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Abstract

By learning statistical relations between words, Large Lan-
guage Models (LLMs) have presented the capacity to capture
meaningful representations for tasks beyond the ones they
were trained for. LLMs’ widespread accessibility and flexibil-
ity have attracted interest among medical practitioners, lead-
ing to extensive exploration of their utility in medical prog-
nostic and diagnostic applications. Our work reviews LLMs’
use for survival analysis, a statistical tool for estimating the
time to an event of interest and, consequently, medical risk.
We propose a classification of LLMs’ modelling strategies
and adaptations to survival analysis, detailing their limitations
and strengths. Due to the absence of standardised guidelines
in the literature, we introduce a framework to assess the effi-
cacy of diverse LLM strategies for survival analysis.

Introduction
In recent years, the advent of LLMs has sparked significant
interest within the medical community (Bommasani et al.
2021; Garg et al. 2023; Li 2023; Thirunavukarasu et al.
2023; Wang et al. 2023a; Yang et al. 2022), with applica-
tions ranging from medical training (Lee 2023) and triag-
ing (Levine et al. 2023) to drug discovery (Chakraborty,
Bhattacharya, and Lee 2023).

LLMs empower practitioners to extract valuable insights
from unstructured medical data, providing a potential tool
for adverse events’ diagnosis and prediction (Huang, Al-
tosaar, and Ranganath 2019). Particularly, we explore how
LLMs could be used for survival analysis, often used to
quantify the risk of occurrence of an event of interest at
different horizons but traditionally relying on structured co-
variates, e.g., 5-year risk of cardiovascular disease from vital
sign and lifestyle measurements.

Our literature review identifies two ways LLMs can im-
prove survival analysis and impact medical practice. First,
LLMs offer a novel set of tools to alleviate the pro-
hibitive cost and associated time of obtaining structured
data, reducing the use of existing risk models (De Lusignan
2005; Hobbs et al. 2010; Jonnagaddala et al. 2015; Müller-
Riemenschneider et al. 2010; Perera et al. 2017). Second,
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LLMs facilitate the development of models directly from un-
structured data, potentially improving predictions based on
structured data alone.

Contributions. Recent reviews, such as the one by Hoek-
stra, Hurst, and Tummers, have delved into natural lan-
guage processing for survival analysis. However, the evolv-
ing landscape of LLMs necessitates a detailed exploration
of novel strategies for survival analysis and an assessment of
their limitations. Particularly, this review contributes in three
main ways: (i) classifying LLMs modelling approaches, (ii)
reviewing their adaptation for survival analysis, and (iii) of-
fering an open-source framework on Github1 to evaluate
these strategies. By inviting practitioners to compare these
strategies on diverse datasets, we aim to develop evidence-
based recommendations for applying LLMs in survival anal-
ysis tasks.

LLM-based modelling
This section summarises modelling strategies using LLMs
proposed in the literature, both as neural networks and inter-
active language tools through their generative capabilities.
Figure 1 visually summarises the identified strategies, illus-
trating the transition from model-specific to model-agnostic
learning. Before delving into these strategies, let’s first es-
tablish what a LLM entails.

Definition 1 (Large Language Model) A Large Language
Model is a type of neural network designed to uncover sta-
tistical relationships between tokens, capturing informative
representations. The term ’Large’ emphasises the number of
parameters, the amount of training data, and the computa-
tional resources required for training these models.

Embedding: Leveraging deterministic
representations
Description. In scenarios with limited labelled data, a pos-
sible strategy involves deploying a pre-trained LLM to ex-
tract embeddings from unstructured data. This approach re-
lies on the inherent capacity of LLM to represent unstruc-
tured data without additional training. First, an embedding
– a vector of the values associated with a subset of LLMs’

1https://github.com/Jeanselme/LLM-For-Survival-Analysis



Figure 1: Overview of modelling approaches using Large Language Models.

inner nodes – is extracted and then used as inputs for a task-
specific model.

Strengths. A critical advantage of this approach is its re-
liance on a pre-trained LLM, reducing the need for labelled
data solely for training the task-specific model.

Limitations. This step-wise approach may result in sub-
optimal performance if the extracted representation fails to
capture informative nuances from the domain-specific un-
structured data. To address this limitation, multiple models
have been trained on substantial amounts of domain-specific
data to capture more relevant embeddings (Huang, Altosaar,
and Ranganath 2019; Lee et al. 2020; Li et al. 2020; Lin
et al. 2023; Moor et al. 2023). In the following, we refer to
these models as domain-specific LLMs in contrast to general
purpose LLMs.

