Published in Transactions on Machine Learning Research (12/2024)

Localize-and-Stitch: Efficient Model Merging via Sparse Task
Arithmetic

Yifei He! Yuzheng Hu' Yong Lin? Tong Zhang! Han Zhao!
{yifeihe3, yhi6, tozhang, hanzhao}@illinois.edu, yl7690@princeton.edu
! University of Illinois Urbana-Champaign * Princeton University

Reviewed on OpenReview: |https: //openreview. net/ forum? id=9CWU80:186d

Abstract

Model merging offers an effective strategy to combine the strengths of multiple finetuned
models into a unified model that preserves the specialized capabilities of each. Existing
methods merge models in a global manner, performing arithmetic operations across all model
parameters. However, such global merging often leads to task interference, degrading the
performance of the merged model. In this work, we introduce Localize-and-Stitch, a
novel approach that merges models in a localized way. Our algorithm works in two steps:
i) Localization: identify tiny (1% of the total parameters) localized regions in the finetuned
models containing essential skills for the downstream tasks, and ii) Stitching: reintegrate only
these essential regions back into the pretrained model for task synergy. We demonstrate that
our approach effectively locates sparse regions responsible for finetuned performance, and
the localized regions could be treated as compact and interpretable representations of the
finetuned models (tasks). Empirically, we evaluate our method on various vision and language
benchmarks, showing that it outperforms existing model merging methods under different data
availability scenarios. Beyond strong empirical performance, our algorithm also facilitates
model compression and preserves pretrained knowledge, enabling flexible and continual
skill composition from multiple finetuned models with minimal storage and computational
overhead. Our code is available at https://github.com/uiuctml/Localize-and-Stitch.

1 Introduction

Pretrained models (Devlin et al.|2018; |Liu et al., [2019; [Raffel et al.,|2020; |[Radford et al.,2021)) contain a wealth
of rich and generalizable information, and finetuning these models for specific downstream tasks significantly
enhances performance compared to training from scratch (Chen et al.l 2020bf). With the growing popularity
of the pretrain-finetune paradigm, a vast array of finetuned models have been made available on platforms
like Hugging Face (Wolf et al. 2020), and many of them originate from the same pretrained models, such as
CLIP (Radford et al., 2021). However, deploying multiple finetuned models independently, each for a different
downstream task, incurs large storage and maintenance cost, and limits knowledge transfer across them.

Model merging offers a viable solution to these challenges by integrating the strengths of multiple finetuned
models into a single model that retains the specialized capabilities of each. The key advantage of model merging
over traditional multi-task learning (MTL) (Caruana),[1997; [Zhang & Yang,[2021; Hu et al.,|2024} |He et al.,|2024))
is its efficiency, in that it does not require joint training on data across all tasks, but only involves arithmetic
operations in the weight space. Existing methods merge models by averaging model parameters via arithmetic
mean (Wortsman et al., 2022a; Ilharco et al., [2023)), Fisher information (Matena & Raffel, [2022), regression
mean (Jin et al.l [2022)) or learned merging weights (Yang et al.l [2023)). Those methods all average the models
in a global manner, meaning that they perform arithmetic operations to all parameters of the finetuned models.
However, similar to the conflicting gradient problem in MTL (Yu et al.l |2020; Liu et al., 2021)), parameters
in different finetuned models often have interference with each other, leading to suboptimal performance

https://openreview.net/forum?id=9CWU8Oi86d
https://github.com/uiuctml/Localize-and-Stitch

Published in Transactions on Machine Learning Research (12/2024)

1 1
B;t) Y1 @ Hf(t)
2 > —

gmerged

. : :

Q%%) o oo gg W
; % p _

Figure 1: Localize-and-Stitch: Given n models {0;?};;1 finetuned from 6p.e, we first localize regions containing

%3

£

n

skills acquired during finetuning through per-model binary masks {v; }i—;, then stitch the localized regions {~; @9}5 Nnn
onto the pretrained model, where ® is the element-wise product. Empty nodes after the localization step mean that
the mask is not activated at that position. Since the localized regions are tiny (~ 1%), we reduce potential task
conflicts and make minimal changes to the pretrained model.

of the merged model. Recent works find that redundant parameter updates in finetuning are sources of
conflicts (Yadav et al;|2023)). Although the majority of model parameters are updated during finetuning, only
very few contribute to improving the performance on downstream tasks (Chen et al.;|2020a; [Hoefler et al.| [2021)).

To overcome these limitations, we propose Localize-and-Stitch, an efficient algorithm that merges models
in a localized manner. The algorithm (Figure [1]) involves two steps: i) Localization: identify tiny localized
regions in the finetuned models containing essential skills for the downstream tasks. ii) Stitching: reintegrate
only these essential regions back into the pretrained model. In the experiments, we verify that the changes in
finetuend parameters are highly redundant, as we can efficiently identify just 1% of the total parameters that
recovers over 99% of the finetuned performance. We evaluate our method on various language and vision
tasks, showing that it outperforms existing model merging methods under different data availability scenarios.

Beyond the superior performance on model merging, our approach has several distinct advantages: i)
Interpretability of task relations: each localized region encapsulates task-specific skills from the
finetuned models, and overlap among them is indicative of knowledge sharing. ii) Model compression:
Our localization method enables compact representation of finetuned models, significantly reducing the
storage space to only 1% of the original without sacrificing performance. This enables flexible integration
of finetuned models’ capabilities with minimal storage and computational overhead. iii) Preservation
of pretrained knowledge: By making minimal and localized changes to the pretrained model, our merged
model maintains its generalizability and achieves superior multi-task performance, effectively mitigating
catastrophic forgetting associated with finetuning.

2 Preliminaries

Notation Given a set of n tasks, we denote the pretrained model parameters as 8y € R?, the model param-

eters finetuned on the i-th task as HEZ) € RY. Note that all ngtl) are finetuned from the same pretrained model.

Task vectors A task vector is the element-wise difference of the finetuned and pretrained parameters,
denoted as 7; = F)g) — Opre € R?. These vectors encapsulate the knowledge acquired during the finetuning
process. This knowledge can be effectively manipulated through task arithmetic (Ilharco et al., 2023|), which
involves performing arithmetic operations on task vectors to compose learned skills across tasks.

Model merging The goal of model merging is to efficiently aggregate the parameters of the n finetuned
models into a single multi-task model Oyergea Without the need to retrain the model on the initial task-specific
data. The resulting merged model should perform well on all the tasks simultaneously.

Published in Transactions on Machine Learning Research (12/2024)

Table 1: Baselines for model merging.

Category Method Mathematical expression Note
Simple averaging (Wortsman et al.{|2022a) Onerged = %ZLI Géf) Element-wise mean
Task arithmetic (Ilharco et al.[|2023) Ormerged = Opre + >0 | T a tuned on a validation set
Global Fisher merging (Matena & Raffel| 2022) Omerged = 2?:1 E()g)/ 2::1 Fm Weighted by Fisher information matrices
RegMean (Jin et al.||2022) Omerged = (E:’:l XZTX,)’1 2?:1 (XJXIHEZ)) Minimizes difference in merged and individual activations
f
AdaMerging (Yang et al.||2023) {0 sergeatiza = {Opre + X1y AQQE‘T’) e Layer-wise weights learned by entropy minimization

Trims the parameters in task vectors with small magnitudes, elect a sign at each position
of the task vector and only keep the parameters with the same sign.

Step 1: Optimize for TALL masks: m; = 1{|r| > |marrr — 7ol - A}

Step 2: Apply consensus mask Meonsensus = I{Zte[T] my > 2} on Tarr.

Localized TIES-Merging (Yadav et al.| |2023)

Consensus TA (Wang et al.||2024b)

Existing methods perform merging in the general form 0yergea = Opre + Z?zl «;T;, and their difference mainly
lies in the way of determining the scaling factors a;. We introduce the baselines in Table [I} and categorize
them into global and localized methods based on whether the algorithm incorporates selection strategies to
identify which parameters to merge. Localized algorithms specifically target sparse and localized regions,
while global algorithms merge parameters indiscriminately. We provide detailed comparisons with the two
localized algorithms, in Appendix [C]and Appendix [D] respectively. Note that AdaMerging has two variants:
one learns layer-wise weights and another learns task-wise weights. In this work, we refer to AdaMerging as
the layer-wise version because of its superior performance over its task-wise counterpart.

Data requirements Fisher merging (Matena & Raffell [2022)) requires over 256 data points per task to esti-
mate the Fisher information. RegMean (Jin et al.l |2022)) requires more than 1600 data points per task to com-
pute the inner product matrices effectively. AdaMerging (Yang et al., 2023) needs access to the full unlabeled
test set for entropy minimization. Consensus TA (Wang et al.l [2024b)) requires a validation set to tune hyper-
parameters. In contrast, simple averaging (Wortsman et al., 2022a)), task arithmetic (Ilharco et al. |2023|) and
TIES-Merging (Yadav et al., 2023) can be implemented without additional data. However, to achieve the best
performance, both task arithmetic and TIES-Merging require tuning the hyperparameter o on a validation set.

3 Localize-and-Stitch

We now introduce our main algorithm. In Section 3.1 we start by outlining two insights that underpin
effective model merging, accompanied by motivating examples. In Section [3.2] and Section we provide a
detailed description of two key components of the algorithm: localization and stitching.

3.1 Motivation and objectives

Sparsity is important, but how to locate sparse regions is the key. Previous research identifies that
during the finetuning stage, a significant portion of parameter updates is redundant, introducing interference
in model merging (Yadav et al., |2023)). This underscores the need for locating sparse regions to reduce such
interference. While the importance of sparsity is recognized, strategies for achieving it remain underexplored.
Earlier approaches typically identify sparse regions through random selection (Yu et al., [2023)) or selecting
regions with the top-k% largest magnitudes in task vectors (Yadav et all [2023)). However, they often fall
short in identifying the most effective sparse regions for model merging. In Figure 2] we evaluate the efficacy
of different localization methods across twelve language tasks, comparing the quality of their localized regions
(specified by the binary mask ;). The performance is assessed on individual grafted models for each task,
denoted as Oprc + 7 © 75, where 7; is the task vector of the i-th task and © is the element-wise product.
This grafted performance measures how well the finetuned skills are preserved when only keeping parameter
updates during finetuning in localized regions. Unlike previous methods, we directly optimize the binary masks
to maximally retain finetuned performance, detailed in Section [3:2] Our method significantly outperforms
others, especially at lower sparsity levels. The strength of our approach lies in its precision in identifying
small but informative regions, which is particularly advantageous for model merging.

