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ABSTRACT

NECOMIMI (NEural-COgnitive MultImodal EEG-Informed Image Generation
with Diffusion Models) introduces a novel framework for generating images di-
rectly from EEG signals using advanced diffusion models. Unlike previous works
that focused solely on EEG-image classification through contrastive learning,
NECOMIMI extends this task to image generation. The proposed NERV EEG en-
coder demonstrates state-of-the-art (SoTA) performance across multiple zero-shot
classification tasks, including 2-way, 4-way, and 200-way, and achieves top results
in our newly proposed CAT Score, which evaluates the quality of EEG-generated
images based on semantic concepts. A key discovery of this work is that the
model tends to generate abstract or generalized images, such as landscapes, rather
than specific objects, highlighting the inherent challenges of translating noisy and
low-resolution EEG data into detailed visual outputs. Additionally, we introduce
the CAT Score as a new metric tailored for EEG-to-image evaluation and establish
a benchmark on the ThingsEEG dataset. This study underscores the potential of
EEG-to-image generation while revealing the complexities and challenges that
remain in bridging neural activity with visual representation.

Figure 1: This image demonstrates the capability of the NECOMIMI model to reconstruct images
purely from EEG data without using the "Seen" images (ground truth) as embeddings during the
generation process. The two-stage NECOMIMI architecture effectively extracts semantic information
from noisy EEG signals, showing that it can capture and represent the underlying concepts from
brainwave activity. The bottom row of images, generated solely from EEG input, highlights the
potential of NECOMIMI to approximate the content of the "Seen" images in the top row, even in the
absence of any direct visual reference or embedding.

1 INTRODUCTION

Electroencephalography (EEG) is one of the most ancient techniques used to measure neuronal
activity in the human brain Mary (1959); Millett (2001). Its application has significant value in
clinical practice, particularly in diagnosing epilepsy Reif et al. (2016), depression Li et al. (2023) and
sleep disorders Hussain et al. (2022), as well as in assessing dysfunctions in sensory transmission
pathways Thoma et al. (2003) and more Perrottelli et al. (2021). Historically, the analysis of EEG
signals was limited to visual inspection of amplitude and frequency changes over time. However,
with advancements in digital technology, the methodology has evolved significantly, shifting towards
a more comprehensive analysis of the temporal and spatial characteristics of these signals EK;Frey
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(2016). As a result of this evolution, EEG has gained recognition as a potent tool for capturing
brain functions in real-time, particularly in the sub-second range. Despite its advantages, EEG has
traditionally suffered from poor spatial resolution, making it challenging to pinpoint the precise
brain areas responsible for the measured neuronal activity at the scalp Li et al. (2022). In recent
years, there has been a surge of interest in utilizing EEG for more sophisticated applications, such as
image recognition and reconstruction Mai et al. (2023). These advancements have led to significant
improvements in the accuracy of image recognition tasks, underscoring the potential of EEG as a
bridge between neural activity and visual representation Spampinato et al. (2016); Kavasidis et al.
(2017). The growing interest in using EEG for image recognition is rooted in its ability to capture the
temporal dynamics of neuronal activity, though its spatial resolution remains a challenge. Innovative
methodologies, including deep learning techniques and generative models like Generative Adversarial
Networks (GANs) Goodfellow et al. (2014) and diffusion models Ho et al. (2020), have enhanced
the accuracy and effectiveness of EEG-based systems, allowing for the generation of photorealistic
images based on neural signals Kavasidis et al. (2017); Kumar et al. (2017); Singh et al. (2023).
Notably, studies have demonstrated the feasibility of decoding natural images from EEG signals,
employing innovative frameworks that align EEG responses with paired image stimuli Bai et al.
(2023). However, most of the current works claiming to be EEG-to-image are essentially still image-
to-image in nature, with EEG information primarily used to slightly guide the transformation of the
input image by adding noise Kavasidis et al. (2017); Palazzo et al. (2017); Khare et al. (2022); Bai
et al. (2023). In order to achieve a truly meaningful EEG-to-image generation, this work, named
NECOMIMI (NEural-COgnitive MultImodal eeg-inforMed Image generation with diffusion models),
introduces an innovative framework focused on EEG-based image generation, combining advanced
diffusion model techniques.

This paper presents several key innovations as follows:

• We propose a novel EEG encoder, NERV, which achieves state-of-the-art performance in
multimodal contrastive learning tasks.

• Unlike previous work that primarily focused on image-to-image generation with EEG
features as guidance, we introduce a comprehensive two-stage EEG-to-image multimodal
generative framework. This not only extends prior contrastive learning between EEG and
images but also applies it to image generation.

• To address the conceptual differences between EEG-to-image and traditional text-to-image
tasks, we propose a new quantification method, the Category-based Assessment Table (CAT)
Score, which evaluates image generation performance based on semantic concepts rather
than image distribution.

• We establish a CAT score benchmark standard using Vision Language Model (VLM) on the
ThingsEEG dataset.

• Additionally, we uncover some notable findings and phenomena regarding the EEG-to-image
generation process.

2 RELATED WORKS

2.1 THE POTENTIAL OF EEG DATA

In a typical experiment studying brain responses related to visual processes, a person looks at a series
of images while a brain scanner or recording device captures their brain signals for analysis. There
are various non-invasive methods to capture these brain responses, like fMRI, EEG, and MEG, each
with different sensitivity levels. However, we still don’t fully understand what this data really means,
and even more importantly, how to interpret it. In a pioneering study Nishimoto et al. (2011), the
researchers tried to generate impressions of what the subjects saw using fMRI images, based on a
large image dataset taken from YouTube. However, this method has challenges, like the complexity
and high cost of using an fMRI scanner. To overcome these drawbacks, a lot of research has shifted
to using electrophysiological responses, particularly EEG, which has lower spatial resolution than
most other methods but much higher temporal resolution. EEG recordings are also cheaper and easier
to conduct, but the data is often noisy and affected by external factors, making it harder to reconstruct
the original stimulus. Most image recognition and/or generation from brain signals nowadays is done
using fMRI data Zhang et al. (2023), while EEG, being noisier, is used much less often.
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2.2 USING EEG INFORMATION ON IMAGE GENERATION AND RECONSTRUCTION

Building on this shift towards EEG, prior to efforts in generating images directly from brain data,
the concept of using EEG signals for image classification was introduced by the study Spampinato
et al. (2017). This work first demonstrated the feasibility of decoding visual categories from EEG
recordings using deep learning models, setting a foundation for leveraging neural signals in image-
related tasks. However, the dataset they used was relatively small, which limited the generalization
of their findings. Further advancements in generative models, specifically with the introduction
of Variational Autoencoders (VAE) and Generative Adversarial Networks (GAN), opened new
possibilities for image generation. The VAE model proposed by Kingma & Welling (2013; 2019)
achieved data generation and reconstruction by learning the latent distribution of data. The GAN
model introduced by Goodfellow et al. (2014) utilized adversarial training between a generator and a
discriminator to produce highly realistic images. Building on these methods, Brain2Image Kavasidis
et al. (2017) was the first to use VAE to guide image generation from EEG features. Following
that, EEG-GAN Palazzo et al. (2017) presented the first EEG-based image generation model, using
LSTM Hochreiter & Schmidhuber (1997) to extract EEG information and guide the GAN for image
generation. After this, there were still many EEG-to-image works based on GAN that emerged, with
most of them focusing on improving the GAN architecture and the way it interacts with the EEG
encoder, like in ThoughtViz Tirupattur et al. (2018), VG-GAN-VC Jiao et al. (2019), BrainMedia
Fares et al. (2020), and EEG2IMAGE Singh et al. (2023), etc. However, in all these works, a common
and challenging problem is figuring out how to effectively use EEG data to guide image generation
and reconstruction. This challenge of training neural networks to align multimodal information
wasn’t effectively addressed until the emergence of CLIP Radford et al. (2021a), which provided a
much better solution. Since then, some works have also applied this approach to EEG-based image
generation.

