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Abstract

Implicit Neural Representations (INRs) have demonstrated both precision in continuous
data representation and compactness in encapsulating high-dimensional data. Yet, much
of contemporary research remains centered on data reconstruction using INRs, with limited
exploration into processing INRs themselves. In this paper, we endeavor to develop a model
tailored to process INRs explicitly for computer vision tasks. We conceptualize INRs as
computational graphs with neurons as nodes and weights as edges. To process INR graphs,
we propose INRFormer consisting of the node blocks and the edge blocks alternatively.
Within the node block, we further propose SlidingLayerAttention (SLA), which performs
attention on nodes of three sequential INR layers. This sliding mechanism of the SLA
across INR layers enables each layer’s nodes to access a broader scope of the entire graph’s
information. In terms of the edge block, every edge’s feature vector gets concatenated with
the features of its two linked nodes, followed by a projection via an MLP. Ultimately, we
formulate the visual recognition as INR-to-INR (inr2inr) translations. That is, INRFormer
transforms the input INR, which maps coordinates to image pixels, to a target INR, which
maps the coordinates to the labels. We demonstrate INRFormer on CIFAR10.

Keywords: Implicit Neural Representations, Neuron Permutation Symmetries

1. Introduction

Implicit Neural Representations (INRs) have emerged as a new paradigm for data repre-
sentation in computer vision (Park et al., 2019; Mescheder et al., 2019; Mildenhall et al.,
2020; Yariv et al., 2021; Wang et al., 2021). However, directly operating on the weight space
for vision tasks is challenging. First, the weight space in neural networks is intrinsic with
neuron permutation symmetries(Hecht-Nielsen, 1990), i.e., permuting the neurons in any
hidden layer of a neural network does not change the network functionality. Some meth-
ods (Dupont et al., 2022; Bauer et al., 2023) avoid the permutation equivariance modeling
by only handling the INRs whose weights are generated from latent codes. In this study,
we consider the general deep weight space learning problem. The second challenge is,
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weights and biases lack task-specific prior knowledge. Random image transformations for
augmentation improves the learning by introducing task-specific priors. However, these im-
age transformations are not straightforward to achieve equivalently on weights and biases.
Lacking such priors can lead to overfitting in the learning process. Recent works on neural
functional either ignore the priors(Zhou et al., 2023a) or introduce additional pre-training
for modeling the image prior(Zhou et al., 2023b; De Luigi et al., 2023). We attempt to
incorporate the priors into our model design with no need of pre-training.

More recent work(Zhang et al., 2023) provides a new perspective of weight-space mod-
eling. By perceiving INRs as computational graphs, Graph Neural Networks (GNNs)(Kipf
and Welling, 2016; Wang et al., 2019; Veličković et al., 2018) can be used to extract rep-
resentations from INRs. A generic GNN architecture is permutation equivariant(Bronstein
et al., 2021), which exactly satisfies the requirement of modeling permutation symmetries
in hidden layer neurons. However, we argue that the probe features proposed in (Zhang
et al., 2023) can leak the original image pixel information. Thus, it is not a pure weight
space representation learning model.

Considering INRs as graphs, we build the graph with weights as edges and neurons as
nodes. We embed the values in weight matrices as the initial edges features. Then, we
combine linked edges and layer position embedding together to initialize the node features.

We propose INRFormer to process INR graphs. INRFormer consists of the node up-
date blocks and the edge update blocks alternatively. In the node block, we further propose
SlidingLayerAttention (SLA), which performs attention on nodes of three sequential INR
layers. By sliding SLA across INR layers enables, each layer’s nodes can see a global scope
of the entire graph. In the edge block, every edge’s feature vector gets concatenated with
the features of its two linked nodes, followed by a projection via an MLP. Ultimately, we
formulate the considered vision tasks as INR-to-INR (inr2inr) translations. In particu-
lar, INRFormer transforms the input INR, which maps coordinates to image pixels, to a
target INR, which maps the coordinates to the labels. To boost the performance, we fur-
ther propose an auxiliary image crop reconstruction task to incorporate image priors into
the model. On CIFAR10, we achieve better results than NFN (Zhou et al., 2023a) and
comparable results with NFT (Zhou et al., 2023b).

2. INRFormer

We regard INRs as graphs G = (V, E) with neurons as nodes and weights as edges. By
conceptualizing neurons as nodes, we can model the permutation symmetries on neurons
directly with Graph Neural Networks (GNNs) while sparing the trouble of coordinating
the permutation of rows and columns in two neighboring weight matrices. Now image
classification becomes graph classification. However, INRs show many differences from
common graphs. First, for the same task, INRs share the same graph structure and can
only be distinguished between each other by weights. Second, INR graphs are hierarchical.

Based on these observations, we propose INRFormer to process INRs.
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2.1. Building INR Graphs

2.1.1. Node Features

Before feeding INR graphs into a graph neural network, we need to instantiate nodes in INR
graphs by associating features to them. We incorporate two sources of information in the
node features, including the features of linked edges and layer position embedding. Please
refer to Appendix B for details. Let V = {Vl ∈ Rnl×dn | l = [1 : L]} denote the nodes. dn
denotes the dimension of node features.

2.1.2. Edge Features.

Suppose the INR is parametrized with weights and biases (W , b). Each entry W ij
l ∈ R

represents an edge connecting the j-th neuron in (l − 1)-th layer to the i-th neuron in l-th
layer. We need to map each entry value from a scalarW ij

l to a higher dimension Ŵ ij
l ∈ Rdn .