Fine-tuning: Adjusting LLMs for the task
Description. Fine-tuning entails adjusting the weights of
a LLM using domain-specific labelled data to refine its rep-
resentation for the task at hand. To accommodate the as-
sociated labels, one modifies the LLM’s architecture, typi-
cally by replacing the last layer(s) of the LLM, and back-
propagates the task-specific loss through the altered archi-
tecture.

Strengths. Fine-tuning presents improved performance
with less data compared to training from scratch (Micheli,
d’Hoffschmidt, and Fleuret 2020), as it takes advantages of
the LLM’s already learnt structures, while remaining more
flexible than relying on fixed embeddings.

Limitations. The method still necessitates substantial
amounts of data (Brown et al. 2020) and computation, poten-
tially limiting its applicability in scenarios with small medi-
cal cohorts. Additionally, there is an inherent risk of over-
specialisation, leading to a decrease in out-of-distribution
generalisation (McCoy, Pavlick, and Linzen 2019). Gu et al.
argue that, with sufficient data, training a model from scratch
may outperform a fine-tuned model trained on a more gen-

eral vocabulary. This observation emphasises the trade-offs
associated with fine-tuning and data availability.

Prompting: Querying in natural language

Description. LLMs are often trained as generative
models, such as Generative Pre-trained Transformers
(GPTs) (Brown et al. 2020). Relying on this property,
prompting involves querying the LLM in natural language2

and using the generated response as an estimate for the de-
sired outcome.

Strengths. While the other approaches for using language
models have long been established in machine learning, the
concept of prompting has recently gained attraction (Brown
et al. 2020). This interest stems from the strategy’s general
purpose, absence of training, and interactive nature.

Limitations. Prompting is not without challenges. First,
it assumes that the user’s articulation of the task and the
model’s ability to discern textual statistical correlations re-
sult in accurate predictions. Assumption that needs to be
carefully evaluated. As the task-specific component is no
longer data-driven, but specified by user3, performances are
highly dependent on the prompt (Mishra et al. 2021; Wang
et al. 2023b). Second, estimating the probability distribution
of the generated prediction, either through the returned prob-
ability vector or by sampling from the LLM, is crucial for
non-deterministic models. It is important to remember than
using a single prediction may not adequately represent the
most likely one. Third, if the LLMs have not encountered
similar data, there is no guarantee they can handle the type
of data or task that the user presents, increasing the risk of
inaccuracies. These limitations underscore the need for care-
ful consideration and evaluation when adopting prompting
strategies with LLMs.

2Refer to (Liu et al. 2023) for prompting strategies.
3(Pryzant et al. 2023) proposes a textual gradient descent to op-

timise the prompt for best performance.



Figure 2: From medical notes to survival prediction, LLMs can be used for automatic covariates extraction or direct prediction.

LLMs’ adaptation for survival analysis.
Consider a dataset of the form (ui, xi, ti, di), with ui, the
unstructured data associated with a patient i, xi, its struc-
tured covariates, di, the event indicator (di = 0 for patients
who did not experience the event of interest over the study,
known as censored patients, and di = 1 for those who did)
and ti, the associated time.

Estimating a patient’s risk consists of accurately estimat-
ing the probability of observing the event of interest before a
time t. This quantity is known as the survival function (Col-
lett 2023; Klein, Moeschberger et al. 2003) and defined as:

S(t) = P(T < t)

with T , the random variable associated with the event time.
In medical research, practitioners aim to estimate how the

structured covariates xi influence S to recommend treatment
and inform medical decisions. Due to their complex statis-
tical analysis and interpretation, unstructured data ui have
often been discarded from this analysis.

Through our literature review (outlined in the Appendix),
we identified two key purposes in using LLMs: (i) improv-
ing the adoption of existing models by lowering the time and
cost associated with the extraction of the covariates xi that
limit the use of existing models (De Lusignan 2005; Hobbs
et al. 2010; Müller-Riemenschneider et al. 2010; Perera et al.
2017), and (ii) leveraging information in patients’ unstruc-
tured data to model the outcome of interest. Consequently,
we classify existing works as (i) automatic extraction and
(ii) survival modelling.