2.3 CONTRASTIVE LEARNING-BASED WORKS ON EEG-IMAGE TASKS

To the best of our knowledge, EEGCLIP Singh et al. (2024) was the first to use contrastive learning
to align EEG and image data. However, in this work, this aspect was only an exploratory attempt
and did not further utilize the framework for downstream tasks like zero-shot image recognition.
The next challenge lies in designing a better EEG encoder for contrastive learning, based on the
rich image embeddings extracted from a CLIP-based image pre-trained encoder. Some recent works
have explored this direction, such as NICE Song et al. (2024), MUSE Chen & Wei (2024), ATM
Li et al. (2024), and Chen et al. (2024c). Some researchers have even attempted quantum-classical
hybrid computing and quantum EEG encoder Chen et al. (2024a) to perform quantum contrastive
learning Chen et al. (2024b). Most current works focus on tackling zero-shot classification, where
the model is tested on unseen both EEG data and images that it hasn’t encountered during training.
The goal is to compute similarity scores for image recognition, aiming to enhance the model’s
generalization performance on out-of-sample data. As contrastive learning architectures for EEG-
based image recognition mature, and inspired by test-to-image frameworks in other generative fields,
the invention of diffusion models has addressed the instability issues associated with previous GAN-
based generation methods to some extent. While there are already EEG-based image reconstruction
efforts using diffusion models, such as NeuroVision Khare et al. (2022), DreamDiffusion Bai et al.
(2023), DM-RE2I Zeng et al. (2023), BrainViz Fu et al. (2023), NeuroImagen Lan et al. (2023), and
EEGVision Guo (2024), most of these works still largely rely on image-based features, with EEG
data serving as supplementary information for the diffusion process. While these methods have made
significant strides in computer vision, they primarily rely on images as input and are not designed
to process non-visual signals like EEG directly. Currently, models designed specifically for direct
generation tasks using pure EEG features or embeddings, where EEG functions similarly to a prompt
command, are still quite rare. This work seeks to introduce a flexible, plug-and-play architecture:
NECOMIMI, which not only expands upon previous recognition-focused approaches but also extends
them into EEG-to-image generation tasks based on modern diffusion models.
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Figure 2: The figure illustrates the entire workflow of the EEG-based image generation model.

3 METHODOLOGY

3.1 OVERVIEW

This chapter provides a detailed overview of an advanced EEG-to-image generation model utilizing
deep learning techniques and diffusion models. While the framework includes a one-stage image
generation phase, we found that its performance was suboptimal. Consequently, the model is primarily
designed as a two-stage process, which will be discussed in detail in later sections. The overall
structure consists of four phases: the training phase, zero-shot testing, one-stage image generation,
and two-stage image generation, each contributing to the transformation of raw EEG data into
meaningful visual outputs.

3.2 TRAINING PHASE

In the initial training phase, both visual image ∈ Rh×w×ch and EEG data ∈ Re×d are processed in
parallel to establish a shared embedding space, where h is the height of the image, w is the width
of the image, ch is the number of channels (e.g., RGB channels), e is the number of electrodes
(channels), and d is the number of data points (time samples). Training set images are first passed
through a pre-trained image encoder, which transforms the images into latent representations called
image embeddings I. In this work, we use a pretrained Vision Transformer (ViT) Dosovitskiy et al.
(2020) from CLIP model Radford et al. (2021a) as the image encoder, which outputs embeddings of
size R1×1024 for each image. Simultaneously, the EEG signals from the corresponding sessions are
processed by a custom EEG encoder to produce EEG embeddings E. As for the EEG encoder, in this
work, we extended several existing works like NICE Song et al. (2024), MUSE Chen & Wei (2024),
Nervformer Chen & Wei (2024) and ATM Li et al. (2024) to enable EEG-to-image capabilities.
Additionally, we proposed a new EEG encoder, NERV, which is specifically designed for noisy,
multi-channel time series data like EEG, based on a multi-attention mechanism.

These embeddings are projected into a unified space via an MLP Projector, where they are trained
using the InfoNCE loss. This contrastive learning loss function ensures that corresponding image and
EEG embeddings are aligned in the latent space, enhancing the model’s ability to understand and link
neural patterns to visual stimuli. Standard contrastive learning employs the InfoNCE loss as defined
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by Oord et al. (2018); He et al. (2020); Radford et al. (2021b):

LInfoNCE = −E

[
log

exp(SE,I/τ)∑N
k=1 exp(SE,Ik/τ)

]
(1)

where the SE,I represents the similarity score between the EEG embeddings E, and the paired image
embeddings I, and the τ is learned temperature parameter.

3.3 ZERO-SHOT TESTING PHASE

Once trained, the model enters the zero-shot testing phase. This phase focuses on evaluating the
model’s ability to generalize to unseen data. Here, the EEG signals and images from the test set are
encoded using the pre-trained encoders, and their respective embeddings are projected through the
MLP Projector. The testing groups are separated into multiple divisions—2-way, 4-way, 10-way,
50-way, 100-way and beyond—allowing for a structured comparison between the EEG and image
embeddings. The final similarity scores between embeddings determine the model’s classification
accuracy, enabling the assessment of how well the model understands new EEG data without
additional training.

3.4 ONE-STAGE IMAGE GENERATION

In the one-stage image generation process, the EEG embeddings from the testing set are directly used
as inputs to reconstruct images. By incorporating the IP-Adapter Ye et al. (2023), which was originally
designed to use images as prompts, due to its compact design, enhances image prompt flexibility
within pre-trained text-to-image models. We adapt it in this work as a means to transform EEG
embeddings into "feature prompts" for the image generation process. The conditioned embeddings
are then processed by the Stable Diffusion XL-Turbo model Podell et al. (2023); Luo et al. (2024), a
faster version of Stable Diffusion XL designed for rapid image synthesis, which reconstructs the final
images based on the input EEG data. This method offers a streamlined approach to EEG-based image
generation, relying on a single transformation stage to produce meaningful visual outputs from neural
signals. The start of the EEG-conditioned diffusion phase is critical for generating images based on
EEG data. This phase uses a classifier-free guidance method, which pairs CLIP embeddings and EEG
embeddings (I,E). By applying advanced generative techniques, the diffusion process is adapted
to use the EEG embedding E to model the distribution of the CLIP embeddings p(I|E). The CLIP
embedding I, generated during this stage, lays the foundation for the next phase of image generation.
The architecture integrates a simplified U-Net model, represented as ϵprior(It, t,E), where It is the
noisy CLIP embedding at a specific diffusion step t.

