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Abstract

Fine-tuning pretrained models is the standard approach in current machine learn-
ing practice, but simultaneously achieving adversarial robustness to adversarial
examples remains a challenge. Despite the abundance of non-robust pretrained
models in open-source repositories, their use for Robust Fine-Tuning (RFT) re-
mains understudied. This work aims to bridge this knowledge gap by systematically
examining RFT from such models. Our experiments reveal that fine-tuning non-
robust models with a robust objective, even under small perturbations, can lead to
poor performance, a phenomenon that we dub suboptimal transfer. In fact, we find
that fine-tuning using a robust objective impedes task alignment at the beginning
of training and eventually prevents optimal transfer. To promote optimal transfer,
we propose Epsilon-Scheduling, a simple heuristic scheduling over perturbation
strength. Additionally, we introduce expected robustness, a metric that measures
performance across a range of perturbations. Experiments on six pretrained models
and five datasets show that Epsilon-Scheduling prevents suboptimal transfer and
consistently improves the expected robustness.

1 Introduction

swin

Fine-tuning pretrained models is the standard 100
workflow in machine learning, spanning NLP

(Koroteev, [2021) and vision (Goldblum et al.| 801
2023)). This workflow offers clear benefits: (i)
reusing a single foundation model across tasks
(Devlin et al.,[2019), (ii) faster convergence and
better generalization than training from scratch
(Yosinski et al., 2014)), and (iii) reduced com-
putation (Weiss et al.| [2016)), especially when
labelled data is scarce (Pan & Yang, [2010). 0

However, in high-stakes applications, adversar-
ial Vu]nerabﬂity remains a maj()r concern (Blg Figure 1: Robust Fine-Tuning can lead to suboptimal
gio et al, 2013; [Goodfellow et al, 2015). Ad- transfer even when optimizing for small perturbations.
versarial Training (AT) (Madry et al.,|2018) and its variants (Zhang et al.,|2019; Wang et al.| 2020;
Ding et al., |2020; |Shafahi et al., 2019a; Wong et al.; 2020) are the most successful empirical defenses
(Croce et al.,|2020). Robust Fine-Tuning (RFT) is the integration of these methods in fine-tuning on
downstream tasks (Shafahi et al., 2019b; |Liu et al., [2023; | Xu et al., 2024; |[Hua et al., 2024)). RFT is
challenging because it must balance alignment with the downstream task and robustness (Xu et al.|
2024). Prior work mainly studies RFT from robust pretrained models (Hua et al., 2024} |Liu et al.,
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Figure 2: Expected robustness. The first value in the legend represents the evaluation over [0, €]
(shaded region) and the second value is over the whole interval [0, 16].

2023; | Xu et al., [2024)), overlooking the more common non-robust ones (Wolf et al., [2020). Since
robust models are costly and since pretraining typically targets general-purpose features, robustness
can be considered as a property to be acquired on downstream tasks (Heuillet et al., [2025]). Thus,
improving RFT from non-robust backbones is essential and naturally aligns with current workflows.

In this work, we study Robust Fine-Tuning (RFT) of non-robustly pretrained backbones. We
fine-tune various pretrained backbones on different datasets using adversarial training (Madry,
et al [2018) with a fixed perturbation radius. We find that, even for small nonzero radii, this
approach yields suboptimal transfer, where performance falls short of that achieved by standard
fine-tuning (without perturbation) and is often too low to be considered a successful transfer. Its
severity depends on both the backbone and the downstream task. Unlike standard fine-tuning,
where model adaptation to the downstream task occurs immediately, our study shows that in
RFT, task alignment is delayed until later epochs, eventually leading to suboptimal transfer.

