighting. gpt5 mini is consistently near
the top for winter and competitive elsewhere, signaling a balanced seasonal prior.

P4: Balance versus peaks. We see a trade off between balanced models and seasonal specialists.
gpt5 mini maintains stability across spring, summer, and winter without catastrophic drops. In
contrast, glm 4.5vs exhibits a high summer peak with respectable winter, while several models (e.g.,
intern vI3 4B, kimi vl a3b thinking) oscillate more sharply between seasons.
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PS: Spring versus summer asymmetry. Most models improve substantially from spring to summer
(e.g., gemini_flash_2.5_thinking 33.43% to 80.25%, intern v13 78B 23.58% to 79.75%). This suggests
heavy reliance on saturated greens, clear skies, and short, well defined shadows, whereas spring’s
transitional foliage and variable cloud cover yield weaker, noisier cues.

P6: Winter distinctiveness. Winter results cluster in the 40-60% band, with gpt5 mini and llama
3.2 90B Vision Instruct leading. The spread implies partial use of low sun angles, bare trees, and
snow cover when present. Failures likely arise in temperate and maritime climates where winter lacks
snow and shares colorimetry with autumn.

P7: The autumn collapse. The 0% column for autumn across all models (Table[6) is a red flag.
We suspect systematic confusion toward summer or winter, small or geographically skewed autumn
sample sizes, or a mismatch between regional phenology and a four season taxonomy. This uniform
failure differentiates seasonal recognition from daylight phase: here the bottleneck appears to be
phenology and colorimetry rather than sun angle alone.

P8: Scale and instruction are not enough. Larger models do not guarantee seasonal robustness.
llama 3.2 90B Vision Instruct excels in winter but is merely mid tier in spring and summer. Conversely,
compact yet well tuned systems (e.g., gpt5 mini) remain competitive, emphasizing the role of targeted
supervision and augmentation over sheer parameter count.

P9: Two archetypes. We observe phenology driven models that thrive in summer and hold in
winter, and geometry driven models that leverage sun angle and shadow length across seasons. glm
4.5vs resembles the latter in summer, while gpt5 mini looks more balanced. Models with flatter
spring performance likely underuse transitional vegetation cues.

P10: Informative outliers. intern v13 4B’s spring and winter gaps and kimi vl a3b thinking’s
modest spring suggest sensitivity to camera pipeline or color cast. qwen 2.5 32B instruct’s weak
winter (36.45%) despite decent summer points to priors tied to warm tone imagery and limited
invariance to low irradiance scenes.

We hypothesize that pretraining corpora are season imbalanced with an overrepresentation of summer
scenes and underrepresentation of transitional phenology, driving the summer peak and spring
weakness. A uniform 0% in autumn suggests either severe class scarcity, regional misalignment of
a four season taxonomy, or systematic bias in model priors that collapse autumn toward adjacent
classes. Without explicit supervision on phenology cues (leaf senescence, canopy density, ground
cover) and regional seasonality, models learn correlates like global hue and sky clarity instead of
causal, region aware vegetation cycles. Photometric and phenology augmentations that simulate
foliage transitions, overcast lighting, and precipitation could reduce reliance on saturated summer
colorimetry. Curriculum learning that orders samples by phenological continuity (late summer —
early autumn — mid autumn — early winter) may help models track gradual transitions rather than
snap to summer or winter modes. Multi head objectives that jointly predict sun elevation, cloud
regime, and vegetation state can disentangle lighting from plant phenology, improving spring and
autumn reliability. Region conditioned season heads (e.g., temperate, mediterranean, monsoon) could
mitigate taxonomy mismatch where autumn appears weak or absent. Finally, consistency losses
that couple month, season, and daylight phase—while allowing regional exceptions—should reduce
contradictory assignments and raise spring and autumn accuracy without harming summer or winter
performance.

E.4 CLIMATE ZONE ANALYSIS (SEE TABLE[7))

P1: Best and worst per zone. From Table|/| Tropical (A) is led by gemini_flash_2.5_thinking
at 86.13%, while kimi vl a3b thinking is lowest at 59.85%. Arid (B) again favors gem-
ini_flash_2.5_thinking at 83.89%, with llama 3.2 90B Vision Instruct the weakest at 58.33%. Temper-
ate (C) is topped by 04 mini at 90.72% and has a broad high plateau above 80% for several models;
Intern_v13_4B trails at 62.89%. Continental (D) is difficult across the board; intern vIi3 78B leads
at 56.82% and gpt5 mini follows at 55.84%, while kimi vl a3b thinking collapses to 2.02%. Polar
(E) peaks at 47.83% for gemini_flash_2.5_thinking; 1lama 3.2 90B Vision Instruct is the minimum at
4.35%.
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Model Spring Summer Autumn Winter
Intern_v13_4B 21.86 53.50 0.00 43.93
Llama-3.2-90B-Vision-Instruct ~ 28.66 70.25 0.00 59.19
gemini_flash_2.5_thinking 33.43 80.25 0.00 52.02
gemma_3_27B 44.48 48.75 0.00 43.30
glm_4.5vs 42.99 84.92  0.00 55.76
gpt5_mini 43.58 78.95 0.00 60.31
intern_v13_78B 23.58 79.75 0.00 40.81
kimi_vl_a3b_thinking 19.10 65.50 0.00 41.43
04_mini 27.46 73.00 0.00 50.78
qwen_2.5_32B_instruct 36.42 62.50 0.00 36.45

Table 6: Accuracy by season category for each model on TIMESPOT.

P2: Difficulty profile by climate. Zones A, B, and C are comparatively easy, with many models
above 70% and a standout at 90.72% in C. Zones D and E are consistently hard, rarely exceeding the
mid 50s and often dipping below 25%. This suggests training and inductive biases tuned to lower
latitude, higher population, and greener biomes.

P3: Temperate outlier. The 90.72% of 04 mini in Temperate (C) is a clear outlier. Several models
cluster tightly between 82—-86%, implying that C exhibits abundant, stable cues (deciduous phenology,
moderate sky states, familiar built environments) that align with pretraining priors.

P4: Continental strain. Continental (D) shows the sharpest spread: two models near 56% and
several below 25%, including a near floor at 2.02%. High seasonality, snow cover intermittency, and
strong intra class variance likely erode the value of single cue heuristics such as vegetation greenness
or shadow length.

P5: Polar brittleness. Polar (E) remains brittle. Even the best model is below 50%, and multiple
systems fall into single digits or teens. Low sun elevations, snow albedo, and sparse vegetation reduce
discriminative texture and color signals that these models usually exploit.

P6: A and B advantage. Strong results in Tropical (A) and Arid (B) for gemini_flash_2.5_thinking
and intern vl3 78B suggest effective use of sky clarity, aridity signatures, and architectural style.
Weak B performance for llama 3.2 90B Vision Instruct hints at limited invariance to high contrast
radiometry and dust or haze.

P7: Balance versus specialization. gpt5 mini is broadly balanced, staying competitive in A through
D and avoiding catastrophic failures. By contrast, kimi vl a3b thinking is excellent in C (85.40%) but
collapses in D (2.02%), a hallmark of specialization without robust transfer.

P8: Scale is not sufficient. Model size does not ensure climate robustness. llama 3.2 90B Vision
Instruct ranges from strong in C and Winter like contexts to very weak in E and B. Smaller but better
tuned models keep pace or surpass it in difficult zones.

P9: Zone adjacency effects. High accuracy in C paired with low scores in D and E suggests over
reliance on mid latitude priors. When cues deviate (long winter, low solar zenith, snow cover), models
revert to incorrect temperate like assumptions.

P10: Informative extremes. The Temperate peak and the Continental Polar troughs together imply
that current systems overfit to populous, well photographed regions and struggle where illumination
physics and surface properties diverge from those priors.

Broader Implications and Root Causes (anchored to Table[7)

We hypothesize that pretraining corpora over represent temperate and tropical urban scenes, under
represent continental winters and polar landscapes, and thus bias feature learning toward mid latitude
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Model A B C D E
Intern_vl3_4B 71.53 71.67 62.89 35.19 43.48
Llama-3.2-90B-Vision-Instruct 60.58 58.33 77.66 44.44 4.35
gemini_flash_2.5_thinking 86.13 83.89 8024 4192 47.83
gemma_3_27B 78.10 61.67 83.33 1540 34.78
glm_4.5vs 76.84 62.57 8227 2323 4348
gptS_mini 7591 75.00 8247 5584 43.48
intern_v13_78B 76.28 81.67 78.69 56.82 13.04
kimi_vl_a3b_thinking 59.85 70.00 85.40 2.02 13.04
o4_mini 61.31 60.00 90.72 31.06 8.70
qwen_2.5_32B_instruct 70.44 7444 8591 21.46 17.39

Table 7: Accuracy by Koppen—Geiger climate zone (A-E) for each model on TIMESPOT.

colorimetry and textures. In zones D and E, low sun angles, snow and ice high albedo, and reduced
vegetation suppress the chromatic and textural cues these models typically exploit, exposing gaps in
shadow geometry reasoning and radiometric invariance. Domain shift is amplified by camera pipeline
diversity, where auto white balance and HDR interact with snow and low angle illumination, degrading
learned color priors. Instruction tuning likely emphasizes textual plausibility over physically grounded
cues, weakening transfer to extreme climates. To mitigate, we recommend climate balanced curation,
photometric augmentation targeted at low sun and high albedo conditions, and auxiliary heads for
sun elevation and sky state to disentangle illumination from land cover. Region aware conditioning
(e.g., Koppen class tokens during finetuning) can reduce miscalibration when moving from C to D or
E. Finally, multi task consistency losses that link climate class with season, daylight phase, and time
can regularize predictions in data poor regimes without sacrificing strengths in A through C.