The classifier-free guidance method helps refine the diffusion model (DM) using a specific EEG
condition E. This approach synchronizes the outputs of both a conditional and an unconditional
model. The final model equation is expressed as:

ϵwprior(I
t, t,E) = (1 + w)ϵprior(It, t,E)− wϵprior(It, t), (2)

where w ≥ 0 controls the guidance scale. This technique allows for training both the conditional and
unconditional models within the same network, periodically replacing the EEG embedding E with a
null value to enhance training variation (about 10% of the data points). The main goal is to improve
the quality of generated images while maintaining diversity.

However, we were surprised to find that when using EEG embeddings directly as prompts for the
diffusion model, the generated images mostly turned out to be landscapes, regardless of the category.
We will discuss the detailed results in later sections. As a result, we attempted a 2-stage approach for
image generation.

3.5 TWO-STAGE IMAGE GENERATION

The prior diffusion stage plays a crucial role in generating an intermediate representation Zhu &
Mumford (1997), such as a CLIP image embedding, from a text caption Ramesh et al. (2022). This
representation is then used by the diffusion decoder to produce the final image. This two-stage
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process enhances image diversity, maintains photorealism, and allows for efficient and controlled
image generation Scotti et al. (2023). The two-stage image generation process introduces a more
complex and refined method of synthesizing images from EEG data. In this approach, the EEG
embeddings are first processed by a Diffusion U-Net, which applies additional transformations to
enhance the representation of the neural data. After passing through the U-Net, the modified EEG
embeddings are fed into the Stable Diffusion XL-Turbo model, with the assistance of the IP-Adaptor.
This two-step transformation ensures a more nuanced generation process, potentially leading to
higher-quality images by incorporating deeper layers of refinement. The first step of stage-1 is
training the prior diffusion model. The main purpose of training is to let the model learn how
to recover the original embedding from noisy embeddings. The specific steps are as follows: (a)
Randomly replace conditional EEG embeddings cemb with None with a 10% probability:

cemb = None, if random() < 0.1 (3)
(b) Add random noise to the target embedding hemb, perturb it using the scheduler at a timestep t, use
the symbol Sadd_noise to represent the scheduler add noise function:

ĥemb(t) = Sadd_noise(hemb, ϵ, t) (4)
where ϵ ∼ N (0, I) is the random noise, and t is a randomly sampled timestep. (c) The model receives
the perturbed embedding ĥemb(t) and conditional embedding cemb, and predicts the noise. Use the
symbol Dprior to represent the diffusion prior function:

ϵpred = Dprior(ĥemb(t), t, cemb) (5)
(d) Compute the loss using Mean Squared Error (MSE) between the predicted noise and the actual
noise:

L =
1

N

N∑
i=1

(
ϵ
(i)
pred − ϵ(i)

)2

(6)

(e) Perform backpropagation on the loss L, and update the model parameters using the optimizer:
θ ← θ − η∇θL (7)

where η is the learning rate and θ represents the model’s parameters.

The last step of stage-1 is generation process. The main purpose of the generation process is to
gradually denoise and generate the final embedding based on the conditional EEG embedding cemb,
starting from random noise. The specific steps are as follows: (a) Generate a sequence of timesteps t,
which will be used for the denoising process, define T = {t1, t2, . . . , tT } to represent the set of time
steps sampled from the total steps T :

{t1, t2, . . . , tT } ∼ T (T ) (8)
where T is the total number of denoising steps. (b) Initialize random noise embedding hT , which
serves as the starting point for the generation process:

hT ∼ N (0, I) (9)
(c) Starting from timestep T , iteratively apply the model to predict noise and denoise the embedding
until t = 0. Each step depends on the conditional embedding cemb:

If using conditional embedding, perform both unconditional and conditional noise prediction at each
step:

ϵpred_cond = Dprior(ht, t, cemb) (10)
ϵpred_uncond = Dprior(ht, t) (11)

Then combine the results using classifier-free guidance, define αguide as the guidance scale:
ϵpred = ϵpred_uncond + αguide × (ϵpred_cond − ϵpred_uncond) (12)

Finally, update the noisy embedding based on the predicted noise, use the symbol Sstep to represent
the scheduler step function:

ht−1 = Sstep(ϵpred, t, ht) (13)

(d) After the denoising process is complete, houtput represents the final generated embedding of a
EEG, which is the model’s output:

houtput = hgenerated ∈ R1×1024 (14)

The stage-2 is input the houtput into the IP-adaptor as a prompt to generate the image by Stable
Diffusion XL-Turbo model.
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Figure 3: This diagram shows the overall structure and workflow of the NERV EEG encoder model.

3.6 NERV EEG ENCODER

This diagram 3 illustrates the structure of NERV, a neural network encoder designed for EEG signal
processing. The workflow starts with a linear projection of the flattened EEG nodes, followed by
position encoding to retain temporal information. EEG signals pass through a Transformer layer and
undergo instance normalization. The model then applies both spatial-temporal convolution (blue) to
extract spatial features followed by temporal features and temporal-spatial convolution (yellow) to
extract temporal features first, then spatial features. Multi-head self-attention mechanisms are applied
to both feature sets, followed by layer normalization and residual connections. The cross-attention
block (red) fuses the temporal and spatial features, which are further processed by a feed-forward
layer before final output. The class token, position embeddings, and patch tokens are all part of the
input sequence processed through these steps, ultimately yielding the output features for EEG-based
tasks.

3.7 CATEGORY-BASED ASSESSMENT TABLE (CAT) SCORE

Unlike traditional image-to-image or text-to-image models driven by image representations, EEG-to-
image models face unique challenges. In the current NECOMIMI architecture, the model can only
capture broad semantic information from EEG signals rather than fine-grained details. For example,
suppose the ground truth EEG data was recorded while a subject was observing an aircraft carrier.
When using Model A as the EEG encoder in NECOMIMI, the generated image is a jet, while using
Model B results in an image of a sheep. To objectively assess performance, we need a standard that
scores Model A higher than Model B in such cases.

Why not use existing evaluation metrics? Traditional metrics like Structural Similarity Index (SSIM)
Wang et al. (2004) measure structural similarity between the ground truth and generated image,
while the Inception Score (IS) Salimans et al. (2016) and Fréchet Inception Distance (FID) Heusel
et al. (2017) focus on the accuracy of image categories and its distribution. However, EEG captures
more abstract semantic information, and we cannot guarantee that the subject’s thoughts during EEG
recording perfectly align with the ground truth image. This makes traditional evaluation methods
unfair for EEG-to-image tasks.