To mitigate this, we propose Epsilon-Scheduling (Figure [3)): 1% ]
a simple scheduling that starts with standard fine-tuning (zero |

perturbation) for early epochs and linearly increases to the target
perturbation at final epochs. This strategy prevents suboptimal
transfer and improves both generalization and robustness.
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Finally, to better evaluate the fine-tuned models, instead of the | T
standard evaluation that compares only clean and robust accu- T 5 B o o
racy at target perturbation strength ¢4, we introduce expected Training Epoch
robustness, which evaluates the expectation of the accuracy of Figure 3: Epsilon-Scheduling

the model across the full perturbation range [0, ¢,]. In partic-

ular, cases where an increase in generalization comes at the cost of reduced robustness can make
model comparison subjective. The expected robustness provides a comprehensive evaluation of
the accuracy-robustness trade-off. Under this metric, Epsilon-Scheduling consistently improves
performance, even when worst-case robustness at €, is similar or lower.

Attack £ (x255)

o
s

2 Methodology

Robust Fine-Tuning Fine-tuning consists in training a classifier f = cg, o hg,, composed of a
pretrained backbone hg, and a randomly initialized classifier head cg,, to maximize accuracy on a
given data distribution D. This work focuses on full fine-tuning where both #; and 65 are trainable
parameters. In Robust Fine-Tuning (RFT), the goal is to maximize robust accuracy Acc., (f) ata
target perturbation strength e, > 0. We consider RFT with adversarial training (Madry et al., 2018)
that minimizes the adversarial risk at € as a surrogate objective:

R(f) = By max tou(f(z+0),1)) M

ll9]]oc <€

where {c g the cross-entropy loss. The common practice in RFT for target perturbation strength ¢,
consists of minimizing an empirical counterpart of R, (f) for a certain number of epochs, a strategy
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Figure 4: Epsilon-Scheduling preserves task alignment while improving robustness. Left: Illustrative
example of the difference between RFT-fix and RFT-scheduler. Center and right: Evolution of clean and
robust accuracy during the fine-tuning of the SWIN backbone on Cars dataset with €, = 4/255.

that we refer to as RFT-fix (or £ix), since the training objective remains the same during the whole
fine-tuning process.

Epsilon-Scheduling 1In contrast with RFT-fix, we propose to achieve RFT for target perturbation
strength ¢, by minimizing an empirical counterpart of R (f) where the radius e follows a simple
schedule during the fine-tuning, as illustrated in (Figure[3). In effect, this strategy starts with standard
fine-tuning at ¢ = 0 for 25% of the number of epochs, then linearly increases frome = 0to e = ¢,
during half of the fine-tuning, until it finally minimizes R, (f) for the remaining 25%. From a
transfer learning perspective, we can view this strategy as follows: begin with task adaptation, then
gradually shift to the robust objective and conclude by minimizing the robust objective. In the sequel,
we will refer to this strategy as RFT-scheduler (or scheduler).

Expected Robustness While RFT targets low adversarial risk R, (f), models are usually evaluated
both for clean accuracy Acco(f) and robust accuracy Acce, (f). We propose to extend this classical
evaluation to take into account intermediary perturbation strengths within the range [0, €,]. Evaluating
models’ accuracy at intermediate perturbation strengths reveals distinct patterns (See Figure [2). Such
evaluation is helpful for comparing models with similar accuracies or when the clean—robust trade-off
is ambiguous. We summarize these evaluations using the expected robustness metric, defined as the
expectation under uniform distribution U of the accuracy over [0, €]

Ecvio,e, [Acc / Acce(f) de = —AUC ,()
69

€g

where AUC,, (f) represents the area under the accuracy curve from 0 to ¢, (See Figure [2] . More
details can be found in Appendix [B]

3 Characterizing Suboptimal Transfer in Robust Fine-Tuning

SWIN - Cars

We explore how high perturbation strength ¢, in RFT-
fix affects the transfer accuracy of non-robust pre-trained 801
models. For our experiment, we use two ImageNet-
pretrained backbones, SWIN and ViT, and fine-tune them
on five datasets: Caltech256, Cub200, Stanford Dogs,
Stanford Cars, and FGVC-Aircraft. We consider pertur-
bation strengths €g from O (standard fine- tumng) up to
9/255. The results in Figure [1| show that as ¢, increases,

