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Abstract

Fine-tuning pretrained models is the standard approach in current machine learn-1

ing practice, but simultaneously achieving adversarial robustness to adversarial2

examples remains a challenge. Despite the abundance of non-robust pretrained3

models in open-source repositories, their use for Robust Fine-Tuning (RFT) re-4

mains understudied. This work aims to bridge this knowledge gap by systematically5

examining RFT from such models. Our experiments reveal that fine-tuning non-6

robust models with a robust objective, even under small perturbations, can lead to7

poor performance, a phenomenon that we dub suboptimal transfer. In fact, we find8

that fine-tuning using a robust objective impedes task alignment at the beginning9

of training and eventually prevents optimal transfer. To promote optimal transfer,10

we propose Epsilon-Scheduling, a simple heuristic scheduling over perturbation11

strength. Additionally, we introduce expected robustness, a metric that measures12

performance across a range of perturbations. Experiments on six pretrained models13

and five datasets show that Epsilon-Scheduling prevents suboptimal transfer and14

consistently improves the expected robustness.15

1 Introduction16
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Figure 1: Robust Fine-Tuning can lead to suboptimal
transfer even when optimizing for small perturbations.

Fine-tuning pretrained models is the standard17

workflow in machine learning, spanning NLP18

(Koroteev, 2021) and vision (Goldblum et al.,19

2023). This workflow offers clear benefits: (i)20

reusing a single foundation model across tasks21

(Devlin et al., 2019), (ii) faster convergence and22

better generalization than training from scratch23

(Yosinski et al., 2014), and (iii) reduced com-24

putation (Weiss et al., 2016), especially when25

labelled data is scarce (Pan & Yang, 2010).26

However, in high-stakes applications, adversar-27

ial vulnerability remains a major concern (Big-28

gio et al., 2013; Goodfellow et al., 2015). Ad-29

versarial Training (AT) (Madry et al., 2018) and its variants (Zhang et al., 2019; Wang et al., 2020;30

Ding et al., 2020; Shafahi et al., 2019a; Wong et al., 2020) are the most successful empirical defenses31

(Croce et al., 2020). Robust Fine-Tuning (RFT) is the integration of these methods in fine-tuning on32

downstream tasks (Shafahi et al., 2019b; Liu et al., 2023; Xu et al., 2024; Hua et al., 2024). RFT is33

challenging because it must balance alignment with the downstream task and robustness (Xu et al.,34

2024). Prior work mainly studies RFT from robust pretrained models (Hua et al., 2024; Liu et al.,35
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Figure 2: Expected robustness. The first value in the legend represents the evaluation over [0, ϵg]
(shaded region) and the second value is over the whole interval [0, 16].

2023; Xu et al., 2024), overlooking the more common non-robust ones (Wolf et al., 2020). Since36

robust models are costly and since pretraining typically targets general-purpose features, robustness37

can be considered as a property to be acquired on downstream tasks (Heuillet et al., 2025). Thus,38

improving RFT from non-robust backbones is essential and naturally aligns with current workflows.39

In this work, we study Robust Fine-Tuning (RFT) of non-robustly pretrained backbones. We40

fine-tune various pretrained backbones on different datasets using adversarial training (Madry41

et al., 2018) with a fixed perturbation radius. We find that, even for small nonzero radii, this42

approach yields suboptimal transfer, where performance falls short of that achieved by standard43

fine-tuning (without perturbation) and is often too low to be considered a successful transfer. Its44

severity depends on both the backbone and the downstream task. Unlike standard fine-tuning,45

where model adaptation to the downstream task occurs immediately, our study shows that in46

RFT, task alignment is delayed until later epochs, eventually leading to suboptimal transfer.47
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Figure 3: Epsilon-Scheduling

48

To mitigate this, we propose Epsilon-Scheduling (Figure 3):49

a simple scheduling that starts with standard fine-tuning (zero50

perturbation) for early epochs and linearly increases to the target51

perturbation at final epochs. This strategy prevents suboptimal52

transfer and improves both generalization and robustness.53

Finally, to better evaluate the fine-tuned models, instead of the54

standard evaluation that compares only clean and robust accu-55

racy at target perturbation strength ϵg, we introduce expected56

robustness, which evaluates the expectation of the accuracy of57

the model across the full perturbation range [0, ϵg]. In partic-58

ular, cases where an increase in generalization comes at the cost of reduced robustness can make59

model comparison subjective. The expected robustness provides a comprehensive evaluation of60

the accuracy-robustness trade-off. Under this metric, Epsilon-Scheduling consistently improves61

