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ABSTRACT

In autonomous driving, 3D object detection is an important task to localize and
recognize objects surrounding the ego vehicle. Cooperatively utilizing the sen-
sor data from the ego vehicle and infrastructure can significantly expand the per-
ception range and improve the detection ability to enhance autonomous driving
safety. However, significant temporal asynchrony exists between data from ego
vehicle and infrastructure in practical applications. To the best of our knowledge,
no existing work in the literature could effectively solve the asynchrony problem
with limited communication bandwidth and computational resources on vehicle-
infrastructure devices. This work proposes a feature prediction-based framework
for the vehicle-infrastructure cooperative 3D (VIC3D) object detection named
Feature Flow Net (FFNet). The proposed method aims to transmit lightweight
intermediate data with valuable information, with the nature of prediction, to ad-
dress the problem of temporal asynchrony. We propose a self-supervised method
to extract the prediction information from the video frames and train the feature
flow generation model. Extensive experiments on the DAIR-V2X dataset (a large-
scale real-world V2X dataset) show that FFNet establishes a new state of the art,
surpassing SOTA methods by up to 5% mAP under low transmission cost. In
particular, FFNet is robust to latency and can make up for almost all the perfor-
mance drops caused by the temporal asynchrony within the 200ms delay. Code is
available at anonymous-code-link.

1 INTRODUCTION

Although autonomous driving has achieved significant progress in recent years, it still faces vast
safety challenges because of its limitation on global sensing. Utilizing information from both the
ego-vehicle and the road environment via V2X communication Hobert et al. (2015); Noor-A-Rahim
et al. (2022) has shown great potential to improve the autonomous driving perception ability, such
as information from other autonomous driving vehicles Wang et al. (2020); Li et al. (2021); Cui
et al. (2022) and infrastructure sensors Valiente et al. (2019); Liu et al. (2021); Chen et al. (2022).
Among them, the vehicle-infrastructure cooperative perception is the promising direction since the
infrastructure sensors are commonly installed much higher than the ego vehicles, thus having a
broader field of view and alleviating the occlusion problem. 3D object detection from point clouds
is one of the essential tasks in autonomous driving. This paper focuses on solving the vehicle-
infrastructure cooperative 3D object detection (VIC3D) problem with point clouds as inputs.

Compared with vanilla 3D object detection Geiger et al. (2012); Caesar et al. (2020), VIC3D object
detection faces more challenges. One challenge is the limited communication bandwidth between
the ego-vehicle and the infrastructure devices. To meet the bandwidth requirement in communica-
tion, we need to reduce the transmission cost from infrastructure to ego vehicle while this infras-
tructure data is valuable for detection. Another challenge is the asynchronous timestamps between
the data captured from ego-vehicle sensors and those received from the infrastructure sensors. The
different sensor initialization time points and the communication delay from the infrastructure to
the ego vehicle cause temporal asynchrony. Empirically, the delay commonly ranges from 100ms
to 500ms. The temporal asynchrony could cause serious fusion errors due to scene changing or
objects moving, such as the red vehicle moving in Fig. 1. So the time compensation to align the data
needs to be considered to remove the fusion error.
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(a) Infrastructure Side Image (c) Infrastructure Side Point Cloud (e) Aligned Feature Flow Prediction

(b) Ego-Vehicle Side Image (f) Non-Aligned Feature Fusion (d) Ego-Vehicle Side Point Cloud

Figure 1: Feature Fusion with and without Feature Prediction. (a)-(d) Images and Point clouds Captured
from the Infrastructure and Ego-Vehicle Sensors at Different Timestamps. Different timestamps are used to
simulate temporal asynchrony. The vehicles in the same color circles denote the same objects. The vehicle
in the white circle indicates the ego vehicle. Due to the time change, the red vehicle on the ego-vehicle side
has moved some distance compared to the exact red vehicle on the infrastructure side. (e) Left: Fused Feature
with Predicted Infrastructure and Ego-Vehicle Features. These two features of the red vehicle share the exact
location, and there is no fusion error. Right: Point Cloud Fusion with Future Infrastructure Point Cloud and
Ego-Vehicle Point Cloud. (f) Left: Fused Features with the Current Infrastructure and Ego-Vehicle Features.
Two-side parts of the vehicle share different locations, resulting in a fusion error. Right: Point Cloud Fusion
with the Current Infrastructure Point Cloud.

In this paper, we propose a novel feature prediction framework, Feature Flow Network (FFNet), to
solve the above challenges in VIC3D object detection. We present the pipeline in Fig. 2. FFNet
transmits the compressed feature flow, which integrates the time-dimension information and has
the nature of prediction. By receiving the feature flow, the ego vehicle can directly predict the
future feature at the timestamp of ego-vehicle data. This prediction can ensure the infrastructure
and ego-vehicle data depict the scene simultaneously so that FFNet can effectively eliminate the
spatial fusion error caused by temporal asynchrony. The effect of the feature prediction can be seen
in Fig. 1. Moreover, the compressed feature flow maintains valuable detection information while
requiring less transmission cost. It can help achieve a better performance-transmission balance than
directly transmitting the detection results or the raw data. As a result, the proposed framework can
effectively solve the asynchrony problem with limited transmission cost.

