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ABSTRACT

Recent advances in zero-shot low-light image enhancement have largely bene-
fited from the deep image priors encoded in network architectures. However,
these models require optimization from scratch for each image and cannot pro-
vide personalized results based on user preferences. In this paper, we propose a
training-free zero-shot personalized low-light image enhancement model that in-
tegrates Retinex domain knowledge into a pre-trained diffusion model, enabling
style personalization based on user preferences specified through text instructions.
Our contributions are as follows: First, we incorporate the total variation opti-
mization into a single Gaussian convolutional layer, enabling zero-shot Retinex
decomposition. Second, we introduce the Contrastive Language-Image Pretrain-
ing (CLIP) model into the reflectance-conditioned sampling process of Denoising
Diffusion Implicit Models (DDIM), guiding the enhancement according to user-
provided text instructions. Third, to ensure consistency in content and structure,
we employ patch-wise DDIM inversion to find the initial noise vector and use
the reflectance as a condition during the reverse sampling process. Our proposed
model, RetinexGDP, supports any image size and produces noise-suppressed re-
sults without imposing extra noise constraints. Extensive experiments across nine
low-light image datasets show that RetinexGDP achieves performance compara-
ble to state-of-the-art models.

1 INTRODUCTION

Low-light image enhancement (LLIE) algorithms aim to restore details hidden in dark areas while
preserving color accuracy and naturalness. These algorithms not only enhance the human visual
experience but also improve the performance of high-level computer vision tasks|Liu et al.|(2021a).
Retinex-based LLIE models [Ren et al.| (2018); |Xu et al.| (2020); Yang et al.| (2021); [Zhang et al.
(2019) have gained attention by incorporating Retinex theory into deep neural networks. Accord-
ing to Retinex theory, an image can be modeled as the product of reflectance and illumination:
S = R® I, where ® denotes the Hadamard product. Thus, Retinex decomposition, which involves
estimating these components, is a central problem for these methods. With the derived reflectance
and illumination, models such as those proposed by Hao et al.| (2020); Liang et al.| (2022)), en-
hance images by adjusting the illumination and denoising the reflectance before recombining the
two components. Alternatively, some methods separate illumination from reflectance to achieve en-
hancement|Guo et al.|(2017);Zhao et al.|(2021)). These methods focus on adjusting illumination but
pay less attention to the style of the reflectance, which limits their ability to offer personalized image
enhancement based on user preferences.

Personalized low-light enhancement (PLIE) is able to enhance low-light image according to diverse
user preference, however, it is less explored compared to general LLIE. Existing PLIE models either
require users to select preferred images to represent desired styles |Kim et al.| (2020) or inject user
profiles into the network for personalization |Bianco et al.| (2020). Additionally, these models apply
a single style preference vector to all images, limiting the diversity of styles. Recently, masked
style modeling is applied to image enhancement, achieving content-aware personalization [Kosugi
& Yamasaki| (2024). Despite the success of these models, a common problem is the inability to
enhance unseen images in a preferred style that does not exist in the database. Although researchers
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can enrich the database by collecting more diverse preference images, this would require retraining
or fine-tuning the network.

In this work, we propose a zero-shot text-based personalized low-light image enhancement model,
RetinexGDP, that requires no training or parameter fine-tuning. This model allows users to specify
enhancement style preferences via text instructions. The core idea behind RetinexGDP is to inte-
grate Retinex domain knowledge into a pre-trained diffusion model while leveraging Contrastive
Language-Image Pretraining (CLIP) Radford et al.| (2021)) to guide the Generative Diffusion Prior
(GDP) |Fet et al.[(2023). To achieve zero-shot Retinex decomposition, we take the total variation
optimization as a layer and incorporate it into a single Gaussian convolutional layer to estimate the
illumination map. Instead of designing deep network, our RetinexGDP requires only a single convo-
lutional layer for illumination map estimation. We then compute the corrected reflectance in spatial
domain and consider it as the initial enhanced result. At the stage of personalized enhancement, we
first find the initial noise vector of the corrected reflectance map by patch-wise DDIM inversion. To
maintain the content and structure consistency of diffusion model, the corrected reflectance is used
as a conditional input during the reverse sampling process of the diffusion model, where the sam-
pling takes the initial noise vector as starting point and is guided by directional CLIP loss, steering
the enhancement toward the style specified by the user through text. Guided by content and style
loss, RetinexGDP enhances the low-light image according to user-specified preferences without the
need for retraining or fine-tuning from scratch. RetinexGDP is adaptable to images of any input size.
Experiments have shown that, despite the absence of additional noise constraints, the enhancement
results generated by our model exhibit good performance in noise suppression.

In summary, our main contributions are summarized as follows. (I) We propose a zero-shot text-
based PLIE model named RetinexGDP, enabling flexible enhancement guided by user preferences
specified via text instructions, without the need for additional training or external images. (II) We
incorporate the edge-aware property of total variation optimization into a single Gaussian convolu-
tional layer, aiming to perform zero-shot Retinex decomposition. (IIT) We employ patch-wise DDIM
inversion to generate the initial noise vector of corrected refletance and take the corrected refletance
as condition of DDIM reverse process, maintaining the image content and structures.