Clean Accuracy (%)

the transfer accuracy drops significantly. For example, 0 1o 2 30 40 50
at €, = 4/255, the SWIN models have performance drops Training Epoch

of 10% to 72%, respectively, compared to standard fine- Figure 5: RFT-fix delays task alignment.

tuning. We refer to this phenomenon as suboptimal trans- The stronger the perturbation, the later the

fer, where RFT-fix yields a transfer accuracy significantly ~validation accuracy starts to improve.

lower than standard fine-tuning, at times to the point of no longer being considered an effective

transfer. Results for ViT are in appendix (Figure[7)

Robust Fine-Tuning with Fixed Perturbation Strength Delays Task Alignment As shown in Fig-
ure[5]in standard fine-tuning, the task adaptation to the downstream task begins almost immediately—
validation accuracy rises from the first epoch—since there are no robustness constraints that may
conflict with task alignment. With nonzero values of ¢,, RFT-fix distorts task-relevant features,
which prevents early alignment and delays the onset of task adaptation. For example, task alignment
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Dataset Aircraft Caltech Cars Cub Dogs
Metric Clean Adv. E.Adv. | Clean Adv. E.Adv. | Clean Adv. E.Adv. | Clean Adv. E.Adv. | Clean Adv. E.Adv.

Model Setting
vit fix 640 280 448 6814 41.64 5507 | 1270 490 820 [4282 1512 2779 | 5640 1997 36.93
scheduler 58.60 13.20 3495 | 78.73 41.69 60.71 | 73.40 19.10 46.71 | 73.40 23.63 48.09 | 70.69 15.69 41.62
swin fix 7770 480 6.11 7997 5716 69.19 [ 6020 29.70 44.74 [ 7225 41.87 5755 | 6189 2689 44.17
scheduler 73.80 32.00 53.75 | 8543 5639 72.04 | 84.70 4320 66.41 | 82.29 41.61 63.82 | 72.70 24.32 48.50
convnext fix 7.60 450 586 [8327 6154 73.08 [69.60 4320 5752 [ 7634 47.08 6259 [ 6890 31.61 50.61
scheduler 78.40 38.00 5940 | 8941 6145 7723 | 8890 57.70 7585 | 8517 4499 67.30 | 78.39 2631 53.19
50 fix 840  2.90 456 | 6747 40.02 5374 | 420 290 349 4919 1935 3358 | 57.05 19.80 37.73
scheduler 53.10 11.10 2940 | 76.55 34.74 55.67 | 70.00 19.30 4344 | 70.06 19.59 43.62 | 69.11 1594 41.11
clip_vit fix 500 330 416 3191 1549 2300 [ 490 3.00 374 13.95  3.64 797 789 329 539
scheduler 69.80 33.90 52.79 | 74.83 46.64 60.99 | 86.70 58.60 75.01 | 74.35 35.67 55.54 | 63.17 20.87 41.05
clip_convnext fix 310 250 282 [ 6176 4213 5154 | 280 1.60 223 2889 1433 2092 |2390 1133 17.14

scheduler 81.70 50.70 67.88 | 81.19 52.68 67.71 | 90.90 7410 8433 | 79.06 42.11 6145 | 70.85 2585 48.19

Table 1: Epsilon-Scheduling mitigates suboptimal transfers and consistently improves expected robustness.
Results at moderate perturbation regime (4/255). See Tablefor €g = 8/255

begins around epoch 25 for ¢, = 4/255. To the best of our knowledge, the delayed onset of task
alignment in robust fine-tuning has not been previously reported.

4 Experimental Results

Pretrained Models and Datasets: We experiment with six pretrained models—Transformers
(Swin-Base, ViT-Base), Convolutional networks (ConvNext-Base, ResNet50), and CLIP models (CLIP-
ViT, CLIP-ConvNext)—spanning attention, convolution, supervised, and multi-modal paradigms.
Fine-tuning is evaluated on five low-data benchmarks: CUB-200-2011 (birds), Stanford Dogs,
Caltech256, Stanford Cars, and FGVC-Aircraft.