performance, even when worst-case robustness at ϵg is similar or lower.62

2 Methodology63

Robust Fine-Tuning Fine-tuning consists in training a classifier f = cθ2 ◦ hθ1 , composed of a64

pretrained backbone hθ1 and a randomly initialized classifier head cθ2 , to maximize accuracy on a65

given data distribution D. This work focuses on full fine-tuning where both θ1 and θ2 are trainable66

parameters. In Robust Fine-Tuning (RFT), the goal is to maximize robust accuracy Accϵg (f) at a67

target perturbation strength ϵg > 0. We consider RFT with adversarial training (Madry et al., 2018)68

that minimizes the adversarial risk at ϵ as a surrogate objective:69

Rϵ(f) = E(x,y)∼D

(
max

∥δ∥∞<ϵ
ℓCE(f(x+ δ), y)

)
(1)

where ℓCE the cross-entropy loss. The common practice in RFT for target perturbation strength ϵg70

consists of minimizing an empirical counterpart of Rϵg (f) for a certain number of epochs, a strategy71
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Figure 4: Epsilon-Scheduling preserves task alignment while improving robustness. Left: Illustrative
example of the difference between RFT-fix and RFT-scheduler. Center and right: Evolution of clean and
robust accuracy during the fine-tuning of the SWIN backbone on Cars dataset with ϵg = 4/255.

that we refer to as RFT-fix (or fix), since the training objective remains the same during the whole72

fine-tuning process.73

Epsilon-Scheduling In contrast with RFT-fix, we propose to achieve RFT for target perturbation74

strength ϵg by minimizing an empirical counterpart of Rϵ(f) where the radius ϵ follows a simple75

schedule during the fine-tuning, as illustrated in (Figure 3). In effect, this strategy starts with standard76

fine-tuning at ϵ = 0 for 25% of the number of epochs, then linearly increases from ϵ = 0 to ϵ = ϵg77

during half of the fine-tuning, until it finally minimizes Rϵg (f) for the remaining 25%. From a78

transfer learning perspective, we can view this strategy as follows: begin with task adaptation, then79

gradually shift to the robust objective and conclude by minimizing the robust objective. In the sequel,80

we will refer to this strategy as RFT-scheduler (or scheduler).81

Expected Robustness While RFT targets low adversarial risk Rϵg (f), models are usually evaluated82

both for clean accuracy Acc0(f) and robust accuracy Accϵg (f). We propose to extend this classical83

evaluation to take into account intermediary perturbation strengths within the range [0, ϵg]. Evaluating84

models’ accuracy at intermediate perturbation strengths reveals distinct patterns (See Figure 2). Such85

evaluation is helpful for comparing models with similar accuracies or when the clean–robust trade-off86

is ambiguous. We summarize these evaluations using the expected robustness metric, defined as the87

expectation under uniform distribution U of the accuracy over [0, ϵg]:88

Eϵ∼U [0,ϵg ]

[
Accϵ(f)

]
=

1

ϵg

∫ ϵg

0

Accϵ(f) dϵ =
1

ϵg
AUCϵg (f)

where AUCϵg (f) represents the area under the accuracy curve from 0 to ϵg (See Figure 2). More89

details can be found in Appendix B.90

3 Characterizing Suboptimal Transfer in Robust Fine-Tuning91
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Figure 5: RFT-fix delays task alignment.
The stronger the perturbation, the later the
validation accuracy starts to improve.

We explore how high perturbation strength ϵg in RFT-92

fix affects the transfer accuracy of non-robust pre-trained93

models. For our experiment, we use two ImageNet-94

pretrained backbones, SWIN and ViT, and fine-tune them95

on five datasets: Caltech256, Cub200, Stanford Dogs,96

Stanford Cars, and FGVC-Aircraft. We consider pertur-97

bation strengths ϵg from 0 (standard fine-tuning) up to98
9/255. The results in Figure 1 show that as ϵg increases,99

the transfer accuracy drops significantly. For example,100

at ϵg = 4/255, the SWIN models have performance drops101

of 10% to 72%, respectively, compared to standard fine-102

tuning. We refer to this phenomenon as suboptimal trans-103

fer, where RFT-fix yields a transfer accuracy significantly104

lower than standard fine-tuning, at times to the point of no longer being considered an effective105

transfer. Results for ViT are in appendix (Figure 7)106

Robust Fine-Tuning with Fixed Perturbation Strength Delays Task Alignment As shown in Fig-107

ure 5 in standard fine-tuning, the task adaptation to the downstream task begins almost immediately–108

validation accuracy rises from the first epoch–since there are no robustness constraints that may109

conflict with task alignment. With nonzero values of ϵg, RFT-fix distorts task-relevant features,110

which prevents early alignment and delays the onset of task adaptation. For example, task alignment111

3



Dataset Aircraft Caltech Cars Cub Dogs
Metric Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv.