2 RELATED WORK

Zero-shot Low-light Image Enhancement. While deep learning-based methods [Zhang et al.
(2022); Huang et al.| (2023); Zhang et al.| (2023); |Xu et al.| (2023), particularly those combined
with the Retinex model [Yang et al| (2021); [Wu et al| (2022); Xu et al.| (2022); [Fu et al. (2023),
have demonstrated superior performance compared to traditional optimization-based techniques
Fu et al.| (2016)); |Guo et al. (2017); L1 et al| (2018); |Xu et al.| (2020), zero-shot low-light im-
age enhancement (LLIE) remains relatively underexplored. Zero_DCE |Guo et al.| (2020) and its
extension Zero DCE++ [Li et al.| (2021) propose predicting higher-order curves through iterative
self-application, independent of paired and unpaired external data. The Retinex decomposition is
transformed into a generative problem in|Zhao et al.| (2021)); |[Liang et al.| (2022), where combined
deep image priors (DIP) [Ulyanov et al.| (2020); |Gandelsman et al.| (2019) are applied to generate
latent Retinex components without the need for any external training dataset. Those methods per-
form zero-shot Retinex decomposition. However, they rely on deep priors encoded in the network
structure, with network parameters randomly initialized and no data priors utilized. Consequently,
their networks require optimization from scratch for each entry. In this work, we incorporate the
edge-preserving property of total variation optimization into a single Gaussian convolutional layer,
without requirement of very deep network.

Personalized Low-light Image Enhancement. PLIE aims to enhance low-light images based on
user preference. Traditional PLIE methods enhance image based on the user’s preference through
simple gamma correction or S-curve Kapoor et al.[(2014). With the advent of deep learning, convo-
lutional neural networks (CNN5s) have been employed to extract preference vectors, which are then
used for personalized enhancement Kim et al.| (2020). Later, the user profile with feature vectors
are integrated to enhance images [Bianco et al.| (2020). Recently, a style-aware model using a style
encoder that learns image embeddings is proposed to map preferred styles to latent codes|Song et al.
(2021). However, these approaches apply the same preference vector to all images, without con-
sidering the content of the preferred images. More recently, masked style modeling is adopted for
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Figure 1: Overview of our RetinexGDP. S and R is the input low-light image and corrected re-
flectance, respectively. R denotes the initial noise vector. «y is the gamma factor. x is the enhanced
image. Lrccon, Lper, and L, denote the reconstruction loss, perceptual loss and style loss, respec-
tively.

content-aware personalized image enhancement Kosugi & Yamasaki| (2024)). This method employs
a transformer encoder to predict style embeddings for unseen images by considering similar content
in the preferred image dataset. Nevertheless, the aforementioned methods are either restricted to
the style of the collected preferred images or require retraining on new dataset. In our work, the
preferred style of enhancement is specified by user-provided text and our personlization requires no
training.

Diffusion Model Based Low-light Image Enhancement. In recent years, diffusion probabilistic
models have achieved significant success in image generation and manipulation. However, chal-
lenges remain in effectively integrating low-light images as conditions and designing appropriate
diffusion models. To address this, CLE-Diffusion |Yin et al.| (2023)) concatenates the color map
with the low-light input to preserve color information. Diff-Retinex |Yi et al.| (2023) introduces a
three-stage framework where two diffusion models adjust reflectance and illumination components.
ReCo-Diff Wu et al.|(2023) combines the low-light input with the generated image and performs
Retinex decomposition at each time step. Other approaches modify the diffusion process itself for
low-light enhancement [Wang et al.| (2023); Jiang et al.| (2023). A recent work Reti-diff He et al.
(2023)) introduces the Retinex priors to latent diffusion, however, it requires additional networks or
retraining on external datasets. In contrast, GDP [Fei et al.| (2023)) leverages a pretrained Denoising
Diffusion Probabilistic Model (DDPM) as a generative prior to optimize the reverse sampling pro-
cess, enabling training-free image enhancement. Building on these advancements, we incorporate
the Retinex domain knowledge into generative diffusion prior and propose a zero-shot text-based
personalized low-light enhancement model.

3 METHOD

The goal of this work is to develop a fully text-driven, training-free PLIE model. Our RetinexGDP
operates in two stages: zero-shot Retinex decomposition and text-guided personalized enhancement,
both of which are training-free. The overview of our RetinexGDP is shown in Fig/[T]

3.1 ZERO-SHOT RETINEX DECOMPOSITION

Previous Retinex-based LLIE works |Zhao et al.|(2021); Liang et al. (2022)) have leveraged DIP to
perform zero-shot Retinex decomposition, exploiting DIP’s inductive bias for Retinex component
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generation. In practice, these models require additional hand-crafted priors to ensure piecewise
smoothness, which is important to illumination estimation. To eliminate the need for such priors,
the edge-aware smoothness properties in a bilateral grid and an encoder-like DIP model is combined
to estimate the illumination Zhao et al.| (2024). Despite its success in illumination estimation, this
approach still necessitates a DIP network comprising many convolutional blocks.

Is it possible that illumination estimation be performed with a single convolutional layer? The
main challenge is how to embed inductive bias into a convolutional layer to guide optimization
towards a piecewise smooth solution. While convolutional blocks possess inductive biases such
as locality and translation equivariance and can be used to smooth the details in an image, they
are insufficient for decomposing an image into piecewise smooth illumination. In contrast, the TV
optimization can be applied to preserve the image edges, as illustrated in Fig[TT]in Appendix [A.2}
Hence, if the edge-preserving smoothness properties of TV optimization can be incorporated into a
single convolutional layer, we do not need a deep network for illumination estimation.