Automatic extraction: from unstructured to
structured data
To mitigate manual labour (Bush et al. 2017) and reduce
costs, LLMs emerge as valuable tools for covariates extrac-
tion from unstructured data. Extracted covariates can subse-
quently be used for evaluating, or developing, survival mod-
els. Schematically, the step-wise pipeline is as follows:

ui
LLM−−−→ xi

Survival Model−−−−−−−−→ ti

In the following, we describe how to use the previous
LLM strategies for automatic extraction, and reference ex-
isting works in the literature.

Embedding. After embedding the unstructured data
through an LLM, automatic extraction becomes a traditional
classification or regression problem modelling xi given the
embedding ũi.

Fine-tuning. After altering an LLM’s architecture to con-
tain a final classification layer, the model is fine-tuned using
pairs of (ui, xi). For instance, (Khurshid et al. 2022) propose
to impute missing values in electronic health records using
nurses’ notes by fine-tuning a BERT (Devlin et al. 2018)
and an alternative architecture previously trained on medical
data and discharge summaries. Similarly, (Hsu et al. 2023)
impute stroke features from imaging notes, after fine-tuning
ClinicalBERT (Huang, Altosaar, and Ranganath 2019) on
the imaging notes (creating a domain-specific LLM) and
then, further fine-tuning the altered architecture on 200 an-
notated pairs of unstructured notes and structured features.

Prompting. Using a generative model, one can query the
model as, for example,: “For the patient described through
the following report [ui], extract the patient’s: age = [?],
sex = [?], diabetes status = [?].”. (Agrawal et al. 2022;
Truhn et al. 2023) introduce diverse prompting strategies to
extract clinical concepts from notes. (Gero et al. 2023; Wei
et al. 2023) introduce further enhancements through self-
verification mechanisms, i.e., iterative querying of the LLM.

Literature’s recommendations. Automatic extraction of
medical concepts presents a long history (Caccamisi et al.
2020; Cowie and Lehnert 1996; Jonnagaddala et al. 2015;
Meystre et al. 2008; Wang et al. 2018; Weissman et al. 2018)
as it presents the attractive properties of (i) independence
from the downstream task, (ii) allowing use of well-known
and interpretable statistical tools both at development and
deployment.

While (Khurshid et al. 2022) shows the superiority of
LLMs over standard rule-based approaches, the literature
does not offer conclusive recommendations on which of the



three strategies to prefer. When using the fine-tuning strat-
egy, (Hsu et al. 2023; Khurshid et al. 2022) recommend the
use of domain-specific LLMs over more general architec-
tures for improved extraction. (Gutierrez et al. 2022) echoes
this recommendation and further demonstrates the superior-
ity of fine-tuning BERT architectures over prompting GPT-
3 for biomedical concept extraction from medical abstracts.
However, for clinical notes, (Agrawal et al. 2022) concludes
that prompting GPT-3 outperforms fine-tuned BERT archi-
tectures on treatment extraction.

These results highlight the complexity of choosing the
best strategies due to the data type, data size, task, strate-
gies, LLMs and training implementations.

Survival modelling: from unstructured data to risk
estimate
When predictive performance is the primary goal, a direct
approach involves modelling risk from unstructured data,
schematically summarised as:

ui(, xi)
LLM−−−→ ti

Embedding. The embedding strategy employs LLMs’ in-
ner representations as inputs for a survival model, trained in-
dependently. For example, (Kim et al. 2021; Lee et al. 2021;
Likith, Begam, and Shashikant 2022) use LLMs to extract
embeddings from MRI, radiology and clinical reports us-
ing BERT-based architectures. (Kim et al. 2021; Lee et al.
2021) further use a Long Short Term Memory (Hochreiter
and Schmidhuber 1997) to agglomerate longitudinal reports
into a single representation. Then, the authors use a Cox
model (Cox 1972) to predict the risk for different events. Al-
ternatively, one can use traditional classification models to
predict binarised outcomes such as cancer recurrence (Kaka
et al. 2022), death (Huang, Altosaar, and Ranganath 2019; Li
et al. 2023; Wang et al. 2022) or chronic cough (Luo et al.
2021).

Fine-tuning. By appending a last layer to the LLM with
one node per outcome of interest, one can learn a fine-tuned
representation for the task at hand. (Huang, Altosaar, and
Ranganath 2019; Jiang et al. 2023; Luo et al. 2021; Lin
et al. 2023; Mugisha and Paik 2020; Munoz-Farre, Rose, and
Cakiroglu 2022) append a last layer to the BERT architec-
ture (or a domain-specific version) for binary risk estimate.
To account for censoring, (Zhao et al. 2021) fine-tunes a
BERT architecture with a final node used as the relative risk
in a Cox regression model and use the relative log-likelihood
to train the model.