Since 3D annotation is very expensive, we propose a self-supervised method for FFNet training.
We first train a base model without considering latency. Then we use self-supervised learning to
extract temporal information from numerously infrastructure video frames and train the feature flow
generator. We randomly choose a future infrastructure frame and use the feature flow to predict the
feature at the timestamp of this future frame. We use the infrastructure extractor in the base model
to extract the feature from this randomly assigned frame as the ground truth of the predicted feature.
The training of the feature flow generator does not rely on any labeled data, so it is possible to exploit
further the massive unlabelled infrastructure-side sequential data in the future.

To demonstrate the effectiveness of FFNet, we re-implement several cooperative perception methods
such as V2VNet Wang et al. (2020) and DiscoNet Li et al. (2021) on the DAIR-V2X dataset Yu et al.
(2022) and conduct extensive experiments on the proposed FFNet. FFNet establishes a new state
of the art, surpassing SOTA methods by up to 5% mAP while with comparable transmission cost.
In particular, FFNet can adapt well to different levels of communication delays on DAIR-V2X. It
can make up for almost all the performance drops caused by the asynchronous data within a 200ms
delay.

The main contributions of our paper can be summarized as follows:

• We present a novel feature flow prediction network (FFNet) to solve the temporal asynchrony
problem in VIC3D Object Detection with limited transmission cost.
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• We design a self-supervised pipeline for feature flow generator training, which utilizes the history
point cloud frames to predict the future feature on-the-fly.

• FFNet achieves new state-of-the-art results on the DAIR-V2X dataset, surpassing all other co-
operative methods with 5% mAP improvement. Especially, FFNet behaves robustly in different
latency from 100ms to 500ms.

2 RELATED WORK

Ego-Vehicle-Centric 3D Detection. Perceiving the objects, especially the 3D obstacles from the
road environment, is one of the fundamental tasks in autonomous driving. The ego-vehicle-centric
3D perception can be roughly classified into three categories. a) Camera-based 3D perception.
FCOS3D Wang et al. (2021) follows one-stage detector FCOS Tian et al. (2019) to directly detect
the 3d bounding boxes from a single image. Li et al. (2022b); Xie et al. (2022) project the 2D
image to BEV (bird-eye’s view) to conduct the multi-camera joint 3D detection. b) LiDAR-based
3D perception. Zhou & Tuzel (2018); Yang et al. (2019); Lang et al. (2019) detect the objects
by dividing the point cloud captured from LiDAR into voxels or pillars and extracting the feature
from them. c) Multi-sensor Fusion-based 3D perception utilizes images and point clouds captured
from Camera and LiDAR likeVora et al. (2020); Liu et al. (2022). Although ego-vehicle-centric
3D perception has achieved significant progress recently, it still faces enormous challenges, such as
unstable detection in long-range and blind detection due to its limitation of the perception field.

Vehicle-Infrastructure Cooperative Autonomous Driving. With the development of V2X com-
munication Hobert et al. (2015); Noor-A-Rahim et al. (2022), utilizing the information from the
road environment has attracted much attention. Some works use information from other vehicles to
broaden the perception field. V2VNet Wang et al. (2020) is a pioneering work in multi-vehicle 3D
perception and provides a feature fusion framework to achieve performance-transmission trade-off.
DiscoNet Li et al. (2021) applies the distillation in the feature fusion training. V2X-ViT Xu et al.
(2022a) introduces the vision transformer to fuse information across on-road agents. Lei et al. (2022)
propose a time compensation module for the latency. V2X-Sim Li et al. (2022a) and OPV2V Xu
et al. (2022b) are two simulated datasets for multi-vehicle cooperative perception research. Some
works Valiente et al. (2019); Cui et al. (2022) integrate the infrastructure data for end-to-end au-
tonomous driving. Some works use the infrastructure to enhance the ego-vehicle-centric 3D detec-
tion ability. DAIR-V2X Yu et al. (2022) is a pioneering work in Vehicle-Infrastructure Cooperative
3D detection. It releases a large-scale real-world V2X dataset and introduces the VIC3D detection
task with the early and late fusion baseline. Hu et al. (2022); Arnold et al. (2020) propose to transmit
efficient data for cooperative detection. However, these works need to consider more latency. Some
works like Rope3D Ye et al. (2022) and WIBAM Howe et al. (2021) focus on infrastructure-only 3D
detection. This paper focuses on utilizing the infrastructure data to enhance the ego-vehicle-centric
3D detection ability with the limited transmission cost and severe latency.

Feature Flow. Flow is a concept originating from mathematics, which formalizes the idea of the
motion of points over time Deville & Gatski (2012). It has been successfully applied to many
computer vision tasks, such as optical flow Beauchemin & Barron (1995), scene flow Menze &
Geiger (2015), and video recognition Zhu et al. (2017b). FlowNet Dosovitskiy et al. (2015) applies
the CNN to generate the optical flow with end-to-end form. Based on FlowNet, Liu et al. (2019)
generate the scene flow from the 3D point clouds. More related works about scene flow can be found
in Baur et al. (2021); Behl et al. (2019). As a concept extended from optical flow Horn & Schunck
(1981), feature flow describes the changing of feature maps over time, and it has been widely used
in various video understanding tasks. Zhu et al. (2017b) uses both the feature and feature flow of
the keyframes to predict other frames’ features to speed up the inference. They use the synthetic
Flying Chairs dataset Aubry et al. (2014) to train the FlowNet Dosovitskiy et al. (2015) to get a
pre-trained feature flow network. Zhu et al. (2017a) proposes a flow-guided feature aggregation to
improve video detection accuracy. This paper introduces the feature flow in vehicle-infrastructure
cooperative perception to solve the temporal asynchrony problem.
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Figure 2: FFNet Overview. In infrastructure system, the feature extractor and the first-order derivative gener-
ator make up the feature flow generator. The feature flow is linearly represented with a feature and a first-order
derivative as Eq. 2, and can be used to predict the future feature. The compressors focus on reducing the trans-
mission cost. We provide the detailed configurations for FFNet in Sec. A.2 in Appendix.