How to incorporate the edge-preserving properties into a single convolutional layer? Total
variation (TV) is an effective regularizer that has been widely used as a smoothness regularization
term in denoising. Considering an input image X and output Y € RM >~ the TV optimization can
be defined as:

1
argmin ||¥ — X||7 + A| DY 1, (1)

where D = [DT DZ |7 denote the first order forward finite-difference matrix along the row and
column directions respectively, and X indicates the balance parameter for controlling the strength of
regularization. || - ||z and || - ||; denote Frobenius norm and L, norm, respectively. Inspired by Yeh
et al.[(2022)), which reports that total variation optimization as a layer (TV layer) provides effective
piece-wise properties and can be used to inject specific inductive bias to the deep network during
both training and inference. Given an input feature map X € RE*H*XW the TV layer outputs a
tensor Y of the same size. This layer computes the TV proximity operator independently for each
channel. The forward operation can be summarized as:

Y, = Prox3% (X., ), 2)

where Prox3%(+) denotes the TV proximity operator, and ¢ represents c-th channel of a tensor.

Single Gaussian Convolutional TV Optimization
Layer (SGCL)

X-axis 2 2 Y-axis

Extracts features and patterns from the input image Regularizes the output to smooth details and preserve edges

Figure 2: Illustration of TV optimization as a layer for zero-shot illumination estimation.

We therefore incorporate this TV proximity operator as a layer into a single convolutional layer, as
shown in Fig[2] Previous study seamlessly integrated the differentiable TV layer into a deep neural
network for training purposes|Yeh et al.|(2022)), in which both the convolutional kernel and the bal-
ance parameters are trainable within this setup. However, our objective is to develop a training-free
model, which means our illumination estimation model involves only the forward process without
a backward process for parameter updates. This presents a problem as the parameters of the convo-
lutional layer are random values, leading to wrong illumination estimation, as shown in Fig. [3{a).
We observe distinct differences in the illumination maps produced by the vanilla convolutional TV
layer across the three experiments. Inaccurate or inconsistent illumination estimation can result in
incorrect image enhancement outcomes.

To mitigate this issue, we adopt a strategy wherein we replace the vanilla convolutional kernel with
a Gaussian kernel. The coefficients of this Gaussian filter are sampled from a normal distribution
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(a) TV layer using vanilla convolution (b) TV layer using Gaussian convolution

Figure 3: Comparison of illumination estimation when TV layer uses vanilla convolution kernel and
Gaussian kernel.

with mean 0 and variance o2. Hence, we define our Gaussian TV layer for illumination estimation
by:

I. = Prox3y (S. ® Gy, \) 3)
where @ denotes the convolution operation, and G, denotes the Gaussian filter. S is the input image.
A is the balance parameter in Eq[I] Consequently, the Fourier spectrum of our Gaussian TV layer can
be manipulated by adjusting the value of o. With a predefined o and fixed kernel size, the parameters
of Gaussian TV layer are deterministic, leading to consistent illumination estimation. Despite the
absence of a training process, the Gaussian TV layer is capable of generating a piece-wise smooth
illumination, as demonstrated in Fig. [3(b).

This illumination estimation method offers several advantages. First, it requires no external images
for training and relies solely on the input single image itself, thus overcoming challenges associated
with dataset collection. Second, it necessitates no additional hand-crafted priors or loss functions to
drive optimization, thereby streamlining our illumination estimation procedure. Third, our Gaussian
TV layer requires only one convolutional layer.

Once the illumination is obtained, we directly compute the reflectance in spatial domain. Since a
corrected reflectance can be regarded as initial enhanced image|Guo et al.|(2017);Zhao et al.|(2024),
we consider the corrected reflectance as initial enhanced image. However, the reflectance obtained
by uncorrected illumination cannot be considered as a initial enhanced image. We therefore use
Gamma correction to obtain the corrected illumination I7, where  is the Gamma correction factor.
Then we compute the corrected reflectance according to Retinex model:

R=S.0I",ce{R,G, B}, “4)

where @ is spatial division operation and c indicates the c-th channel in RGB color space.

A sample of Retinex decomposition in our RetinexGDP is shown in Figure[d] Notably, the illumina-
tion map exhibits piece-wise smooth characteristic, ensuring that rich details and color information
are entirely preserved in the reflectance. The corrected reflectance, as the initial enhanced image, is
utilized in the subsequent stage of personalized enhancement.

Low-light Hlumination Corrected illumination Reflectance Corrected reflectance

Figure 4: The results of Retinex decomposition.

3.2 TEXT-BASED PERSONALIZED LOW-LIGHT ENHANCEMENT

Finding initial noise vector of corrected reflectance using patch-wise DDIM inversion. The
initial noise vector plays a crucial role in maintaining the fidelity of the generated original image.
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The Illustration of finding the initial noise vector of corrected reflectance is shown in Fig[5] DDIM
inversion aims to deterministically noising the corrected reflectance R to obtain a noise vector R,
which differs from the pure noise strategy of GDP [Fei et al.| (2023). In the inversion process, the
corrected reflectance R is first divided into M overlapping patches, which are cropped with a stride
of p. For each patch, we obtain the noised intermediate result. At each time step ¢, the diffusion
model computes the mean ™ and variance ™ of Gaussian noise for each patch. During the
diffusion process, these values are iteratively shifted to reflect the overall mean and variance for the
entire image.
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Figure 5: Illustration of finding the initial noise vector of corrected reflectance using patch-wise
DDIM inversion.

Since the patches overlap, the overlapping areas are computed multiple times. Therefore, it is crucial
to record the number of times these overlapping areas are noised to ensure accurate calculations.
A binary patch mask P is used to locate the overlapping areas, and weight vector G is used
to maintain a count of how often each pixel in the overlapped areas is included in a patch:G =
G + P™, where m indicate m-th patch. The final mean and variance for the whole image at each
time step are then obtained by computing the weighted average of €2; and the variance vector ¢;:
Q= Q0 G, ¢ = ¢r © G, where @ represents the element-wise division. This approach ensures
that the contributions from overlapping patches are aggregated, preserving the consistency of the
image’s structure and content during the subsequent sampling process.