Sparse regions with less overlap reduce task conflicts. Identifying the smallest possible regions with
essential finetuned skills is key to minimizing potential conflicts among task vectors, as smaller localized regions

Published in Transactions on Machine Learning Research (12/2024)

o

1%}

S o8] —s 0.69

g —e— Localize-and-Stitch

S o X)

g 9 0,68 ---- Simple averaging

o 0.71 ©

Q £

X S 0.671

S 06 £

5 (]

@ a

9 0.66

2051 o K

‘0 —e— Our localization g 0.65

[J] Top-k 651

2 0.4 - Se R0a’:1dom =

& Le— 7

2 10 102 10 10° 0.0 02 0.4 0.6 0.8 1.0

Sparsity level Overlapped proportion

Figure 2: Our method most effectively locates Figure 3: Merged models with more parameter
sparse regions essential for finetuned performance. overlap manifest more task conflicts, resulting in
Sparsity level indicates the proportion of total parameters performance decrease. The overlapped proportion
localized. By localizing only 1% of parameters (at sparsity is over the model’s total parameter count. The simple
level 0.01), our approach recovers 99% of the finetuned averaging baseline is over all model parameters.

performance (at sparsity level 1).

naturally incur less overlap among tasks. With reduced overlap, each task can occupy its own, relatively
disjoint localized region, thereby reducing task conflicts. This has the intuitive explanation that when two
conflicting tasks share highly overlapping localized regions, they will compete to steer the parameters within
these regions to their advantage in the merged model, leading to performance degradation. We demonstrate
this by a case study (Figure [3)) on merging models finetuned on two conflicting language tasks: QNLI (Wang
et al.l 2018)) and MNLI (Bowman et al., [2015). QNLI involves predicting whether a context contains the
answer to the given question, and MNLI involves predicting text entailment given a sentence pair. These
tasks are conflicting, manifested by a noticeable performance decline for both tasks when using simple
averaging to merge the corresponding finetuned models. However, if the localized regions are small yet
sufficiently informative about their respective tasks, the reduced overlap between these regions decreases task
conflicts and enhances overall performance after merging. In other words, as long as the localized region
contains sufficient task-specific knowledge, including more parameters than necessary in them only introduces
additional task interference.

3.2 Localization

Motivated by the importance of locating informative yet small sparse regions, we outline two objectives for
localization in finetuned models: i) the regions should encapsulate essential skills acquired during finetuning,
and ii) they should contain minimal number of parameters.

The objectives are grounded in the findings of Panigrahi et al.| (2023), which demonstrates that skills
developed during finetuning are localizable. Specifically, grafting a small subset of finetuned parameters onto
the pretrained model can almost fully recover the performance of the finetuned model. [Panigrahi et al.| (2023])
propose the following optimization problem to identify the localized parameters, and we adapt it in the model
merging setting. With the constraint on the sparsity level s, on the i-th task with the loss function ¢; and
task vector 7;, we optimize for a binary mask ; such that only adding up the masked portion of the task
vector onto the pretrained model performs well on the i-th task

’yi = arg min gi(epre + '7 @ Ti>7
7€{0,1}4:lIvllo<s

where ® denotes the element-wise product. For the ease of optimization, we follow Panigrahi et al.| (2023)
to reparametrize the binary mask v as a real-valued vector S. To control the sparsity, we additionally relax
the Lg sparsity constraint to be Li. As a result, the optimization is reformulated as

S; = argmin¥; (Opre + 0(S) © ;) + Allo(S)||1, (1)
SeR?

Published in Transactions on Machine Learning Research (12/2024)

SST-2 §¥0[6] 0.19 0.28 0.07 0.04 0.05 0.01 0.02 0.02 0.03 0.03 0.03 o SST-2 -FMloNeReT AR [M0R:I] 0.07 0.11 0.10 0.11 0.09 0.04 0.07 0.16 o
CR-0.19 p¥ef0] 0.21 0.10 0.04 0.05 0.01 0.01 0.01 0.03 0.04 0.04 CR {ORZAn N[O M{oR°LIONNN 0.05 0.10 0.10 0.12 0.11 0.11 0.13 0.11
MR-0.28 0.21 p¥ee] 0.12 0.04 0.06 0.01 0.01 0.01 0.03 0.04 0.04 0.8 MR {ORelMoR AN Mo [oloReI0] 0.03 0.14 0.07 0.10 0.04 0.02 0.09 0.13 0.8
MPQA-0.07 0.10 0.12 gHe[s} 0.04 0.06 0.00 0.01 0.01 0.02 0.04 0.06 MPQA {eR:iSNoRhRIoR=ToJnMe[e} 0.00 0.06 0.08 0.12 0.13 0.10 0.14 0.06
TREC-0.04 0.04 0.04 0.04 p¥ee) 0.05 0.01 0.01 0.01 0.03 0.04 0.05 06 TREC-0.07 0.05 0.03 0.00 g¥ele} 0.14 0.08 0.10 0.09 0.00 0.16 0.00 06
SUBJ-0.05 0.05 0.06 0.06 0.05 gMee) 0.01 0.01 0.01 0.03 0.04 0.05 SUBJ-0.11 0.10 0.14 0.06 0.14 M) 0.06 0.13 0.07 0.05 0.15 0.03
QNLI-0.01 0.01 0.01 0.00 0.01 0.01 gpMee} 0.06 0.07 0.03 0.01 0.01 QNLI-0.10 0.10 0.07 0.08 0.08 0.06 pMee) 0.31 0.41 0.58
SNLI-0.02 0.01 0.01 0.01 0.01 0.01 0.06 Mele} 0.10 0.05 0.01 0.01 [0.4 SNLI-0.11 0.12 0.10 0.12 0.10 0.13 0.31 peJoReivi:NoRAS 0.34ﬁ [0.4
MNLI-0.02 0.01 0.01 0.01 0.01 0.01 0.07 0.10 Mse] 0.04 0.01 0.01 MNLI-0.09 0.11 0.04 0.13 0.09 0.07 0.41 [}z uMeloR oo} 0.48@
RTE-0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.05 0.04 p¥e[e] 0.04 0.03 -0.2 RTE-0.04 0.11 0.02 0.10 0.00 0.05 [(oRt:AloRyA R Ry e elo] (017 HoNCrS -0.2
MRPC-0.03 0.04 0.04 0.04 0.04 0.04 0.01 0.01 0.01 0.04 p¥ele} 0.06 MRPC-0.07 0.13 0.09 0.14 0.16 015@0.34 VE:30.54 1.00
QQP-0.03 0.04 0.04 0.06 0.05 0.05 0.01 0.01 0.01 0.03 0.06 QQP-0.16 0.11 0.13 0.06 0.00 0.03 0.610.56 0.64
' ' | | | | | | " | | | | | g -0.0
n = = =] = = =
(a) Jaccard similarity of pairwise task masks. (b) Cosine similarity of masked task vectors.

Figure 4: Our localized regions (each task with 1% of total parameters) have little pairwise overlap,
with the majority of Jaccard similarity below 5%. The sentiment classification tasks (SST-2, CR, MR, MPQA)
have relatively large overlap because they share similar skills in the overlapping regions, and we verify this by showing
that they have high cosine similarity of masked task vectors.

where o is the sigmoid function, and A controls the strength of the L regularization. At the end of the
optimization, we round o(S;) to be binary.

In comparison, [Panigrahi et al.| (2023) uses the following formulation

S; = argmin4; (7 © O + (1 —) © Opre),
SeR?

Y = VYbase © (1 - U(S>) + (1 - ’ybase) © 0(5)7 (2)

where 7Vpuse is the top-k% largest elements in the task vector, which serves as an initialization for the
optimization. There are two main advantages of formulation [If over [2 Firstly, our formulation of S is more
straightforward, as we directly have v = ¢(.S). In contrast, S in Equation (2 serves as a selector of whether to
take the value from 7pqse, leading to more complex computation. Secondly, our approach uses the L; constraint
to control the sparsity in a more fine-grained manner, while Equation does not have this constraint, and
they control the sparsity via early stopping instead. A detailed empirical performance comparison between
our localization technique and the one in (Panigrahi et al) [2023) is presented in Appendix [E]

Note that the optimization is highly efficient, requiring as few as 8-shot data with 10 epochs of training using
SGD. A detailed ablation on the impact of data availability on the mask quality is shown in Section [£.4]

Interpretation of task relationships In Figure[d] we validate that our localization method effectively
identifies task-specific regions with minimal overlap. In Figure [fa] we report the Jaccard similarity of all
pairwise task masks, namely for each pair of masks +; and ;, we compute |v; N 7;|/|vi U~y;|. The majority
of task pairs exhibit a Jaccard similarity below 5%, confirming minimal overlap. For the few pairs with
Jaccard similarity larger than 10% (upper left corner of Figure , we further compute the cosine similarity
of their masked task vectors in Figure D] and find that their cosine similarities are almost 1, indicating
high agreement of the parameters within the overlapped regions. Since these four tasks are all sentiment
classification tasks, this phenomenon intuitively suggests a shared skill set across the tasks, located in the
overlapped regions. We elaborate our resolution for the overlapped regions in Section [3.3]

It is important to note that the meaningfulness of cosine similarity depends heavily on the presence of
a substantial overlap, as indicated by Jaccard similarity. In cases where overlap is minimal, high cosine
similarity might imply a strong relationship due to well-aligned parameters. Yet, this interpretation could be
misleading without the broader context provided by Jaccard similarity, which could reveal that the actual

Published in Transactions on Machine Learning Research (12/2024)

35.00%

0,
SST-2 - 7.00% SST-2 -
i CR- o
;; 6.00% N 30.00%
1 MPQA - 25.00%
MPQA - 5.00% TREC -
TREC - - SUBJ - 20.00%
SUBj - - 4.00% QNLI - - 15.00%
N SNLI - ?
-3.00% MNLI - -10.00%
SNLI - RTE -
- 0y
MNLI - . , 00% Mggc;: 5.00%
RTE N 1 1 1 1 1 1
MRPC - - 1.00% Q‘e,6 Q\&* N Q“\\g & & s\\g &
QQP - F S N N NS
P L s e T & &»}‘“ & (@5\“ K3 « ISEIRIINS
2 2 X
S 0 & T TSSO
< @& @
NNV IR IR AR \§“® A

(a) Distribution of localized regions in different network (b) Distribution of localized regions in different network
layers in the RoBERTa-base model. components in the RoBERTa-base model.

Figure 5: The localized regions are predominantly found in the LayerNorm parameters, while different tasks
are associated with different layers. The percentages represent the proportion of localized parameters in each component.

interaction between the tasks is limited. This understanding is crucial for accurately assessing the nature of
the relationships between tasks based on their localized parameters.

Distribution of localized regions We analyze the distribution of the localized regions for language
tasks in RoBERTa-base models Figure [5] both in terms of the layer index and the transformer components.
For the layers, different tasks seem to occupy different layers, although the earlier layers in the network
seldomly appear in the localized regions. Interestingly, most of the localized regions concentrate in the
LayerNorm (Bal, [2016) parameters. This pattern can possibly be attributed to a distribution shift observed in
the finetuning data compared to the pretraining data, necessitating adjustments to the LayerNorm parameters
to accommodate this shift. The same plots for GPT2-XL and ViT can be found in Appendix [B] and the
findings hold true for those models as well.

Localization without validation data In the rare cases where no labeled data is available, we adopt
a similar strategy as the “Trim” step in TIES-Merging (Yadav et al., [2023), which selects positions in task
vectors with the top-k% largest magnitudes, i.e., the parameters changed the most during finetuning. We
refer to our approach as Dataless Localize-and-Stitch. As shown in Figure[2] to match the performance
of localization with validation data, the dataless version typically requires locating larger regions. This
expansion is necessary to encapsulate sufficient skills acquired during finetuning, but it also leads to increased
task conflicts. Nevertheless, in Section [we show that our dataless version still outperforms all other
methods that do not require additional validation data.