Epsilon-Scheduling mitigates suboptimal transfer
The results in Table [I] show that while RFT-fix of-

. . - Setting
ten fails to transfer with low clean accuracy, RFT- £¢| o
. . > scheduler
scheduler achieves high clean accuracy for most mod-  §_ | oateser X
els. At the same time, it maintains decent adversarial 2 | & fner
3 M < 1 L] cars
accuracy. For the perturbation target e, = 4/255, while  §™| & 4
RFT-fix sometimes achieves better adversarial accu-  §»7 * ** <
racy (9 out of 30 configurations), our scheduling strat- 3,/ -
. . 5
egy always. obtains a higher clean and expected accuracy £ \Submemrs
(see also Figure 6] for results aggregated across models). & | g.—

These results show that even at moderate perturbations 0 2 30 4 50 60 70 80
4/255), epsilon-scheduling prevents the steep degrada- . Clean Accuracy (%)

E. . d by RFT-i 1l . dels t tai Figure 6: Epsilon-Scheduling mitigates sub-
1on ncurred by -1ix, allowing models to retan optimal transfers and improves expected ro-
strong clean performance while achieving improved or g, ctmes. Aggregated results across models
similar adversarial accuracy at non-trivial levels. In high  fom Table[T] (¢g = 4/255).

perturbation regime (¢, = 8/255), transfer fails more ‘

often with RFT-fix and RFT-scheduler becomes the only viable option for robust fine-tuning.

Epsilon-Scheduling preserves task alignment while improving robustness Figure[]shows the
evolution of the validation accuracy during training for ¢, = 4/255. As expected, the standard
fine-tuning converges very fast, successfully learning the task with a high clean accuracy. RFT-fix
negatively affects the clean accuracy and ultimately fails to learn the task effectively. In RFT-
scheduler, delaying fine-tuning with perturbations helps achieve a high clean accuracy at the level
of standard fine-tuning at the early stage. Once RFT starts, around epoch 12, with perturbation
strengths above zero, robust accuracy begins to increase. Interestingly, the clean accuracy remains
high and relatively stable.

Limitations & Future Work. While our study sheds light on the phenomenon of suboptimal
transfer in RFT and proposes a mitigation via epsilon-scheduling, it also opens up several interesting
research directions. We leave the study of different schedulers, the mechanistic understanding of
suboptimal transfer, applications beyond image classification, parameter-efficient fine-tuning, and
extensions to other modalities (e.g., language) for future work.
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A Related Work

Adversarial Robustness in Transfer Learning with Robust-FineTuning There are two main
ways to achieve adversarial robustness in Transfer Learning: Robust Distillation (Goldblum et al.,
2020; |Dong et al.l[2024)) and Robust Fine-Tuning. Previous work on RFT has focused on strategies to
preserve the robustness of pretrained models (Liu et al., 2023} |Xu et al., 2024} Hua et al.|[2024). (Liu
et al.,|2023)) proposed TWINS (TwoWIng NormliSation), a statistics-based fine-tuning framework
that employs two neural networks with shared parameters: one maintains the population means and
variances of the pretraining data in the batch normalization layers, while the other tracks the statistics
of the downstream dataset. AutoLoRA (Xu et al.|,|2024) shows that there is often a divergence between
natural and adversarial gradient directions in RFT and addresses it by disentangling the optimization
objectives—using a low-rank LoRA branch for natural objectives and a robust, pretrained feature
extractor for adversarial objectives. [Hua et al.| (2024) showed that linear probing best preserves the
robustness of the adversarially pretrained model and proposed RoLi. This strategy initializes the
linear classifier head via adversarially trained linear probing before performing RFT. These strategies
only consider robust pretrained feature extractors. To the best of our knowledge, this work is the first
to propose a method for RFT that directly targets non-robust, pretrained models without assuming
robust pretrained features.