Text-based sampling conditioned on reflectance. The initial noise vector R produced through
DDIM inversion, rather than a pure Gaussian noise, is taken as the starting point in the reverse
denoising step, to maintain the data consistency. To provide a high-quality and more reliable con-
dition for the guided diffusion model Dhariwal & Nichol (2021), we additionally use the corrected
reflectance R as the condition in the reverse denoising process. By conditioning on the corrected
reflectance, our method ensures that the generated outputs maintain the original image’s structure
and texture while enhancing low-light image.

We now describe how to perform reverse sampling from R. If the reverse denoising distribution
P (x¢—1 | ;) is adopted to a conditional distribution P (2t | z, R), P (R | ;) can be a proba-
bility that x; will be denoised to a high-quality image consistent to R, and according toDhariwal &
Nichol| (2021)), its heuristic approximation is formulated as

1
P(R|x) = 7 exp (— [MLe (g, R) + Ao Ls (x4, R, d)]) . (5)

where Z is a normalizing factor, £. and L, indicate the image content and style distance metrics,
respectively. L. is consist of reconstruction loss L,ccor and perceptual loss Ly,... It ensures that the
fine details and structures in the reflectance map are preserved. We use pretrained CLIP model to
style distance L. L ensures the generated image matches the desired style, as guided by the user’s
text prompt. d is the text instruction of enhancement style, and A\; and A are scaling factors for
controlling the magnitude of guidance. In this way, the conditional transition P (x;_; | ¢, R) an
be approximately obtained through the unconditional transition P (x;_; | «:) by shifting the mean
of the unconditional distribution: p = p + XV, log P (R | ), where

Va,logP (R | x) = —AVg, Lo (2, R) — MoV, Lo (x4, R, d) 6)

Therefore, we can add guidance on the generation process by direct adding the mean shift (the gra-
dients of loss function for content and style) to the intermediate denoised image. the gradients are
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added to the denoised image at each time step, which is actualy shifting the mean of the uncondi-
tional distrubution. Shifting mean enables the generated images during DDIM sampling to be closer
to the distribution of personalized augmented images while maintaining consistent content.

Instead of directly compute the gradients between the intermediate denoised image and the ini-
tial reflectance, to avoid the regression-to-the-mean effects, we compute the gradients of the linear
combination of them: Zg;—1 = nxos—1 + (1 — n)xos, wWhere n = /1 —a,. In practice, the
condition is a linear combination of R and R. R is sampled by R; = /a;Ro + /1 — &, and
R; = nRy + (1 — n)R;. We investigate the impact of 77 on enhancement performance in Ap-
pendix[A.5.1] By finetuning the scale factors of loss functions while specifying the preference with
text prompt, we can control the guidance.

3.2.1 LOSS FUNCTIONS

The loss functions used in the framework contain two parts: content guidance £, and style guidance
L. To preserve structure and texture consistency between the reconstructed image and the initial
enhanced image, L. is consist of reconstruction 1oss L;.ccon and perceptual loss Lye;.

Reconstruction loss. We aim to maintain the structure and texture consistency between the en-
hanced image and the input image, except for noise and illumination. To ensure this similarity, we
minimize the Mean Squared Error (MSE) between the corrected reflectance, i.e., the initial enhanced
image, and the output.

Erecon = ||§70,t - RtH; @)

where R; and Z( ; denote ¢-th sampled corrected reflectance and the linear combination of interme-
diate output, respectively.

Perceptual loss. Additionally, to improve visual sharpness of the enhanced image, we adopt the
perceptual loss defined by the similarity on the extracted feature maps from 2 layers of the pre-
trained VGG19 network.

Lper = l|¢r(Fo,) — dr(Re) |3, (8)

where ¢ (+) denotes the extracted feature using k-th layer of the pre-trained VGG19 network.

Style loss. We use directional CLIP loss |Gal et al.|(2022) to align the direction between text instruc-
tions and image pairs in the CLIP embedding space. However, we find that the source text prompt
does not benefit content consistency. In our experiment, the source text prompt (if used) describes
the style of the corrected reflectance, while the target text prompt describes the desired style. How-
ever, there appears to be a misalignment between natural language descriptions and the reflectance
component. Therefore, we modify the directional CLIP loss by removing the source prompt:

o AI : Et:z:t (plarget)
IAL|[[| Etet (Prarged) I

where AI = FEjpg (Zot) — Eimg (Rt). Eimg and Eyy are CLIP’s image embedding and text

embedding obtained by image encoder Ej,,, and text encoder Ey,;, respectively. Users can spec-

ify their preferred style using text prompts, denoted as prarger, Such as “summer sunset” or “bright
daylight,” for personalized enhancement.

£clip (-’EO,t; Rtaptargel ) =1 )

4 EXPERIMENTS

Experimental setups. The kernel size of the Gaussian TV layer is 7, with stride 1, and the value of
is set to 0.5. We adjust the balance parameter A in the Gaussian TV layer to 30, and perform a single
iteration. The Gamma factor ~y is set to 0.5. We use the pretrained unconditional guided diffusion
model as our backbone |Dhariwal & Nichol| (2021). For the pretrained CLIP model, we adopt ”ViT-
B-32”. The scaling factor for L, ccon, Lper and Leiip are set to 5000, 100 and 7000, respectively.
The total number of time steps, T, is 50, and we space the step size from 7" to 7", where T” is set
to 25 in our experiment. Additionally, we employ patch strategy in both the inversion and reverse
processes, with the patch size set to 256. Our experiments are conducted on a single TITAN X GPU.
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Input “Autumn day light” “Summer sunset” “Blue sky” “Winter morning” Input “Strong contrast”  “Subtle brightness”

Input “Rich saturation and refined tones” “Cool tones of a winter twilight”

Figure 6: The enhanced results guided with different text instructions. Zoom in for better viewing.