Despite the similarity, there are two key differences between Dataless Localize-and-Stitch and TIES:
i) Smaller localized region: We find selecting the top-5% of parameters is sufficient for our pipeline,
compared to the top-20% recommended by TIES-Merging. Our smaller selected region incurs less overlapping,
leading to reduced task interference. Note that this is not the only advantage of our approach, as reducing
the threshold in TIES to be 5% does not yield an improved performance as demonstrated in Appendix
(Tables [13| and . ii) Better merging performance: We use “Stitching” described in the next section
for merging the localized regions, instead of the “Elect” procedure in TIES. The “Elect” approach in TIES
might work well when overlapping regions involve a larger number of tasks, allowing sign determination and
selective averaging to better capture a consensus among task vectors. However, when only two tasks are
involved in the overlapping regions (which is often the case as shown in Figure[l1|in Appendix |C]), TIES may
only retain parameters predominantly from the task with the larger magnitude at each position. In such
scenarios, important parameters for both tasks could be alternately ignored, impairing the overall efficacy
in maintaining crucial task-specific information, particularly in tightly contested regions. We provide a

Published in Transactions on Machine Learning Research (12/2024)

more detailed discussion about the advantages of Dataless Localize-and-Stitch over TIES-Merging with
empirical evidence in Appendix [C}

3.3 Stitching

After obtaining the binary mask for each task, we integrate these masks, and apply them to task vectors to con-
struct the merged model. Given the sparsity, the masks generally activate different positions for different tasks,
minimizing overlap. However, in instances where overlaps occur — that is, where multiple tasks share the same
mask positions — we address this by averaging the parameters in these regions. Specifically, for each final mask
~i, the value at the k-th position, denoted ~/[£], is calculated as the reciprocal of the total number of tasks that
have a mask value of 1 at that position; if the original mask value 7;[k] is 0, it remains 0 in the processed mask

=tk / (ol

After we obtain the processed masks {7/} ,, we apply them to the task vectors and stitch the masked task
vectors to get the final merged model

n
emcrgcd = eprc + Z (7; © 7_2') .

?

The complete algorithm is presented in Algorithm [I] Note that our stitching step does not involve tuning
the scaling factors a as other methods mentioned in Section [2] which typically requires grid search or
other optimization strategies for tuning. This distinction simplifies our method and avoids the computational
overhead. A comparison of runtime is provided in Appendix [B]

Remark In Localize-and-Stitch, the majority
of computational overhead lies in the localization Algorithm 1 Localize-and-Stitch
step, while the subsequent stitching process is no-
tably efficient. This distribution of workload is ideal
because the more intensive localization step is per-
formed separately on each individual finetuned model.
This property provides simple extension in continual .
learning settings: When integrating a new model it .)
into the existing merged model (or updating any of // Step 1: Localization

o fori=1,2,--- ;,ndo
the merged models), only the localization step for AT @
that new model incurs a cost, followed by stitching. Compute the task vector 7; = 6" — Opre
This is in contrast to most model merging meth- if validation data available then
ods [Jin et al.| (2022)); [llharco et al| (2023); [Yadav Si = argming £; (Bpre + 0(5) © 73) + Ao (S)[l1
et al.| (2023); [Yang et al.| (2023)) which necessitate // make the mask binary v; = round(c(S;))
restarting the whole merging process, as the scaling else
factors of task vectors are tuned or learned based on // Dataless Localization
the performance of the merged model. We provide %H_Til > top-k(|7i[)] = 1 otherwise 0
an experiment of continual learning in Section [4.4] to end if

illustrate this advantage. end for
// Step 2: Stitching

fori=1,2,--- ,ndo

Input: Pretrained model 6, finetuned models
{HEZ) ™ ., regularization coefficient A, magnitude

threshold &
Output: Merged model Oyerged, binary masks

4 Experiments for k=12 .d do

)) // take average for overlaps
We evaluate Localize-and-Stitch with baselines , n
described in Section |2| under various experimental Vi (K] = ~ilk]/ (Zj:l i [k])
settings. Our localization step is performed with end for
64-shot validation data, and the sparsity is chosen end for

to be 1%. In the dataless version, the sparsity is return Omerged = Opre + Yy (7 © 7i)
chosen to be 5%.

Published in Transactions on Machine Learning Research (12/2024)

Table 2: Multi-task performance of merged RoBERTa-base models on twelve NLP tasks and merged CLIP ViT-B/32
models on eight vision tasks. The reported performance metric is average accuracy, with the only exception of MRPC
which is evaluated via F1 score due to data imbalance.

Method Validation data 12 NLP tasks (Acc/F1) 8 vision tasks (Acc)
Single-task finetuned - 0.811 0.905
Simple averaging (Wortsman et al.||2022a) X 0.563 0.658
Task artihmetic (Ilharco et al.|[2023) X 0.626 0.692
TIES (Yadav et al.||2023) X 0.600 0.725
Dataless Localize-and-Stitch X 0.734 0.740
Task artihmetic (Ilharco et al. I 023' v 0.675 0.701
TIES (]Yadav et al.|[2023) v 0.621 0.736
Fisher merging (Matena & Raﬂell |2022} v 0.690 0.683
RegMean (Jin et al. 2022 v 0.739 0.718
AdaMergl v 0.637 0.801
Concensus TA (Wang et al 2(]24b v 0.715 0.737
Consensus TIES (Wang et al. I O24bp v 0.695 0.748
Localize-and-Stitch v 0.759 0.799

4.1 Merging finetuned encoder-based language models

Following |[Panigrahi et al| (2023)), we finetune the RoBERTa-base (Liu et al. 2019) model on twelve
GLUE (Wang et al| [2018) tasks. Specifically, the dataset suite includes six single-sentence tasks
(SST-2 (Socher et al., [2013), CR (Hu & Liu, 2004), MR (Pang & Lee, [2005), MPQA (Wiebe et al., [2005),
TREC (Voorhees et al.} [1999)), SUBJ (Pang & Leel 2004))) and six pairwise-sentence tasks (QNLI (Wang et al.,
2018)), SNLI (Bowman et al., 2015, MNLI (Williams et al. [2017), RTE (Wang et al., 2018)), MRPC Dolan
& Brockett| (2005), QQP (Lyer et al)). The dataset details can be found in Appendix

We present the results in Table [2] and leave the detailed per-task results in Table [5 of Appendix [A] The table
is structured into three blocks for clarity: the upper block displays the performance of individually finetuned
models for each task, the middle block lists algorithms that operate without the need for validation data,
whereas the lower block includes algorithms that require validation data. Note that both the middle and lower
blocks contain Task arithmetic and TIES because they are applicable with or without data. Both algorithms
are able to utilize validation data to tune the merging coefficients o, as in Omerged = Opre + @ Z?zl 7;. We
follow common practice to search over {0.1,0.2,--- , 1} to obtain the optimal coefficients. When no validation
data is available, we use their suggested merging coefficient of 0.4.

From Table [2] regardless of data availability, our approach consistently outperforms other baselines. Notably,
the dataless version of our algorithm provides more than 10% performance increase over task arithmetic
and surpasses methods that depend on validation data (Fisher merging and AdaMerging), demonstrating its
effectiveness. Note that TIES-Merging, although sharing one similar step with our dataless version, performs
worse than task arithmetic. This performance decrease is also observed in similar language evaluation settings
with similar model size [Yadav et al(2023). This phenomenon can be attributed to the two possible factors we
identify in Section i) the larger localized regions of TIES potentially lead to more task conflicts; ii) the sign
election mechanism it employs tends to be less effective in overlapping regions that involve only a few tasks, par-
ticularly when just two are present. This can lead to suboptimal retention of essential task-specific information.
We provide further analysis comparing Dataless Localize-and-Stitch and TIES-Merging in Appendix [C}

4.2 Merging finetuned vision models

Following the practice in lharco et al. (2023), we finetune the CLIP (Radford et al., 2021) image encoder
with the ViT-B/32 (Dosovitskiy et al. [2021)) architecture on eight image classification tasks, incorporating
diverse categories of images such as remote sensing, satellite images and traffic signs. Specifically, the dataset
suite includes SUN397 (Xiao et all,[2016), Stanford Cars [Krause et al.| (2013), RESISC45 (Cheng et al., 2017),
EuroSAT (Helber et al.,[2019), SVHN (Netzer et al.l 2011), GTRSB (Stallkamp et all [2011), MNIST (LeCun
et all and DTD (Cimpoi et al) [2014). The details of each dataset can be found in Appendix [G]

Published in Transactions on Machine Learning Research (12/2024)

Table 3: Multi-task performance of merged GPT2-XL models on three evaluation benchmarks.

Task | MMLU (5-shot Acc) TruthfulQA (MC2) ARC (Acc) | Average
Single-task | 0.273 0.488 0472 | 0411
Simple averaging (Wortsman et al.| 2022a) 0.234 0.390 0.406 0.344
Task arithmetic (Ilharco et al.[|2023) 0.234 0.390 0.399 0.341
TIES (Yadav et al.||2023) 0.233 0.448 0.310 0.330
Dataless Localize-and-Stitch 0.256 0.394 0.427 0.359
Localize-and-Stitch 0.247 0.388 0.467 0.367

We present the results in Table [2] and leave the detailed per-task results in Table [6] of Appendix [A] Similarly,
even in the absense of validation data, the dataless version of our approach can outperform methods
requiring validation data (Fisher merging and RegMean). When validation data is available, our method also
demonstrates competitive performance. Note that AdaMerging, while achieving similar results as ours, imposes
more demanding data availability requirement, and incurs higher computational cost. It necessitates entropy
minimization across the entire (unlabeled) test set, rendering it approximately 15 times slower than our method.

4.3 Merging finetuned decoder-based language models

Compared with encoder-only language models, decoder-based language models benefit from increased number
of parameters and perform well on complicated generative tasks. We use GPT2-XL (Radford et al.l [2019) as
the base model, and obtain three supervised finetuned checkpoints from the Hugging Face model hub (Wolf
et al., [2020), each tuned for distinct functionalities: general reasoning, scientific knowledge and truthfulness
respectively. Further details about these models are specified in Appendix [F}

To assess these models, we use MMLU (Hendrycks et al.} 2021), ARC (Clark et al.||2018) and Truthful QA (Lin
et al., |2021) as evaluation datasets for the respective domains. Unlike datasets in the previous section,
these are typically used in their entirety for evaluation, without a designated train-test split. However, using
these datasets for both evaluation and localization could lead to data leakage. To prevent this, we use data
from three surrogate datasets with similar purposes for localization, namely Alpaca (Taori et al [2023),
GSMBS8K (Cobbe et al., 2021)) and HotpotQA (Yang et al.l [2018).

We compare our approach with other methods directly applicable in this setting in Table |3} Both versions
of Localize-and-Stitch noticeably outperforms other baselines. The result verifies that even for complex
generative tasks, skills can still be localized within tiny regions of finetuned models. Moreover, this shows that
good localization performance can be achieved without access to the original finetuning data; using similar data
from other sources also suffices. This aligns with the finding from (Panigrahi et al.l 2023)) that localized regions
exhibit transfer among similar tasks, meaning that a localized region for one task can facilitate performance in
related tasks. This further reduces the dependency on data availability, making our approach more versatile.
Overall, these findings highlight the capability of Localize-and-Stitch to integrate the strengths from
multiple language models, demonstrating its effectiveness across a variety of linguistic challenges.

4.4 Empirical analysis

Sparsity-performance trade-off In the localization step, we optimize for two competing objectives:
identifying regions containing sufficient finetuned skills, and minimizing the number of parameters involved.
Here, we study the trade-off by presenting the performance of our approach on the language tasks at different
sparsity levels in Figure @ Across all models and tasks tested, we observe that a sparsity level around 1%
yields the best results using our localization method, whereas dataless localization requires 5 — 10%. When
the localized regions are too small to retain adequate finetuned knowledge, the benefit of less overlap is
diminished. Conversely, when the localized regions are too large, although the regions possess sufficient
finetuned knowledge, the increased overlap among task-specific regions leads to more task interference.