Tuning Perturbation Strength in Adversarial Training The idea of tuning or adapting the ad-
versarial perturbation strength € during training has appeared in various forms across the robustness
literature. Early work like Gowal et al.| (2018)) used a linear ramp-up of € in the Interval Bound Propa-
gation (IBP) method. Ding et al.|(2020) drew a theoretical connection between margin maximization
and the loss at the smallest adversarial perturbation, motivating the use of adaptive, sample-specific
e values. Similarly, |Balaji et al.| (2019) explored instance-wise epsilon selection, though these ap-
proaches can be computationally intensive due to per-sample perturbation searches. |Ding et al.| (2020)
additionally introduced PGDLS (PGD with Linear Scaling), which linearly ramps up the perturbation
radius during adversarial training and shows little to no improvement at ¢ < 16/255 but only at high
€ = 24/255. To better trade off clean and robust accuracy, (Chamon & Ribeiro| (2020) proposed
sampling e from a Beta distribution. |Cai et al.| (2018)) proposed a curriculum adversarial training
scheme that gradually increases the attack steps, which improves performance in combination with
batch mixing and quantization. Unlike Pang et al.|(2021), which showed that linear ¢ warmup had a
limited effect in ResNets, [Debenedetti et al.| (2023)) showed that it improved both clean and robust
accuracy in vision transformers. In contrast to prior works, which have primarily applied perturbation
tuning in classical adversarial training from scratch, our study frames Epsilon-Scheduling through the
lens of transfer learning. In this context, Epsilon-Scheduling is not just an optional improvement over
standard RFT with a fixed epsilon; rather, it constitutes a dependable alternative when standard RFT
fails to transfer, which we show happens when training directly at large . In addition to previous
work, we evaluate performance using a new metric, the expected robustness, and show that it is
consistently beneficial, regardless of task and architecture, including ResNets.

B Additonal Details

Training Details We follow a similar setup described in [Hua et al.| (2024), using the AdamW
optimizer with a cosine learning rate scheduler that includes a warmup period. We select the learning
rate and weight decay via hyperparameter optimization (HPO) based on clean accuracy. HPO is
performed only for the fix setting, and the resulting hyperparameters are reused for the scheduler
setting to ensure a fair comparison. Adversarial training is performed by minimizing an empirical
counterpart of the adversarial risk (Equation [I)). More specifically, on a mini-batch B we minimize

Le(f):% S ten(f(@).y)

(z,y)~B

where 7 is an adversarial example crafted for x using APGD (instead of PGD) with cross-entropy
loss as in (Singh et al.|[2023} |[Heuillet et al.,2025), benefiting from APGD’s adaptive step size, which
removes the need for manual tuning across different perturbation thresholds. The number of APGD
steps is 7 for training. As in Heuillet et al.| (2025), we train for 50 epochs, and results are reported at
the end of training because overfitting of the adversarial accuracy is negligible here (see Figure |4).
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Dataset Aircraft Caltech Cars Cub Dogs
Metric Clean Adv. E.Adv. | Clean Adv. E.Adv. | Clean Adv. E.Adv. | Clean Adv. E.Adv. | Clean Adv. E.Adv.

Model Setting
vit fix 300 200 250 | 4495 1952 3143 | 360 200 274 17.40 280 8.56 8.64  2.88 535
scheduler 57.00 670  27.72 | 72.86 26.89 49.28 | 68.10 9.00 35.18 | 6474 9.79 3393 | 56.86 5.79  25.81
swin fix 420 270 347 6887 38.10 5340 | 1320 5.60 866 | 4589 13.60 2856 | 46.05 11.08 26.69
scheduler 69.20 2240 4512 | 80.27 38.67 60.26 | 78.00 23.50 53.57 | 74.80 21.07 47.34 | 6049 873 3114
convnext fix 160 150 148 [5985 3395 4634 | 530 2.60 3.98 502 228 356 2733 773 16.28
scheduler 75.00 28.80 5090 | 84.99 41.82 6492 | 85.60 3590 65.04 | 80.69 24.28 53.07 | 6894 9.78  36.51
50 fix 130 090 074 15359 2678 3993 150 120 134 3089 827 17.84 [ 2714 6.95 15.61
scheduler 42.80 530 2038 | 67.56 23.01 44.03 | 57.10 8.50  29.56 | 5949 8.68 2995 | 50.89 692  25.26
clip_vit fix 360 220 305 2302 729 1452 [ 300 250 273 ILIT 230 573 220 1.38 1.77
scheduler 65.80 2540 44.84 | 70.68 33.70 51.67 | 84.70 38.60 64.47 | 67.64 18.05 41.79 | 5428 894 27.78
clip_convnext fix 180 1.30 1.62 | 51.94 2837 39.44 130 110 1.25 6.37 230 4.05 836 397 5.98