Model Setting
vit fix 6.40 2.80 4.48 68.14 41.64 55.07 12.70 4.90 8.20 42.82 15.12 27.79 56.40 19.97 36.93

scheduler 58.60 13.20 34.95 78.73 41.69 60.71 73.40 19.10 46.71 73.40 23.63 48.09 70.69 15.69 41.62
swin fix 7.70 4.80 6.11 79.97 57.16 69.19 60.20 29.70 44.74 72.25 41.87 57.55 61.89 26.89 44.17

scheduler 73.80 32.00 53.75 85.43 56.39 72.04 84.70 43.20 66.41 82.29 41.61 63.82 72.70 24.32 48.50

convnext fix 7.60 4.50 5.86 83.27 61.54 73.08 69.60 43.20 57.52 76.34 47.08 62.59 68.90 31.61 50.61
scheduler 78.40 38.00 59.40 89.41 61.45 77.23 88.90 57.70 75.85 85.17 44.99 67.30 78.39 26.31 53.19

r50 fix 8.40 2.90 4.56 67.47 40.02 53.74 4.20 2.90 3.49 49.19 19.35 33.58 57.05 19.80 37.73
scheduler 53.10 11.10 29.40 76.55 34.74 55.67 70.00 19.30 43.44 70.06 19.59 43.62 69.11 15.94 41.11

clip_vit fix 5.00 3.30 4.16 31.91 15.49 23.00 4.90 3.00 3.74 13.95 3.64 7.97 7.89 3.29 5.39
scheduler 69.80 33.90 52.79 74.83 46.64 60.99 86.70 58.60 75.01 74.35 35.67 55.54 63.17 20.87 41.05

clip_convnext fix 3.10 2.50 2.82 61.76 42.13 51.54 2.80 1.60 2.23 28.89 14.33 20.92 23.90 11.33 17.14
scheduler 81.70 50.70 67.88 81.19 52.68 67.71 90.90 74.10 84.33 79.06 42.11 61.45 70.85 25.85 48.19

Table 1: Epsilon-Scheduling mitigates suboptimal transfers and consistently improves expected robustness.
Results at moderate perturbation regime (4/255). See Table 2 for ϵg = 8/255

begins around epoch 25 for ϵg = 4/255. To the best of our knowledge, the delayed onset of task112

alignment in robust fine-tuning has not been previously reported.113

4 Experimental Results114

Pretrained Models and Datasets: We experiment with six pretrained models—Transformers115

(Swin-Base, ViT-Base), Convolutional networks (ConvNext-Base, ResNet50), and CLIP models (CLIP-116

ViT, CLIP-ConvNext)—spanning attention, convolution, supervised, and multi-modal paradigms.117

Fine-tuning is evaluated on five low-data benchmarks: CUB-200-2011 (birds), Stanford Dogs,118

Caltech256, Stanford Cars, and FGVC-Aircraft.119
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Figure 6: Epsilon-Scheduling mitigates sub-
optimal transfers and improves expected ro-
bustness. Aggregated results across models
from Table 1 ( ϵg = 4/255).

Epsilon-Scheduling mitigates suboptimal transfer120

The results in Table 1 show that while RFT-fix of-121

ten fails to transfer with low clean accuracy, RFT-122

scheduler achieves high clean accuracy for most mod-123

els. At the same time, it maintains decent adversarial124

accuracy. For the perturbation target ϵg = 4/255, while125

RFT-fix sometimes achieves better adversarial accu-126

racy (9 out of 30 configurations), our scheduling strat-127

egy always obtains a higher clean and expected accuracy128

(see also Figure 6 for results aggregated across models).129

These results show that even at moderate perturbations130

(4/255), epsilon-scheduling prevents the steep degrada-131

tion incurred by RFT-fix, allowing models to retain132

strong clean performance while achieving improved or133

similar adversarial accuracy at non-trivial levels. In high134

perturbation regime (ϵg = 8/255), transfer fails more135

often with RFT-fix and RFT-scheduler becomes the only viable option for robust fine-tuning.136