E.5 ENVIRONMENT ANALYSIS (SEE TABLE[g)

P1: Best and worst per environment. From Table[8] Urban is led by gemini_flash_2.5_thinking
at 75.93%, while gemma 3 27B is lowest at 54.17%. Suburban is broadly hard; glm 4.5vs tops at
46.61%, and gemini_flash_2.5_thinking bottoms out at 8.47%. Rural is dominated by gemma 3 27B
at 82.67%, with Llama 3.2 90B Vision Instruct lowest at 46.53%. Coastal peaks with qwen 2.5 32B
instruct at 61.33% and is weakest for gemma 3 27B and kimi vl a3b thinking at 45.86%. Mountain
has a tie for best between Llama 3.2 90B Vision Instruct and gemini_flash_2.5_thinking at 72.54%,
while gemma 3 27B is lowest at 38.34%. Desert is generally strong; intern v13 78B leads at 78.76%
and gemma 3 27B trails at 58.41%.

P2: Difficulty profile by environment. Suburban is the most challenging regime for nearly all
models (mostly 20-40%), suggesting weak priors for transitional built areas. Rural, Mountain, and
Desert are comparatively easier for several models, each with leaders above 70%. Urban is mid to
high for many models (55-76%), indicating that dense man-made cues are exploitable. Coastal shows
moderate spread (46—-61%), pointing to varied coastline appearances and weather states.

P3: Urban versus Suburban asymmetry. Most models perform far better in Urban than Suburban
(e.g., gemini_flash_2.5_thinking 75.93% vs 8.47%), implying that high-density architectural style and
signage provide stronger anchors than mixed-density neighborhoods where cues dilute.

P4: Rural strengths and variance. Rural excels for gemma 3 27B (82.67%) and is solid for glm
4.5vs and intern v13 78B (67-70%). We hypothesize these models leverage vegetation structure, field
patterns, and road typology; Llama 3.2 90B Vision Instruct’s weaker rural score suggests sensitivity
to camera pipeline or vegetation colorimetry.

P5: Coastal specificity. qwen 2.5 32B instruct’s lead at Coastal (61.33%) indicates effective use of
shoreline geometry, horizon—waterline relations, and coastal infrastructure. Models at 46-50% likely
underuse sky—sea radiometry and surf texture, or conflate coastal towns with generic urban—suburban
scenes.
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Model Urban Suburban Rural Coastal Mountain Desert
Intern_v13_4B 60.65 27.35 54.46 46.96 60.62  77.88
Llama-3.2-90B-Vision-Instruct  54.94 27.97 46.53 55.80 72.54  76.99
gemini_flash_2.5_thinking 75.93 8.47 62.87 49.17 72.54  70.80
gemma_3_27B 54.17 27.12  82.67 45.86 38.34 58.41
glm_4.5vs 64.19 46.61 69.65 57.46 58.03  72.57
gptS_mini 62.50 37.61 55.94 58.89 65.80 68.14
intern_vl3_78B 66.67 22.03 66.83 54.14 58.55 78.76
kimi_vl_a3b_thinking 68.83 20.34 57.43 45.86 59.07  70.80
04 _mini 63.27 32.20 66.83 50.28 54.40  70.80
qwen_2.5_32B_instruct 63.73 26.27 62.38 61.33 61.66 75.22

Table 8: Accuracy by environment type for each model on TIMESPOT.

P6: Mountain cues. The Mountain tie at 72.54% (Llama 3.2 90B Vision Instruct and gem-
ini_flash_2.5_thinking) suggests successful exploitation of high-relief silhouettes, snow lines, and
atmospheric perspective. Lower performers likely mis-handle low sun angles, haze, or mixed
alpine—subalpine vegetation bands.

P7: Desert robustness. Desert is robust across models (68—79% leaders). Strong texture monotony,
dune/ripples, arid sky states, and sparse vegetation act as distinctive cues; gemma 3 27B’s relative
drop (58.41%) hints at color-cast sensitivity or limited arid-scene exposure.

P8: Balanced versus specialist profiles. gpt5 mini is consistently mid-to-high across environments
(59-66% except Suburban 37.61%), indicating balance. Specialists include gemini_flash_2.5_thinking
(very high Urban and Mountain, very low Suburban) and gemma 3 27B (very high Rural, weak
Mountain and Coastal).

P9: Intern family behavior. intern v13 78B shows strong Desert (78.76%) and solid Rural/Urban,
but low Suburban (22.03%). The 4B variant is surprisingly competitive in A-like arid settings (Desert
77.88%), yet Suburban remains a consistent weakness across the family.

P10: Informative extremes. The Suburban floor (8.47%) and Desert/Urban peaks (;,75%) reveal
an over-reliance on either dense man-made cues or highly distinctive natural biomes, with failures
where features blend (Suburban) or where coastal/mountain conditions perturb radiometry.

Broader Implications and Root Causes (anchored to Table

We hypothesize that pretraining corpora over-represent iconic urban cores and visually distinctive
biomes (deserts, alpine vistas), while under-representing transitional suburban morphologies; this
drives sharp Urban and Desert peaks but Suburban collapses. Without objectives that disentangle
structure (built-density gradients, street hierarchy) from appearance (color/contrast), models latch
onto high-salience textures and signage and fail when cues mix. Rural success for some models
suggests effective use of vegetation and road-layout priors, but sensitivity to color pipelines (white
balance, HDR) still lowers robustness across cameras and seasons. Coastal variance reflects under-
modeled sky—sea interactions, horizon geometry, and weather/season coupling; adding auxiliary
heads for horizon detection, sky state, and water presence should help. Mountain performance
benefits from silhouette and relief cues, yet drops when haze, low solar elevation, or snow cover shift
radiometry—arguing for photometric augmentation tailored to altitude conditions. Suburban requires
structure-aware supervision (e.g., density gradients, land-use mix) and region-aware conditioning to
avoid misclassification into Urban or Rural. Finally, multi-task consistency that links environment
type with daylight phase, climate zone, and season can regularize predictions in ambiguous scenes
without eroding strengths in clearly distinctive environments.

E.6 AsiA COUNTRY ANALYSIS (SEE TABLE9))

P1: Country leaders and laggards. From Table[9] the strongest single-country results include
Singapore at 100.0% (gemini_flash 2.5 thinking), Bangladesh at 100.0% (glm 4.5vs), Japan at 92.54%
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(gemini_flash 2.5 thinking), Turkey at 90.91% (gemini_flash 2.5 thinking), and India at 89.66%
(gemini_flash 2.5 thinking). The weakest per-country minima include multiple near-zeros, e.g.,
Intern_v13 4B in Saudi Arabia and Sri Lanka, kimi vl a3b thinking in Bangladesh, and gemma 3 27B
in Kyrgyzstan.

P2: Model wins by country. gemini_flash 2.5 thinking leads in Japan, India, South Korea, Turkey,
Philippines (tie with gpt5 mini), Sri Lanka, Mongolia, and Singapore. glm 4.5vs leads in Russia,
China, Thailand, Bangladesh, Kyrgyzstan, and Myanmar. gpt5 mini leads in Kazakhstan and ties
in Saudi Arabia and the Philippines. Intern_vI3 78B leads in Nepal, while Llama 3.2 90B Vision
Instruct leads in Bhutan.

P3: Regional patterning. East and parts of Southeast Asia are broadly high performing across
models (Japan, South Korea, China; Singapore, Philippines, Thailand). Central and high-altitude
countries (Nepal, Bhutan, Kyrgyzstan, Mongolia) exhibit larger variance and more model-specific
collapses. West and Central Asia show mid-band accuracy with occasional peaks (e.g., Saudi Arabia
mid 60s for gemini_flash 2.5 thinking and gpt5 mini; Kazakhstan best with gptS mini).

P4: Balanced versus spiky profiles. gpt5 mini maintains stable mid-to-high performance across
many countries (e.g., Russia 72.06, China 75.86, India 74.14, South Korea 85.00, Kazakhstan 66.67),
with few catastrophic lows. In contrast, kimi vl a3b thinking and Intern_vI3 4B show spiky outcomes
(good in select settings, near-zero in others), signaling sensitivity to scene distribution or prompt
formatting.

P5: Large-scale is not decisive. Llama 3.2 90B Vision Instruct posts strong numbers in Japan and
Bhutan but is mid-tier or weak elsewhere (e.g., Kazakhstan 20.00, Bangladesh 22.22), indicating that
parameter count alone does not guarantee country-level robustness.

P6: Urbanized and coastal advantage. High-performing countries often coincide with distinctive
urban or coastal cues (Japan, Singapore, Philippines). Models appear to leverage stable architectural
style, traffic infrastructure, coastline geometry, and signage conventions, which are more uniform and
thus easier to learn.

P7: Terrain and inland variance. Mountainous or landlocked countries (Nepal, Bhutan, Kyrgyzs-
tan, Mongolia) provoke larger spreads across models, consistent with higher illumination variability,
snowline effects, mixed vegetation bands, and fewer high-salience man-made anchors.

P8: Consistent leaders. gemini_flash 2.5 thinking is a frequent winner in populous and coastal
contexts and remains competitive inland; glm 4.5vs excels in continental and mixed settings (Russia,
China, Thailand, Bangladesh, Kyrgyzstan, Myanmar). Their complementary wins suggest different
cue priors—color and structure in gemini_flash 2.5 thinking, geometry and terrain-texture in glm
4.5vs.

P9: Informative ties and splits. Ties (e.g., Saudi Arabia gemini_flash 2.5 thinking and gpt5 mini
at 64.71, Philippines gemini_flash 2.5 thinking and gpt5 mini at 88.89) indicate shared strengths
on specific country cues; large intra-country spreads (e.g., Bangladesh ranging from 0.00 to 100.0)
expose brittleness to camera pipelines, lighting, or sub-region diversity.