3 METHOD

The VIC3D object detection is that the ego vehicle receives and integrates the information from
infrastructure to localize and recognize the surrounding objects. The cooperative detection can sig-
nificantly improve the 3D object detection upper bound of the ego vehicle, such as supplementing
blind spots and raising the perception horizon for the ego-vehicle. This section describes how to
implement and train the proposed FFNet to solve the VIC3D object detection task.

3.1 VIC3D OBJECT DETECTION TASK

The VIC3D object detection can be formulated as optimizing the 3D detection performance by
utilizing the infrastructure data with the limited communication bandwidth. This paper focuses on
point clouds captured from LiDAR as inputs. The input of VIC3D consists of two parts:

• Ego-vehicle point cloud frame Iv(t̂v) captured at or before time tv (i.e. t̂v ≤ tv) as well as its
relative pose Mv(t̂v), where Iv(·) denotes the capturing function of ego-vehicle LiDAR.

• Infrastructure point cloud frame Ii(t̂i) captured at or before time ti (i.e. t̂v ≤ ti) as well as its
relative pose Mi(t̂i), where Ii(·) denotes the capturing function of infrastructure LiDAR.

VIC3D object detection has two primary goals: better detection performance and less transmission
cost. Average Precision (AP) is used to measure the detection performance, and Average Byte
(AB) is used to measure the transmission cost. Compared with traditional 3D object detection in
autonomous driving, VIC3D object detection faces two more challenges:

• 1) There is limited communication bandwidth. For this challenge, we need to transmit as fewer
data as possible while retaining the most valuable information for cooperative detection.

• 2) The communication delay and different sensor initialization cause temporal asynchrony be-
tween data from the ego vehicle and infrastructure. Directly fusing the two frames leads to the
spatial fusion error. The asynchronous fusion error is illustrated in Fig. 1.

3.2 FEATURE FLOW NET

The implementation of FFNet is composed of the following three steps: 1) Generating the feature
flow. 2) Compressing, transmitting, and decompressing the feature flow. 3) Fusing the feature flow
with ego-vehicle feature to predict the detection results. The whole process is also illustrated in
Fig. 2. We will introduce the FFNet training in Sec. 3.3.
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Feature Flow. To solve the VIC3D detection task and address the above transmission cost and
temporal asynchrony challenges, we should determine the proper data to transmit. There are three
possible data forms for transmission: raw data like raw point clouds for early fusion, intermediate
data like features for middle fusion, and object-level data for late fusion. Raw data reserves all the
valuable information for detection. However, it also contains much redundant information and re-
quires much transmission cost. Object-level data requires little transmission cost. However, it also
loses much valuable information for detection. Among the three data forms, intermediate data for
middle fusion is the best way to transmit valuable information while requiring affordable transmis-
sion costs. There have been some existing works Hu et al. (2022); Li et al. (2021); Lei et al. (2022) to
apply middle fusion for cooperative perception. However, these intermediate data are mainly static
features, which are unsuitable for predicting the future feature to solve the temporal asynchrony
problem. We will further discuss this issue in Sec. 3.4 and study these issues in Sec. 4.1.

We notice a proper concept of flow originating from mathematics, which formalizes the idea of the
motion of points over time Deville & Gatski (2012). It will be helpful for us to solve the temporal
asynchrony. This work will apply the flow into the intermediate data as a feature flow for cooperative
perception. Given the current point cloud frame Ii(ti) and infrastructure feature extractor Fi(·), the
feature flow over the future time after ti is defined as:

F̃i(t) = Fi(Ii(t)), t ≥ ti (1)

If the ego-vehicle receives the feature flow, we can directly use it to predict the future infrastructure
feature F̃i(tv) to align with the ego-vehicle timestamp tv . We fuse the future infrastructure feature
F̃i(tv) with ego-vehicle feature Fv(Iv(tv)) so that we can compensate for the asynchronous time and
eliminate the fusion error caused by the temporal asynchrony. Here Fv(·) denotes the ego-vehicle
feature extractor.

Figure 3: Comparison between Static
Feature and Feature Flow. Feature flow
involves more prediction information.

Feature Flow Generation. Two issues need to be solved
when we apply the flow into the feature flow for cooperative
fusion. One is expressing and transmitting the continuous fea-
ture flow changing over time. The other is obtaining the future
point cloud frames’ future features after transmitting. Consid-
ering that the tv → ti is generally short, we use the simplest
first-order approximation to estimate the feature flow with the
following form to address the above two issues.