Effect of data availability = We present the performance of our method across various data availability
scenarios with a localization region of 1% (Figure [7)) on the language tasks. One clear trend is that with
more data, the quality of localization improves, resulting in enhanced performance of the merged model.

Published in Transactions on Machine Learning Research (12/2024)

0 %78 o *7?] —* Localize-and-Stitch (1%) A
% 0.70 N é 078l " Dataless Localize-and-Stitch (5%)
€ 0.651 €
5 5 0.774
‘€ 0.60 1 £
L\) 2 0.76
5 0.55 1 -
0 (.50 1 —e— Localize-and-Stitch £ 0751
— . —
@ Dataless Localize-and-Stitch (%}
= 045 : : = 0.741
---- Simple averaging
0.40 - . . . ! f } | } ! I }
10°3 1072 1071 10° 22 23 24 25 26 27 28 2°
Sparsity level Number of data per class
Figure 6: Sparsity-performance trade-off for our al- Figure 7: With only 8-shot data, the performance
gorithm on the language tasks. Localization achieves of our algorithm improves over the dataless ver-
the best performance at sparsity around 1%, while the sion. With more data available, the performance of
dataless version requires 5 — 10%. our method continues to increase. Numbers in brackets

represent sparsity levels for each method.

Notably, even with as few as 8-shot data, the merged performance surpasses that of the dataless approach,
highlighting its effectiveness under constrained data conditions.

Model compression through localization Our localization approach enables a compact representation
of the finetuned model. In our experiments, we find that localizing only 1% of the total parameters recovers
over 99% of the performance achieved by single-task finetuning (full evaluation reported in Appendix .
The efficiency allows us to store only the masked task vectors for each task (y; ® 7;) instead of the entire
finetuned models, without a noticeable loss in performance. Given the sparsity of these masked task vectors,
we can store them in Compressed Sparse Row (CSR) format (Pissanetzkyl, |1984; |Golub & Van Loan 2013]),
which drastically reduces the model size to about 1% of the original. For example, a RoBERTa-base model,
which typically requires ~ 650MB of memory to store, can be represented using only a ~ 7TMB sparse matrix,
achieving a memory reduction of 99%. Although we still need to store the full pretrained model, this storage
overhead will be amortized with more finetuned models. This model compression, combined with the ease
of update mentioned in Section [3.3] enables flexible composition of skills from multiple finetuned models
with minimal storage and computational overhead.

Avoid forgetting of pretrained knowledge Pre-
trained models contain rich and generalizable informa-
tion, derived from their diverse training data. However,
finetuning often incurs catastrophic forgetting of skills
in the pretrained model (He et al., |2021; Luo et al.,
2023)), which is carried over when these finetuned mod-
els are merged. As our method makes minimal change
to the pretrained model, such forgetting is substantially
mitigated. For instance, in the vision setting where we
localize 1% parameters for each task, the total param-
eters changed in our merged model compared with the
pretrained model is only around 7% for the 8 tasks as a
result of minimal overlap. We evaluate the retention of
pretrained capabilities with a general vision task that Figure 8: Our method retains the pretrained
the pretrained CLIP model excels, namely zero-shot skill the best due to the minimal updates (7% of total
ImageNet classification (Deng et al., [2009), and report parameters) to the pretrained model, while performs
the results in Figure [§] Our method most effectively well on the eight merged tasks (upper right better).
preserves the pretrained performance, while achieves

superior performance on the eight merged tasks.

0.8 eAdaMerging _#_ocalize-and-stitch

oTIES jRegMean
0.7 1 gTask arithmetic oFisher
eoSimple averaging

0.6

0.5

APretrained

Average accuracy on eight tasks

0.70 0.75 0.80
ImageNet top-5 accuracy

10

Published in Transactions on Machine Learning Research (12/2024)

Table 4: Comparison of performance and efficiency for continual learning.

SST-2+CR +TREC +SUBJ +QNLI +QQP

Task arithmetic Average accuracy 0.907 0.864 0.853 0.817 0.762
Runtime (s) 1340 1760 2183 2654 2970
TIES Average accuracy 0.897 0.832 0.827 0.796 0.757
Runtime (s) 3421 5031 6894 8147 9358
Localize-and-Stitch Average accuracy 0.906 0.905 0.897 0.856 0.827
Runtime (s) 806 421 403 462 455
Continual training Average accuracy 0.897 0.873 0.858 0.837 0.790
Runtime (s) 7032 3271 2934 3752 3311

Continual learning As mentioned in Section 3.3} our approach is particularly efficient in the continual learn-
ing setting. To illustrate the efficiency, we start from merging the SST-2 and CR RoBERTa models, and incre-
mentally add 4 more tasks to simulate a continual learning setting. The tasks are selected by representativeness
(including sentiment analysis, sentence classification, NLI, etc). We compare our method against three baselines:
task arithmetic, TIES and continual training. As recommended in the original papers, the merging coefficients
are tuned across {0.0,0.1,...0.9,1.0}. The continual training results are obtained by sequential training on
each task, using the model from the previous task as the starting point. The results from Table [f] demonstrate
that: i) Performance: Localize-and-Stitch consistently outperforms the baselines, with the performance
margin increasing as more tasks are involved, showing its ability to reduce task interference. ii) Runtime: The
runtime for both TTIES and task arithmetic increases with each added task due to the need for hyperparameter
search from scratch and performance validations, while the runtime of Localize-and-Stitch generally
remains constant, reflecting its efficiency in continual learning scenarios. While continual training performs
better than other model merging baselines, it still falls short of Localize-and-Stitch. This suggests a
potential avenue for enhancing continual learning: instead of finetuning on top of the last task model, it may
be advantageous to first finetune the pretrained model on the new task and then merge it with the existing
multi-task model on the old tasks. We leave further exploration of this approach for future work.

5 Related works

Model merging Model merging aims at efficiently integrating multiple finetuned models into a single model
that retains the capabilities of each. This approach enhances the efficiency, generalization and multi-task
capabilities of finetuned models. In scenarios where models are trained on the same task with different
training configurations, Singh & Jaggi| (2020); |Ainsworth et al.| (2022)); |[Jolicoeur-Martineau et al.| (2024) show
that merged models perform comparably to ensemble models but with significantly lower deployment costs.
Additionally, Wortsman et al.|(2022a3b) demonstrate that the merged model improves the out-of-distribution
(OOD) robustness. When merging finetuned models from different tasks, the merged model can provide
better initialization for new tasks (Choshen et al., [2022; |Gueta et al., 2023). Finetuned models with different
specialized skills can also be combined to enhance multi-task capabilities (Ilharco et al.l |2023; [Tam et al.,
2023; Matena & Raffel, |2022; [Jin et al.l |2022; [Yang et al.l |2023; [Yu et al., [2023; \Wang et al., |2024bza)). More
recently, a new line of work has emerged that uses a mixture of experts (MoE) strategy (Jiang et al. 2023;
Tang et al., |2024)). Instead of a single unified model, the MoE approach incorporates routing mechanisms to
direct inputs to task-specific networks. In this work, we primarily focus on merging specialized models into
a single unified model for enhancing multi-task performance. Similar to the gradient conflict problem (Yu
et al., [2020; [Liu et al., [2021]) in multi-task learning, finetuned models also manifest conflict when merged
together, and our method provides an effective solution to this problem.

Our approach stands out with four key advantages: i) Localized merging: Instead of global merging, we
localize merging to specific regions with finetuned skills, effectively decreasing task conflicts. ii) Simplified
process: Existing works often require computationally intensive grid search or optimization to determine
the optimal merging coefficients, while our stitching procedure does not have the requirement. iii) Data
flexibility: Our method works with or without validation data, and provides competitive results in various

11

Published in Transactions on Machine Learning Research (12/2024)

data availability scenarios. iv) Benefits beyond model merging: This includes interpretability of task relations,
model compression and preservation of pretrained knowledge.

Knowledge attribution Recent works find that knowledge contained in language models is localizable,
meaning that model behavior can be attributed to small subsets of model parameters. One line of work
identifies such regions to edit the knowledge contained in the networks. |Sundararajan et al| (2017) uses
integrated gradients for knowledge attribution, which measures how sensitive each neuron’s gradient is to the
change of input. [Dai et al.|(2021) applies integrated gradients to edit factual knowledge contained in BERT
models. However, the relationship between the editing success and the localized regions remains unclear (Hase
et al., 2024). Knowledge attribution can also be applied for enhancing interpretability. [Vig et al.| (2020)
applies causal mediation analysis (Pearl, [2022) to identify individual neurons contributing to gender bias.

Recently, [Panigrahi et al.| (2023) optimizes for a binary mask to localize the skills contained in finetuned
language models and study task relationship based on it. There are two key differences between our localization
formulation and theirs. Firstly, our formulation of S is more straightforward, as we directly have v = o(S) in
Equation . In contrast, Panigrahi et al.| (2023) uses S as a selector of whether to take the value from the
initial mask, leading to more complex computation. Secondly, our approach uses the L; constraint to control
the sparsity in a more fine-grained manner, while [Panigrahi et al.| (2023) does not have this constraint, and
controls sparsity via early stopping. We empirically show that our localization formulation identifies regions
with improved quality in Appendix [E}

Pruning Similar to localization, pruning is a strategy to identify key regions in the parameter space that
are important to model performance. Han et al.| (2015a3b) propose magnitude pruning, which preserves
weights with high magnitudes, and the method inspires various variants (Zhu & Guptal [2017; [Paganini &
Fordel [2020; |Zafrir et al., 2021). Parameter significance measured by performance sensitivity is another
effective criteria for identifying important parameters (Sanh et al., [2020; Liang et al., 2021} |Zhang et al.l
2022)). For instance, [Lee et al.|(2018)) proposes SNIP score, which computes the change of loss when each
neuron is set to 0. Pruning methods are widely applied to modern large language models (Zhang et al., 2023;
Sun et al., 2023 Xia et al, 2023 |Zhao et al., [2024; |Cheng et al., [2024).

The primary distinction between pruning and localization lies in their treatment of parameters outside the
identified regions. In pruning, these parameters are set to zero, effectively removing them, allowing the
pruned network to function as a standalone model. Conversely, in localization, parameters outside the
localized regions are retained at their pretrained values, requiring the localized regions to be combined with
the pretrained model for deployment. Despite these differences, the conceptual overlap between pruning and
localization suggests that pruning techniques could be adapted for localization. Exploring such adaptations
presents an interesting direction for future work.

6 Conclusion

In this work, we study the problem of task interference in the context of model merging. We find that globally
merging models typically leads to task interference, due to the parameter redundancy in task vectors. To
tackle this challenge, we introduce Localize-and-Stitch, which performs localized merging via sparse task
arithmetic. We first identify tiny regions in the finetuned models that contain essential skills acquired during
finetuning, and stitch only those regions back onto the pretrained model. Empirical evaluation on various
vision and language benchmarks validate the effectiveness of our approach. Beyond model merging, our
approach performs effective model compression, which compresses the model size to be 1% of the original
without sacrificing performance. Additionally, Localize-and-Stitch also excels at retaining the pretrained
knowledge. Overall, our approach offers a novel pathway for flexible and continual skills composition from
finetuned models with minimal storage and computational overhead.