P10: Error geography. Countries with mid-latitude or mixed biomes (e.g., Iran, Turkey, Mongolia)
show moderate means but wide per-model dispersion, implying that models overfit to a subset of cues
(seasonal colorimetry, skyline geometry) and falter when those cues shift within the country.

Broader Implications and Root Causes (anchored to Table[9)

We hypothesize that pretraining data density and visual homogeneity drive the country-level peaks:
countries with abundant, consistent urban—coastal imagery yield higher scores, while terrain-diverse
or sparsely documented countries induce variance. Absent explicit objectives for sun geometry,
terrain context, and region-aware semantics, models lean on color and texture correlates that drift
across sub-regions and seasons within the same country. Instruction-tuning likely amplifies textual
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plausibility over physically grounded cues, causing collapses in countries where colorimetry or scene
composition deviates from high-data priors. Camera pipeline differences (white balance, HDR)
and weather regimes (haze, monsoon cloud fields, snow) further perturb radiometry, explaining the
extreme lows. To mitigate, we recommend: (i) region-balanced curation within each country, (ii)
photometric and phenology augmentations tied to local climate regimes, (iii) auxiliary heads for
horizon detection, sun elevation, and terrain class to disentangle illumination from land cover, and
(iv) consistency constraints that couple country with climate zone, season, and daylight phase. These
steps should reduce intra-country variance while preserving strengths in highly photographed locales.

Table 9: Country-level accuracy (%) by model for all available countries in Asia.

Country Intern_v13_4B 90B-I<};lsrin(:lr;-3l-ritruct %esrrj :E;ii:l; gemma_327B glm_4.5vs gpt5_mini intern_vI3_78B kltrl?:r’l‘l/(]l;:b 04_mini qwizij(fZB
Russia 52.17 52.17 73.91 55.07 78.26 72.06 76.81 40.58  59.42 68.12
Japan 61.19 77.61 92.54 77.61 88.06 86.36 83.58 70.15  76.12 77.61
China 55.17 51.72 81.03 58.62 84.48 75.86 81.03 55.17  68.97 67.24
India 31.03 67.24 89.66 70.69 71.93 74.14 72.41 4138 7241 75.86
South Korea 25.00 75.00 87.50 67.50 67.50 85.00 62.50 60.00  65.00 62.50
Turkey 36.36 45.45 90.91 66.67 69.70 69.70 57.58 57.58 4545 54.55
Philippines 14.81 48.15 88.89 74.07 59.26 88.89 33.33 4444 74.07 51.85
Iran 5.26 45.00 70.00 35.00 50.00 65.00 50.00 25.00  50.00 35.00
Myanmar 5.56 5.56 2222 33.33 55.56 27.78 16.67 11.11 16.67 11.11
Bhutan 5.88 64.71 58.82 47.06 52.94 47.06 35.29 29.41 35.29 52.94
Saudi Arabia 0.00 47.06 64.71 29.41 62.50 64.71 41.18 29.41 35.29 29.41
Sri Lanka 0.00 29.41 76.47 23.53 70.59 52.94 17.65 5.88 17.65 29.41
Nepal 18.75 31.25 68.75 56.25 62.50 50.00 75.00 56.25  56.25 56.25
Kazakhstan 0.00 20.00 60.00 40.00 60.00 66.67 6.67 13.33  40.00 13.33
Mongolia 23.08 61.54 76.92 46.15 46.15 69.23 53.85 1538  53.85 61.54
Thailand 38.46 46.15 53.85 46.15 84.62 53.85 61.54 53.85  46.15 46.15
Singapore 20.00 80.00 100.00 90.00 90.00 90.00 70.00 20.00  90.00 80.00
Bangladesh 11.11 2222 66.67 55.56 100.00 55.56 11.11 0.00  33.33 11.11
Kyrgyzstan 0.00 2222 44.44 0.00 44.44 33.33 33.33 11.11 11.11 2222
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E.7 EUROPE COUNTRY ANALYSIS (SEE TABLE[LT)

E1: Standout highs and lows. Several microstates show ceiling effects with many models at or
near 100% (Ireland, Switzerland, Netherlands; also Monaco and Malta for selected models). The
sharpest dips include 04 mini in the United Kingdom (13.33%) and numerous zeros for Intern_vl3_4B
across small countries (e.g., Denmark, Finland, Luxembourg).

E2: Western Europe profile. France, Italy, Spain, and the United Kingdom are consistently strong
for gemini_flash 2.5 thinking (80-97% range) and often for gpt5 mini (60-100%). Llama 3.2 90B
Vision Instruct is reliable in the UK (90%) and solid in Italy (60%) but more variable elsewhere (e.g.,
France 42%).

E3: Central Europe dispersion. Germany is a high-accuracy hub: gemini_flash 93.33%, intern_vI3
78B and qwen 86.67%, gemma 75.56%. Poland and Czechia show broader spread with mid-to-high
wins for gemini_flash (84% in Poland) but mixed outcomes for others, indicating cue sensitivity to
local appearance diversity.

E4: Nordics and Atlantic edge. Finland, Norway, Iceland, Ireland display very high plateaus for
multiple models (often 100% for gemini_flash and gpt5 mini). That said, volatility remains for smaller
models (e.g., Intern_v13_4B at 0% in several Nordic cases) suggesting sample size and winter-lighting
sensitivity.

ES: Balkans and microstates. Croatia has a triple 100% (glm 4.5vs, gpt5 mini, 04 mini), while
North Macedonia remains uniformly low, and Slovenia centers around a single leader (gemini_flash
83.33%). Andorra, Vatican City, Luxembourg show sparse, highly discrete performance bands tied to
tiny N.

E6: Coastal versus inland cues. Countries with strong coastal identity (Spain, Portugal, Norway)
tend to deliver high marks for models that exploit horizon geometry, maritime infrastructure, and
coastal skylines (gemini_flash, gpt5 mini). Inland nations with mixed terrain (Hungary, Slovakia,
Lithuania) show more fragmentation and lower medians.

E7: Recurrent leaders. gemini_flash 2.5 thinking frequently tops major economies (UK 96.67%,
Germany 93.33%, Spain 90%) and several small states (Estonia 100%, Monaco 100%). gpt5 mini
repeatedly hits 100% in northern and microstate settings (Iceland, Ireland, Netherlands, Switzerland),
pointing to robust priors for highly photographed European scenes.

E8: Model stability versus spikes. gpt5 mini offers steady high performance with few catastrophic
failures. By contrast, 04 mini and Intern_v13 variants show spikes and collapses depending on country
(e.g., UK 13.33% for 04 mini versus 100% in Croatia), consistent with sensitivity to particular cue
distributions.

E9: Alphabet and signage bias. High scores in countries with uniform Latin typography and
standardized road signage (Netherlands, Ireland, UK) hint that text and iconography are strong
anchors; failures in small-N countries likely arise when those cues are occluded or absent.

E10: Russia and mixed biomes. Russia exhibits mid-to-high accuracy for geometry-leaning
systems (glm 75.00%) and balanced models (gpt5 mini 67.86%), but the spread across models
suggests challenges with broad biome variety and seasonal changes even within a single country
label.

Context and Likely Drivers (anchored to Table[11)

We read these Europe results as a blend of data-density effects and cue availability. Countries with
abundant, iconic urban imagery and standardized visual systems (signage, architecture, transit) favor
models that internalize stable mid-latitude priors. Small states and low-N splits produce quantization:
a few successes yield 100%, a few misses yield 0%. Lighting regimes at high latitude (long twilight,
low solar elevation) can either help (predictable skylight geometry) or hurt (photometric drift),
depending on a model’s radiometric invariance. Over-reliance on textual artifacts likely benefits the
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UK, Ireland, Netherlands, but can falter where signage is atypical or occluded. Large parameter
counts do not guarantee uniform wins; training mix and augmentation breadth appear more decisive.
We recommend per-country balance checks (avoid microstate skew), photometric normalization
for high-latitude light, and auxiliary heads that couple terrain, horizon, and sky state with country
prediction. Consistency constraints linking country with climate, season, and daylight phase should
curb implausible combinations and stabilize performance in heterogeneous interiors (e.g., Balkans,

Central/Eastern Europe).

Table 11: Country-level accuracy (%) by model for all available countries in Europe (selected).