F̃i(ti +∆t) ≈ Fi(Ii(ti)) + ∆t ∗ F̃
′

i (ti), (2)

where the F̃
′

i (ti) denotes the first-order derivative of the fea-
ture flow, and ∆t denotes a short period time in the future.
That means we only need to obtain the feature Fi(Ii(ti)) and
the first-order derivative of the feature flow F̃

′

i (ti), then we
can represent the feature flow. When an ego vehicle receives
the feature Fi(Ii(ti)) and the first-order derivative F̃

′

i (ti), we
can generate the feature in arbitrary future time only with linear calculation.

Now we explain how to generate the first-order derivative of the feature flow F̃
′

i (ti). We estimate and
predict the F̃

′

i (ti) from the historical infrastructure frames {Ii(ti −N + 1), · · · , Ii(ti − 1), Ii(ti)}.
Here we take N as 2, which means we use two consecutive infrastructure frames Ii(ti − 1) and
Ii(ti) to generate the first-order derivative of the feature flow. Naturally, we can also use more
frames to generate more accurate estimations. We first use the Pillar Feature Net Lang et al. (2019)
to convert the two point clouds to two pseudo-images of the same size. Then we concatenate the
two pseudo-images and use another modified feature extractor to generate the estimated first-order
derivative F̃

′

i (ti). Finally, with the static feature Fi(Ii(ti)) and the estimated first-order derivative
F̃

′

i (ti), we can represent and obtain the feature flow. Here the size of the static feature Fi(Ii(ti))

and the first-order derivative F̃
′

i (ti) are both [384, 288, 288].

Compression, Transmission and Decompression. According to the above analysis, the transmis-
sion cost of feature flow is enormous, up to 384×288×288×2 floating point numbers. To further
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reduce the transmission and remove the redundant information, we respectively apply two compres-
sors to compress the static Fi(Ii(ti)) and the first-order derivative F̃

′

i (ti) from size [384, 288, 288] to
size [384/32, 288/8, 288/8]. Here the compressors are composed of three Conv-Bn-ReLU blocks.
Then we transmit the compressed feature flow and the calibration files and decompress the feature
flow with two decompressors to the original size [384, 288, 288] in ego vehicle. Here the decompres-
sors are composed of three Deconv-Bn-ReLU blocks. Note that we only transmit the compressed
feature flow, that is, 1/32×1/8×1/8 of the original feature flow and about 1.2×105 bytes.

Vehicle-infrastructure Feature Fusion. After the ego vehicle receives the decompressed feature
flow, we use this feature flow to predict the infrastructure feature to align with the ego-vehicle data
at timestamp tv as

F̃i(tv) ≈ Fi(Ii(ti)) + (tv − ti) ∗ F̃
′

i (ti). (3)
Then we transform the predicted infrastructure feature F̃i(tv) into the ego-vehicle coordinate system.
Next, we concatenate the transformed infrastructure feature with the ego-vehicle feature and use a
Conv-Bn-Relu block to fuse the concatenated feature. Ultimately, we input the fused feature into a
3D detection head to generate 3D outputs. Experimental results show that our feature flow prediction
module can effectively compensate for the performance drop by the temporal asynchrony and is
robust to different communication delays.

3.3 FEATURE FLOW GENERATOR TRAINING

Manual 3D annotations, incredibly cooperative 3D annotations, are extremely expensive. By con-
trast, one can easily obtain unlabeled infrastructure data continuously. This part explains how we
use self-supervised learning to train the feature flow generator with the infrastructure video frames.

The feature flow generator training consists of (1) the infrastructure feature extractor training and (2)
the first-order derivative generator training. We first train the FFNet on the cooperative data with the
cooperative annotations. In this training, we ignore the latency to get a feature fusion base model.
We can get the trained infrastructure feature extractor from this feature fusion base model. Then
we use the infrastructure video frames and the trained infrastructure feature extractor to teach the
first-order derivative generator. These video frames may not require additional annotations. With
these infrastructure video frames, we construct the training frame pairs D = {dti,k = (Ii(ti −
1), Ii(ti), Ii(ti + k))}, where Ii(ti − 1) and Ii(ti) are two consecutive infrastructure point cloud
frames, Ii(ti + k) is the next kth point cloud frame of the Ii(ti). Here the two consecutive frames
are used to generate the feature flow with the start time ti, Ii(ti + k) is used to create the ground
truth feature for the generated feature flow. For each pair dti,k in D:

• We input the Ii(ti−1) and Ii(ti) into the feature flow generator to generate the feature flow, which
is composed of Fi(Ii(ti)) and the estimated first-order derivative F̃

′

i (ti) as Eq. 2.
• We use the feature flow to predict the feature at ti + k as

F̃i(ti + k) ≈ Fi(Ii(ti)) + |(ti + k)− ti| ∗ F̃
′

i (ti). (4)

• We use Fi(·) to extract the feature Fi(Ii(ti + k)) from Ii(ti + k) as the ground truth feature.