To address this, we propose the Category-Based Assessment Table (CAT) Score, a new metric
specifically designed for EEG-to-image evaluation. In the ThingsEEG test dataset (which contains
200 categories with one image per category), each image is manually labeled with two tags for broad
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categories, one for a specific category, and one for background content, resulting in a total of five tags
per image. We extracted the tags by ChatGPT-4o OpenAI et al. (2023). The entire test dataset thus
comprises 200 images × 5 tags = 1,000 points. Using manual annotation, we can determine whether
the categories of generated images match these labels, providing a fair assessment for EEG-to-image
models. For more details on the ThingsEEG categories, please refer to the appendix.

4 EXPERIMENTS

4.1 DATASETS AND PREPROCESSING

The ThingsEEG dataset Gifford et al. (2022) consists of a large set of EEG recordings obtained
through a rapid serial visual presentation (RSVP) paradigm. The responses were collected from 10
participants who viewed a total of 16,740 natural images from the THINGS database Hebart et al.
(2019). The dataset contains 1654 training categories, each with 10 images, and 200 test categories,
each with a single image. The EEG data were recorded using 64-channel EASYCAP equipment,
and preprocessing involved segmenting the data into trials from 0 to 1000 ms after the stimulus was
shown, with baseline correction based on the pre-stimulus period. EEG responses for each image
were averaged over multiple repetitions.

4.2 EXPERIMENT DETAILS

Due to the significant impact that different versions of the CLIP package can have on the results of
contrastive learning, this work ensures a fair comparison of various EEG encoders by rerunning all
experiments using a unified CLIP-ViT environment, where available open-source code (e.g., Song
et al. (2024)1, Chen & Wei (2024)2, Li et al. (2024)3) was utilized. Another factor that can influence
contrastive learning is batch size. Therefore, all experiments in this work were conducted with a batch
size of 1024. The final results are averaged from the best outcomes of 5 random seed training sessions,
each running for 200 epochs. We employ the AdamW optimizer, setting the learning rate to 0.0002
and parameters β1=0.5 and β2=0.999. The τ in contrastive learning initialized with log(1/0.07).
The NERV model achieves the best results with 5 multi-heads, while the Transformer layer has 1
multi-head and the cross-attention layer has 8 multi-heads. The time step is 50 in diffusion model.
All experiments, including both EEG encoder training and prior diffusion model processing, were
performed on a machine equipped with an A100 GPU.

4.3 CLASSIFICATION RESULTS

In Table 1, the classification accuracy for both 2-way and 4-way zero-shot tasks is evaluated across
ten subjects. Our new model NERV consistently achieves the best performance, particularly excelling
in the 2-way classification task, where it maintains top accuracy across most subjects. It achieves
an average accuracy of 94.8% in the 2-way classification and 86.8% in the 4-way classification,
outperforming other methods like NICE Song et al. (2024), MUSE Chen & Wei (2024), and ATM-S
Li et al. (2024). While NICE and MUSE perform strongly in some subjects, they often fall short of
NERV’s performance. NICE has an average of 91.3% in the 2-way task and 81.3% in the 4-way task,
with MUSE trailing behind with averages of 92.2% (2-way) and 82.8% (4-way). ATM-S performs
comparably to NICE and MUSE in some subjects but falls short on average with 86.5% in the 4-way
classification. In Table 2, the results for the more challenging 200-way zero-shot classification task
show that NERV also performs the best, especially in the top-1 accuracy. ATM-S and NERV perform
similarly, but NERV shows stronger performance in most subjects. NERV achieves an average
top-1 accuracy of 27.9% and top-5 accuracy of 54.7%, leading over all other methods. In contrast,
Nervformer Chen & Wei (2024) and BraVL Du et al. (2023) show weaker performance, especially
in the top-1 accuracy, where they average 19.8% and 5.8%, respectively. For the results of other
10-way, 50-way, and 100-way zero-shot classifications, please refer to the appendix. In summary,
NERV consistently outperforms its competitors in both tasks, demonstrating the strongest zero-shot

1https://github.com/eeyhsong/NICE-EEG
2https://github.com/ChiShengChen/MUSE_EEG
3https://github.com/dongyangli-del/EEG_Image_decode
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classification capability, particularly when distinguishing between a large number of categories,
making it the most effective model in these experiments.

Table 1: Overall accuracy (%) of 2-way and 4-way zero-shot classification using CLIP-ViT as image
encoder: top-1 and top-5. The parts in bold represent the best results, while the underlined parts are
the second best.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Ave
Method 2-way 4-way 2-way 4-way 2-way 4-way 2-way 4-way 2-way 4-way 2-way 4-way 2-way 4-way 2-way 4-way 2-way 4-way 2-way 4-way 2-way 4-way

Subject dependent - train and test on one subject
Nervformer 89.9 76.9 91.3 80.7 91.6 80.8 94.3 85.9 86.3 70.4 91.1 82.5 92.5 81.6 96.2 88.3 92.0 83.7 92.4 83.1 91.8 81.4
NICE 91.7 80.4 89.8 77.4 93.5 83.7 94.0 84.9 85.9 70.3 89.1 81.7 91.2 81.7 95.8 89.2 87.9 76.5 93.8 87.1 91.3 81.3
MUSE 90.1 78.4 90.3 76.8 93.4 85.6 93.6 87.5 88.3 74.2 93.1 85.3 93.1 82.8 95.4 87.7 90.5 81.8 94.4 88.1 92.2 82.8
ATM-S 94.8 84.9 93.5 86.3 95.3 89.0 95.9 87.3 90.8 78.5 94.1 85.2 94.2 87.1 96.6 92.9 94.1 86.8 94.7 87.0 94.4 86.5
NERV (ours) 95.3 85.7 96.0 88.8 95.9 91.2 95.8 87.4 90.8 80.4 93.6 84.0 94.7 86.2 96.8 92.3 94.4 84.2 94.8 87.6 94.8 86.8

Table 2: Overall accuracy (%) of 200-way zero-shot classification using CLIP-ViT as image encoder:
top-1 and top-5. The parts in bold represent the best results, while the underlined parts are the second
best.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Ave
Method top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

Subject dependent - train and test on one subject
BraVL 6.1 17.9 4.9 14.9 5.6 17.4 5.0 15.1 4.0 13.4 6.0 18.2 6.5 20.4 8.8 23.7 4.3 14.0 7.0 19.7 5.8 17.5
Nervformer 15.0 36.7 15.6 40.0 19.7 44.9 23.3 54.4 13.0 29.1 18.9 42.2 19.5 42.0 30.3 60.0 20.1 46.3 22.9 47.1 19.8 44.3
NICE 19.3 44.8 15.2 38.2 23.9 51.4 24.1 51.6 11.0 30.7 18.5 43.8 21.0 47.9 32.5 63.5 18.2 42.4 27.4 57.1 21.1 47.1
MUSE 19.8 41.1 15.3 34.2 24.7 52.6 24.7 52.6 12.1 33.7 22.1 51.9 21.0 48.6 33.2 59.9 19.1 43.0 25.0 55.2 21.7 47.3
ATM-S 25.8 54.1 24.6 52.6 28.4 62.9 25.9 57.8 16.2 41.9 21.2 53.0 25.9 57.2 37.9 71.1 26.0 53.9 30.0 60.9 26.2 56.5
NERV (ours) 25.4 51.2 24.1 51.1 28.6 53.9 30.0 58.4 19.3 43.9 24.9 52.3 26.1 51.6 40.8 67.4 27.0 55.2 32.3 61.6 27.9 54.7

4.4 PERFORMANCE COMPARISON OF DIFFERENT GENERATIVE MODELS

Here, we introduce our newly proposed CAT Score method, which quantifies and evaluates the quality
of EEG-generated images based on semantic concepts rather than pixel structure. Detailed CAT Score
labels can be found in the appendix. To our surprise, while our proposed NERV method achieved
SoTA on the CAT Score, no EEG encoder has surpassed a score of 500 in this evaluation out of a
possible 1000 points. This highlights both the rigor of the CAT Score and the challenging nature of
the pure EEG-to-Image task.