Country Intern_vl3_4B 9 OBk}?s?)ar;—SIﬁs-truc " %einjlltl:i:g gemma-3_.27B glm_4.5vs gptS_mini intern-vI3_78B kl;;ilr’l\lg;la;b 04_mini qw?r;;?r'sc’?z‘g
Italy 24.62 60.00 81.54 58.46 69.23 72.31 46.15 50.77  64.62 56.92
France 40.00 42.00 80.00 42.00 60.00 60.00 46.00 62.00  42.00 50.00
Germany 33.33 57.78 93.33 75.56 75.56 55.56 86.67 53.33 66.67 86.67
United Kingdom 60.00 90.00 96.67 36.67 83.33 93.33 90.00 80.00 13.33 93.33
Russia 53.57 35.71 67.86 35.71 75.00 67.86 71.43 46.43 64.29 53.57
Poland 20.00 48.00 84.00 64.00 64.00 60.00 36.00 24.00  36.00 64.00
Spain 45.00 50.00 90.00 60.00 70.00 65.00 80.00 45.00  40.00 90.00
Vatican City 0.00 40.00 80.00 0.00 40.00 50.00 0.00 30.00 10.00 40.00
Andorra 0.00 50.00 83.33 16.67 83.33 66.67 0.00 0.00 0.00 16.67
Estonia 0.00 33.33 100.00 66.67 16.67 33.33 16.67 33.33 0.00 33.33
Iceland 0.00 66.67 83.33 83.33 83.33 100.00 83.33 66.67  66.67 83.33
Luxembourg 0.00 66.67 50.00 16.67 33.33 50.00 0.00 0.00 0.00 33.33
Malta 0.00 50.00 83.33 66.67 100.00 66.67 33.33 16.67  83.33 83.33
Monaco 0.00 66.67 100.00 100.00 83.33 66.67 16.67 0.00  66.67 66.67
North Macedonia 0.00 0.00 33.33 0.00 33.33 16.67 0.00 0.00 16.67 0.00
Slovenia 0.00 33.33 83.33 33.33 33.33 16.67 16.67 16.67  33.33 16.67
Croatia 0.00 50.00 75.00 50.00 100.00 100.00 50.00 50.00  100.00 50.00
Denmark 0.00 0.00 100.00 50.00 50.00 75.00 25.00 75.00  75.00 75.00
Ireland 0.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00  75.00 100.00
Lithuania 0.00 25.00 50.00 0.00 25.00 25.00 25.00 0.00 0.00 25.00
Slovakia 0.00 25.00 25.00 0.00 50.00 0.00 0.00 0.00  25.00 25.00
Belgium 0.00 33.33 33.33 0.00 33.33 66.67 0.00 33.33 0.00 0.00
Czechia 0.00 33.33 33.33 66.67 66.67 33.33 33.33 33.33 0.00 3333
Finland 0.00 100.00 100.00 66.67 66.67 100.00 0.00 0.00  33.33 66.67
Greece 33.33 0.00 66.67 66.67 33.33 33.33 0.00 0.00 3333 0.00
Hungary 0.00 0.00 66.67 33.33 33.33 33.33 33.33 33.33 33.33 0.00
Norway 66.67 33.33 100.00 66.67 66.67 100.00 66.67 33.33 33.33 100.00
Portugal 33.33 33.33 66.67 66.67 33.33 66.67 33.33 66.67  33.33 3333
Romania 0.00 33.33 100.00 0.00 100.00 66.67 0.00 0.00  33.33 0.00
Sweden 0.00 66.67 66.67 33.33 33.33 100.00 33.33 0.00 3333 33.33
Netherlands 50.00 100.00 100.00 100.00 50.00 100.00 100.00 50.00 100.00 100.00
Serbia 0.00 50.00 50.00 0.00 50.00 100.00 50.00 0.00  50.00 50.00
Switzerland 100.00 100.00 100.00 100.00 100.00 100.00 100.00 50.00  100.00 100.00
Turkey 0.00 50.00 50.00 50.00 100.00 100.00 50.00 0.00  50.00 50.00
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E.8 NORTH AMERICA COUNTRY ANALYSIS (SEE TABLE[I3))

N1: Headline results. Table[I3|shows the USA as a high-accuracy anchor across nearly all models
(85-94%), with gemini_flash 2.5 thinking leading at 93.88%. Canada forms a second tier (54—82%),
and Mexico is clearly tougher (best 56.67% with gemini_flash, 51.72% with glm 4.5vs).

N2: Island contrast. Cuba exhibits multiple 100% scores (llama 3.2 90B, gemini_flash, glm 4.5vs,
gpt5 mini, 04 mini), suggesting easy-to-key cues or small-N quantization. The Dominican Republic
is split: gemini_flash at 90% and gpt5 mini at 70% versus very low numbers for several others,
indicating sharp model-specific sensitivity.

N3: Mesoamerican spread. Guatemala highlights divergent priors: gpt5 mini at 90% and glm
4.5vs at 80% outperform gemini_flash at 60%; other models lag at 20-30%. Panama is mid-range
overall (most models 50-80%), with intern_v13 78B dropping to 10%, a notable failure mode.

N4: Puerto Rico band. Puerto Rico sits in a tight mid band (40-60%) across models, implying
useful but not decisive coastal or urban cues; no model dominates.

NS5: Model leaders by country. gemini_flash 2.5 thinking leads the USA and ties or wins in several
island settings; glm 4.5vs is consistently strong in Canada (76%) and also hits 100% in Cuba; gpt5
mini posts standout wins in Guatemala (90%) and remains competitive in the USA and Canada.

N6: Stability versus volatility. gpt5 mini is the steadiest performer (few collapses, many upper-mid
scores). By contrast, intern_v13 78B swings widely (e.g., 87.76% USA vs 0-10% in DR and Panama),
and the 4B variant is frequently low (Mexico 3.33%, several zeros elsewhere).

N7: Coastal and signage cues. High marks in the USA and Cuba likely reflect rich coastal-urban
signatures, standardized signage, and consistent road furniture. Mexico and parts of Central America
may present greater intra-country heterogeneity (lighting regimes, street textures, informal signage),
stressing models that lean on uniform text or skyline patterns.

N8: Large-scale isn’t decisive. Parameter count does not settle the leaderboard: 1lama 3.2 90B is
excellent on the USA and Cuba but trails or sits mid-pack in Canada and Mexico. Smaller, well-tuned
systems (gpt5 mini, glm 4.5vs) keep pace or win outright in several countries.

N9: Informative outliers. Country—model extremes (e.g., 04 mini’s strong USA 85.71% but only
20-50% in several smaller countries) suggest reliance on high-data priors; when those cues thin out,
performance reverts to chance-like ranges.

N10: Practical takeaway. For deployment across North America, an ensemble that weights
gemini_flash in the USA and islands, glm 4.5vs in Canada, and gpt5 mini in Central America would
hedge against single-model brittleness.

Interpretation and Likely Drivers (anchored to Table[13)

We read these patterns as a mix of data-density effects and cue stability. The USA’s consistently
high numbers align with abundant, homogeneous training imagery and standardized visual systems
(signage, lane markings, storefront styles). Canada’s slightly lower scores likely reflect latitude-
driven illumination changes and snow/overcast regimes that perturb color priors; models with better
radiometric robustness (glm 4.5vs, gpt5 mini) benefit. Mexico and parts of Central America introduce
more varied street morphology and photometric conditions (haze, intense sun, mixed materials),
reducing the reliability of text and skyline heuristics. Island peaks (Cuba) may partly be small-N
discretization, but also strong coastal silhouettes and maritime infrastructure that certain models
exploit. The large swings of intern_v13 variants point to prompt-format or finetune mismatch under
domain shift. Mitigations include country-balanced sampling within each region, photometric
augmentation for high-irradiance and overcast extremes, auxiliary heads for horizon/sky state to
decouple lighting from semantics, and lightweight ensembling guided by per-country validation to
avoid single-prior collapse.
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Table 13: Country-level accuracy (%) by model for all available countries in North America.

Country Intern_v13_4B QOBK}?:E;?I?;HUQ %e;rj :S;i?zg gemma3_27B glm4.5vs gpt5S_mini intern_vI3_78B klg;;ﬁ;la;b o4_mini qweirll;i—.:jZB
USA 68.37 92.35 93.88 88.27 88.78 89.80 87.76 69.39 8571 87.24
Canada 16.00 54.00 82.00 40.00 76.00 64.00 54.00 22.00  72.00 64.00
Mexico 3.33 46.67 56.67 43.33 51.72 46.67 33.33 26.67  43.33 26.67
Cuba 30.00 100.00 100.00 90.00 100.00 100.00 80.00 40.00  100.00 70.00
Dominican Republic 20.00 60.00 90.00 20.00 20.00 70.00 0.00 10.00  50.00 10.00
Guatemala 0.00 30.00 60.00 30.00 80.00 90.00 20.00 20.00  20.00 30.00
Panama 0.00 40.00 80.00 70.00 70.00 70.00 10.00 30.00  50.00 60.00
Puerto Rico 0.00 40.00 60.00 50.00 60.00 50.00 30.00 40.00  30.00 50.00

E.9 SOUTH AMERICA COUNTRY ANALYSIS (SEE TABLE[I3)

Findings. FI. Coverage snapshot. Table [15]shows high scores in Chile and Brazil, moderate
bands in Argentina, Colombia, Peru, and clear difficulty in Bolivia and Uruguay. F2. Country
leaders. Chile peaks with gemini_flash 2.5 thinking at 90% (llama 3.2 90B at 80%, 04 mini and
gpt5 mini at 75%). Brazil is co-led by gemini_flash 2.5 thinking and glm 4.5vs at 90%. Ecuador is
strong for gemini_flash 2.5 thinking (85%) and glm 4.5vs (84.21%). F3. Central Andean difficulty.
Bolivia is uniformly low with a best of 30% (gpt5 mini), many models at or near 0%. Uruguay
is also challenging, topping at 40% (glm 4.5vs and gpt5 mini). F4. Argentina and Peru mid tier.
Argentina is led by gemini_flash 2.5 thinking at 80%, with glm 4.5vs at 62.5%; Peru tops at 75%
(gemini_flash 2.5 thinking), then 65% (glm 4.5vs). F5. Colombia balanced high. Colombia favors
glm 4.5vs (76.67%), with gemini_flash 2.5 thinking (66.67%) and gpt5 mini (60%) close behind. F6.
Model-wise patterns. gemini_flash 2.5 thinking is the most frequent winner across countries; glm
4.5vs often places first or second, particularly in Colombia, Brazil, and Ecuador; gpt5 mini rarely
leads outright but posts stable upper—mid results and uniquely tops the low-signal Bolivia and ties for
Uruguay. F7. Volatility. Intern_vl3_4B and kimi vl a3b thinking show repeated near-zeros (Argentina,
Ecuador, Brazil, Uruguay), while intern_v13_78B oscillates from 65% (Chile) to 0-2.5% (Argentina,
Uruguay). F8. Large scale is not decisive. 1lama 3.2 90B is excellent in Chile (80%) and solid
elsewhere (60% in Brazil, Peru), yet falls to 10% in Uruguay; parameter count alone does not explain
the leaderboard.