Epsilon-Scheduling preserves task alignment while improving robustness Figure 4 shows the137

evolution of the validation accuracy during training for ϵg = 4/255. As expected, the standard138

fine-tuning converges very fast, successfully learning the task with a high clean accuracy. RFT-fix139

negatively affects the clean accuracy and ultimately fails to learn the task effectively. In RFT-140

scheduler, delaying fine-tuning with perturbations helps achieve a high clean accuracy at the level141

of standard fine-tuning at the early stage. Once RFT starts, around epoch 12, with perturbation142

strengths above zero, robust accuracy begins to increase. Interestingly, the clean accuracy remains143

high and relatively stable.144

Limitations & Future Work. While our study sheds light on the phenomenon of suboptimal145

transfer in RFT and proposes a mitigation via epsilon-scheduling, it also opens up several interesting146

research directions. We leave the study of different schedulers, the mechanistic understanding of147

suboptimal transfer, applications beyond image classification, parameter-efficient fine-tuning, and148

extensions to other modalities (e.g., language) for future work.149
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A Related Work243

Adversarial Robustness in Transfer Learning with Robust-FineTuning There are two main244

ways to achieve adversarial robustness in Transfer Learning: Robust Distillation (Goldblum et al.,245

2020; Dong et al., 2024) and Robust Fine-Tuning. Previous work on RFT has focused on strategies to246

preserve the robustness of pretrained models (Liu et al., 2023; Xu et al., 2024; Hua et al., 2024). (Liu247

et al., 2023) proposed TWINS (TwoWIng NormliSation), a statistics-based fine-tuning framework248

that employs two neural networks with shared parameters: one maintains the population means and249

variances of the pretraining data in the batch normalization layers, while the other tracks the statistics250

of the downstream dataset. AutoLoRA (Xu et al., 2024) shows that there is often a divergence between251

natural and adversarial gradient directions in RFT and addresses it by disentangling the optimization252

objectives—using a low-rank LoRA branch for natural objectives and a robust, pretrained feature253

extractor for adversarial objectives. Hua et al. (2024) showed that linear probing best preserves the254

robustness of the adversarially pretrained model and proposed RoLi. This strategy initializes the255

linear classifier head via adversarially trained linear probing before performing RFT. These strategies256

only consider robust pretrained feature extractors. To the best of our knowledge, this work is the first257

to propose a method for RFT that directly targets non-robust, pretrained models without assuming258

robust pretrained features.259

Tuning Perturbation Strength in Adversarial Training The idea of tuning or adapting the ad-260

versarial perturbation strength ϵ during training has appeared in various forms across the robustness261

literature. Early work like Gowal et al. (2018) used a linear ramp-up of ϵ in the Interval Bound Propa-262

gation (IBP) method. Ding et al. (2020) drew a theoretical connection between margin maximization263

and the loss at the smallest adversarial perturbation, motivating the use of adaptive, sample-specific264

ϵ values. Similarly, Balaji et al. (2019) explored instance-wise epsilon selection, though these ap-265

proaches can be computationally intensive due to per-sample perturbation searches. Ding et al. (2020)266

additionally introduced PGDLS (PGD with Linear Scaling), which linearly ramps up the perturbation267

radius during adversarial training and shows little to no improvement at ϵ ≤ 16/255 but only at high268

ϵ = 24/255. To better trade off clean and robust accuracy, Chamon & Ribeiro (2020) proposed269

sampling ϵ from a Beta distribution. Cai et al. (2018) proposed a curriculum adversarial training270

scheme that gradually increases the attack steps, which improves performance in combination with271

batch mixing and quantization. Unlike Pang et al. (2021), which showed that linear ϵ warmup had a272

limited effect in ResNets, Debenedetti et al. (2023) showed that it improved both clean and robust273

accuracy in vision transformers. In contrast to prior works, which have primarily applied perturbation274

tuning in classical adversarial training from scratch, our study frames Epsilon-Scheduling through the275

lens of transfer learning. In this context, Epsilon-Scheduling is not just an optional improvement over276

standard RFT with a fixed epsilon; rather, it constitutes a dependable alternative when standard RFT277

fails to transfer, which we show happens when training directly at large ϵ. In addition to previous278

work, we evaluate performance using a new metric, the expected robustness, and show that it is279

consistently beneficial, regardless of task and architecture, including ResNets.280

B Additonal Details281

Training Details We follow a similar setup described in Hua et al. (2024), using the AdamW
optimizer with a cosine learning rate scheduler that includes a warmup period. We select the learning
rate and weight decay via hyperparameter optimization (HPO) based on clean accuracy. HPO is
performed only for the fix setting, and the resulting hyperparameters are reused for the scheduler
setting to ensure a fair comparison. Adversarial training is performed by minimizing an empirical
counterpart of the adversarial risk (Equation 1). More specifically, on a mini-batch B we minimize