Table 3: Overall CAT score ×1000 of NECOMIMI EEG-to-Image generation with several EEG
encoders.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Ave
EEG Encoder CAT Score
Nervformer 432 457 429 454 475 463 404 438 427 410 438.9
NICE 426 456 445 447 411 454 438 443 426 429 437.5
MUSE 438 456 434 416 426 463 443 437 410 468 439.1
ATM-S 413 419 411 464 427 469 442 472 431 445 439.3
NERV (ours) 445 436 432 456 438 466 410 437 433 444 439.7

4.5 FINDINGS IN EEG-TO-IMAGE

We have observed some interesting findings from the pure EEG-to-Image process. As shown in the
third row of Figure 4, the images generated by the diffusion model from embeddings compressed
from EEG signals mainly consist of landscapes, which differ significantly from the original images
(ground truth). Several factors may contribute to this phenomenon. For example, EEG signals are a
high-noise, low-resolution form of data, capturing only certain aspects of brain activity. Moreover,
we are currently unable to assess whether the brainwave data recorded from the subjects accurately
captures the complete information of the original images, as the subjects might have been distracted
and thinking about other things during the recording. This makes it difficult for the embeddings
extracted from EEG signals to capture sufficient details, particularly when it comes to high-resolution
object recognition (such as cats or specific items). As a result, the model tends to generate relatively
vague or abstract images, like landscapes. Alternatively, the EEG signals may reflect higher-level
abstract concepts or emotions associated with viewing the images rather than concrete objects or
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Figure 4: The image illustrates the progression of visual representations generated using different
embedding techniques in a diffusion model: (a) Top row: The original images shown to subjects
(ground truth). (b) Second row: Images generated by the CLIP-ViT embeddings of the original
images. (c) Third row: Images generated by one-stage method using pure EEG embeddings with
NERV EEG encoder. (d) Fourth row: Images generated by two-stage NECOMIMI method using
pure EEG embeddings with NERV EEG encoder.

details. Since these abstract concepts are often related to the scene, background, or the brain’s broad
perception of the environment, the model is more likely to generate abstract or general images, such
as landscapes, instead of specific objects.

Additionally, the training of the model on EEG signals may still be insufficient. The diffusion model
may not yet fully understand and generate images from EEG signals, especially when it lacks enough
data or optimization to map EEG signals to specific visual information. As a result, the model might
more easily generate the types of images it is "accustomed" to producing, such as landscapes, which
may constitute a significant portion of the training data. The gap between the vision modality and
the neural modality (EEG) is also substantial. EEG signals may not directly correspond to detailed
objects in images, so the model tends to generate "safe options," like landscapes, which may have
been more prevalent in the image generation samples during training. This leads to what can be
described as "hallucinations." These factors collectively contribute to the significant differences
between the images generated from EEG signals and the ground truth, particularly the failure in
specific object recognition. This work can be considered a forward-looking exploration, as this field
is just beginning to develop.

5 DISCUSSION AND CONCLUSION

The NECOMIMI framework expands previous works on EEG-Image contrastive learning classifica-
tion by enabling image generation, filling a gap in prior research and opening new possibilities for
EEG applications. We introduced the SoTA EEG encoder, NERV, which achieved top performance in
2-way, 4-way, and 200-way zero-shot classification tasks, as well as in the CAT Score evaluation,
demonstrating its effectiveness in EEG-based generative tasks. A key finding is that the model
often generates abstract images, like landscapes, rather than specific objects. This suggests that
EEG data, being noisy and low-resolution, captures broad semantic concepts rather than detailed
visuals. The gap between neural signals and visual stimuli remains a challenge for precise image
generation. We also proposed the CAT Score, a new metric tailored for EEG-to-image generation,
and established its benchmark on the ThingsEEG dataset. Surprisingly, we found that EEG encoder
performance may not strongly correlate with the quality of generated images, providing new insights
into the limitations and challenges of this task. In conclusion, NECOMIMI demonstrates the potential
of EEG-to-image generation while highlighting the complexities of translating neural signals into
accurate visual representations. Future research should focus on refining models to better capture
detailed information from EEG signals.
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A APPENDIX

A.1 MORE EEG ENCODER CLASSIFICATION PERFORMANCE COMPARISON

Table 4: Overall accuracy (%) of 10-way zero-shot classification using CLIP-ViT as image encoder:
top-1 and top-5.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Ave
Method 10-way 10-way 10-way 10-way 10-way 10-way 10-way 10-way 10-way 10-way 10-way

Subject dependent - train and test on one subject
Nervformer 59.4 62.0 65.4 72.0 50.7 63.4 63.7 78.3 67.0 68.8 65.1
NICE 64.1 57.6 70.2 72.6 51.8 63.0 63.8 79.1 59.6 73.9 65.6
MUSE 61.0 56.1 70.8 71.3 55.1 70.1 66.2 76.9 62.8 73.2 66.4
ATM-S 72.5 70.4 76.3 74.1 64.6 72.2 73.6 83.2 70.6 75.8 73.3
NERV (ours) 72.2 74.3 75.9 76.7 62.5 71.8 70.4 81.8 70.9 73.8 73.0

Table 5: Overall accuracy (%) of 50-way zero-shot classification using CLIP-ViT as image encoder:
top-1 and top-5.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Ave
Method top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

Subject dependent - train and test on one subject
Nervformer 28.4 66.0 32.0 71.8 37.4 73.9 44.8 81.6 24.6 57.1 33.8 74.4 33.6 69.2 49.9 87.2 36.8 75.6 38.8 76.6 36.0 73.3
NICE 36.0 72.2 30.2 66.8 43.0 77.8 44.0 80.3 24.8 58.2 35.6 70.4 36.9 72.5 53.3 86.0 34.4 65.4 45.8 82.8 38.4 73.2
MUSE 33.9 70.9 29.9 65.7 43.6 79.4 42.8 79.8 26.1 63.4 39.8 79.4 39.8 73.3 49.8 84.2 34.4 72.7 44.5 81.1 38.5 74.9
ATM-S 45.3 78.7 44.5 80.5 49.8 85.0 46.2 83.2 33.3 69.2 42.8 81.1 47.5 80.8 59.7 91.0 45.8 79.3 50.6 82.4 46.6 81.1
NERV (ours) 41.1 74.8 43.2 80.5 47.9 82.8 48.1 83.5 36.4 70.7 43.0 77.6 43.5 77.3 59.2 88.4 46.1 79.4 51.0 81.7 46.0 79.7