Interpretation and Causes (anchored to Table

C1. Cue availability. High results in Chile and Brazil align with strong coastal skylines, standardized
road furniture, and dense urban signatures, which many models exploit reliably. C2. Altitude and
photometry. Central Andean scenes (Bolivia, parts of Peru and Ecuador) feature high-elevation light-
ing, snowlines, and thin-atmosphere radiometry; models tuned to mid-latitude, sea-level appearances
underperform. C3. Heterogeneity within labels. Mexico-like variance is echoed here: mixed street
morphology, informal signage, and diverse building materials in inland South American settings
reduce the utility of text and skyline heuristics. C4. Robustness versus specialization. gpt5 mini’s
steadiness suggests better invariance to camera pipelines and illumination shifts; by contrast, models
with sharp peaks may rely on brittle chromatic or texture priors. C5. Training mix effects. The
prevalence of web imagery from major coastal cities likely biases pretraining toward those cues,
depressing performance in rural, highland, or low-contrast scenes. C6. Small-N sensitivity. Several
near-zeros and sudden jumps (e.g., Uruguay) indicate discrete outcomes under limited samples;
variance should be reported with per-country N and confidence intervals. C7. What would help.
Climate- and altitude-aware augmentation (low sun, haze, high albedo, desaturated palettes), explicit
objectives for horizon and sun geometry, and region-conditioned adapters are likely to reduce failures
in Andean interiors. C8. Deployment implication. A simple ensemble—weighting gemini_flash 2.5
thinking for Brazil and Chile, glm 4.5vs for Colombia and Ecuador, and gpt5 mini as a stabilizer for
Bolivia and Uruguay—would hedge single-model brittleness without heavy overhead.

Table 15: Country-level accuracy (%) by model for all available countries in South America.
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Country  Intern_vI3_4B 9OB—I§}?sri[:)aI;—3I§s_truct %esn:l :;;r'li?;; gemma-3_27B glm_4.5vs gpt5S_mini intern_vl3_78B kl?;ill'l‘{(li;?;b 04_mini qW?Z;tZl:j;S)ZB
Argentina 0.0 40.00 80.00 35.0 62.50 55.0 2.50 125 2250 37.50
Colombia 20.0 46.67 66.67 40.0 76.67 60.0 23.33 20.0 4333 43.33
Chile 20.0 80.00 90.00 55.0 70.00 75.0 65.00 15.0  75.00 65.00
Ecuador 0.0 50.00 85.00 35.0 84.21 70.0 20.00 10.0  30.00 40.00
Peru 25.0 60.00 75.00 55.0 65.00 60.0 45.00 50.0  45.00 55.00
Bolivia 0.0 20.00 20.00 0.0 20.00 30.0 0.00 0.0 0.00 10.00
Brazil 0.0 60.00 90.00 20.0 90.00 60.0 50.00 20.0  50.00 50.00
Uruguay 0.0 10.00 30.00 10.0 40.00 40.0 0.00 0.0 0.00 0.00

F EXAMPLES OF TIMESPOT DATASET

Desert Sunset USA

Picture

Ground Truth

Season: Summer,

Month: June,

Time_of_day: 19:00:00,
Daylight_phase: Sunset,
Continent: North America,
Country: USA,

Climate_zone: Arid (B),
Environment_type: Desert,
Coordinates_|latitude: 32.2217,
Coordinates_longitude: -110.9265

GPT-5-mini

« Season: Summer,

* Month: July,

* Time_of_day: 19:15,

« Daylight_phase: Sunset,

+ Continent: North America,

« Country: United States,

» Climate_zone: Arid (B),

» Environment_type: Desert,

« Coordinates_latitude: +32.25000,
» Coordinates_longitude: -111.00000

Intern-VL3.5-2B

+ Season: Winter

* Month: December

* Time_of day: 17:30

» Daylight_phase: Sunset
 Continent: North America
 Country: United States (Arizona)
+ Climate_zone: Arid (B)

+ Environment_type: Desert

» Coordinates_latitude: +33.421

+ Coordinates_longitude: -117.726

Intern-VL2.5-72B

« Season: Summer,

« Month: June,

» Time_of_day: 19:00,

« Daylight_phase: Sunset,

« Continent: North America,

* Country: United States,

« Climate_zone: Arid (B),

» Environment_type: Desert,

« Coordinates_|latitude: +33.4484,

« Coordinates_longitude: -
111.9385

Figure 5: Example of TIMESPOT dataset — Desert Sunset USA.
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Mountain Town Morning In India

Picture

GPT-5-mini

» Season: Summer

* Month: August

» Time_of_day: 17:30

« Daylight_phase: Afternoon

« Continent: Asia

« Country: India

» Climate_zone: Arid (B)

» Environment_type: Mountain
 Coordinates_|latitude: +34.15260

« Coordinates_longitude: +077.57700

Intern-VL3.5-2B

Season: Spring
Month: July
Time_of_day: 12:00

Daylight_phase: Midday o

Continent: Asia
Country: Pakistan

Ground Truth

Season: Summer

Month: June

Time_of_day: 09:00:00
Daylight_phase: Morning
Continent: Asia

Country: India

Climate_zone: Arid (B)
Environment_type: Rural
Coordinates_latitude: 34.15258
Coordinates_longitude: 77.57705

Intern-VL2.5-72B

« Season: Autumn

* Month: October

« Time_of day: 16:00
Daylight_phase: Afternoon
« Continent: Asia

« Country: India

Climate_zone: Arid (B) < Climate_zone: Arid (B)
Environment_type: Mountain « Environment_type: Mountain
Coordinates_|latitude: +34.835 « Coordinates_latitude: +34.19999
Coordinates_longitude: +74.679 + Coordinates_longitude:

+77.58333

J

Figure 6: Example of TIMESPOT dataset — Mountain Town Morning In India.

Urban Morning Street Scene In Turkey

Picture

GPT-5-mini

» Season: Autumn,

* Month: October,

» Time_of_day: 11:30,

» Daylight_phase: Morning,

« Continent: Europe,

« Country: Turkey,

* Climate_zone: Temperate (C),

» Environment_type: Urban,

» Coordinates_latitude: +39.93340,
» Coordinates_longitude: +32.85970

Intern-VL3.5-2B

Season: Winter
Month: October
Time_of_day: 12:00

Daylight_phase: Midday

Continent: Europe
Country: Turkey

Ground Truth

Season: Fall,

Month: September,

Time_of_day: 10:27,

Daylight_phase: Morning,

Continent: Asia,

Country: Turkey,

Climate_zone: Temperate (C),
Environment_type: Urban,
Coordinates_latitude: 39.896579640955,
Coordinates_longitude: 32.860911162601

Intern-VL2.5-72B

« Season: Summer,

« Month: July,

¢ Time_of_day: 14:00,

< Daylight_phase: Afternoon,
< Continent: Europe,

« Country: Turkey,

Climate_zone: Temperate
Environment_type: Urban
Coordinates_latitude: 41.167
Coordinates_longitude: 28.917

« Climate_zone: Temperate (C),

Environment_type: Urban,
Coordinates_latitude:
+41.02370,
Coordinates_longitude:
+28.98390

Figure 7: Example of TIMESPOT dataset — Urban Morning Street Scene In Turkey.
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Urban Facade In Thailand Afternoon

Picture

GPT-5-mini

¢ Season: Autumn,

¢ Month: November,

» Time_of_day: 19:30,

» Daylight_phase: Night,
 Continent: Asia,

» Country: China,

« Climate_zone: Temperate (C),

* Environment_type: Urban,

» Coordinates_|latitude: +31.23041,

+ Coordinates_longitude: +121.47370 .

Ground Truth

* Season: Summer,

* Month: August,

« Time_of_day: 20:00:00,
< Daylight_phase: Night,
« Continent: Asia,

« Country: Thailand,

« Climate_zone: Tropical

« Coordinates_longitude:

Intern-VL3.5-2B

» Season: Winter

* Month: December

» Time_of_day: 23:00

+ Daylight_phase: Night

+ Continent: Asia

» Country: China

» Climate_zone: Temperate (C)

* Environment_type: Urban

» Coordinates_|latitude: 36.89000
Coordinates_longitude: 117.33100

(A,

» Environment_type: Urban,
« Coordinates_|latitude: 12.242756,

102.5174734

Intern-VL2.5-72B

Season: Autumn,

Month: October,
Time_of_day: 20:00,
Daylight_phase: Night,
Continent: Asia,

Country: China,
Climate_zone: Temperate (C),
Environment_type: Urban,
Coordinates_latitude: +31.2304,
Coordinates_longitude:
+121.4737

Figure 8: Example of TIMESPOT dataset — Urban Facade In Thailand Afternoon.