Now, we use the ground truth feature Fi(Ii(ti + k)) to supervise the feature flow generator training.
The objective of the feature flow generator is to generate the feature flow and use it to predict the
F̃i(ti + k) as close as possible to the Fi(Ii(ti + k)). Cosine similarity is widely used to calculate
the similarity of two vectors. Here we use the cosine similarity to measure the similarity between
F̃i(Ii(ti + k)) and Fi(Ii(ti + k)) as

similarity =
F̃i(ti + k)⊙ Fi(Ii(ti + k))

||F̃i(ti + k)|| ∗ ||Fi(Ii(ti + k))||
, (5)

where ⊙ denotes the inner product. To train the feature flow generator, we minimize the following
similarity loss

L(D, θ) =
∑

dti,k
∈D

(1− F̃i(ti + k)⊙ Fi(Ii(ti + k))

||F̃i(ti + k)|| ∗ ||Fi(Ii(ti + k))||
), (6)

where θ is the parameter of the feature flow generator, and we only update the parameters in first-
order derivative generator F̃

′

i (·).
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Remark. We noticed that the cosine similarity is independent of the magnitudes of the two input
tensors. For example, [1, 2, 3] and [2, 4, 6] achieve the maximal cosine similarity value 1, but the val-
ues of the two tensors are different. Hence, we need a scale transformation to adjust the magnitudes
of F̃i(ti + k). We take ||Fi(Ii(ti))||1/||F̃i(ti + k)||1 1 as the scale transformation.

Algorithm 1 The training process of the first-order derivative generator in feature flow generator.
Input: training dataset D, trained infrastructure feature extractor Fi(·)
Output: Trained first-order derivative generator
1: Initialize the parameter of F̃

′

i (·) in Eq. 2
2: for Iteration from 1 to Iterationmax do
3: Sample the frame pair dti,k from D
4: Generate Fi(Ii(ti)) and F̃

′

i (ti) to represent the feature flow as Eq. 2
5: Predict the feature F̃i(ti + k) with feature flow as Eq. 4
6: Generate the ground truth feature Fi(Ii(ti + k))
7: Update the parameter θ with L in Eq. 6
8: end for
9: return The parameters of the first-order derivative generator.

3.4 RELATIONSHIP TO OTHER EXISTING POSSIBLE SOLUTIONS

Compared with the possible existing solutions, FFNet provides a more applicable paradigm to im-
plement the vehicle-infrastructure cooperative perception with the following advantages:

• FFNet aims to reach the communication bandwidth requirement and provide valuable and com-
plementary information for on-vehicle perception. Compared with early fusion, FFNet transmits
the compressed intermediate data and does not require a vast transmission cost. FFNet has much
valuable information for the on-vehicle perception compared with late fusion.

• FFNet can address the temporal asynchrony problem between the data captured from ego-vehicle
sensors and received from the infrastructure sensors. Compared with those feature fusion methods
like V2VNet Wang et al. (2020) and DiscoNet Li et al. (2021), which do not consider temporal
asynchrony problem, FFNet transmits the feature flow with the nature of future prediction. The
feature flow can be used to generate the future feature aligned with the ego-vehicle feature, to
alleviate the fusion error caused by the temporal asynchrony. Notice that the first-order derivative
in feature flow is an independent module from the static feature. We can also add this module to
other feature fusion methods to achieve lower transmission costs.

• FFNet is computing-friendly and storage-friendly for vehicles with limited computing and storage
resources. Because our feature flow is wholly generated on the infrastructure side, it can be
directly used to predict future features with the linear computation in ego vehicles. In addition, it
can be released without storage required when used up. The dropped frames will not affect our
feature flow prediction because our prediction is not dependent on historical receiving. We notice
that there is another possible solution to solve the temporal asynchrony problem Lei et al. (2022),
which generates the feature predictor with the received historical features in the ego vehicle. But
extracting the temporal information from the compressed feature could be difficult. Moreover, this
solution needs memory to store the historical features and many computing resources to process
these frames. More experiment comparisons are illustrated in Sec. 4.2.

• FFNet training requires much less labeled data and annotation costs. With the frame pairs sampled
from infrastructure video frames, we use self-supervised learning to learn the temporal informa-
tion and train the feature flow generator. The training does not rely on the labeled data, so it is
possible to exploit further the massive unlabelled infrastructure-side sequential data in the future.

4 EXPERIMENTS

In this section, we first implement FFNet and different fusion methods to solve VIC3D detection
on DAIR-V2X dataset Yu et al. (2022) and compare their experiment results. Secondly, we study

1|| · ||1 denotes the L1 norm.
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Table 1: VIC3D Detection Results with FFNet and Different Fusion Methods. “AB” denotes the average
byte used to measure the transmission cost. “/” denotes that there is no latency for non-fusion methods. “-”
denotes that no information is provided. FFNet outperforms non-fusion method up to 10.90% mAP@BEV
(IoU=0.5) and 10.96% mAP@BEV (IoU=0.5) in 100ms and 200ms respectively. FFNet also outperforms all
other fusion methods when the delay reaches 200ms. Significantly, FFNet surpasses the early fusion more than
2% mAP@BEV (IoU=0.5) in 200ms latency while requiring only no more than 1/10 transmission cost.