Table 6: Overall accuracy (%) of 100-way zero-shot classification using CLIP-ViT as image encoder:
top-1 and top-5.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Subject 9 Subject 10 Ave
Method top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

Subject dependent - train and test on one subject
Nervformer 21.0 50.8 21.6 55.1 27.6 58.5 33.0 67.8 17.0 43.4 24.7 56.2 24.5 54.8 39.8 75.6 26.8 62.3 30.2 63.6 26.6 58.8
NICE 28.0 60.5 21.8 53.2 33.1 64.2 32.2 65.9 16.8 43.9 26.0 57.6 28.0 59.0 40.7 76.0 24.5 54.5 37.2 71.0 28.8 60.6
MUSE 25.4 56.7 21.2 49.8 33.9 67.6 32.2 65.7 18.0 49.6 30.4 67.2 29.5 60.8 39.0 73.3 26.1 58.7 33.6 67.0 28.9 61.6
ATM-S 34.9 67.7 33.1 66.9 38.1 74.3 36.0 70.2 24.6 55.6 28.4 67.4 35.1 67.9 48.3 82.1 33.2 68.6 39.1 73.0 35.1 69.4
NERV (ours) 31.1 64.4 33.1 66.9 36.6 74.1 39.0 70.2 26.1 57.1 32.9 65.2 34.2 66.0 50.4 78.0 35.5 67.7 41.1 72.5 36.0 68.2

A.2 DETAILS OF CATEGORY-BASED ASSESSMENT TABLE (CAT) SCORE

All the category-based labels are generated by ChatGPT-4o 4, the prompt we used is "Please provide
me with 5 one-word descriptions of the image, ranging from high level to low level.".

Image Label Test Image in ThingsEEG Category-based label

00001_aircraft_carrier Ship Carrier Deck
Island Antenna

Continued on next page

4https://chatgpt.com
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Image Label Test Image in ThingsEEG Category-based label

00002_antelope Animal Antelope Fur
Grassland Horns

00003_backscratcher Object Tool Backscratcher
Wood Handle

00004_balance_beam Structure Beam Wood
Grass Support

00005_banana Fruit Banana Yellow
Spotted Plate

00006_baseball_bat Sports Bats Baseball
Black Grass

00007_basil Plant Herb Basil
Green Leaves

00008_basketball Sport Basketball Ball
Orange Court

Continued on next page
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Image Label Test Image in ThingsEEG Category-based label

00009_bassoon Instrument Bassoon Woodwind
Stage Chair

00010_baton4 Race Relay Baton
Yellow Hand

00011_batter Cooking Batter Mixing
Whisk Bowl

00012_beaver Animal Beaver Fur
Tail Paws

00013_bench Outdoor Bench Wooden
Garden Trees

00014_bike Bicycle Road Wheels
Frame Path

00015_birthday_cake Cake Candles Flames
Pink Frosting

Continued on next page
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Image Label Test Image in ThingsEEG Category-based label

00016_blowtorch Tool Blowtorch Flame
Canister Gas

00017_boat Boat Water Blue
Old Rowing

00018_bok_choy Vegetable BokChoy Green
Leafy Stems

00019_bonnet Hat Bonnet Ribbon
Fabric Vintage

00020_bottle_opener Tool Opener Wooden
Bottlecap Engraving

00021_brace Support Brace Joint
Black Strap

00022_bread Food Bread Loaf
Slice Crust

Continued on next page
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Image Label Test Image in ThingsEEG Category-based label

00023_breadbox Storage Breadbox Wooden
Bread Countertop

00024_bug Insect Bug Leaf
Brown Antennae

00025_buggy Vehicle Buggy Off-road
Wheels Helmet

00026_bullet Ammunition Bullet Brass
Cartridge Metal

00027_bun Food Bun Sesame
Bread Round

00028_bush Plants Bushes Green
Mulch Shrub

00029_calamari Food Calamari Fried
Plate Lemon

Continued on next page
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Image Label Test Image in ThingsEEG Category-based label

00030_candlestick Candlesticks Brass Holders
Antique Table

00031_cart Cart Wheels Wooden
Farm Grass

00032_cashew Nuts Cashews Bowl
Snack Glass

00033_cat Animal Cat Tabby
Fur Whiskers

00034_caterpillar Insect Caterpillar Striped
Green Leaf

00035_cd_player Device CDPlayer Portable
Gray Buttons

00036_chain Metal Chain Links
Rusty Wood

Continued on next page
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Image Label Test Image in ThingsEEG Category-based label

00037_chaps Clothing Chaps Leather
Fringe Brown

00038_cheese Food Cheese Wedge
Yellow Cracker

00039_cheetah Animal Cheetah Spotted
Hunt Grassland

00040_chest2 Furniture Chest Wooden
Vintage Lock

00041_chime Instrument Chime Percussion
Metal Stand

00042_chopsticks Utensils Chopsticks Wooden
Metal Case

00043_cleat Footwear Cleats Shoe
Green Studs

Continued on next page
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Image Label Test Image in ThingsEEG Category-based label

00044_cleaver Tool Cleaver Blade
Handle Steel

00045_coat Clothing Coat Black
Double-breasted Hanger

00046_cobra Animal Cobra Snake
Hood Sand

00047_coconut Fruit Coconut Shell
White Husk

00048_coffee_bean Coffee Beans Roasted
Brown Grinder

00049_coffeemaker Appliance Coffeemaker Machine
Carafe Buttons

00050_cookie Cookies Snack Chocolate
Stack Crumb

Continued on next page
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Image Label Test Image in ThingsEEG Category-based label

00051_cordon_bleu Food Chicken CordonBleu
Breaded Stuffed

00052_coverall Clothing Coverall Workwear
Pockets Green

00053_crab Animal Crab Beach
Claws Sand

00054_creme_brulee Dessert CrèmeBrûlée Caramelized
Custard Spoon

00055_crepe Dessert Crepe Chocolate
Banana Plate

00056_crib Furniture Crib Wooden
Baby Bedding

00057_croissant Pastry Croissant Flaky
Golden Plate

Continued on next page
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Image Label Test Image in ThingsEEG Category-based label

00058_crow Bird Crow Black
Feathers Beak

00059_cruise_ship Vessel Cruise Ship
Ocean Deck

00060_crumb Crumbs Plate Food
Leftovers White

00061_cupcake Cupcake Dessert Chocolate
Icing Wrapper

00062_dagger Weapon Dagger Blade
Handle Rock

00063_dalmatian Dog Dalmatian Spotted
White Grass

00064_dessert Dessert Berries Cream
Trifle Glass

Continued on next page
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Image Label Test Image in ThingsEEG Category-based label

00065_dragonfly Insect Dragonfly Wings
Striped Branch

00066_dreidel Toy Dreidel Wooden
Spinning Letters

00067_drum Instrument Drum Sticks
Blue Percussion

00068_duffel_bag Bag Container Green
Straps Eagles

00069_eagle Bird Eagle Flight
Wings Sky

00070_eel Fish Eel Aquatic
Tank Gravel

00071_egg Eggs Bowl Brown
Food Shell
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Image Label Test Image in ThingsEEG Category-based label