scheduler 79.20 34.50 59.09 | 76.53 37.20 56.83 | 90.00 5520 77.14 | 73.58 22.75 47.77 | 62.67 11.36 33.85

Table 2: Epsilon-Scheduling mitigates suboptimal transfers and consistently improves expected robustness
in high perturbation regime (8/255). The table shows clean accuracy (Clean), adversarial accuracy (Adv.), and
the expected adversarial accuracy (E. Adv.). The models are evaluated under a fixed perturbation strength (fix)
and an Epsilon-Scheduling (scheduler). See Tablefor €g = 4/255

We consider two target evaluation thresholds € = 4/255 (moderate perturbation) and € = 8/255 (high
perturbation) as two commonly used evaluation targets on these datasets.

Evaluation details For a given perturbation strength € > 0, the (L-)robust accuracy Acc(f) of
a classifier f is defined as

Acce(f) = Bz y)~p1Va' ([l — 2’| oo < € = argmax f(z) = y)],

where 1[¢] equals 1 if ¢ holds and O otherwise. In particular, for ¢ = 0, Acco(f) =
E(z,y)~p1[argmax f(x) = y] coincides with the usual clean accuracy of the classifier f. This
robust accuracy is estimated using the AutoAttack library with the APGD method and 10 steps on a
given test dataset. The expected robustness is estimated by using the trapezoidal rule with evaluations
made with steps 1/255, so for example with e, = 4/255:

AUC 138 ACC%(f)"‘ACCi;—T}(f)
4/255(f) - 1 : 9 .
=0
C Additional Results
vit swin
100 100
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Figure 7: RFT can lead to suboptimal transfer even for small e. The variation of transfer accuracy
with the training perturbation strength ¢4 is not always smooth and is highly model- and dataset-
dependent.
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1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The topic and claims in the abstract are accurately reflected in the paper.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See the Limitations & Future work paragraph in the Conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results.

Guidelines:
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» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The paper explains the experimental setup sufficient to reproduce the results.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Only data is open-source for now. Code will be released later.
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Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Training details are provided in the appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: The results do have error bars which is not unusual in adversarial robustness
community due to compute requirements for adversarial training. Results presented are
reproducible and cover various experimental conditions.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification:
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: This paper mitigates vulnerability in deep neural networks and respects all
points in the NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: The societal impacts are discussed in the introduction.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper is based on already open-sourced and widely used tools.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have bibliographical references for all the datasets, and backbones, and
open source software used for this study.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

13


paperswithcode.com/datasets

549
550

551

552
553

554

555
556

557

564
565

566

567
568
569

570

571

572

573

574

575
576
577
578
579
580

581
582

583
584
585
586

587

588

589

590

591

592
593
594
595
596
597

598
599

13.

14.

15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We provide all the code base to reproduce the study and the dataset of the
collected results. These support the study but are not new assets.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper is based on open sourced datasets and backbones.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No research with human subjects or crowdsourcing.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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600 16. Declaration of LLLM usage

601 Question: Does the paper describe the usage of LLMs if it is an important, original, or
602 non-standard component of the core methods in this research? Note that if the LLM is used
603 only for writing, editing, or formatting purposes and does not impact the core methodology,
604 scientific rigorousness, or originality of the research, declaration is not required.

605 Answer: [NA]

606 Justification: LLM use does not impact core methodology.

607 Guidelines:

608 * The answer NA means that the core method development in this research does not
609 involve LLMs as any important, original, or non-standard components.

610 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
611 for what should or should not be described.
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