Picture

Snowy Urban Night In USA

Ground Truth

« Season: Winter,

« Month: February,

« Time_of_day: 22:00:00,
« Daylight_phase: Night,

« Country: USA,

« Continent: North America,

« Climate_zone: Continental (D),

« Environment_type: Urban,

¢ Coordinates_latitude: 39.7392,

« Coordinates_longitude: -104.9903

GPT-5-mini

Season: Winter,

Month: January,

Time_of_day: 20:30,
Daylight_phase: Night,

Continent: North America,
Country: United States,
Climate_zone: Continental (D),
Environment_type: Urban,
Coordinates_latitude: +41.87811,
Coordinates_longitude: -087.62980

Intern-VL3.5-2B

Season: Winter

Month: January

Time_of_day: 18:00
Daylight_phase: Night

Continent: North America
Country: United States
Climate_zone: Temperate (C)
Environment_type: Urban
Coordinates_latitude: -34.50167
Coordinates_longitude: -73.85638

Intern-VL2.5-72B

« Season: Winter,

* Month: December,

» Time_of_day: 20:00,

+ Daylight_phase: Night,

« Continent: North America,

« Country: United States,

« Climate_zone: Continental (D),
« Environment_type: Urban,

« Coordinates_|latitude: +41.8781,
+ Coordinates_longitude: -87.6298

_J

Figure 9: Example of TIMESPOT dataset — Snowy Urban Night In USA.
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Sunny Roadside Afternoon In Turkey

Ground Truth

Picture

* Season: Summer,

* Month: July,

« Time_of_day: 15:39,

» Daylight_phase: Afternoon,

« Continent: Asia,

« Country: Turkey,

« Climate_zone: Temperate (C),

« Environment_type: Urban,

< Coordinates_latitude: 40.189871,
« Coordinates_longitude: 25.895506

* Environment_type: Rural,

Environment_type: Rural

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B
* Season: Summer,

* Season: Summer, + Season: Spring * Month: July,
* Month: July, *  Month: April « Time_of_day: 12:00,
» Time_of_day: 13:30, » Time_of _day: 12:00 « Daylight_phase: Midday,
+ Daylight_phase: Midday, + Daylight_phase: Midday + Continent: Europe,
 Continent: Asia, + Continent: Asia « Country: Greece,
« Country: Turkey, » Country: Israel « Climate_zone: Temperate (C),
+ Climate_zone: Temperate (C), + Climate_zone: Temperate (C) * Environment_type: Rural,

Coordinates_latitude:

+ Coordinates_latitude: +38.35000, + Coordinates_latitude: 31.854 +37.95000,

+ Coordinates_longitude: +27.20000 + Coordinates_longitude: 34.915 + Coordinates_longitude:
+23.71667

\_ J

Figure 10: Example of TIMESPOT dataset — Sunny Roadside Afternoon In Turkey.

Rural River Afternoon In Russia

Picture Ground Truth
* Season: Summer,

* Month: August,

* Time_of_day: 13:00:00,

« Daylight_phase: Afternoon,

< Continent: Asia,

« Country: Russia,

« Climate_zone: Continental (D),

« Environment_type: Rural,

« Coordinates_latitude: 56.793902,
« Coordinates_longitude: 118.273021

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B
* Season: Summer,
* Season: Summer, S Gt * Month: June,
« Month: July, : : o Ti 12
y, - Month: May Time_of_day: 12:00,

» Time_of_day: 14:30,

» Daylight_phase: Afternoon,

« Continent: Asia,

« Country: Russia,

+ Climate_zone: Continental (D),
» Environment_type: Rural,

« Daylight_phase: Midday,

« Continent: Europe,

« Country: Russia,

¢ Climate_zone: Continental (D),
< Environment_type: Rural,

< Coordinates_latitude:

* Time_of _day: 14:00

» Daylight_phase: Morning

» Continent: Europe

» Country: Ukraine

» Climate_zone: Continental (D)
» Environment_type: Mountain

» Coordinates_latitude: +60.50000, 8 A ) +55.00000,
» Coordinates_longitude: +101.50000 ) goorg!nates_:atltqded 3'8;1166 Coordinates_longitude:
oordinates_longitude: -116. +100.00000
. J

Figure 11: Example of TIMESPOT dataset — Rural River Afternoon In Russia.
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Urban Riverside Night In Ecuador

Picture Ground Truth
« Season: Fall,

* Month: May,

« Time_of_day: 19:00:00,

< Daylight_phase: Night,

« Continent: South America,

« Country: Ecuador,

« Climate_zone: Tropical (A),

» Environment_type: Urban,

< Coordinates_|latitude: -2.17,

« Coordinates_longitude: -79.9224

GPT-5-mini

* Season: Winter,

¢ Month: December,

» Time_of_day: 20:30,

» Daylight_phase: Night,

« Continent; Asia,

« Country: Thailand,

» Climate_zone: Tropical (A),

* Environment_type: Urban,

» Coordinates_|latitude: +13.70850,
 Coordinates_longitude: +100.50420

Intern-VL3.5-2B

Season: Winter

Month: December

Time_of_day: 22:00
Daylight_phase: Night
Continent: Asia

Country: Japan

Climate_zone: Temperate
Environment_type: Urban
Coordinates_|latitude: 35.6995
Coordinates_longitude: 139.7487

Intern-VL2.5-72B

e Season: Summer,

* Month: July,

« Time_of day: 21:00,

« Daylight_phase: Night,

« Continent: North America,

« Country: United States,

« Climate_zone: Temperate (C),

« Environment_type: Urban,

« Coordinates_|latitude: +25.7617,
« Coordinates_longitude: -80.1918

- J

Figure 12: Example of TIMESPOT dataset — Urban Riverside Night In Ecuador.

Mountain Hillside Afternoon In Bulgaria

Picture Ground Truth
« Season: Autumn,

* Month: November,

« Time_of_day: 20:08,

« Daylight_phase: Afternoon,

< Continent: Europe,

» Country: Bulgaria,

« Climate_zone: Continental (D),

« Environment_type: Mountain,

¢ Coordinates_|latitude: 42.5492912,
« Coordinates_longitude: 23.0240361

» Coordinates_latitude: 45.50000,
» Coordinates_longitude: 25.50000

Coordinates_latitude: 45.56765
Coordinates_longitude: 25.867

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B
* Season: Autumn, + Season: Autumn ‘:’:g;?;féggg?‘
+ Month: November, + Month: October R o 6t
" 1A " « Time_of_day: 16:00,
: T|me__0f_day. ) s imeZtoftday:13:00 . Dayli_ght_ phase: Afternoon
+ Daylight_phase: Afternoon, « Daylight_phase: Afternoon + Continent: North America.
« Continent: Europe, » Continent: Europe o UTeF '
p ) . . « Country: United States,
 Country: Romania, + Country: Romania . .
f . : . « Climate_zone: Temperate (C),
. Cllrr_late_zone. Continental (_D), + Climate_zone: Temperate o MG & pe: Rural
+ Environment_type: Mountain, + Environment_type: Mountain Sthier :

Coordinates_|latitude: 35.00000,
« Coordinates_longitude: -
105.00000

Figure 13: Example of TIMESPOT dataset — Mountain Hillside Afternoon In Bulgaria.
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Cliffside Lake Afternoon In China

Picture Ground Truth
« Season: Spring,

* Month: March,

« Time_of_day: 15:00:00,

« Daylight_phase: Afternoon,

« Continent: Asia,

« Country: China,

« Climate_zone: Continental (D),

« Environment_type: Suburban,

« Coordinates_|latitude: 34.85714,
« Coordinates_longitude: 118.07065

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B
» Season: Autumn,
* Season: Autumn, « Season: Autumn « Month: October,
* Month: November, + Month: September + Time_of_day: 10:00,
* Time_of_day: 15:30, « Time_of day: 12:00 « Daylight_phase: Morning,
+ Daylight_phase: Afternoon, + Daylight_phase: Midday - Continent; Asia,
+ Continent: Asia, « Continent: Asia + Country: China,

» Country: China,
» Climate_zone: Continental (D),
« Environment_type: Mountain,

Country: Iran
Climate_zone: Arid (B)
Environment_type: Mountain

Climate_zone: Continental (D),
Environment_type: Mountain,
Coordinates_latitude:

» Coordinates_|latitude: +37.00000, + Coordinates_latitude: +31.0 +35.00000,

+ Coordinates_longitude: +112.50000 + Coordinates_longitude: +48.9 + Coordinates_longitude:
+110.00000

g J

Figure 14: Example of TIMESPOT dataset — Cliffside Lake Afternoon In China.

Forest Tram Midday In Russia

Picture Ground Truth

* Season: Summer,

* Month: July,

e Time_of_day: 12:39,

« Daylight_phase: Midday,

< Continent: Asia,

« Country: Russia,

« Climate_zone: Continental (D),

« Environment_type: Rural

« Coordinates_latitude: 51.841950850008,
« Coordinates_longitude: 107.61454671992

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B
* Season: Summer,
* Season: Summer, Season: Summer * Month: June,
« Month: June, : 3 & . Ti 0 12
v Time_of_day: 12:00,

» Time_of_day: 17:30,

» Daylight_phase: Afternoon,

« Continent: Europe,

« Country: Russia,

+ Climate_zone: Continental (D),
» Environment_type: Rural,

« Daylight_phase: Midday,

< Continent: Europe,

« Country: Russia,

¢ Climate_zone: Continental (D),
< Environment_type: Rural,

< Coordinates_latitude:

* Time_of_day: 10:00

» Daylight_phase: Morning

» Continent: Europe

» Country: Poland

+ Climate_zone: Temperate (C)
Environment_type: Rural

» Coordinates_latitude: +55.75000, 8 A ) +55.75583,
» Coordinates_longitude: +37.60000 ) goorg!nates_:atltqded +_5f2'1111§07 « Coordinates_longitude:
oordinates_longitude: . +37.61730
. J

Figure 15: Example of TIMESPOT dataset — Forest Tram Midday In Russia.
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Coastal Walkway Afternoon In Italy

Picture Ground Truth

 Season: Winter,
* Month: December,
» Time_of_day: 18:11,
« Daylight_phase: Afternoon,
« Continent: Europe,
¢ — , « Country: Italy,
, HHWW + Climate_zone: Temperate (C),
3 o « Environment_type: Coastal,
\ < Coordinates_|latitude: 44.107313139433984,
« Coordinates_longitude: 9.725420480754678

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B
» Season: Autumn,
* Season: Autumn, » Season: Summer « Month: October,
* Month: November, + Month: July « Time_of_day: 16:00,
* Time_of_day: 15:30, « Time_of day: 12:00 - Daylight_phase: Afternoon,
+ Daylight_phase: Afternoon, + Daylight_phase: Midday « Continent: Europe,
+ Continent: Europe, « Continent: Europe « Country: Italy,
+ Country: Italy, + Country: Italy  Climate_zone: Temperate (C),
+ Climate_zone: Temperate (C), + Climate_zone: Temperate (C) * Environment_type: Coastal,
* Environment_type: Coastal, + Environment_type: Coastal  Coordinates_latitude:
+ Coordinates_latitude: +44.10390, + Coordinates_latitude: +37.257 +43.70000,
+ Coordinates_longitude: +9.70960 + Coordinates_longitude: +14.532 + Coordinates_longitude:
+10.40000

Figure 16: Example of TIMESPOT dataset — Coastal Walkway Afternoon In Italy.