Model FusionType Latency (ms) mAP@3D ↑ mAP@BEV ↑ AB (Byte) ↓IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7
PointPillars Lang et al. (2019) non-fusion / 48.06 - 52.24 - 0

Early Fusion early 100 57.35 - 64.06 - 1.4×106

TCLF Yu et al. (2022) late 100 40.79 - 46.80 - 5.4×102

DiscoNet Li et al. (2021) middle 100 52.83 29.19 61.25 50.11 1.2×105

V2VNet Wang et al. (2020) middle 100 52.02 28.54 60.78 50.02 1.2×105

FFNet (Ours) middle 100 55.48 31.5 63.14(+10.90) 54.28 1.2×105

Early Fusion early 200 54.63 - 61.08 - 1.4×106

TCLF Yu et al. (2022) late 200 36.72 - 41.67 - 5.1×102

DiscoNet Li et al. (2021) middle 200 50.76 28.57 58.20 48.90 1.2×105

V2VNet Wang et al. (2020) middle 200 49.67 26.96 56.02 46.32 1.2×105

FFNet (Ours) middle 200 55.37 31.66 63.20 (+10.96) 54.69 1.2×105

how the FFNet solves the temporal asynchrony problem with the feature flow. Thirdly, we evaluate
the FFNet in more latency to show the robustness of the FFNet. In Appendix, we also compare
extracting the feature flow on different sides (infrastructure side vs. ego vehicle side). We develop
the models based on MMDetection3D mmd (2020).

4.1 COMPARISON WITH DIFFERENT FUSION METHODS

We compare our FFNet with four different fusion methods: non-fusion e.g. PointPillars Lang et al.
(2019), early fusion, late fusion e.g. TCLF Yu et al. (2022), middle fusion e.g. DiscoNet Li et al.
(2021) and V2VNet Li et al. (2022a). We evaluate the FFNet and those different fusion meth-
ods under 100ms and 200ms latency, respectively. All detection results are measured with the
KITTI Geiger et al. (2012) evaluation detection metrics: bird’s eye view (BEV) mAP and 3D mAP
with 0.5 IoU and 0.7 IoU, respectively. Furthermore, only objects located at the designed rectangular
area [0, -39.12, 100, 39.12] are considered in the metrics. We provide more implementation details
of FFNet and those fusion methods in the Appendix. We present the evaluation results in Tab. 1.

Result Analysis. Firstly, compared with the non-fusion method, our FFNet surpasses PointPillars
10.90 % BEV-mAP (IoU=0.5) and 10.96% BEV-mAP (IoU=0.5) in 100ms and 200ms latency re-
spectively. This result shows that utilizing infrastructure data can improve detection performance.
Secondly, although late fusion with transmitting the detection results requires little transmission
cost, BEV-mAP (IoU=0.5) of TCLF is much lower than that of FFNet up to 21.53% in 200ms la-
tency. Thirdly, compared with early fusion methods, FFNet achieves similar detection performance
in 100ms latency and outperforms more than 2% mAP in 200ms latency, while it only requires no
more than 1/10 transmission cost. Fourthly, our FFNet achieves the best detection performance with
the exact transmission cost as the middle fusion methods. For example, our FFNet surpasses Dis-
coNet 1.89% BEV-mAP (IoU=0.5) and 5.0% BEV-mAP (IoU=0.5) in 100ms and 200ms latency,
respectively. In summary, our FFNet achieves new SOTA on DAIR-V2X in 200ms latency while
consuming little transmission cost.

4.2 ABLATION STUDY

We conduct more extensive experiments to demonstrate that the feature flow module plays a vital
role in solving the temporal asynchrony problem and that FFNet is robust to different latency.

Feature prediction can well solve temporal asynchrony. We first evaluate the FFNet in 0ms la-
tency and 200ms latency on DAIR-V2X. Here 0ms latency means no temporal asynchrony between
infrastructure data and ego-vehicle data. Then we remove the prediction module from FFNet, called
FFNet (without prediction). We evaluate the FFNet (without prediction) in 0ms latency and 200ms
latency. Since FFNet (without prediction) does not need to transmit the first-order derivative of the
feature flow, it only requires half of the transmission cost of FFNet. To make a fair comparison, we
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Table 2: Comparison between with and without Feature Prediction. Compared with no prediction models,
FFNet with feature prediction has much less performance drop when there is latency.

Model Latency (ms) mAP@3D ↑ mAP@BEV ↑ AB (Byte) ↓IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7
FFNet 0 55.81 30.23 63.54 54.16 1.2×105

FFNet (without prediction) 0 55.81 30.23 63.54 54.16 6.2×104

FFNet-V2 (without prediction) 0 55.78 30.22 64.23 55.00 1.2×105

FFNet 200 55.37 31.66 63.20 (-0.34) 54.69 1.2×105

FFNet (without prediction) 200 50.27 27.57 57.93 (-5.61) 48.16 6.2×104

FFNet-V2 (without prediction) 200 49.90 27.33 58.00 (-6.23) 48.22 1.2×105

also train another FFNet, called FFNet-V2, that compresses the feature flow from (384, 288, 288)
to (384/16, 288/8, 288/8). So the FFNet-V2 (without prediction) has the exact transmission cost as
FFNet. We also evaluate FFNet-V2 (without prediction) in 0ms to and 200ms latency. We present
the evaluation results in Tab. 2.

As Tab. 2 shows, FFNet (without prediction) and FFNet-V2 (without prediction) both have a signif-
icant performance drop when there is 200ms latency. For example, FFNet (without prediction) has
5.61% BEV-mAP (IoU=0.5) drop in 200ms latency compared to 0ms latency. Although FFNet-
V2 (without prediction) performs slightly better than FFNet and FFNet (without prediction) in 0ms
latency, FFNet significantly surpasses the FFNet-V2 (without prediction) in 200ms latency. The
experiment results show that temporal asynchrony can cause a serious performance drop for mid-
dle fusion methods that only transmit the static feature. And our feature prediction module can
effectively compensate for the performance drop caused by temporal asynchrony.