References

Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
permutation symmetries. arXiv preprint arXiv:2209.04836, 2022.

12

Published in Transactions on Machine Learning Research (12/2024)

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Luisa Bentivogli, Peter Clark, Ido Dagan, and Danilo Giampiccolo. The fifth pascal recognizing textual
entailment challenge. TAC, 7(8):1, 2009.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated corpus
for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

Rich Caruana. Multitask learning. Machine learning, 28:41-75, 1997.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. The lottery ticket hypothesis for pre-trained bert networks. Advances in neural information
processing systems, 33:15834-15846, 2020a.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive
learning of visual representations. In International conference on machine learning, pp. 1597-1607. PMLR,
2020b.

Gong Cheng, Junwei Han, and Xiaogiang Lu. Remote sensing image scene classification: Benchmark and
state of the art. Proceedings of the IEEFE, 105(10):1865-1883, 2017.

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning: Taxonomy,
comparison, analysis, and recommendations. IEEFE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for better pretraining.
arXiw preprint arXiv:2204.03044, 2022.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing
textures in the wild. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
3606-3613, 2014.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

Ido Dagan, Oren Glickman, and Bernardo Magnini. The pascal recognising textual entailment challenge. In
Machine learning challenges workshop, pp. 177-190. Springer, 2005.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in pretrained
transformers. arXiv preprint arXiv:2104.08696, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer vision and pattern recognition, pp. 248-255. leee,
20009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Bill Dolan and Chris Brockett. Automatically constructing a corpus of sentential paraphrases. In Third
international workshop on paraphrasing (IWP2005), 2005.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby.
An image is worth 16x16 words: Transformers for image recognition at scale. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=YicbFdNTTyl

13

https://openreview.net/forum?id=YicbFdNTTy

Published in Transactions on Machine Learning Research (12/2024)

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and William B Dolan. The third pascal recognizing
textual entailment challenge. In Proceedings of the ACL-PASCAL workshop on textual entailment and
paraphrasing, pp. 1-9, 2007.

Gene H Golub and Charles F Van Loan. Matriz computations. JHU press, 2013.

Almog Gueta, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen. Knowledge is a
region in weight space for fine-tuned language models. arXiv preprint arXiv:2302.04863, 2023.

R Bar Haim, Ido Dagan, Bill Dolan, Lisa Ferro, Danilo Giampiccolo, Bernardo Magnini, and Idan Szpektor.
The second pascal recognising textual entailment challenge. In Proceedings of the Second PASCAL
Challenges Workshop on Recognising Textual Entailment, volume 7, pp. 785-794, 2006.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for efficient
neural network. Advances in neural information processing systems, 28, 2015b.

Peter Hase, Mohit Bansal, Been Kim, and Asma Ghandeharioun. Does localization inform editing? surprising
differences in causality-based localization vs. knowledge editing in language models. Advances in Neural
Information Processing Systems, 36, 2024.

Tianxing He, Jun Liu, Kyunghyun Cho, Myle Ott, Bing Liu, James Glass, and Fuchun Peng. Analyzing the
forgetting problem in pretrain-finetuning of open-domain dialogue response models. In Proceedings of the
16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume,
pp. 1121-1133, 2021.

Yifei He, Shiji Zhou, Guojun Zhang, Hyokun Yun, Yi Xu, Belinda Zeng, Trishul Chilimbi, and Han Zhao.
Robust multi-task learning with excess risks. In Proceedings of the 41st International Conference on
Machine Learning, volume 235 of Proceedings of Machine Learning Research, pp. 18094-18114. PMLR,
21-27 Jul 2024. URL https://proceedings.mlr.press/v235/he24n.html,

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and deep
learning benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 12(7):2217-2226, 2019.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
Measuring massive multitask language understanding. Proceedings of the International Conference on
Learning Representations (ICLR), 2021.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep learning:
Pruning and growth for efficient inference and training in neural networks. Journal of Machine Learning
Research, 22(241):1-124, 2021.

Minging Hu and Bing Liu. Mining and summarizing customer reviews. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 168-177, 2004.

Yuzheng Hu, Ruicheng Xian, Qilong Wu, Qiuling Fan, Lang Yin, and Han Zhao. Revisiting scalarization in
multi-task learning: A theoretical perspective. Advances in Neural Information Processing Systems, 36,
2024.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali
Farhadi. Editing models with task arithmetic. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=6t0Kwf8-jrj.

Shankar Iyer, Nikhil Dandekar, and Kornél Csernai. First quora dataset release: Question pairs. URL
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs,

14

https://proceedings.mlr.press/v235/he24n.html
https://openreview.net/forum?id=6t0Kwf8-jrj
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

Published in Transactions on Machine Learning Research (12/2024)

Weisen Jiang, Baijiong Lin, Han Shi, Yu Zhang, James T Kwok, et al. Effective and parameter-efficient
reusing fine-tuned models. arXiv preprint arXiv:2810.01886, 2023.

Xisen Jin, Xiang Ren, Daniel Preotiuc-Pietro, and Pengxiang Cheng. Dataless knowledge fusion by merging
weights of language models. arXiv preprint arXiv:2212.09849, 2022.

Alexia Jolicoeur-Martineau, Emy Gervais, Kilian FATRAS, Yan Zhang, and Simon Lacoste-Julien. Population
parameter averaging (PAPA). Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=cPDVjsOytsS.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision workshops, pp.
554-561, 2013.

Yann LeCun, Corinna Cortes, Chris Burges, et al. Mnist handwritten digit database, 2010.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. Snip: Single-shot network pruning based on
connection sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and Weizhu
Chen. Super tickets in pre-trained language models: From model compression to improving generalization.
arXiw preprint arXiv:2105.12002, 2021.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human falsehoods.
arXiw preprint arXiv:2109.07958, 2021.

Bo Liu, Xingchao Liu, Xiaojie Jin, Peter Stone, and Qiang Liu. Conflict-averse gradient descent for multi-task
learning. Advances in Neural Information Processing Systems, 34:18878-18890, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Dangi Chen, Omer Levy, Mike Lewis, Luke
Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv
preprint arXiv:1907.11692, 2019.

Yun Luo, Zhen Yang, Xuefeng Bai, Fandong Meng, Jie Zhou, and Yue Zhang. Investigating forgetting in
pre-trained representations through continual learning. arXiv preprint arXiv:2305.05968, 2023.

Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. Advances in Neural
Information Processing Systems, 35:17703-17716, 2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al. Reading digits
in natural images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised
feature learning, volume 2011, pp. 7. Granada, Spain, 2011.

Michela Paganini and Jessica Forde. On iterative neural network pruning, reinitialization, and the similarity
of masks. arXiv preprint arXiv:2001.05050, 2020.

Bo Pang and Lillian Lee. A sentimental education: Sentiment analysis using subjectivity summarization
based on minimum cuts. arXiv preprint cs/0409058, 2004.

Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect
to rating scales. arXiv preprint cs/0506075, 2005.

Abhishek Panigrahi, Nikunj Saunshi, Haoyu Zhao, and Sanjeev Arora. Task-specific skill localization in
fine-tuned language models. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 27011-27033. PMLR, 23-29 Jul
2023. URL https://proceedings.mlr.press/v202/panigrahi23a.htmll

Judea Pearl. Direct and indirect effects. In Probabilistic and causal inference: the works of Judea Pearl, pp.
373-392. 2022.

15

https://openreview.net/forum?id=cPDVjsOytS
https://proceedings.mlr.press/v202/panigrahi23a.html

Published in Transactions on Machine Learning Research (12/2024)

Sergio Pissanetzky. Sparse matriz technology-electronic edition. Academic Press, 1984.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International conference on machine learning, pp. 8748-8763. PMLR, 2021.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1-67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine
comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-tuning.
Advances in neural information processing systems, 33:20378-20389, 2020.

Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. Advances in Neural Information
Processing Systems, 33:22045-22055, 2020.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In

Proceedings of the 2013 conference on empirical methods in natural language processing, pp. 1631-1642,
2013.

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. The german traffic sign recognition
benchmark: a multi-class classification competition. In The 2011 international joint conference on neural
networks, pp. 1453-1460. IEEE, 2011.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for large
language models. arXiv preprint arXiv:2306.11695, 2023.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In International
conference on machine learning, pp. 3319-3328. PMLR, 2017.

Derek Tam, Mohit Bansal, and Colin Raffel. Merging by matching models in task subspaces. arXiv preprint
arXiv:2312.04339, 2023.

Derek Tam, Yash Kant, Brian Lester, Igor Gilitschenski, and Colin Raffel. Realistic evaluation of model
merging for compositional generalization. arXiv preprint arXiv:2409.18314, 2024.

Anke Tang, Li Shen, Yong Luo, Nan Yin, Lefei Zhang, and Dacheng Tao. Merging multi-task models via
weight-ensembling mixture of experts. arXiv preprint arXiv:2402.00433, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model. https://github.com/
tatsu-lab/stanford_alpaca, 2023.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and Stuart
Shieber. Investigating gender bias in language models using causal mediation analysis. Advances in neural
information processing systems, 33:12388-12401, 2020.

Ellen M Voorhees et al. The trec-8 question answering track report. In Trec, volume 99, pp. 77-82, 1999.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue: A multi-
task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461,
2018.

16

https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Published in Transactions on Machine Learning Research (12/2024)

Haoxiang Wang, Pavan Kumar Anasosalu Vasu, Fartash Faghri, Raviteja Vemulapalli, Mehrdad Farajtabar,
Sachin Mehta, Mohammad Rastegari, Oncel Tuzel, and Hadi Pouransari. Sam-clip: Merging vision
foundation models towards semantic and spatial understanding. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 3635-3647, 2024a.

Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, Francois Fleuret, and Pascal Frossard. Localizing
task information for improved model merging and compression. In Forty-first International Conference on
Machine Learning, 2024b.

Janyce Wiebe, Theresa Wilson, and Claire Cardie. Annotating expressions of opinions and emotions in
language. Language resources and evaluation, 39:165-210, 2005.

Adina Williams, Nikita Nangia, and Samuel R Bowman. A broad-coverage challenge corpus for sentence
understanding through inference. arXiv preprint arXiv:1704.05426, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on empirical methods in natural language processing:
system demonstrations, pp. 38-45, 2020.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos,
Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: averaging weights of
multiple fine-tuned models improves accuracy without increasing inference time. In International conference
on machine learning, pp. 23965-23998. PMLR, 2022a.

Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca Roelofs,
Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al. Robust fine-
tuning of zero-shot models. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 7959-7971, 2022b.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Dangi Chen. Sheared llama: Accelerating language model
pre-training via structured pruning. arXiv preprint arXiv:2310.06694, 2023.

Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database: Exploring
a large collection of scene categories. International Journal of Computer Vision, 119:3-22, 2016.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. TIES-merging: Resolving
interference when merging models. In Thirty-seventh Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?id=xtaX3wyCj1l

Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao. Adamerging:
Adaptive model merging for multi-task learning. arXiv preprint arXiv:2810.02575, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. arXiv
preprint arXiv:1809.09600, 2018.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Absorbing
abilities from homologous models as a free lunch. arXiv preprint arXiv:2311.03099, 2023.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient
surgery for multi-task learning. Advances in Neural Information Processing Systems, 33:5824-5836, 2020.