Baseline Implementations. The proposed model is compared against with 10 state-of-the-art LLIE
models: Training-based models: Zero_DCE|Guo et al.| (2020), SNRXu et al.|(2022)), DCCNet[Zhang
let al| (2022), UHDFour |Li et al. (2023), URetinexNetWu et al.| (2022), DiffLLJiang et al.| m
CLIPLITLiang et al. m Training-free models: RetinexDIP Zhao et al]|(2021), DRP Liang et al.
(2022), NeuralBRZhao et al.| (2024).

Metrics. Three no-reference image assessment metrics (NIQE, CPCQIGu et al|(2017) and NIQMC
(2018)) are utilized in the paper. Since LOL and VELOL datasets have paired images, we
therefore use PSNR and SSIM metrics to evaluate our model.

Datasets. We evaluate our model on 9 public datasets including 224 real images (DICMLee et al.|
(2012), ExDarKLoh & Chan| (2019), FusionMa et al] (2015), LIMEGuo et al] (2017), NASA,
NPEWang et al|(2013), VV, LOL datasetWei et al.| (2018)) and VELOL datasetLiu et al.| (2021D)).

4.1 PERSONALIZED LOW-LIGHT IMAGE ENHANCEMENT.

We enhance low-light image under different text guidance that describes various styles. The en-
hanced results guided with different text instructions are given in Fig[f] It can be observed that,
with the input nighttime or insufficient light image, our RetinexGDP successfully enhances low-
light image according to user preferred style specified by text, and both the structures and textures
are preserved well. For example, when the preference specified with “summer sunset”, in the en-
hanced image, the leaves of the trees turn green, the evening glow on the horizon displays an orange
hue. When the preference specified with “Blue light”, giving the entire image a cold atmosphere. In
addition, without denoising post-processing, our RetinexGDP does not amplify the noises, leading
to the enhanced results more pleasing.

4.2 GENERAL LOW-LIGHT IMAGE ENHANCEMENT

Qualitative assessments. We present enhanced results obtained from real low-light datasets, as
shown in Fig. [7]and[8] From Figure[7] our RetinexGDP not only restores details hidden in the dark,
but also effectively removes noise. In contrast to other supervised models, such as CLIP-LIT and
DiffLLL, our enhanced results have higher image contrast and vivid color, without over-enhancing
relatively bright areas, as shown in Fig[g]

Quantitative assessments. We quantitatively assess the performance of our RetinexGDP and com-
petitive methods across 9 datasets, as shown in Table m While our model does not achieve the
top performance across all datasets, it consistently exhibits competitive results on several datasets,
showcasing its versatility and robustness in various real-world scenarios. For instance, considering
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Low-light Zero_DCE RetinexDIP NeuralBR URetinexNet

DCCNet UHDFour DiffLL CLIP-LIT

Figure 7: Denoising performance comparison with the state-of-the-art LLIE methods on real dataset.

Low-light CLIP-LIT DIFFLL Ours GT

Figure 8: Image contrast visual comparison with the state-of-the-art LLIE methods on LOL and
VELOL dataset.

Table 1: Average NIQE |/NIQMC1/CPCQI?T scores on seven datasets.The training-free models

are highlighted in gray and the other ones are training-based models. The best image quality is
highlighted in red (1st best), green (2rd best) and blue (3nd best).

DICM | ExDark | Fusion | LIME | Nasa | NPEA | Vv

Method N, Mf Cf [Nl M{ Cf [N/ M{ Cf [Nl Mf Cf [N, Ml Cf | N M{ Cf | N Mf Crf
URetinexNet 350 517 072 | 374 5.5 087 | 390 507 085 | 433 502 090 | 327 514 084 | 408 500 085|303 514 079
SNR 416 517 0.63 | 429 529 068 | 493 500 0.64 | 5.69 523 072|523 528 057 | 415 498 067 | 877 498 045
DCCNet 320 502 075 | 375 507 074|429 480 077 | 426 504 088|318 516 087|350 474 075|356 511 076
UHDFour 346 509 075 | 390 500 071|438 485 072|455 497 085|333 539 085|362 494 074| - - -

DiffusionLL 203 522 077 | 327 504 079|330 5.19 080|358 492 095|281 533 082|324 500 081|292 536 088
CLIPLIT 301 505 084 | 3.63 484 104|374 509 100|399 509 1.00|3.16 519 104|371 497 098|302 520 1.00
Zero DCE 283 502 082 | 354 496 097 | 358 521 091 | 376 484 1.06|3.57 509 087|297 489 092|321 540 0.89
LightenDiffusion  3.39 523 090 | 334 5.14 080 | 343 521 078 | 404 510 094 [ 308 5485 089|303 514 079 | 358 538 077
FourierDiff 397 494 086 | 380 517 082|433 466 083 | 421 516 097 | 337 475 085|372 506 084 | 336 475 085
RetinexDIP 337 513 086 374 486 LI3|340 533 105 382 488 116|358 541 102|301 515 104|248 545 106
DRP 468 524 - 479 517 - | 571 528 - 599 521 - | 430 562 - |529 537 - |880 545 -

NeuralBR 339 520 088 379 472 108|341 523 105 374 503 114|297 519 1.04|372 515 105|321 540 089
RetinexGDP 402 512 084 480 497 081|522 527 086 554 506 094 | 411 545 091 | 421 538 075 | 410 526 0.74

our NIQMC score on the NPEA dataset, as detailed in Table|I|, our RetinexGDP model achieves the
highest score.