Figure 4: Average latency vs. detection performance.
The green curve denotes the evaluation results of the
FFNet, and it behaves robustly in different latency,
compared with no prediction models.

FFNet is robust to different latency. We fur-
ther evaluate the FFNet, FFNet (without pre-
diction), and FFNet-V2 (without prediction) in
more latency cases, from 100ms to 500ms. We
present the experiment results in Fig. 4. In
Fig. 4, FFNet (without prediction) and FFNet-V2
(without prediction) both have continuous per-
formance drops as they increase from 100ms to
500ms. Especially, FFNet (without prediction)
and FFNet-V2 (without prediction) have 9.38%
BEV-mAP (IoU=0.5) drop and 9.76% BEV-
mAP (IoU=0.5) drop respectively in 500ms la-
tency. In comparison, FFNet has little perfor-
mance drop within 200ms latency and only has
a 4.39% BEV-mAP (IoU=0.5) drop. This result
effectively demonstrates that our FFNet is robust
to different latency.

5 CONCLUSION

This paper proposes a novel prediction framework called FFNet to solve the VIC3D detection. Com-
pared with previous middle fusion approaches that only transmit the static feature map, the FFNet
transmits the feature flow with the nature of future prediction. With the feature flow, the proposed
method can predict future features to align with ego-vehicle features, effectively alleviating the spa-
tial fusion error caused by temporal asynchrony. This paper also designs a novel self-supervised
learning to exploit multiple infrastructure-side unlabelled video frames. The experimental results on
DAIR-V2X show that FFNet achieves the state-of-art and outperforms other methods up to 5% mAP
in 200ms delay while consuming no more than 1/10 transmission cost compared with transmitting
raw data. Primarily, FFNet performs robustly in different latency from 100ms to 500ms.
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A OTHER EXPERIMENT DETAILS

A.1 DAIR-V2X DATASET

DAIR-V2X Yu et al. (2022) is a large-scale vehicle-infrastructure dataset, and all frames are captured
from the real world and equipped with 3D annotations. There are more than 100 scenes and 18000
data pairs. The data pair are all captured from the infrastructure Camera, infrastructure LiDAR, ego-
vehicle Camera, and ego-vehicle LiDAR simultaneously when the ego vehicle passes through the
intersection. It also provides the cooperative 3D annotation with infrastructure view and ego-vehicle
view for 9311 pairs, and each object is also labeled with the category from (Car, Bus, Truck, and
Van). The dataset is split into train/val/test as 5:2:3. All the models are evaluated on val part.

A.2 FEATURE FLOW NETWORK SETTING

The feature flow network is mainly composed of six parts. 1) The feature flow prediction module.
The infrastructure PFNet (Pillar Feature Net) shares the same architecture as PointPillars Lang et al.
(2019). The x, y, and z ranges of the input point cloud are [(0, 92.16), (-46.08, 46.08), (-3, 1)] meters,
respectively. The voxel size of x, y, and z are [0.16, 0.16, 4] meters, respectively. The output shape
of the pseudo-images is (64, 576, 576). The infrastructure feature extractor Fi(·) and the estimated
first-order derivative generator F̃

′

i (·) share the same Backbone and FPN as SECOND Yan et al.
(2018). The output shape of the feature and estimated first-order derivative are both [384, 288, 288].
2) The compressor and decompressor. The compressor has four convolutional blocks with strides (2,
1, 2, 2) to compress the features from (384, 288, 288) to (384/32, 288/8, 288/8). The decompressor
has three deconvolutional blocks with strides (2, 2, 2) to decompress the features to the original
size. 3) Affine transform module. We implement the affine transform with the affine grid function
supported in Pytorch. We ignore the rotation around the x-y plane. 4) Feature fusion module. The
fusion module is a 3× 3 convolutional block with stride 1 to compress the concatenate feature from
(768, 288, 288) to (384, 288, 288). 5) Ego-vehicle feature extractor. This extractor has the same
configuration as the infrastructure PFNet and feature extractor. 6) 3D detection head. We use the
Single Shot Detector (SSD) Liu et al. (2016) to generate the 3D outputs. The anchor has a width,
length, and height of (1.6, 3.9, 1.56) meters with a z-center of -1.78 meters. Positive and negative
thresholds of matching are 0.6 and 0.45, respectively.

We train the feature fusion base model on the training part of the DAIR-V2X for 40 epochs. The
learning rate is 0.001, and the weight decay is 0.01. We randomly select 11037 frames from the
training part of DAIR-V2X and randomly set k from [1, 2] to form D, the explanation of k and D
can be seen in Sec. 3.3. We use the trained feature fusion base model to pretrain FFNet. We train
the feature flow generator on Du for 10 epochs, with a 0.001 learning rate and 0.01 weight decay.
We implement all the training and evaluation with NVIDIA GeForce RTX 3090 GPU.