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, and Moshe Wasserblat. Prune once for all: Sparse
pre-trained language models. arXiv preprint arXiv:2111.05754, 2021.

Mingyang Zhang, Hao Chen, Chunhua Shen, Zhen Yang, Linlin Ou, Xinyi Yu, and Bohan Zhuang. Loraprune:
Pruning meets low-rank parameter-efficient fine-tuning. arXiv preprint arXiv:2305.18403, 2023.

17

https://openreview.net/forum?id=xtaX3WyCj1

Published in Transactions on Machine Learning Research (12/2024)

Qingru Zhang, Simiao Zuo, Chen Liang, Alexander Bukharin, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Platon: Pruning large transformer models with upper confidence bound of weight importance. In
International conference on machine learning, pp. 26809-26823. PMLR, 2022.

Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE Transactions on Knowledge and Data
Engineering, 34(12):5586-5609, 2021.

Bowen Zhao, Hannaneh Hajishirzi, and Qingqing Cao. Apt: Adaptive pruning and tuning pretrained language
models for efficient training and inference. arXiv preprint arXiv:2401.12200, 2024.

Michael Zhu and Suyog Gupta. To prune, or not to prune: exploring the efficacy of pruning for model
compression. arXiv preprint arXiv:1710.01878, 2017.

A Full experimental results

Table 5: Multi-task performance of merged RoBERTa-base models on twelve NLP tasks.

Task ‘ SST-2 CR MR MPQA TREC SUBJ QNLI SNLI MNLI RTE MRPC QQP ‘ Average
Single-task finetuned | 0.898 0.894 0844 0848 0.938 0931 0.764 0791 0706 0.643 0.766 0.716 | 0.811
Simple averaging (Wortsman et al.[|2022a) | 0.857 0.851 0.829 0.688 0.304 0.478 0.508 0.452 0.452 0.563 0.311 0.469 0.563

Task artihmetic (Uharco ot al| 2023] 0.846 0.856 0.769 0810 0.156 0584 0.607 0538 0403 0539 0822 0.581 | 0.626
0.805 0805 0728 0791 0226 0549 0.552 0501 0379 0477 0816 0.572 | 0.600
0.909 0907 0.864 0821 0462 0762 0.558 0690 0618 0688 0.837 0.693 | 0.734

0.885 0.882 0.803 0.829 0.320 0.610 0.620 0.561 0.495 0.656 0.828 0.623 0.675
0.886 0.88 0.852 0.835 0.226 0.482 0.548 0.359 0.397 0.594 0.794 0.603 0.621
0.900 0.898 0.837 0.758 0.260 0.546 0.542 0.725 0.652 0.656 0.833 0.677 | 0.690
0.897 0.897 0.847 0.826 0.730 0.791 0.559 0.683 0.568 0.638 0.794 0.642 0.739
0.850 0.861 0.778 0.815 0.230 0.595 0.612 0.541 0.404 0.547 0.822 0.588 0.637
0.892 0.894 0.866 0.882 0.376 0.596 0.714 0.665 0.520 0.630 0.881 0.664 | 0.715
0.898 0.893 0.847 0.862 0.314 0.631 0.689 0.604 0.461 0.630 0.862 0.644 | 0.695
Localize-and-Stitch 0.896 0.896 0.849 0.828 0.782 0.820 0.734 0.621 0.580 0.633 0.820 0.651 | 0.759

Table 6: Multi-task performance of merged CLIP ViT-B/32 models on eight vision tasks.

Task ‘ SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD ‘ Average
Single-task finetuned | 0753 0.777 0.961 0.997 0.975 0.987 0.997 0.794 | 0.905
Simple averaging (Wortsman et al.||2022a) 0.653 0.634 0.714 0.717 0.642 0.528 0.875 0.501 0.658
Task arithmetic (2023| 0.552 0.549 0.667 0.789 0.802 0.697 0.973 0.504 | 0.692
TIES (Yadav et al.| 0.598 0.586 0.707 0797 0862 0721 0983 0.542 | 0.725
Dataless Localize-and-Stitch 0.669 0.647 0.768 0.746 0.817 0.726 0.973 0.576 | 0.740
Task arithmetic (llharco et al| 0.638 0.621 0.720 0776 0.744 0651 0970 0522 | 0.701
TIES (Yadav et al.[[2023) 0.648 0.629 0.743 0789 0831 0.714 0976 0.562 | 0.736
Fisher merging (Matena & Raffel] m 0.686 0.692 0.707 0.664 0.729 0.511 0.879 0.599 | 0.683
RegMean (Jin et al.|[2022] 0.653 0.635 0.756 0.786 0.781 0.674 0.937 0520 | 0.718
AdaMerging (Yang et al.|[2023) 0.645 0.681 0.792 0.938 0.870 0.919 0.975 0.591 | 0.801
Concensus TA 4|@‘ 0.639 0.641 0.755 0.794 0.816 0.699 0.980 0.551 | 0.737
Concensus TIES (Wang et al| 0.623 0.622 0.745 0.800 0.877 0.775 0.986 0.553 | 0.748
Localize-and-Stitch 0.672 0.683 0.818 0.894 0.879 0.866 0.948 0.629 | 0.799

We present the per-task performance in Table [and Table [6]

B More experiments

More on task interference. To assess our method’s effectiveness on tasks with different task similarities,
we created two subsets: i) Conceptually similar subset: Composed entirely of sentiment classification tasks
(SST-2, CR, MR, MPQA). ii) Conceptually dissimilar subset: Including tasks from different categories (SST-2
for sentiment classification, TREC for question classification, SUBJ for subjectivity, and MNLI for entailment).
In Table [7] we report the average performance for each subset. In the similar subset, where tasks share
similar skills, all merging methods perform equally well. However, in the dissimilar subset, where task skills

18

Published in Transactions on Machine Learning Research (12/2024)

differ and may even conflict, Localize-and-Stitch shows a significant advantage, demonstrating its ability
to effectively resolve task interference.

Table 7: Performance comparison for merging similar and dissimilar tasks.

Method Similar subset Dissimilar subset
Task arithmetic 0.878 0.802
TIES 0.875 0.812
Localize-and-Stitch 0.880 0.831

Where are the localized regions? We analyze the distribution of the localized regions for both language
and vision tasks in Figure[J] both in terms of the layer index and the transformer components. For the layers,
different tasks seem to occupy different layers, although the earlier layers in the network seldomly appear in
the localized regions. Interestingly, most of the localized regions concentrate in the LayerNorm parameters.
This pattern can possibly be attributed to a distribution shift observed in the finetuning data compared to
the pretraining data, necessitating adjustments to the LayerNorm parameters to accommodate this shift.

Table 8: Single-task grafted performance of RoOBERTa-base models on twelve NLP tasks.

Task ‘SST—Z CR MR MPQA TREC SUBJ QNLI SNLI MNLI RTE MRPC QQP ‘ Average

Single-task finetuned | 0.898 0.894 0.844 0.848 0.938 0.931 0.764 0.791 0.706 0.643 0.766 ~ 0.716 | 0.811
Single-task grafted 0.897 0.883 0.855 0.844 0.918 0933 0.751 0.772 0.703 0.639 0.745 0.708 | 0.804

Recovered proportion‘ 0.999 0988 1.013 0.995 0979 1.002 0.983 0.976 0.996 0.994 0.973 0989‘ 0.991

Table 9: Single-task grafted performance of GPT2-XL models on three NLP tasks.

Task ‘ MMLU TruthfulQA ARC ‘ Average
Single-task finetuned 0.273 0.488 0.472 0.411
Single-task grafted 0.264 0.436 0.475 | 0.392
Recovered proportion | 0.969 0.893 1.007 | 0.953

Table 10: Single-task grafted performance of CLIP ViT-B/32 models on eight vision tasks.

Task ‘ SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD ‘ Average
Single-task finetuned 0.753 0.777 0.961 0.997 0.975 0.987 0.997 0.794 0.905
Single-task grafted 0.731 0.772 0.955 0.989 0.963 0.973 0.996 0.781 0.895
Recovered proportion ‘ 0.970 0.993 0.994 0.992 0.988 0.985 0.999 0.983 ‘ 0.989

Full grafted performance. We evaluate the quality of the localized regions by the grafted performance.
For the ¢-th task, we only add up the localized regions in the task vectors back to the pretrained model, i.e.,
Opre +7; © T;. The results with a localization region of 1% is shown in Tables [to For almost all tasks,
using only the tiny localized region recovers nearly 99% of the finetuned performance. For GPT2-XL, the
performance is slightly worse because we cannot use the evaluation data for the localization step. However,
the results are still strong even with surrogate datasets with similar purposes, demonstrating the flexibility
and robustness of our algorithm. Overall, this shows that our localization approach is effective in locating
regions containing essential skills acquired during finetuning, and the localized regions can be viewed as
compact representations of the finetuned models.

Effect of data availability. Similar to Figure (7] we plot the same trend of our method across various data
availability scenarios with a localization regions of 1% on the vision tasks as well (Figure . We can still
see the clear pattern that the performance monotonically increases with more data available, and does not
show saturation even with 512-shot data. In addition, with 8-shot data, the performance of localization
improves over the dataless version, the same observation as in language tasks.

19

Published in Transactions on Machine Learning Research (12/2024)

5572 7.00% ST . 35.00%
R -
R 6.00% I\(/:IR | 30.00%
MR - MPQA - 25.00%
MPQA - 5.00% TREC -
TREC - Bl | SUBJ - 20.00%
SUBJ - 4.00% QNLI -

- 15.009
onL SNLI - &
-3.00% MNLI 5 -10.00%
SNLI - ! RTE -
MNLI - MRPC - -5.00%
EEmEEE ... e
RTE- L 1 1 1 1 1 1
MRPC - - 1.00% &eé Q\@ &Y s N &
QQP - F S N N NS
L e e & &@&\“ &0 &9‘\ & 3
™ 6 A % o & & « <
S S80S ST R R
NNV IR IR AR \?i&

(a) Distribution of localized regions in different network (b) Distribution of localized regions in different network
layers for language tasks in the RoBERTa-base model. components for language tasks in the RoBERTa-base

model.

3.50%
. Instruction 20.00%

Instruction - 3.00%
15.00%

2.50% Truthfulness

-10.00%

Truthfulness 2.00%

Science " 5.00%

-1.50%

- 1.00% &£
Science - e&
\:5\ Ao
- 0.50% &
&
' U ‘?5“@

[
1 5 9 1317 212529 33374145

(c) Distribution of localized regions in different network (d) Distribution of localized regions in different network

layers for language tasks in the GPT2-XL model. components for language tasks in the GPT2-XL model.
SUN397 - 3.00% SUN397 -
C .
Cars - ars 8.00%
2.50% RESISCA45 -
RESISC45 - EuroSAT - 6.00%
0,
EUroSAT - 2.00% SVHN - 200
B . (]
SVHN - -1.50% GTSRB -
MNIST - 2.00%
B . (]
GTSRB - -1.00% DTD -
MNIST - S Q& 8 & K &8
-0.50% & N N &YW
DTD - & &S E @S
» & F P E
&S S LT
NNV YY) \§5’® & ?ée'

(e) Distribution of localized regions in different network (f) Distribution of localized regions in different network
layers for vision tasks. components for vision tasks.

Figure 9: The localized regions are predominantly found in the LayerNorm parameters, while different tasks are
associated with different layers. The percentages represent the proportion of localized parameters in each component.