Prompting. Discretisation of the survival outcome, i.e.
determining whether the patient experiences the outcome of
interest within a given time horizon, offers a straightforward
prompting strategy. For instance, (Han et al. 2023a) query
ChatGPT with “Estimate the risk (in percentages) of devel-
oping a cardiovascular disease within 10 years for the per-
son below: [ui]?” using semi-synthetic notes obtained by
describing structured data from UK Biobank (Sudlow et al.
2015) and KoGES (Kim, Han, and Group 2017). Despite ig-
noring the model’s uncertainty in the generated response, the

analysis demonstrates that the larger GPT-4 improves per-
formance compared to smaller LLMs and performs similarly
to traditional risk scores.

Literature’s recommendation. Unstructured data may
contain information that improves performance over man-
ually extracted covariates (Mugisha and Paik 2020; Pandey
et al. 2020). However, this conclusion is dependent on the
approach and model used.

When using the embedding strategy, (Lin et al. 2021;
Philonenko, Kokh, and Blinov 2023) report improved per-
formance when relying on LLMs’ representations of un-
structured data compared to structured data alone. However,
LLMs perform similarly to traditional word frequency rep-
resentations in (Klang et al. 2022) or manually extracted
features in (Fanconi, van Buchem, and Hernandez-Boussard
2023). Note that these two previous works only consider
general-purpose LLM that may not be adapted to the con-
sidered unstructured data. Critically, (Lee et al. 2021)’s
analysis demonstrates the superiority of domain-specific
LLMs’ embeddings over manually extracted features and
general-purpose LLMs. (Wang et al. 2022) reaches similar
conclusions with improved binary predictions using clin-
ical notes embedded through ClinicalBERT compared to
Word2Vec (Mikolov et al. 2013). This discussion comes
with nuances as the efficacy of domain-specific LLMs may
be data-dependent, as noted by (Kaka et al. 2022) with a lim-
ited improvement of ClinicalBERT over BERT on medical
records.

In the context of fine-tuning, studies by (Huang, Altosaar,
and Ranganath 2019; Jiang et al. 2023; Mugisha and Paik
2020) show that fine-tuning a domain-specific model to
predict risk outperforms fine-tuning a more general model
or using bag-of-word baselines. Importantly, (Jiang et al.
2023) empirically demonstrates that domain-specific models
present better performance with smaller amounts of data.

For prompting, the literature focuses on demonstrating the
model’s generative capacity to predict outcomes, and has not
explored the superiority of domain-specific LLMs over more
general ones for survival task. Critically, the discussion re-
volves around the use of unstructured data and the choice
of LLMs, often leaving out the question of which strategy
should be preferred.

Discussion
Our literature review highlights important considerations
for (i) the development of survival models from unstruc-
tured data, (ii) their application in clinical practice, and (iii)
LLMs’ development.

Survival modelling
In medical studies, patients often do not experience the
event of interest over the study period. This central problem,
known as censoring, is often ignored. For instance, many re-
viewed studies rely on outcomes’ binarization without cen-
soring adjustment. Critically, ignoring censored patients bi-
ases time-to-event estimates (Turkson, Ayiah-Mensah, and
Nimoh 2021), as censored patients remained event-free un-
til they left the study. When explicitly considered, reviewed



works rely on the Cox model, whose proportionality as-
sumptions may not hold in medical data (Stensrud and
Hernán 2020).

Our work calls practitioners for careful consideration of
time-to-event challenges, namely censoring and competing
risks. Neural network approaches have tackled these chal-
lenges such as (Danks and Yau 2022; Jeanselme et al. 2023;
Lee et al. 2018) and could be considered jointly with LLMs.

Clinical actionability
The survival literature has focused on performance over ac-
tionability. While models’ low accuracy is a barrier to adop-
tion (Hobbs et al. 2010), the critical connection between risk
and medical recommendation is even more critical (Hobbs
et al. 2010). The focus should shift from performance alone
to survival models’ actionability as discussed in (Jeong et al.
2024).

In this context, the direct prediction of risk from unstruc-
tured notes appears disconnected from medical practice, un-
less one can derive medical recommendations from them.
The automatic extraction strategy may allow the develop-
ment of traditional risk models in which exposure can be
connected to outcomes. However, we must question the hy-
pothesis that automatic evaluation would improve risk mod-
els’ deployment by reducing the cost of obtaining structured
data. Critically, does the computational cost of evaluating
risk on a larger population with potential machine errors re-
sulting in additional tests, actually lower the cost and im-
prove patients’ outcomes compared with current practice?