Furthermore, we specifically compare our RetinexGDP with models trained on the LOL dataset,
as shown in Table |ZI Compared to training-based models, such as CLIP-LIT, our model achieves
significantly higher PSNR scores: 26.39% on LOL and 8.7% on VELOL. Similarly, against training-
free models such as RetinexDIP, RetinexGDP delivers substantial improvements, with 82.3% higher
PSNR on LOL and 48.9% on VELOL. In contrast, without being specifically trained on the LOL or
VELOL datasets, RetinexGDP achieves superior performance.

4.3 ABLATION STUDY

Loss function and text prompts. We conduct an ablation study on the loss function and text
specified preference, as shown in Table [J] We observe that using only content guidance (L ccon
and L,.,) yields the enhanced image with better image quality, while the addition of text instruction
may result in a slight drop in performance. More visual results are given in Appendix [A-5.2]
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Table 2: Average PSNR1/SSIM1/NIQE
JINIQMC1/CPCQIT on LOL and VELOL.

Training-free models are highlighted in Table 3: Ablation study on loss and text.
gray. Loss N, Mt Ct
LOL | VELOL Lrecon 544 503 1.05
Method P st N Mt Cf | Pt St N, Mt Ct Lyecon W text 6.47 481 0.69
Zero-DCE  14.86 0.54 777 401 1.15] 1806 058 806 3.92 1.20 Lyecon + Lper 558 5.07 0.96
CLIP-LIT 1239 049 829 337 121 1518 053 841 337 127 Lrecon + L‘per w/text 5.63 5.01 0.89

RetinexDIP 859 030 6.90 241 1.10 | 11.08 032 723 265 1.10
NeuralBR 1136 044 7.52 3.68 1.17 | 1404 047 756 3.67 1.22

GDP 1393 0.63 6.17 534 0067 | 13.04 055 7.59 429 040
RetinexGDP  15.66 0.66 6.26 526 0.85 | 16.51 0.69 692 4.97 0.96

Patch-wise DDIM inversion. The patch strategy in the
DDIM inversion not only accommodates inputs of any
size but also aids in preserving structure and textures, as
demonstrated in Figl0] Without the patch strategy, struc-
tures tend to be distorted (as seen in the red box), and
artifacts tend to appear in darker areas (as observed in the
white box).

(- /
Input w/ patch strategy w/o patch strategy

Figure 9: Ablation study on patch-wise
Linear combination factor of corrected reflectance. DDIM inversion.

The loss function used in reverse sampling process, both

the intermediate result o ; and corrected reflectance are

linear combination. We find the factor for linear combination 7 play an important role in the denois-
ing process, as shown in Fig When 7 = /&, 1) increases as the value of &; gradually increases,
resulting in smoother enhanced results. In contrast, when = /1 — &y, the model generates de-
tailed results.

t=15 t =20

Input

;=10
® n=vi-a

Figure 10: Ablation study on factor of combination 7. Zoom in for a better view.

5 CONCLUSION

In this paper, we have introduced RetinexGDP, a zero-shot PLIE model that combines a generative
pretrained diffusion model with domain knowledge from Retinex theory. RetinexGDP enables flex-
ible enhancement guided by user preferences specified via text instructions, obviating the necessity
for additional training data or external images. We incorporate TV optimization into a single Gaus-
sian covolutional layer for zero-shot illumination estimation, streamlining the pipeline of Retinex
decomposition. To maintain the content and structure consistency, we employ patch-wise DDIM
inversion to find the initial noise vector of corrected reflectance and perform sampling conditioned
on the correced reflectance. While our zero-shot, training-free PLIE method may not outperform
state-of-the-art models across all datasets, it delivers competitive results. Its key strength lies in the
ability to flexibly customize enhancement styles through text prompts, offering a unique and adapt-
able solution. This novel feature brings valuable flexibility to low-light enhancement, deserving
further attention from the research community.

Limitations: RetinexGDP has limitation in real-time enhancement due to the inversion process.
This limitation may be solved by inversion-free method (2024).

10
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A APPENDIX

A.1 PRELIMINARY: DIFFUSION MODEL

DDPMs are designed to reverse a parameterized Markovian image noise process. Initially, they op-
erate on isotropic Gaussian noise samples, transforming them into samples drawn from a training
distribution. This transformation is achieved through an iterative diffusion process that gradually
eliminates the noise. Recent studies have demonstrated the capability of DDPMs to generate high-
quality imagesDhariwal & Nichol|(2021));|Ho et al.|(2020); Nichol & Dhariwal|(2021). In the follow-
ing sections, we provide a concise overview of DDPMs. For a more comprehensive understanding,
readers are encouraged to refer to|Ho et al.|(2020); Nichol & Dhariwal|(2021)); Sohl-Dickstein et al.
(2015).

Assuming a data distribution xy ~ ¢(zo), the inversion process generates a sequence of latent

variables x1, . .., 7 by incrementally adding Gaussian noise with variance 3; € (0, 1) at time step
t:
T
q(z1,...,o7 | T0) = H(I(fft | @-1)
t=1 (10)

gz | 2p1) =N (\/ 1- 5t$t71,5t1)

An essential characteristic of the inversion is its ability to directly sample any step z; from x¢:

q(z¢ | 20) =N (Vauzo, (1 —ay) I)
T = @$0 + me
where € ~ N(0,I),a; =1 — By and a; = [['_, a..