20

Published in Transactions on Machine Learning Research (12/2024)

o

00

N
)

o

[

S
!

o
g
©

©
g
o

o
~
N

o
N
N

—e— Localize and stitch (1%)
---- Dataless localize and stitch (5%)

Merged performance

o

N

o
!

22 23 24+ 25 26 27 28 29
Number of data per class

Figure 10: Merged performance versus available data in vision tasks.

Table 12: Runtime for algorithms requiring data.

Table 11: Runtime for dataless algorithms. Method Runtime (s)
- Fisher Merging 293.33
Method Runtime (s) Task arithmetic (tuned) 6562.14
Simple averaging 189.17 TIES-Merging (tuned) 24042.43
Task arithmetic 186.32 RegMean 22987.54
TIES-Merging 350.47 AdaMerging 81326.57
Dataless Localize-and-Stitch 304.85 Consensus TA 7361.52
Consensus TIES 26042.43
Localize-and-Stitch 5130.05

Runtime. We compare the runtime of Localize-and-Stitch and other baselines. We divide the algorithms
into two categories: dataless and requiring data. Note that task arithmetic and TTES-Merging can fall in both
categories, with the difference of whether performing hyperparameter tuning (scaling factor « for both, and
sparsity for TIES). For the hyperparameter tuning, we follow the common practice in [[lharco et al.| (2023);
Yadav et al.|(2023) to grid search over {0.1,0.2--- ,1} for the scaling factor and {0.1,0.2,0.3} for the sparsity.

We report the runtime in Tables [[T]and [[2]for merging twelve NLP tasks with RoBERTa-base. For the dataless
algorithms, simple averaging and task arithmetic are very efficient, as they only involve arithmetic operations
on the weights. Both TIES and our dataless version requires sorting the task vectors to get the top-k%
largest elements, so the runtime is slower. Compared with TIES, we do not have the step for resolving sign
conflicts, so it takes less time. For algorithms requiring data, Fisher merging is the most efficient, as it uses a
diagonal estimate of the Fisher information matrices with little data (256 per task). Both task arithmetic and
TIES-Merging show substantial time increase, as they need to do grid search on 9 and 27 hyperparameters
respectively as well as evaluating on the validation data in each run. AdaMerging takes significantly more
runtime to execute compared with others, and the reason could be that entropy minimization converges slowly,
as we observe that AdaMerging requires around 500 epochs to converge. Compared with other algorithms,
Localize-and-Stitch executes in a relatively short amount of time, showing its effectiveness.

C Comparison between Dataless Localize-and-Stitch and TIES-Merging

Due to the similarity of the dataless version of our approach with TIES-Merging (Yadav et al., [2023), we
compare them in detail.

The first step of both algorithms is similar: select the top-k% largest positions in the task vector. The
primary difference lies in the selection threshold: Dataless Localize-and-Stitch selects the top-5%, while

21

Published in Transactions on Machine Learning Research (12/2024)

Table 13: Comparison of Dataless Localize-and-Stitch and TIES on language tasks.

Task | $ST-2 CR MR MPQA TREC SUBJ QNLI SNLI MNLI RTE MRPC QQP | Average
Dataless Localize-Stitch (5%) | 0.909 0.907 0864 0821 0462 0762 0558 0690 0618 0688 0.837 0693 | 0.734
TIES (5%) 0.858 0837 0822 0712 0142 0290 0467 0191 0271 0438 0743 0358 | 0.510
TIES (20%) 0.805 0805 0728 0791 0226 0549 0552 0501 0379 0477 0816 0572 | 0.600
Table 14: Comparison of Dataless Localize-and-Stitch and TIES on vision tasks.
Task | SUN397 Cars RESISC45 EwroSAT SVHN GTSRB MNIST DTD | Average
Dataless Localize-Stitch (5%) | 0.669 0647 0.768 0.746 0817 0.726 0973 0.576 | 0.740
TIES (5%) 0520 0552 0.669 0.683 0.874 0606 0982 0480 | 0.671
TIES (20%) 0598 0586 0.707 0.797 0862 0721 0983 0542 | 0.725

TIES selects the top-20%. However, as shown in Section we find that when a localized region already
contains sufficient task-specific knowledge, including more parameters only introduces more task interference.
This observation could partially explain our superior performance. However, this is not the only limitation in
TIES, as reducing the threshold in TIES to be 5% does not yield an improved performance as demonstrated
in Tables [[3] and [14l

In the subsequent merging step, Dataless Localize-and-Stitch can be viewed as a simplified version
of TIES. When dealing with overlap for the localized regions, Dataless Localize-and-Stitch simply
averages the parameters in these overlapping area. On the other hand, TIES first sums positive and negative
parameters separately at each overlapping position, and determines the dominant sign based on their total
magnitudes, a process akin to a weighted majority vote. Then, TIES only keep the parameter values that
aligns with the elected sign, and compute the mean.

i

1

20'35 0661 ¢ —e
& S

8030 2064 mmmmmmmmmmmmmmm s

kel ©

8025 £ 062

2 S 0604 —e— Dataless Localize-and-Stitch

g 0.20 S —e— TIES-Merging

o Q0581 . g ;

20.15 - Simple averaging ®
g Y 0.56

2 0.10 5

o s 0.54 1 p

g00s 0.521 \¥

E T T T

2 0.00 —_— 0.1 0.2 0.3

2 4 6 8 10 12

Number of tasks occupying the same parameter Spa r5|ty level

Figure 11: When merging 12 NLP tasks with top- Figure 12: When dealing with two conflicting tasks,
20% selection in TIES, most overlapping regions only the sign election stage of TIES is not effective. The
involve 2 or 3 tasks. This is the regime where the performance of TIES is consistently worse than simple
sign election process in TIES is less effective in. averaging on all parameters.

This approach by TIES might be more advantageous when overlapping regions involve a larger number of
tasks. The rationale is that with more tasks contributing to an overlap, the process of sign determination and
selective averaging may more accurately capture the consensus of task vectors for all tasks as a whole. However,
when only two tasks are involved (which is often the case as shown in Figure, TIES may only retain param-
eters predominantly from the task with the larger magnitude at each position. In such scenarios, important
parameters for both tasks could be alternately ignored, potentially degrading performance for both tasks. This
selective process might, therefore, impair the overall efficacy in maintaining crucial task-specific information,
particularly in tightly contested regions. We demonstrate this in Figure [I2] where we use the same example of
conflicting tasks as in Section 3.1} i.e., QNLI and MNLI. When merging models on two conflicting tasks, the per-
formance of TIES is significantly worse than simple averaging on all model parameters across all sparsity levels.

22

Published in Transactions on Machine Learning Research (12/2024)

D Comparison between Localize-and-Stitch and Consensus Merging

Given the similarity of our approach with Consensus Merging (Wang et al.| 2024b|), we compare them in
detail. In Table [2] we have demonstrated Localize-and-Stitch has superior performance, and we provide
further empirical analysis as follows.

Localizaiton area. Our method is able to localize as little as 1% of total parameters, compared to 20%
required by (Wang et all [2024b). Our small localized regions lead to less task interference, better multi-task
performance and much better compression rates. In Consensus Merging, the sparsity is controlled by the
hyperparameter A, which is chosen among {0.2,0.3,0.4,0.5,0.6}. Note that is not directly used as the sparsity,
rather, it serves as a scaling factor to determine the magnitude threshold for localization, as shown in Equation
(5) in (Wang et al.| |2024b)). Intuitively, a larger imposes a stricter threshold, resulting in a smaller localized
region. We present the resulting average sparsity corresponding to each choice of in Table [I5] While the
resulting sparsity might vary depending on the specific tasks and models, we find that all choices of A\ lead
to an average sparsity of at least 25%, which is substantially larger than the 1% sparsity achieved by our
localization method.

Table 15: Correspondence between A and sparsity.

A Average sparsity (language) Average sparsity (vision)

0.2 0.4977 0.5071
0.3 0.4316 0.4144
0.4 0.3864 0.3456
0.5 0.3544 0.2939

Ablation on sparsity. Similar to Appendix [C] we provide an ablation study to demonstrate that the superior
performance of our method is not only due to the sparsity, but also the effectiveness of our localization
approach. To achieve the same sparsity level of 1% as our method, we find that we need to set the sparsity
hyperparameter A in (Wang et al.l 2024b) to be at least 0.95. This value falls significantly outside the
range of the hyperparameter space they consider, indicating that TALL masks are unlikely to perform well
when used to identify regions this small. Indeed, our experiments in Table [I6] confirm that TALL masks
with 1% sparsity yield poor performance on both vision and language benchmarks. This further illustrates
the effectiveness of our localization approach in identifying tiny regions containing essential information,
contributing to reduction of task interference and substantially better compression rates.

Table 16: Comparison with (Wang et al., |2024b) at the same sparsity level.

Method Sparsity — Average language performance Average vision performance
Consensus TA 1% 0.477 0.518
Consensus TIES 1% 0.463 0.524
Dataless Localize-and-Stitch 5% 0.734 0.740
Localize-and-Stitch 1% 0.759 0.799

Runtime comparison. The larger runtime observed (Table for Consensus TA compared to our method
is primarily due to its extensive hyperparameter tuning process. Take merging vision models as an example,
for the formulation of (Wang et al.l [2024Db)), the hyperparameter tuning process is as follows: i) Tune sparsity
for all tasks, which requires 40 evaluations for 5 choices of on 8 tasks. ii) Tune scaling factor , which requires
88 evaluations for 11 choices of on 8 tasks. In total, there are 128 task-specific evaluations required to select
the two hyperparameters following Appendix A.2 in (Wang et al.,|2024b)), which we find very time-consuming
in practice. In contrast, our algorithm does not require hyperparameter tuning. It operates by training on
8-shot data for 10 epochs, a process we find highly efficient.

Furthermore, hyperparameter tuning, particularly for scaling factors, has been shown to greatly influence
model merging performance, making methods like Consensus TA sensitive to these choices as highlighted in

23

Published in Transactions on Machine Learning Research (12/2024)

(Tam et al., [2024]). On the other hand, our method avoids these complexities, offering a more efficient and
robust approach that enhances performance consistency.

E Details on localization

Here, we detail the skill attribution method in [Panigrahi et al.| (2023) and explain the difference with our
formulation. [Panigrahi et al.| (2023)) aims to localize task-specific skills contained in finetuned language
models. They introduce model grafting, where for given pretrained and finetuned model parameters fp,. and
s, they graft parameters of fs in the region v onto the pretrained model as

05 (7) =7 @0 + (1 —7) @ Opre.

With the grafting operation, they find the localized region with the following optimization procedure, where
they essentially find the region leading to the best grafted performance.

argmin = £ (Y © 0 + (1 —7) © Opre)
7€{0,1}4:Ivllo<s
They also use a reparametriztion of the binary mask -~y as the sigmoid of a real-valued vector S, and reformulate
the problem as

argmin £;(y © Og + (1 —) © Opre),
SeRrd

5 = Ypase @ (1= 0(8)) + (1 = Yoase) @ 7(S), 3)

where vpuse is the top-k% largest elements in the task vector. This serves as an initialization for the
optimization. In comparison, our formulation is as follows
S; = argmin{; (Opre + 0(S) © ;) + Allo(S)||1,
SeRd

There are two main differences between the formulations. Firstly, our formulation of S is more straightforward,
as we directly have v = ¢(S). In contrast, S in Equation serves as a selector of whether to take the value
from 7pgse, leading to more complex computation. Secondly, our approach uses the L; constraint to control
the sparsity in a more fine-grained manner, while Equation does not have this constraint, and the authors
control the sparsity via early stopping.