Collaborations to study these multiple challenges are cru-
cial to translate the development of new models into im-
proved use and care.

LLMs’ development
Despite the prevalence of censoring in medical stud-
ies (Lesko et al. 2018) and methodological advances in sur-
vival analysis, censoring has received little attention in the
development of LLMs. While the current focus on medi-
cal LLMs (Huang, Altosaar, and Ranganath 2019; Lee et al.
2020; Li et al. 2020; Lin et al. 2023; Moor et al. 2023; Yang
et al. 2023) recognises the need to enhance representation
by learning from large amounts of domain-specific data and
available labels, the challenges posed by unobserved out-
comes and data imbalances associated with censoring are
often overlooked.

Critiques highlight the disconnect between LLMs ap-
proaches and their relevance to medicine (Shah, Entwistle,
and Pfeffer 2023; Wornow et al. 2023), calling for us-
ing more medical data in LLMs’ development. We would
like to extend the conversation by emphasising the neces-
sity of accounting, not only for domain-specific data but
for domain-specific challenges. For instance, addressing the
often-overlooked issue of censoring is critical for medical
relevance. Despite the recent development of foundational
models for medical predictions, few mention the problem
of censoring. Only Steinberg et al. proposes a foundational
model to predict the time to the next events and demonstrates
the superiority of the foundational model over task-specific
ones in the context of electronic health records.

Proposed Evaluation Framework
Our review highlights the lack of standardised evaluation
frameworks to compare the introduced LLMs’ strategies.
Studies employ different datasets, tasks, approaches, models
and implementations, limiting possible comparison. Further,
the over-reliance on the MIMIC (Johnson et al. 2016) dataset
in both training domain-specific LLMs and modelling raises
concerns about potential leakage and limits the generaliz-
ability of findings.

To obtain evidence-based recommendations on the use of
LLMs for survival predictions, we introduce the following
framework. This framework aims to fix the models and train-
ing pipeline to obtain comparable evidence across datasets.
To this end, we provide an implementation on GitHub4 with
a tutorial to tailor the pipeline to practitioners’ datasets. We
invite practitioners to evaluate this framework on their data
and share their findings to guide recommendations.

In the following, we detail our framework with an exam-
ple on the publicly available Cancer Genome Atlas (TCGA)
dataset (Tomczak, Czerwińska, and Wiznerowicz 2015), and
the associated pathology reports (Kefeli and Tatonetti 2023)
available on Github5. For each patient, a report (ui), manu-
ally extracted demographics and cancer stage (xi), and sur-
vival or censoring times (ti, di) are recorded.

Training
As multiple centres provided data to the TCGA study, we
propose a 3-fold cross-validation stratified by hospitals to
quantify the different strategies’ generalisability to new in-
stitutions where reporting guidelines may differ. As all ex-
perimental settings may not allow this evaluation, we ad-
ditionally implement a standard 3-fold cross-validation. We
rely on open-source models from HuggingFace (Wolf et al.
2019) to ensure reproducible results while maintaining data
privacy.

Automatic extraction. The following describes the three
LLMs approaches for the extraction of the structured data xi

from the unstructured report ui.
Embedding. To embed the unstructured data, we use

encoder-decoder architectures, more amenable to this task.
Specifically, we rely on BERT (Devlin et al. 2018) as a
general-purpose LLM and a domain-specific LLM: Clini-
calBERT (Huang, Altosaar, and Ranganath 2019) which has
been fine-tuned on PubMed publications and then MIMIC
clinical notes. By considering both LLMs, we aim to quan-
tify the gain of using domain-specific LLMs. We save the
extracted embeddings for analysing both automatic extrac-
tion and the survival modelling strategy. For extraction of
the structured data from the embedding, we use a multi-
layer perceptron with one output per hot-encoded covariates
trained for 100 epochs6 with early stopping criterion using
an Adam optimiser to minimise the cross-entropy loss.

4https://github.com/Jeanselme/LLM-For-Survival-Analysis
5https://github.com/tatonetti-lab/tcga-path-reports
6Note that we allow a larger number of epochs for the embed-

ding strategies as a larger number of parameters need to be learnt
from scratch.



Fine-tuning. This approach relies on the same LLMs con-
catenated with a one-layer perceptron with one node per co-
variate. The full architecture is trained for 10 epochs using
an Adam optimiser to minimise the cross-entropy loss.