Rural Woodland Afternoon In China

Picture Ground Truth

« Season: Winter,

* Month: February,

* Time_of_day: 17:00:00,

« Daylight_phase: Afternoon,

< Continent: Asia,

» Country: China,

« Climate_zone: Continental (D),

« Environment_type: Rural,

« Coordinates_latitude: 47.845639,
« Coordinates_longitude: 88.14023

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B
« Season: Autumn,
* Season: Autumn, S A * Month: October,
« Month: October, ; N‘Iaas;:. ] Lljt”mn « Time_of_day: 16:00,
» Time_of_day: 10:30, dE 17 « Daylight_phase: Afternoon,

» Daylight_phase: Morning, » Time_of_day: 13:00 . « Continent: Asia
s » Daylight_phase: Morning '

+ Continent: Asia, S e » Country: China,

« Country: China, * Contlner?t. ASE « Climate_zone: Arid (B),
» Climate_zone: Arid (B), : Co_untry. SOUt_h NEICE * Environment_type: Desert,
« Environment_type: Desert, > Clieis Zone: 1ETEE e « Coordinates_latitude:

« Coordinates_latitude: +41.85000, sRIEnviranmentEr/peRLral +40.00000,

. f . » Coordinates_latitude: 67.5676567 " R
» Coordinates_longitude: +100.23000 — 0 0
_long » Coordinates_longitude: 90.67875 nggd(;ggtgg_longnude.

Figure 17: Example of TIMESPOT dataset — Rural Woodland Afternoon In China.
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Coastal Beachfront Afternoon In USA

Picture Ground Truth
* Season: Summer,

* Month: August,

« Time_of_day: 13:00:00,

» Daylight_phase: Afternoon,

« Continent: North America,

« Country: USA,

« Climate_zone: Tropical (A),

« Environment_type: Coastal,

« Coordinates_|latitude: 25.7617,
« Coordinates_longitude: -80.1918

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B
« Season: Summer, s S « Season: Summer,
* Month: July, . lvTaS?r?'.J ummer * Month: July,
« Time_of_day: 13:00, EI4E Y « Time_of_day: 12:00,

« Daylight_phase: Midday, ggf@%?i?;:sézl:\g?d e « Daylight_phase: Midday,

+ Continent: North America, Continent: North Ameri + Continent: North America,
» Country: United States, e acd « Country: United States,

« Climate_zone: Tropical (A), * Country: United States
* Environment_type: Coastal,

» Coordinates_|latitude: +25.79065,
 Coordinates_longitude: -80.13005

+ Climate_zone: Tropical

* Environment_type: Coastal

» Coordinates_|latitude: +34.6071
+ Coordinates_longitude: -82.2923

< Climate_zone: Tropical (A),

Environment_type: Coastal,
Coordinates_|latitude: +25.7617,
Coordinates_longitude: -80.1528

J

Figure 18: Example of TIMESPOT dataset — Coastal Beachfront Afternoon In USA.

Rural Forest Afternoon In Russia

Picture Ground Truth
* Season: Summer,

« Month: June,

* Time_of_day: 17:00:00,

« Daylight_phase: Afternoon,

< Continent: Asia,

« Country: Russia,

« Climate_zone: Continental (D),

« Environment_type: Rural,

« Coordinates_latitude: 56.975553,
« Coordinates_longitude: 60.3645218

GPT-5-mini

Intern-VL3.5-2B

Intern-VL2.5-72B
Season: Summer,

* Season: Summer, « Season: Autumn = Month: July,

* Month: July, + Month: October « Time_of day: 15:00,

» Time_of_day: 15:30, « Time_of day: 12:00 « Daylight_phase: Afternoon,

* Daylight_phase: Afternoon, « Daylight_phase: Morning « Continent: Europe,

+ Continent: Europe, « Continent; North America « Country: Russia,

« Country: Finland, » Country: Canada « Climate_zone: Continental (D),

+ Climate_zone: Continental (D), + Climate_zone: Temperate + Environment_type: Rural,

+ Environment_type: Rural, « Environment_type: Mountain + Coordinates_latitude:

» Coordinates_latitude: +63.50000, + Coordinates_latitude: 49.1 +55.00000,

* Coordinates_longitude: +25.00000 + Coordinates_longitude: -99.4 + Coordinates_longitude:
+37.00000

Figure 19: Example of TIMESPOT dataset — Rural Forest Afternoon In Russia.

38



Under review as a conference paper at ICLR 2026

Rural Hillside Midday In Nepal

Picture Ground Truth

« Season: Fall,

* Month: October,

» Time_of_day: 12:00:00,

» Daylight_phase: Midday,

« Continent: Asia,

« Country: Nepal,

« Climate_zone: Temperate (C),

« Environment_type: Rural,

< Coordinates_latitude: 28.5388196,
« Coordinates_longitude: 82.777235

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B
» Season: Autumn,
+ Season: Autumn, + Season: Spring * Month: October,
* Month: October, * Month: May « Time_of_day: 14:00,
» Time_of_day: 12:30, » Time_of day: 11:00 « Daylight_phase: Afternoon,
+ Daylight_phase: Midday, + Daylight_phase: Morning + Continent: Asia,
 Continent: Asia, + Continent: Asia « Country: Nepal,
+ Country: Nepal,  Country: Nepal « Climate_zone: Temperate (C),
+ Climate_zone: Temperate (C), « Climate_zone: Arid (B) « Environment_type: Rural,
» Environment_type: Mountain, * Environment_type: Rural « Coordinates_|latitude:
+ Coordinates_latitude: +28.70000, + Coordinates_latitude: +29.545 +28.12500,
+ Coordinates_longitude: +84.00000 + Coordinates_longitude: +81.805 « Coordinates_longitude:
+83.66667
o J

Figure 20: Example of TIMESPOT dataset — Rural Hillside Midday In Nepal.

Mountain Monastery Morning In Bhutan

Picture Ground Truth

* Season: Summer,

* Month: May,

* Time_of_day: 07:00:00,

< Daylight_phase: Morning,

+ Continent: Asia,

» Country: Bhutan,

« Climate_zone: Temperate (C),

« Environment_type: Mountain,
« Coordinates_latitude: 27.4888,
« Coordinates_longitude: 89.3587

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B
< Season: Spring,
* Season: Spring, + Season: Winter  Month: April,
* Month: May, + Month: January + Time_of_day: 10:00,
* Time_of_day: 09:30, + Time_of day: 12:00 « Daylight_phase: Morning,
» Daylight_phase: Morning, + Daylight_phase: Midday « Continent: Asia,
+ Continent: Asia, - Continent; Asia « Country: Bhutan,
+ Country: Bhutan, « Country: Nepal « Climate_zone: Temperate (C),
+ Climate_zone: Temperate (C), + Climate_zone: Temperate (C) «  Environment_type: Mountain,
+ Environment_type: Mountain, + Environment_type: Mountain + Coordinates_latitude:
+ Coordinates_latitude: +27.49139, « Coordinates_latitude: 27.7675 +27.10510,
+ Coordinates_longitude: +89.36394 « Coordinates_longitude: 88.283 + Coordinates_longitude:
+90.48820
- J

Figure 21: Example of TIMESPOT dataset — Mountain Monastery Morning In Bhutan.
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Urban Plaza Sunset In Germany

Picture Ground Truth
« Season: Spring,

* Month: May,

» Time_of _day: 17:48,

< Daylight_phase: Sunset,

« Continent: Europe,

« Country: Germany,

« Climate_zone: Temperate (C),

» Environment_type: Urban,

« Coordinates_|latitude: 52.375299,
« Coordinates_longitude: 9.735393

* Environment_type: Urban,
» Coordinates_|latitude: +51.51363,
 Coordinates_longitude: +007.46530

Environment_type: Urban
Coordinates_|latitude: 52.518
Coordinates_longitude: 13.404

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B

« Season: Sori . « Season: Summer,
. Spring, » Season: Summer « Month: June

+ Month: May, + Month: June « Time of dav: 18:00
* Time_of_day: 18:45, » Time_of day: 13:00 + Daylight_ h):/a.se' éur{set
+ Daylight_phase: Sunset, + Daylight_phase: Afternoon . Coﬁtigen_t'pEuro. 2 '
+ Continent: Europe, + Continent: Europe > @i '.GermaFr)l '
» Country: Germany, » Country: Germany . CIimag.zone' Te?% erate (C)
» Climate_zone: Temperate (C), * Climate_zone: Temperate — ) P '

« Environment_type: Urban,

« Coordinates_|latitude: +52.5200,

« Coordinates_longitude:
+13.4050

- J

Figure 22: Example of TIMESPOT dataset — Urban Plaza Sunset In Germany.