Table 17: Comparison of localization methods on RoBERTa-base models on twelve language tasks.

Task | SST2 CR MR MPQA TREC SUBJ QNLI SNLI MNLI RTE MRPC QQP | Average
Single-task finetuned | 0.898 0894 0844 0848 0938 0931 0764 0791 0706 0.643 0766 0.716 | 0.811
Single-task grafted (Ours) 0.897 0.883 0.855 0.844 0918 0933 0751 0.772 0703 0639 0.745 0.708 | 0.804
Single-task grafted (Panigrahi ct al.|[2023) | 0.902 0.908 0.862 0.851 0.884 0925 0.752 0.756 0.676 0.643 0.757 0.693 | 0.801
Merged (Ours) 0.896 0.896 0.849 0.828 0.782 0.820 0.734 0.621 0.580 0.633 0.820 0.651 | 0.759
Merged (Panigrahi et al.|[2023} 0.897 0.895 0.847 0.831 0.816 0.803 0727 0.649 0580 0633 0819 0.656 | 0.763

Table 18: Comparison of localization methods on CLIP ViT-B/32 models on eight vision tasks.

Task ‘ SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD ‘ Average
Single-task finetuned ‘ 0.753 0.777 0.961 0.997 0.975 0.987 0.997 0.794 ‘ 0.905
Single-task grafted (Ours) 0.731 0.772 0.955 0.989 0.963 0.973 0.996 0.781 0.895
Single-task grafted [Panigrahi et al.|(2023) 0.731 0.750 0.935 0.959 0.929 0.932 0.976 0.753 0.871
Merged (Ours) 0.672 0.683 0.818 0.894 0.879 0.866 0.948 0.629 | 0.799
Merged |Panigrahi et al.|(2023) 0.669 0.678 0.798 0.861 0.846 0.826 0.919 0.653 | 0.781

We present the performance comparison of the two localization methods in Tables [I7] and [I8] In both cases,
our approach with Equation outperforms Panigrahi et al.| (2023). The performance may come from
the fact that |Panigrahi et al.|(2023) use early stopping to control the sparsity, which results in incomplete
optimization for the masks. We also report the merged performance by following the same stitching process.
On the language tasks, the performance is similar, while on the vision tasks, our localization leads to better
merged performance.

24

Published in Transactions on Machine Learning Research (12/2024)

F GPT2-XL experiment details

For the experiments in Section [£:3] we use the following three checkpoints from Hugging Face:

e Locutusque/gpt2-large-conversational
e Onlydrinkwater/gpt2x1_language_math_520_10base

e Rachneet/gpt2-xl-alpaca

They are all finetuned on the original release of the GPT2-XL model openai-community/gpt2-x1. The
selection of the three models and associated tasks is a result of an extensive evaluation process. After testing
dozens of finetuned GPT-2XL checkpoints, we establish specific criteria to ensure the relevance and rigor of
our experiments: The checkpoints should

e be fully finetuned instead of PEFT,
e have a well-defined and evaluable downstream task,

o perform noticeably better than the pretrained model on its respective task.

We find that most finetuned checkpoints do not meet the last criterion, which is crucial for substantiating the
benefits of our merging method. Consequently, the three models and tasks combinations chosen best satisfy
all three criteria, making them the most appropriate for our purposes.

G Datasets

Vision datasets Following the practice in Ilharco et al. (2023)), we use the following 8 datasets for the
vision part of our experiments:

o SUN397 (Xiao et al.l[2016). The Scene UNderstanding dataset contains 108,754 images of 397 classes.

o Stanford Cars Krause et al.| (2013). The Stanford Cars dataset contains 16,185 images of 196 classes
of cars.

o RESISC45 (Cheng et al. [2017). The REmote Sensing Image Scene Classification dataset contains
31,500 images, covering 45 scene classes.

o EuroSAT (Helber et al |2019)). The EuroSAT dataset consists of 10 classes with 27000 labeled and
geo-referenced samples. Each class represents a different land use and land cover.

o SVHN (Netzer et al., [2011). The Street View House Numbers dataset contains 600,000 digit images
in 10 classes of printed digits cropped from pictures of house number plates.

o GTRSB (Stallkamp et al., |2011)). The German Traffic Sign Recognition Benchmark contains 43
classes of traffic signs with more than 50,000 images.

o MNIST (LeCun et al., 2010). The MNIST dataset contains 60,000 training images and 10,000 testing
images of 10 handwritten digits.

e DTD (Cimpoi et al., [2014)). The Describable Texture Dataset contains 5,640 texture images in the

wild with 47 classes.

SUN397, RESISC45 and DTD are under the Creative Commons Attribution-ShareAlike 4.0 International
License. Stanford Cars is under the ImageNet License. EuroSAT is under MIT License. MNIST is under
Gnu General Public License. GTRSB and SVHN are under CCBY-SA License.

25

Published in Transactions on Machine Learning Research (12/2024)

Language datasets Following the practice in [Panigrahi et al.| (2023)), we use the following 12 datasets for
the language part of our experiments. The majority comes from the GLUE benchmark (Wang et al.| 2018]).

o SST-2 (Socher et al., 2013)). The Stanford Sentiment Treebank is a sentiment analysis dataset, which
contains sentences from movie reviews and human annotated binary sentiments.

e CR (Hu & Liu, [2004). The Customer Review dataset consists of customer reviews on e-commerce
products with binary sentiment labels.

o MR (Pang & Lee, [2005). The Movie Review dataset consists of movie reviews with binary sentiment
labels.

o MPQA (Wiebe et al., 2005). The Multi-Perspective Question Answering dataset contains news
articles and text documents manually annotated for opinions and other private states including
beliefs, emotions, sentiments, etc. Here, we use it for binary sentiment classification.

o TREC (Voorhees et al.;[1999). The Text REtrieval Conference (TREC) dataset contains 6k questions
phrased by users and categorized into a small number of categories. The task is to classify the
questions into these categories.

o SUBJ (Pang & Leel [2004). The SUBJectivity dataset contains 10k movie reviews with an annotation
of whether the review describes something subjective or objective about the movie.

e QNLI (Wang et al., 2018)). The Question-answering NLI dataset is converted from the Stanford
Question Answering Dataset (SQuAD) (Rajpurkar et al. 2016]), which contains questions and
the paragraphs that contain the answer to the corresponding questions. QNLI converts SQuAD
into sentence pair classification by forming a pair between each question and each sentence in the
corresponding context, where the task is to predict whether the context contains the answer to the
question.

o SNLI (Bowman et al., 2015). The Stanford Natural Language Inference dataset contains 570k
sentence pairs manually labeled as entailment, contradiction or neutral.

o MNLI (Williams et al 2017). The Multi-Genre Natural Language Inference Corpus is a collection of
433k sentence pairs annotated with textual entailment information.

o RTE (Wang et al., 2018). The Recognizing Textual Entialment dataset contains a series of textual
entailment challenges, including RTE1 (Dagan et al., |2005), RTE2 (Haim et al.| [2006), RTE3 (Gi;
ampiccolo et al., 2007) and RTE5 (Bentivogli et al., 2009). The neutral and contradiction classes are
combined into a no entailment class.

o MRPC |Dolan & Brockett| (2005). The Microsoft Research Paraphrase Corpus consists of sentence
pairs from online news sources, with human annotations of whether the sentences in the pair are
semantically equivalent. Since the classes are imbalanced, we report the F1 score.

e QQP (Iyer et al). The Quora Question Pairs dataset consists of question-answer pairs from the
website Quora. The task is to determine whether two questions are semantically equivalent.

CR, RTE, MRPC, QQP, QNLI are under CCBY-SA License. MRPC is under Microsoft Research License.
MNLI is under OANC’s License. SNLI is under a Creative Commons Attribution-ShareAlike 4.0 International
License.

GPT datasets We introduce the datasets used for GPT2-XL experiments.

o MMLU (Hendrycks et al.,2021). The Massive Multitask Language Understanding measures knowledge
in 57 subjects across STEM, humanities, social science, etc.

26

Published in Transactions on Machine Learning Research (12/2024)

o ARC (Clark et al. 2018). The AI2 Reasoning Challenge dataset contains 7,787 grade-school level,
multiple choice science questions.

o TruthfulQA (Lin et al., |2021)). The TruthfulQA dataset measure whether a model is truthful in
generating answers to questions. It comprises 817 questions spanning 38 categories, including health,
law, finance, etc.

o Alpaca (Taori et al.; |2023|). The Alpaca dataset contains 52,000 instruction-following examples.

o GSMSk (Cobbe et al, 2021). The Grade School Math 8K dataset contains 8,500 high quality grade
school math problems created by human problem writers. The problems take 2 to 8 stpes to solve.

o HotpotQA (Yang et all 2018)). The HotpotQA dataset is a question answering dataset featuring
multi-hop questions.

ARC is under CC BY-SA License. TruthfulQA and Alpaca are under Apache License 2.0. MMLU and
GSM8k are under MIT License. HotpotQA is under CC BY-SA 4.0 License.

H Implementation details

The experiments are run on NVIDIA RTX A6000 GPUs with 48GB memory.

Finetuning. For the experiments on RoBERTa-base, we perform the finetuning process following the same
procedure as [Panigrahi et al.| (2023]). Specifically, we use a batch size of 4 and a learning rate of 2e-5 to
finetune on each of the language tasks for 10 epochs with the SGD optimizer. For the experiments on CLIP
ViT, we directly use the finetuned checkpoints provided in [Ilharco et al.| (2023) with the data preprocessing
step provided in (Yang et al. 2023). The finetuned models in the GPT2-XL experiments in provided in

Appendix [F]

Localization. Following the practice in [Panigrahi et al.| (2023]), in the localization step, we initialize the
trainable real-valued vector S as the mask for top-k% largest entries in the task vector. Since the actual map
is rounded from o(S) but not S, we choose the initial values of S to be either 0 or 3, as ¢(3) is sufficiently
close to 1. To achieve a sparsity level of 1%, we use the learning rate 1e7, batch size 16, Ly regularization
factor A le-5 and perform the optimization for 10 epochs on 64-shot data from each task. Following common
practice in [Panigrahi et al.| (2023); [Yadav et al. (2023]), we only perform localization in the transformer
blocks, and do not consider embedding layers.

Baselines. We use both task arithmetic and TIES-Merging in a dataless manner, meaning that we directly use
their recommended hyperparameters without tuning it. To be specific, for task arithmetic, the recommended
scaling factor is 0.4. For TIES-Merging, the recommended scaling factor is 1 and sparsity level is 20%. This
ensures a fair comparison with Dataless Localize-and-Stitch, which we also apply a fixed sparsity level
across all experiments, namely 5%.

27

	Introduction
	Preliminaries
	Localize-and-Stitch
	Motivation and objectives
	Localization
	Stitching

	Experiments
	Merging finetuned encoder-based language models
	Merging finetuned vision models
	Merging finetuned decoder-based language models
	Empirical analysis

	Related works
	Conclusion
	Full experimental results
	More experiments
	Comparison between Dataless Localize-and-Stitch and TIES-Merging
	Comparison between Localize-and-Stitch and Consensus Merging
	Details on localization
	GPT2-XL experiment details
	Datasets
	Implementation details