Prompting. For prompting, we rely on open-source gen-
erative LLMs: Llama 7b (Touvron et al. 2023) and Med-
Alpaca (Han et al. 2023b) as a domain-specific LLM. For
automatic extraction, we iteratively query: “Context: Pathol-
ogy report ui Question: Based on the provided pathology
report, what is the covariate (possible values: possible co-
variate values or range)? Please provide your answer as one
of these values, without any additional text or explanations.
Answer:”. To ensure reproducibility (and self-consistency),
we reduce the temperature to ensure a deterministic genera-
tion. Note that this results in considering only the most likely
generated sequence but does not account for the potential
uncertainty associated with the prompt.

Survival Modelling. The previous approaches lead to the
extraction of structured data. The following presents how we
model the survival outcome from these covariates and from
the unstructured data. Specifically, we discretize the survival
outcome into 4 time intervals: death within [0−1] year, [1−
3], [3− 5] and more than 5 years after diagnosis, and use the
log likelihood for training as in DeepHit (Lee et al. 2018).

Covariates. From the covariates, we train a neural net-
work consisting of 3 hidden layers with 50 nodes with a fi-
nal layer with one output per time interval. We maximise the
following log-likelihood over 100 iterations using an Adam
optimiser:

LDeepHit :=
∑

i,di=1

log(Nti(xi)) +
∑

i,di=0

log(1−N≤ti(xi)),

with Nt(x), the neural network’s output corresponding to
the probability of having the event in the time interval con-
taining t given the covariate x.

Embedding. The same modelling than described for Co-
variates is used when using embeddings.

Fine-tuning. Similarly, after aggregating a one-layer per-
ceptron with one node per time discretisation to a BERT or
ClinicalBERT model, the architecture is trained using the
previous log-likelihood. We refer to this model as LLMHit
as an extension of the traditional DeepHit to LLM.

Prompting. To predict patient’s survival, we adapt (Han
et al. 2023a)’s prompting approach to the LLMs’ formatting
and query the models with the following “Context: Pathol-
ogy report ui Question: Based on the provided pathology
report, what is the estimated probability (between 0 and 1)
that the patient will die within the next horizon years? Please
provide your answer as a single decimal number rounded to
two decimal places, without any additional text or explana-
tions. Answer:”. We repeat this prompt for each time hori-
zon.

Evaluation
To measure the quality of the different approaches, we rely
on two common survival metrics: the C-Index (Antolini, Bo-
racchi, and Biganzoli 2005) measuring discriminative per-
formance and the Brier Score (Graf et al. 1999) quantifying

calibration integrated over the three considered time hori-
zons after diagnosis. Additionally, we compute the mean
squared error for the quality of the automatic extraction

Conclusion
This paper presents a classification of the different strategies
for using LLMs for survival analysis and highlights the cur-
rent lack of recommendations in this field. As a remedy, we
propose an evaluation framework to facilitate comparisons
between LLMs’ strategies and settings. We invite practition-
ers to evaluate these strategies and contribute to this frame-
work to guide the development of future time-to-event mod-
els to together develop evidence-based answers to the ques-
tion: “Which LLM strategies should be preferred, for what
type of data and research question?”.

Ethical statement
While this work focuses on the descriptions of the differ-
ent strategies used for time-to-event modelling, we would
like to echo some critical risks of these approaches (Ben-
der et al. 2021). The reliance on unstructured data raises the
concern of what these modalities embed. Beyond capturing
a patient’s health, medical notes can reflect practitioner’s fa-
tigue (Hsu, Obermeyer, and Tan 2023), and missing covari-
ates may present biases (Jeanselme et al. 2022). In a field
marked by historical inequities, LLMs may learn and re-
peat these inequities (Navigli, Conia, and Ross 2023). Con-
sequently, we echo (Wang, Zhao, and Petzold 2023) and call
for caution when employing these models, particularly as
they become less amenable to corrections, potentially lead-
ing to ever-harmful consequences.
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Literature Review
This semi-systematic review was conducted using Google
Scholar with the prompt ”survival analysis” OR ”time-
to-event” AND ”language model” AND ”medicine” OR
”healthcare” for publications between 2018 (chosen as it
marks the publication of the seminal work by Devlin et al.)
and 2024 (excluded). This query led to 335 publications con-
taining these terms in their title or abstract. We sub-selected
papers with at least an experiment relying on medical text
modality and a survival outcome.