00072_elephant Animal Elephant Trunk
Zoo Mammal

00073_espresso Drink Espresso Cup
Coffee Saucer

00074_face_mask Gear Mask Helmet
Cage Protection

00075_ferry Ferry Boat Transport
Water Orange

00076_flamingo Bird Flamingo Pink
Water Beach

00077_folder Folder Office Orange
Papers Desk

00078_fork Utensil Fork Silver
Plate Tablecloth
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Image Label Test Image in ThingsEEG Category-based label

00079_freezer Appliance Freezer Storage
Cold White

00080_french_horn Instrument Horn Brass
Coiled Shiny

00081_fruit Fruits Assortment Tropical
Colorful Fresh

00082_garlic Garlic Bulb Cloves
White Peeled

00083_glove Gloves Knitted Patterned
Wool Gray

00084_golf_cart Vehicle GolfCart White
Seats Wheels

00085_gondola Boats Gondolas Venice
Water Blue
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Image Label Test Image in ThingsEEG Category-based label

00086_goose Bird Goose Flight
Wings Lake

00087_gopher Animal Gopher Furry
Rodent Field

00088_gorilla Animal Gorilla Primates
Silverback Grass

00089_grasshopper Insect Grasshopper Antennae
Legs Green

00090_grenade Weapon Grenade Metal
Pin Explosive

00091_hamburger Food Hamburger Bun
Lettuce Grilled

00092_hammer Tool Hammer Handle
Metal Claw
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Image Label Test Image in ThingsEEG Category-based label

00093_handbrake Automobile Interior Handbrake
Lever Grip

00094_headscarf Headwear Scarf Fabric
Pink Wrap

00095_highchair Red Wooden Chair
Highchair Furniture

00096_hoodie White Hoodie Ground
Casual Clothing

00097_hummingbird Hummingbird Green Feeder
Small Bird

00098_ice_cube Ice Cold Frozen
Clear Cubes

00099_ice_pack Gel Blue Reusable
Cold Cooling
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Image Label Test Image in ThingsEEG Category-based label

00100_jeep Off-road Rugged SUV
Adventure Durable

00101_jelly_bean Colorful Sweet Candy
Vibrant Chewy

00102_jukebox Retro Vibrant Music
Neon Classic

00103_kettle Shiny Stovetop Whistling
Metallic Classic

00104_kneepad Protective Sporty Durable
Cushioned Ergonomic

00105_ladle Stainless Sleek Functional
Polished Culinary

00106_lamb Adorable Fluffy Playful
Animal Lamb
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Image Label Test Image in ThingsEEG Category-based label

00107_lampshade Vintage Floral Fabric
Fringed Ornate

00108_laundry_basket Laundry Plastic Basket
Towels Grid

00109_lettuce Vegetable Lettuce Leafy
Fresh Green

00110_lightning_bug Insect Firefly Antennae
Glowing Segmented

00111_manatee Aquatic Manatee Underwater
Mammal Floating

00112_marijuana Cannabis Plant Buds
Leaves Green

00113_meatloaf Food Meatloaf Slice
Sauce Hearty
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Image Label Test Image in ThingsEEG Category-based label

00114_metal_detector Equipment Detectors Metal
Beach Lineup

00115_minivan Vehicle Minivan Car
Blue Electric

00116_modem Device Modem Router
Black Connectivity

00117_mosquito Insect Mosquito Biting
Legs Proboscis

00118_muff Accessory Muff Fur
Warm Pink

00119_music_box Device Music Box
Crank Punched

00120_mussel Seafood Mussels Shells
Steamed Parsley
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Image Label Test Image in ThingsEEG Category-based label

00121_nightstand Furniture Nightstand Wooden
Drawer Lamp

00122_okra Vegetable Okra Green
Basket Fresh

00123_omelet Breakfast Omelet Vegetables
Tomatoes Herbs

00124_onion Vegetable Onion Red
Sliced Raw

00125_orange Fruit Orange Citrus
Sliced Juicy

00126_orchid Flower Orchid Yellow
Bloom Petals

00127_ostrich Bird Ostrich Large
Plumage Road

Continued on next page

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Image Label Test Image in ThingsEEG Category-based label

00128_pajamas Clothing Pajamas Striped
Blue Fabric

00129_panther Animal Panther Black
Predator Stealthy

00130_paperweight Office Paperwork Paperweight
Eyeball Documents

00131_pear Fruit Pear Tree
Green Ripe

00132_pepper1 Spice Pepper Ground
Black Spoon

00133_pheasant Bird Pheasant Feathers
Colorful Wild

00134_pickax Tool Pickaxe Wooden
Metal Digging
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Image Label Test Image in ThingsEEG Category-based label

00135_pie Dessert Pie Baked
Crust Golden

00136_pigeon Bird Pigeon Grey
Perched Feathers

00137_piglet Animal Piglet Spotted
Grass Cute

00138_pocket Clothing Jeans Pocket
Denim Stitched

00139_pocketknife Tool Pocketknife Blade
Compact Multi-functional

00140_popcorn Snack Popcorn Bowl
Buttery Crispy

00141_popsicle Dessert Popsicle Colorful
Frozen Fruit
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Image Label Test Image in ThingsEEG Category-based label

00142_possum Animal Possum Furry
Marsupial Wild

00143_pretzel Snack Pretzel Salted
Baked Dough

00144_pug Animal Pug Dog
Leash Panting

00145_punch2 Tool Punch Metal
Office Desk

00146_purse Accessory Purse Leather
Green Handles

00147_radish Vegetable Radish Root
Fresh Bunch

00148_raspberry Fruit Raspberry Red
Berry Branch
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Image Label Test Image in ThingsEEG Category-based label

00149_recorder Instrument Recorder Music
Notes Sheet

00150_rhinoceros Animal Rhinoceros Horned
Savanna Wild

00151_robot Robot Toy Humanoid
Black White

00152_rooster Bird Rooster Feathers
Colorful Comb

00153_rug Furniture Rug Patterned
Red Ornate

00154_sailboat Boat Sailboat Ocean
White Wind

00155_sandal Footwear Sandals Leather
Straps Brown
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Image Label Test Image in ThingsEEG Category-based label

00156_sandpaper Tool Sandpaper Abrasive
Roll Rough

00157_sausage Food Sausage Sliced
Smoked Meat

00158_scallion Vegetable Scallion Green
Fresh Bundle

00159_scallop Seafood Scallops Seared
Plate Garnish

00160_scooter Vehicle Scooter Electric
Green Urban

00161_seagull Bird Seagull Beach
White Walking

00162_seaweed Marine Seaweed Underwater
Aquatic Sunlight
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Image Label Test Image in ThingsEEG Category-based label

00163_seed Food Seeds Flax
Brown Spoon

00164_skateboard Sport Skateboard Wheels
Outdoor Deck

00165_sled Winter Sled Wooden
Snow Sleigh

00166_sleeping_bag Camping Sleeping Bag
Outdoor Frost

00167_slide Playground Slide Blue
Ladder Outdoor

00168_slingshot Tool Slingshot Wooden
Rubber Y-shaped

00169_snowshoe Footwear Snowshoes Yellow
Running Winter
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Image Label Test Image in ThingsEEG Category-based label