The reverse process is also Markovian, starting from a Gaussian noise samplexy ~ AN (0, I'), and
generating a reverse sequence by sampling the posteriors q(x¢—1 | x¢).

(1)

Since the exact form of g(z;—1 | ) remains unknown, a deep neural network Py is trained to
estimate the mean and covariance of z;_; given x:

P9 (xt—l | ‘Tt) :N(ﬂg ('rtvt)aE(') (xtvt))' (12)

Instead of directly predicting pg(x¢, t), Ho et al. (2020) propose predicting the noise €y (x¢, t) added
to x( to obtain x;:

o (T, t) = \/% (mt — \/ﬁidteg (mt,t)) (13)

The estimated image & is then derived from g (x¢, t) using Equation :

= Lt \/1—C_kt€0($t,t)
Vo ven
Q@i | @0, @0) = N (@01 e (@0, 20) , BT )

g A (14)
- 1—a,
where  fi; (x4, To) = \/1@ Lao + Vi ( O 1)33t
-0 11—y
3 11—
d = ——
an B(n) 1—a B

where 7 € [0, 1], n controls the interpolation ratio between DDPM and DDIM, , making the process
deterministic when 77 = 0. For more details please see |Ho et al.[(2020).
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A.2 GAUSSIAN TV LAYER

Motivation. It is well known that the convolution can be use to smooth the details in an image,
while the TV optimization can be applied to preserve the image edges, as illustrated in Fig[TT] In our
illumination estimation, we expect the illumination to be piecewise smooth. Hence, we incorporate
the edge-aware property of TV optimization into a single Gaussian convolutional layer, leading to
zero-shot illumination estimation.

Input Convolution TV optimization

Figure 11: Illustration of the convolution process and TV optimization for image smoothing.

A.3 PATCH-WISE DDIM INVERSION

The patch-wise DDIM inversion process is outlined in Alg[T} The DDIM inversion takes correct
reflectance R as input and produces the corresponding initial noise vector R. The corrected re-
flectance R is divided into M overlapping patches. These patches are cropped with a stride of p,
ensuring that some areas of the image are covered multiple times.

For each patch, a noised intermediate result is obtained. At each time step ¢, the diffusion model
calculates the mean ;™ and variance X" of the Gaussian noise for each patch.

The mean and variance for each patch are iteratively updated to reflect the overall values for the
entire image.

Since patches overlap, the areas covered multiple times must be tracked. A binary patch mask P™
identifies overlapping areas, and a weight vector G records how many times each pixel in these
areas is included in a patch. The update follows: G = G + P™, where m indicates the m-th patch.

The final mean €2, and variance ¢, for the entire image at each time step are computed by taking the
weighted average, adjusting for overlapping areas:

2=00G, ¢=¢00G 15)

where © denotes element-wise division.

This weighted averaging ensures that the contributions from overlapping patches are aggregated,
maintaining the consistency of the image’s structure and texture throughout the diffusion process.

A.4 TEXT GUIDED SAMPLING CONDITIONED ON REFLECTANCE

The procedure for text guided sampling conditioned on reflectance is outlined in Alg2]

Initial Noise Vector. The initial noise vector R, generated via DDIM inversion, is used as the
starting latent vector in the reverse denoising step to maintain data consistency. Instead of pure
Gaussian noise, this approach integrates the corrected reflectance R as a condition to ensure that the
structure and texture of the original image are preserved while enhancing illumination.

Conditional Sampling. To improve the diffusion model’s quality and reliability, the corrected re-
flectance R is used as a condition in the reverse denoising process. The conditional distribution
Py(x—1 | 2+, R) aims to guide the denoising towards high-quality outputs consistent with the orig-
inal image.
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Algorithm 1 Patch-wise DDIM inversion for finding the initial noise vector

1: Input: Reflectance R, diffusion steps 7', diffusion model (ug (1), Xg (x1)), dictionary of M
overlapping patch locations, and a binary patch mask P

2: Output: initial noise vector R

3: Sample zq from N (0, I)

4: for all ¢ from 1 to T" do

50 X e (1), Xo (24)

6:  Mean vector €; = 0 and variance vector ¢, = 0 and weight vector G = 0
7. form=1,... M do

8: R™ = Crop(P™ ® R)

0 Ey = oS - ) T re (a7 1)

10: Qt:Qt+PmOum

11: ¢t — (bt _|_ Pﬂ’l, o) Z'HL
12: G=G+Pm
13:  end for

14: %=0%0G

15: =09 0G

16:  sample z;_1 by N (£, ¢)
17: end for

18: return R

Heuristic Approximation. The conditional probability P(R | x;) can be approximated as:

1
P(R|xz) = 7 exp (—[MLe(zt, R) + A2 Ls (2, R, d)]) (16)

where Z is a normalizing factor, £. and £, are content and style loss metrics, d is the text prompt
for enhancement style, and A; and A, control the guidance strength. The gradients of both sides are
computed as:

logP (R |x¢) = —log Z — M L.(xt, R) — Mo Ls(x, R, d)

1
V., log P(R | 21) = MV, Lo(20, R) — MV, Lo (21, R, d) an

Mean Shift Adjustment. The conditional transition Py(z;—1 | x¢, R) is derived from the uncon-
ditional transition by shifting the mean:— (A1 Vg, Lo(2t, R) + A2V, Ls(2t, R, d)). Therefore, the
mean of conditional transition Py(x;—1 | x¢, R) becomes:

pw=pu+XV, log P(R | x¢) (18)

In other words, by adjusting the scaling factors \; and Ao, and specifying the enhancement style
through a text prompt, the level of guidance in the generation process can be controlled. To avoid
regression-to-the-mean effects, gradients are computed for a linear combination of the intermediate
denoised image and the initial reflectance:

Zop—1 =NTo—1+ (1 —n)xos, nN=V1—0y (19)
In practice, the condition is a linear combination of R and R where Rt = Vo Ry + V1 — aye,

and R; = nRy + (1 — n) Ry.
A.5 ABLATION STUDY
A.5.1 ANALYSIS ON REVERSE DENOISING PROCESS

To further illustrate the effectiveness of the DDIM-DDIM diffusion model, we visualize the reverse
sampling process in Fig[T2] Notably, we observe that the results stabilize after the 5-th time step.