A.3 DISCONET AND V2VNET SETTING

DiscoNet Li et al. (2021) and V2VNet Wang et al. (2020) were initially applied to multi-vehicle
cooperative perception methods. They transmit and receive the static feature for feature fusion. To
apply them to VIC3D detection and compare them with our FFNet, we made three modifications:
1) Removing multi-vehicle selection and keeping only one vehicle setting. 2) Reuse the architecture
of the feature fusion base model as much as possible. 3) Compressing the features from (384, 288,
288) to (384, 288/8, 288/8) to keep the comparative transmission cost with FFNet. We also train
the two models on the training part of the DAIR-V2X dataset for 40 epochs. The other training
configurations are the same as FFNet.

B ABLATION STUDY

This section discusses the effect of extracting the feature flow on different sides (infrastructure side
vs. ego vehicle side).

Generating feature flow on infrastructure is better than on ego vehicle. To compare the effect
of extracting feature flow between in infrastructure and ego vehicle, we train a modified FFNet called
FFNet-V. The FFNet-V uses the consecutive features Fi(Ii(ti−1)) and Fi(Ii(ti−1)) received from
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Table 3: Extracting Feature Flow on Infrastructure side vs. on Ego-Vehicle Side. FFNet-V denotes
the model that extracts the feature flow on vehicle. FFNet-V (Same-TC) denotes the FFNet-V which has
the exact transmission cost as FFNet. “AB” denotes the average byte used to measure the transmission cost.
“SCC” indicates the storage cost complexity for the ego vehicle to store the past frames, “CCC” indicates the
computing cost complexity for ego vehicle to extract the feature flow, “N” indicates the number of historical
structures to be used. The SCC of FFNet is O(1) because it does not need extra historical frames on ego vehicle.
At the same time, the SCC of extracting flow on ego vehicle is O(N) because extracting flow on ego vehicle
needs past frames received from infrastructure. Moreover, FFNet achieves better detection performs, and this
advantage becomes more pronounced (+3% mAP) when latency increases to 300ms.

Model Latency (ms) mAP@3D ↑ mAP@BEV ↑ AB(Byte) ↓ SCC ↓ CCC ↓IoU=0.5 IoU=0.7 IoU=0.5 IoU=0.7
FFNet-V 100 53.21 28.43 61.50 50.50 6.2×104 O(N) O(N)

FFNet-V (Same-TC) 100 53.17 28.45 62.44 51.68 1.2×105 O(N) O(N)
FFNet (Ours) 100 55.48 31.50 63.14 (+0.7) 54.28 1.2×105 O(1) O(1)

FFNet-V 300 50.81 28.45 57.75 49.62 6.2×104 O(N) O(N)
FFNet-V (Same-TC) 300 50.5 28.25 58.02 50.03 1.2×105 O(N) O(N)

FFNet (Ours) 300 53.46 30.42 61.20 (+3.18) 52.44 1.2×105 O(1) O(1)
FFNet-V 500 49.93 28.63 56.42 48.87 6.2×104 O(N) O(N)

FFNet-V (Same-TC) 500 49.98 27.7 56.99 49.55 1.2×105 O(N) O(N)
FFNet (Ours) 500 52.08 30.11 59.13 (+2.14) 51.70 1.2×105 O(1) O(1)
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Figure 5: FFNet-V Overview. FFNet-V generates the feature flow and predicts the future feature with the
compressed features received from the infrastructure. Calculating feature flow on vehicle uses compressed
features as inputs, giving us less valuable information than using all raw point clouds as inputs.

infrastructure to generate the feature flow on ego vehicle. We first concatenates the two received
features and feeds them into a first-order derivative generator to generate the estimated first-order
derivative of the feature flow F̃

′

i (ti). Then we predict the future feature as Eq. 4. Apart from that,
this FFNet-V shares the same architecture and training configuration as FFNet. We provide the
FFNet-V implementation in Fig. 5. To keep the exact transmission cost as FFNet, we also train
another FFNet-V by compressing the feature from (384, 288, 288) to (384/16, 288/8, 288/8). This
FFNet-V with the exact transmission cost is called FFNet-V (Same-TC). We evaluate the FFNet-
V and FFNet-V (Same-TC) in different latency like 100ms, 300ms, and 500ms. The experiment
results are shown in Tab. 3.

In Tab. 3, both the FFNet-V and FFNet-V (Same-TC) compensate much less performance drop com-
pared with FFNet in different latency, and this disadvantage becomes more pronounced over latency
increases. Significantly FFNet outperforms FFNet-V (Same-TC) by more than 3% mAP@BEV
(IoU=0.5) in 300ms latency with the exact transmission cost. The results show that extracting fea-
ture flow on infrastructure can improve the VIC3D detection performance better than extracting
feature flow on ego vehicle. In addition, FFNet needs much fewer ego-vehicle computing resources,
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and the computing cost complexity (CCC) is only O(N) because the feature flow is generated on
infrastructure. Conversely, FFNet-V consumes computation resources up to O(N) to extract flow
from past features. So the FFNet is more computation-friendly to ego vehicle. Moreover, extracting
feature flow on ego vehicle requires much more storage because the feature flow extraction depends
on the past frames that the ego vehicle received. At the same time, FFNet-V relies heavily on past
consecutive frames, so dropped frames will seriously affect the execution and performance. So the
FFNet is more storage-friendly to the ego vehicle and more robust to the frame dropping.
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