Urban Skyline Sunset In USA

Picture Ground Truth
« Season: Winter,

* Month: November,

« Time_of day: 18:00:00,

< Daylight_phase: Sunset,

< Continent: North America,

« Country: USA,

« Climate_zone: Temperate (C),
< Environment_type: Urban,

¢ Coordinates_|latitude: 40.7128,
« Coordinates_longitude: -74.006

« Country: United States,
* Climate_zone: Temperate (C),
» Environment_type: Urban,

Country: United States
Climate_zone: Temperate (C)
Environment_type: Urban

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B
« Season: Fall,
* Season: Autumn, + Season: Autumn + Month: October,
* Month: October, + Month: October + Time_of day: 18:30,
* Time_of_day: 19:15, + Time_of day: 18:00 « Daylight_phase: Sunset,
+ Daylight_phase: Sunset, « Daylight_phase: Sunset « Continent: North America,
* Continent: North America, - Continent: North America « Country: United States,

« Climate_zone: Temperate (C),
« Environment_type: Urban,
< Coordinates_latitude:

+ Coordinates_|latitude: +40.75800, » Coordinates_latitude: +38.961 +40.71278,
+ Coordinates_longitude: -073.98550 + Coordinates_longitude: -77.628 + Coordinates_longitude: -
74.00597

Figure 23: Example of TIMESPOT dataset — Urban Skyline Sunset In USA.
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Forest Road Afternoon In France

Picture Ground Truth

* Season: Summer,

* Month: July,

» Time_of_day: 14:57,

« Daylight_phase: Afternoon,

< Continent: Europe,

« Country: France,

« Climate_zone: Temperate (C),

» Environment_type: Rural,

« Coordinates_|latitude: 45.299533810116,
« Coordinates_longitude: 5.7525046159031

.

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B

. Season: SumMer P » Season: Summer
: 5 » Season: Spring « Month: July
* Month: July, * Month: May . Time of day: 12:00
+ Time_of_day: 10:30, + Time_of_day: 10:00 . Davlight h)z/a‘se' Midda
+ Daylight_phase: Morning, + Daylight_phase: Morning . Co%/tigen_t'pEuro. e d
+ Continent: Europe, » Continent: North America « Country: ('BermarrJl
+ Country: Switzerland, + Country: Canada . CIimatrZ.zone' Te?/n erate (C)
» Climate_zone: Temperate (C), * Climate_zone: Temperate S ENViTon T ant .t e'rl):%ural
* Environment_type: Mountain, * Environment_type: Mountain Coordinates Ta)t/irt)uc‘ie' +47.50000
+ Coordinates_latitude: +46.80000, + Coordinates_latitude: +46.7379 S o itude' ’
+ Coordinates_longitude: +008.20000 + Coordinates_longitude: -111.6622 +11.00000 g ’
\_ J

Figure 24: Example of TIMESPOT dataset — Forest Road Afternoon In France.

Snowy Mountain Afternoon In Bhutan

Picture Ground Truth

* Season: Autumn

* Month: October

« Time_of_day: 13:00:00

« Daylight_phase: Afternoon

« Continent: Asia

« Country: Bhutan

« Climate_zone: Continental (D)
< Environment_type: Mountain

« Coordinates_|latitude: 27.8242

« Coordinates_longitude: 89.2692

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B
+ Season: Autumn « Season: Winter ﬁ/leasct)':l_:l\DNmterb
* Month: October - Month: January onth: December

« Time_of_day: 10:00

» Time_of_day: 08:30

» Daylight_phase: Morning

« Continent: Asia

« Country: Nepal

+ Climate_zone: Continental (D)

» Environment_type: Mountain

» Coordinates_latitude: 28.69667
» Coordinates_longitude: 83.48778

Time_of_day: 12:00
Daylight_phase: Midday
Continent: Asia

Country: Nepal
Climate_zone: Polar (E)
Environment_type: Mountain
Coordinates_latitude: +28.9
Coordinates_longitude: +83.9

+ Daylight_phase: Morning

+ Continent: Asia

» Country: Nepal

« Climate_zone: Continental (D)

« Environment_type: Mountain

< Coordinates_latitude: 28.12500

+ Coordinates_longitude:
85.00000

Figure 25: Example of TIMESPOT dataset — Snowy Mountain Afternoon In Bhutan.
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Picture

GPT-5-mini

» Season: Summer

* Month: May

» Time_of _day: 17:30

» Daylight_phase: Afternoon
 Continent: Asia

» Country: Philippines

» Climate_zone: Tropical (A)

» Environment_type: Coastal
 Coordinates_|latitude: 11.00000
 Coordinates_longitude: 123.00000

Coastal Beach Afternoon In Philippines

Ground Truth

Season: Winter

Month: February

Time_of_day: 17:00:00
Daylight_phase: Afternoon
Continent: Asia

Country: Philippines

Climate_zone: Tropical (A)
Environment_type: Coastal
Coordinates_|latitude: 14.7191773
Coordinates_longitude: 121.0583076

Intern-VL3.5-2B

Season: Summer c
Month: June o
Time_of_day: 11:00 .
Daylight_phase: Morning o
Continent: Asia .
Country: Thailand c
Climate_zone: Tropical .
Environment_type: Coastal .
Coordinates_|latitude: +1.862 .

Coordinates_longitude: 99.593

Intern-VL2.5-72B

Season: Summer

Month: June

Time_of_day: 16:00
Daylight_phase: Afternoon
Continent: Asia

Country: Indonesia
Climate_zone: Tropical (A)
Environment_type: Coastal
Coordinates_latitude: -6.17500
Coordinates_longitude:
106.82830

Figure 26: Example of TIMESPOT dataset — Coastal Beach Afternoon In Philippines.

Picture

GPT-5-mini

 Season: Spring

* Month: April

* Time_of_day: 16:30

» Daylight_phase: Afternoon

« Continent: Europe

« Country: Italy

+ Climate_zone: Temperate (C)

+ Environment_type: Mountain

» Coordinates_latitude: 44.12700
» Coordinates_longitude: 9.70800

Coastal Road Sunset In Italy

Ground Truth

« Season: Fall

* Month: October

* Time_of_day: 18:55

< Daylight_phase: Sunset
< Continent: Europe

« Country: Italy

Climate_zone: Temperate (C)
Environment_type: Coastal
Coordinates_|latitude: 44.10809959
Coordinates_longitude: 9.73384485

Intern-VL3.5-2B

Intern-VL2.5-72B

Season: Autumn « Season: Spring

Month: October * Month: April

Time_of_day: 12:00 « Time_of_day: 14:00
Daylight_phase: Afternoon < Daylight_phase: Afternoon
Continent: Europe  Continent: Europe

Country: Spain = Country: Spain

Climate_zone: Temperate (C) « Climate_zone: Temperate (C)
Environment_type: Mountain « Environment_type: Mountain
Coordinates_|latitude: 40.358 « Coordinates_latitude: 37.77490
Coordinates_longitude: 0.538 « Coordinates_longitude: -0.45500

J

Figure 27: Example of TIMESPOT dataset — Coastal Road Sunset In Italy.
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Mountain Hillside Afternoon In Thailand

Picture Ground Truth

 Season: Fall

* Month: October

» Time_of_day: 15:00:00

< Daylight_phase: Afternoon

« Continent: Asia

« Country: Thailand

« Climate_zone: Tropical (A)

« Environment_type: Mountain

< Coordinates_latitude: 19.367814

« Coordinates_longitude: 98.9649024

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B
S 5 . « Season: Summer
« Season: Summer » Season: Spring « Month: June
* Month: August + Month: April « Time of day: 08:00
+ Time_of day: 08:30 + Time_of_day: 12:00 " Dn Ii_ght_ph)z/a‘s o Mormin
+ Daylight_phase: Morning - Daylight_phase: Midday YHgL_phase: 9
; . Aci . T « Continent: Asia
» Continent: Asia « Continent: Asia e
« Country: Thailand - Country: Myanmar T i )
; . ; . . + Climate_zone: Tropical (A)
+ Climate_zone: Tropical (A) « Climate_zone: Tropical o b )
; . : L ! . « Environment_type: Mountain
- Environment_type: Mountain o EmEAmE e Mol « Coordinates_|latitude: 28.12500
» Coordinates_|latitude: 18.69700 » Coordinates_|latitude: 22.8 . Coordinates_longitu&e' '
. rdin longi 1 98.48700 . i i . — :
Coordinates_longitude Coordinates_longitude: 81.6 e
. J

Figure 28: Example of TIMESPOT dataset — Mountain Hillside Afternoon In Thailand.

Mountain Road Sunset In Italy

Picture Ground Truth

« Season: Winter

* Month: December

¢ Time_of day: 17:40

« Daylight_phase: Sunset

< Continent: Europe

« Country: Italy

« Climate_zone: Continental (D)

< Environment_type: Mountain

« Coordinates_latitude: 46.641320366734

« Coordinates_longitude: 11.691309903245

GPT-5-mini Intern-VL3.5-2B Intern-VL2.5-72B

« Season: Winter * Season: Winter « Season: Winter

: * Month: January * Month: December
* Month: Januar G
« Time_of day: {5:30 * Time_of _day: 10:00 « Time_of_day: 16:00
« Daylight_phase: Afternoon * Daylight_phase: Morning + Daylight_phase: Afternoon
« Continent: Europe + Continent: Europe  Continent: Europe
- Country: Austria » Country: Austria » Country: Switzerland
- Climate_zone: Continental (D) + Climate_zone: Temperate © (E:hrr_late_zone: Cor?t'l\;ental (©)
« Environment_type: Mountain Enwro_nment_ty_pe. Mounta|n : Cnwrdo_nmentTty_pe(.j -ﬁgtgl(;]ooo
« Coordinates_latitude: +47.30000 o Coord!nates_latltqde. 46.2 : Coord!na:es_la'utqt ea 8
« Coordinates_longitude: +012.00000 » Coordinates_longitude: 14.5 oordinates_longitude:
+8.50000
- Y,

Figure 29: Example of TIMESPOT dataset — Mountain Road Sunset In Italy.
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