A.5.2 ANALYSIS ON CONTENT GUIDANCE AND STYLE GUIDANCE

The combination of "MSE+VGG+CLIP” enables our RetinexGDP to produce pleasing results, with
improved quantitative evaluation. However, the absence of VGG in the loss function weakens the
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Algorithm 2 Text-based sampling conditioned on reflectance

1: Input: Noised reflectance R, text description d, diffusion steps 7', diffusion model
(o (z1) , 29 (x1)), content consistency coefficient A1, style coefficient Ay, dictionary of M
overlapping patch locations, and a binary patch mask P™

2: Output: zy enhanced image

3: Sample z7 from N/ (\/akR, (1—ay) I>

4: for all ¢ from 7T to 1 do

50w, X g (x), X (1)

6:  Mean vector {); = 0 and variance vector ¢; = 0 and weight vector G = 0
7. form=1,..., M do

8: " = Crop(P™ © x4)
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Figure 12: Visualization of reverse denoising process. Zoom in for a better view.

model’s ability to suppress noise, as evidenced by the visual results in Fig[I3] One possible reason
for this improvement could be that the perceptual reconstruction provided by the VGG loss helps
alleviate the domain shift problem of the CLIP model. Therefore, when using CLIP loss for text-
guided enhancement, it is advisable to include VGG loss in the loss function and finetune the balance
parameter of directional CLIP loss in Equation (J) to mitigate the occurrence of artifacts. Due to
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domain shift problem of the CLIP model, when the weight of directional CLIP loss is set a large
value, the content and structure of enhanced image may become inconsistent with the original image,
as shown in Fig[T4]

Input MSE MSE+VGG

MSE+CLIP MSE+VGG+CLIP

Figure 13: Visual comparison while using different loss functions.

Low-light Weight of CLIP:0 Weight of CLIP:25000 Weight of CLIP:30000

Figure 14: Visual results while using different weight for CLIP loss function.

A.5.3 ANALYSIS ON DIFFUSION MODEL

We explored the impact of the diffusion model on personalized enhancement, as depicted in Fig[T3]
The DDPM-DDPM diffusion model fails to maintain content consistency, resulting in images that
lose much of their original content and exhibit excessive smoothness compared to the DDIM-DDIM
model. This is reasonable. First, the denoising process of DDIM model is deterministic, facilitating
data fidelity. Second, DDIM inversion produces initial noise vector of the corrected reflectance,
rather than pure noise, benefiting preserving structures and content.

A.6 ADDITIONAL RESULTS

Personalized low-light image enhancement. We provide additional personalized enhanced results,
as shown in Fig[T6] and Fig[T7] From Fig[I6] without text instruction for specifying the enhanced
style, the quality of the input image is improved and more details are appeared. With text instruction,
the input image can be enhanced aligning with the specified styles, as shown in Fig[T7] The most
important is that, the content and structure in the enhanced images are preserved well.

General low-light image enhancement. We also provide additional general enhanced results. The
visual comparisons with the state-of-the-art LLIE methods are shown in Fig[T9} Fig[20] Fig2T] and
Fig22] Figure [T9] shows that, our RetinexGDP is robust while dealing with non-uniform illumi-
nation scene, without over-enhancing the bright areas while enlightening the dark areas. Figure
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Low-light image DDPM-DDPM DDIM-DDIM

Figure 15: Impact of different diffusion models (Results obtained guided by “Summer sunset”).
DDPM-DDPM indicates that both the inversion and reverse sampling processes adopt the DDPM
model, and similarly, DDIM-DDIM.

Input w/o text instruction “Autumn day light” “Summer sunset”

Figure 16: Personalized enhanced results on Nasa dataset.

Input “Autumn day light” “Summer sunset”

Figure 17: Personalized enhanced results on MIT-Adobe FiveK dataset.

demonstrates our RetinexGDP’s ability of noise suppression. The visual evaluations on paired
dataset LOL and VELOL demonstrate that our RetinexGDP produces enhanced image with higher

contrast, as shown in Fig[2T] and Fig[22] Fig[I8] demonstrates that our RetinexGDP can produce
results with high contrast.
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Low-light

Figure 18: Visual comparison with the state-of-the-art LLIE methods on DICM dataset.

Low-light ‘ Zero_DCE ~ RetinexDIP ) DRP " NeuralBR URetinexNet

08

CmE B BN B

SNR DCCNet UHDFour DiffLL CLIP-LIT Ours

Figure 19: Visual comparison with the state-of-the-art LLIE methods on LIME dataset.
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Low-light Zero_DCE RetinexDIP DRP NeuralBR URetinexNet

Low-light CLIP-LIT DIFFLL Ours GT

Figure 21: Visual comparison with the state-of-the-art LLIE methods on LOL dataset.

Low-light CLIP-LIT DIFFLL Ours GT

Figure 22: Image contrast visual comparison with the state-of-the-art LLIE methods on VELOL
dataset.
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