00170_spatula Utensil Spatula Metal
Slotted Handle

00171_spoon Utensil Spoon Metal
Reflection Curved

00172_station_wagon Vehicle Station Wagon
Red Classic

00173_stethoscope Medical Stethoscope Instrument
Black Diagnosis

00174_strawberry Fruit Strawberry Red
Ripe Plant

00175_submarine Vessel Submarine Navy
Water Stealth

00176_suit Clothing Suit Formal
Business Tailored
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Image Label Test Image in ThingsEEG Category-based label

00177_t-shirt Clothing T-shirt White
Event Hanger

00178_table Furniture Table Wooden
Square Drawer

00179_taillight Vehicle Taillight Pink
Classic Chrome

00180_tape_recorder Device Recorder Cassette
Vintage Audio

00181_television Electronics Television CRT
Screen Retro

00182_tiara Crown Tiara Gold
Jewels Red

00183_tick Insect Tick Parasite
Skin Tiny
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Image Label Test Image in ThingsEEG Category-based label

00184_tomato_sauce Food Sauce Tomato
Pot Red

00185_tongs Utensil Tongs Metal
Grip Kitchen

00186_tool Tools Hammer Pliers
Screwdriver Utility

00187_top_hat Accessory Top-hat Cane
Gloves Velvet

00188_treadmill Exercise Treadmill Machine
Indoor Fitness

00189_tube_top Clothing Top Striped
Yellow Knitted

00190_turkey Bird Turkey Feathers
Fanned Brown
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Image Label Test Image in ThingsEEG Category-based label

00191_unicycle Vehicle Unicycle Wheel
Tire Seat

00192_vise Tool Vise Metal
Clamp Adjustable

00193_volleyball Sport Volleyball Beach
Ball Sand

00194_wallpaper Interior Wallpaper Pattern
Vintage Wood

00195_walnut Food Walnut Nut
Shell Brown

00196_wheat Crop Wheat Grain
Field Stalk

00197_wheelchair Mobility Wheelchair Manual
Wheels Seat
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Image Label Test Image in ThingsEEG Category-based label

00198_windshield Vehicle Windshield Glass
Car Street

00199_wine Beverage Wine Glass
Grapes Red

00200_wok Cookware Wok Pan
Handles Black

B THE IMAGE GENERATION RESULTS OF NECOMIMI

In this section, we will present all the images generated by various EEG encoders within the
NECOMIMI framework using a fixed random seed. These images are generated using the testing set
of the ThingsEEG dataset in a zero-shot setting, meaning that the model has not seen these categories
during the EEG-Image contrastive learning training process. All the images illustrate the progression
of visual representations generated using different embedding techniques in a diffusion model: (a)
Top row: The original images shown to subjects (ground truth). (b) Second row: Images generated
by the CLIP-ViT embeddings of the original images. It is only related to the seed and has nothing
to do with the subject and EEG encoder. (c) Third row: Images generated by one-stage method
using pure EEG embeddings with the EEG encoder. (d) Fourth row: Images generated by two-stage
NECOMIMI method using pure EEG embeddings with EEG encoder.

B.1 USING NICE AS THE EEG ENCODER
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Figure 5: Random selected generated images in Subject 6 with NICE EEG encoder.

Figure 6: Random selected generated images in Subject 6 with NICE EEG encoder.

Figure 7: Random selected generated images in Subject 6 with NICE EEG encoder.
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Figure 8: Random selected generated images in Subject 7 with NICE EEG encoder.

Figure 9: Random selected generated images in Subject 7 with NICE EEG encoder.

Figure 10: Random selected generated images in Subject 7 with NICE EEG encoder.
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Figure 11: Random selected generated images in Subject 8 with NICE EEG encoder.

Figure 12: Random selected generated images in Subject 8 with NICE EEG encoder.

Figure 13: Random selected generated images in Subject 8 with NICE EEG encoder.
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Figure 14: Random selected generated images in Subject 6 with Nervformer EEG encoder.

Figure 15: Random selected generated images in Subject 6 with Nervformer EEG encoder.

Figure 16: Random selected generated images in Subject 6 with Nervformer EEG encoder.
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Figure 17: Random selected generated images in Subject 7 with Nervformer EEG encoder.

Figure 18: Random selected generated images in Subject 7 with Nervformer EEG encoder.

Figure 19: Random selected generated images in Subject 7 with Nervformer EEG encoder.
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Figure 20: Random selected generated images in Subject 8 with Nervformer EEG encoder.

Figure 21: Random selected generated images in Subject 8 with Nervformer EEG encoder.

Figure 22: Random selected generated images in Subject 8 with Nervformer EEG encoder.
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Figure 23: Random selected generated images in Subject 6 with MUSE EEG encoder.

Figure 24: Random selected generated images in Subject 6 with MUSE EEG encoder.

Figure 25: Random selected generated images in Subject 6 with MUSE EEG encoder.
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Figure 26: Random selected generated images in Subject 7 with MUSE EEG encoder.

Figure 27: Random selected generated images in Subject 7 with MUSE EEG encoder.

Figure 28: Random selected generated images in Subject 7 with MUSE EEG encoder.
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Figure 29: Random selected generated images in Subject 8 with MUSE EEG encoder.

Figure 30: Random selected generated images in Subject 8 with MUSE EEG encoder.

Figure 31: Random selected generated images in Subject 8 with MUSE EEG encoder.

53



2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Figure 32: Random selected generated images in Subject 6 with ATM-S EEG encoder.

Figure 33: Random selected generated images in Subject 6 with ATM-S EEG encoder.

Figure 34: Random selected generated images in Subject 6 with ATM-S EEG encoder.
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Figure 35: Random selected generated images in Subject 7 with ATM-S EEG encoder.

Figure 36: Random selected generated images in Subject 7 with ATM-S EEG encoder.

Figure 37: Random selected generated images in Subject 7 with ATM-S EEG encoder.
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Figure 38: Random selected generated images in Subject 8 with ATM-S EEG encoder.

Figure 39: Random selected generated images in Subject 8 with ATM-S EEG encoder.

Figure 40: Random selected generated images in Subject 8 with ATM-S EEG encoder.
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Figure 41: Random selected generated images in Subject 6 with NERV EEG encoder.

Figure 42: Random selected generated images in Subject 6 with NERV EEG encoder.

Figure 43: Random selected generated images in Subject 6 with NERV EEG encoder.
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Figure 44: Random selected generated images in Subject 7 with NERV EEG encoder.

Figure 45: Random selected generated images in Subject 7 with NERV EEG encoder.

Figure 46: Random selected generated images in Subject 7 with NERV EEG encoder.
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Figure 47: Random selected generated images in Subject 8 with NERV EEG encoder.

Figure 48: Random selected generated images in Subject 8 with NERV EEG encoder.

Figure 49: Random selected generated images in Subject 8 with NERV EEG encoder.
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