Lϵ(f) =
1

|B|
∑

(x,y)∼B

ℓCE(f(x̃), y)

where x̃ is an adversarial example crafted for x using APGD (instead of PGD) with cross-entropy282

loss as in (Singh et al., 2023; Heuillet et al., 2025), benefiting from APGD’s adaptive step size, which283

removes the need for manual tuning across different perturbation thresholds. The number of APGD284

steps is 7 for training. As in Heuillet et al. (2025), we train for 50 epochs, and results are reported at285

the end of training because overfitting of the adversarial accuracy is negligible here (see Figure 4).286
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Dataset Aircraft Caltech Cars Cub Dogs
Metric Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv. Clean Adv. E. Adv.

Model Setting
vit fix 3.00 2.00 2.50 44.95 19.52 31.43 3.60 2.00 2.74 17.40 2.80 8.56 8.64 2.88 5.35

scheduler 57.00 6.70 27.72 72.86 26.89 49.28 68.10 9.00 35.18 64.74 9.79 33.93 56.86 5.79 25.81
swin fix 4.20 2.70 3.47 68.87 38.10 53.40 13.20 5.60 8.66 45.89 13.60 28.56 46.05 11.08 26.69

scheduler 69.20 22.40 45.12 80.27 38.67 60.26 78.00 23.50 53.57 74.80 21.07 47.34 60.49 8.73 31.14

convnext fix 1.60 1.50 1.48 59.85 33.95 46.34 5.30 2.60 3.98 5.02 2.28 3.56 27.33 7.73 16.28
scheduler 75.00 28.80 50.90 84.99 41.82 64.92 85.60 35.90 65.04 80.69 24.28 53.07 68.94 9.78 36.51

r50 fix 1.30 0.90 0.74 53.59 26.78 39.93 1.50 1.20 1.34 30.89 8.27 17.84 27.14 6.95 15.61
scheduler 42.80 5.30 20.38 67.56 23.01 44.03 57.10 8.50 29.56 59.49 8.68 29.95 50.89 6.92 25.26

clip_vit fix 3.60 2.20 3.05 23.02 7.29 14.52 3.00 2.50 2.73 11.11 2.30 5.73 2.20 1.38 1.77
scheduler 65.80 25.40 44.84 70.68 33.70 51.67 84.70 38.60 64.47 67.64 18.05 41.79 54.28 8.94 27.78

clip_convnext fix 1.80 1.30 1.62 51.94 28.37 39.44 1.30 1.10 1.25 6.37 2.30 4.05 8.36 3.97 5.98
scheduler 79.20 34.50 59.09 76.53 37.20 56.83 90.00 55.20 77.14 73.58 22.75 47.77 62.67 11.36 33.85

Table 2: Epsilon-Scheduling mitigates suboptimal transfers and consistently improves expected robustness
in high perturbation regime (8/255). The table shows clean accuracy (Clean), adversarial accuracy (Adv.), and
the expected adversarial accuracy (E. Adv.). The models are evaluated under a fixed perturbation strength (fix)
and an Epsilon-Scheduling (scheduler). See Table 1 for ϵg = 4/255

We consider two target evaluation thresholds ϵ = 4/255 (moderate perturbation) and ϵ = 8/255 (high287

perturbation) as two commonly used evaluation targets on these datasets.288

Evaluation details For a given perturbation strength ϵ > 0, the (L∞-)robust accuracy Accϵ(f) of
a classifier f is defined as

Accϵ(f) = E(x,y)∼D1[∀x′(∥x− x′∥∞ ≤ ϵ ⇒ argmax f(x′) = y)],

where 1[ϕ] equals 1 if ϕ holds and 0 otherwise. In particular, for ϵ = 0, Acc0(f) =
E(x,y)∼D1[argmax f(x) = y] coincides with the usual clean accuracy of the classifier f . This
robust accuracy is estimated using the AutoAttack library with the APGD method and 10 steps on a
given test dataset. The expected robustness is estimated by using the trapezoidal rule with evaluations
made with steps 1/255, so for example with ϵg = 4/255:

AUC4/255(f) =
1

4

3∑
i=0

Acc i
255

(f) + Acc i+1
255

(f)

2
.

C Additional Results289
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Figure 7: RFT can lead to suboptimal transfer even for small ϵ. The variation of transfer accuracy
with the training perturbation strength ϵg is not always smooth and is highly model- and dataset-
dependent.
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16. Declaration of LLM usage600

Question: Does the paper describe the usage of LLMs if it is an important, original, or601
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only for writing, editing, or formatting purposes and does not impact the core methodology,603
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