We use de weight embedding (WE) functions W̄l = WE(Wl) = [WE1(Wl), · · · , WEde(Wl)].
Specifically, we use sinusoidal functions specified in Eq. 1.

2.2. Node Step: Sliding Layer Attention (SLA)

In the node update step, we propose Sliding Layer Attention (SLA). SLA is an attention
module operating on neurons across three consecutive layers. To process neurons of all the
layers, we slide SLA across all the INR layers.

In each sliding window including layers {l−1, l, l+1}, SLA first aggregates linked edges
into each node by pooling columns of the precedent edge tensor and rows of the subsequent
edge tensor V̂ i

l = V i
l +W i

l [:, :, ∗]+W i
l+1[:, ∗, :] where i denotes the i-th layer in INRFormer.

We perform attention over {V̂l−1, V̂l, V̂l+1}. In each sliding window, we aim to update
V̂l which is thus the query. We concatenate [V̂l−1, V̂l, V̂l+1] as the memory V̂l−1,l,l+1, i.e.,
keys and values. We compute the standard attention as follows

V i+1
l = Attention(Q,K, V ) = Attention(WQ(V̂l),WK(V̂l−1,,l+1),WV (V̂l−1,l,l+1))

By avoiding computing attention with neurons of all the layers, the time complexity of
updating a single layer’s neurons is reduced from O(nl

∑L
l=0 nl) to O(nl(nl−1 +nl +nl+1)).

2.3. Edge Step

After node step, to update edges, we concatenate two connected node features to the edge
feature itself. Then, we project the combined features with an MLP.

2.4. INR-to-INR Translation (inr2inr)

In this paper, we focus on the image classification task. Image classification usually requires
the model to output a 1-D distribution vector over all the classes. Thus, we need to extract
a representation vector from the last hidden graphs. Instead of pooling nodes or edges, we
treat vision tasks as INR-to-INR Translations (inr2inr). In other words, our INRFormer still
outputs INRs rather than vectors. By forwarding these output INRs with query coordinates
which are 2D grids points, we obtain the corresponding feature vectors in these positions.
By globally pooling all the feature vectors, we obtain a representation vector for each image.
Classification can be done by further appending a linear classifier.
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2.5. Auxiliary Task: Image Crop Reconstruction

Learning from weight space lacks the task-specific prior knowledge. We introduce an auxil-
iary task of reconstructing random image crop to help boost the image classification task.
To this end, we append an auxiliary head which is parallel to the classification head. This
auxiliary head also outputs INRs which reconstruct an image crop. To hint the auxiliary
head which image crop to reconstruct, we add grid coordinates of a random image crop
in neurons of the first layer when building the graph nodes in Sec.2.1.1. Such image crop
reconstruction can introduce image priors into the entire pipeline.

3. Experiments

3.1. Analysis of Designs

We demonstrate INRFormer on CIFAR-10 which has 50000 training samples and 10000 test
samples. We first analyze our model designs in Table 3 with a tiny model of size 0.7M.

LayerEmb WeightEmb #hint Aux Accuracy

✓ Sinusoidal 256 ✓ 50.57%

✗ Sinusoidal 256 ✓ 49.20%
✓ ChebshevPoly 256 ✓ 50.09%
✓ Sinusoidal 64 ✓ 49.13%
✓ Sinusoidal 256 ✗ 47.47%

Table 1: Ablation Studies. INRFormer is robust to layer embedding and different weight
embedding options.But INRFormer is sensitive to the number of hint points intro-
duced in Sec. 2.5. The auxiliary task is also important to get good results.

3.2. Comparison with Others

We scale the model up to the size of 1.9M and compare with related works in Table 2.

Model Size Accuracy

NFNHNP (Zhou et al., 2023a) - 44.3
NFNNP (Zhou et al., 2023a) ∼20M 46.5%
INR2ARRAYNFN (Zhou et al., 2023b) - 45.4%
INR2ARRAYNFT (Zhou et al., 2023b) 22M 63.4%
INRFormer (ours) 1.9M 60.24%

Table 2: Comparison with others. We achieve better result than NFN (Zhou et al.,
2023a) and comparable results with NFT (Zhou et al., 2023b) without pre-training.
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4. Conclusion

We conceptualize INRs as computational graphs with neurons as nodes and weights as
edges. To process INR graphs, we propose INRFormer consisting of the node blocks and
the edge blocks alternatively. Within the node block, we propose SlidingLayerAttention
(SLA), which performs attention on nodes of three sequential INR layers. Ultimately, we
formulate the visual recognition task as INR-to-INR (inr2inr) translations. In particular,
INRFormer transforms the input INR, which maps coordinates to image pixels, to a target
INR, which maps the coordinates to the labels. We demonstrate INRFormer on CIFAR10.
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Appendix A. Preliminaries

Let’s consider an INR that is an L-layer MLP,

h(x; {W , b}) = zL, zl+1 = σ(Wlzl + bl), z0 = PE(x)

where x denotes position coordinates, σ denotes the non-linear activation function, and PE

denotes a positional encoding function. In this case, the MLP h is parameterized by

W = {Wl ∈ Wl := Rnl×nl−1 | l ∈ [1 : L]}
b = {bl ∈ Bl := Rnl | l ∈ [1 : L]}

Thus, we define the weight space of an L-layer MLP as U =
⊕L

l=1(Wl ⊕ Bl). Considering
neurons in each hidden layer can be permuted independently, we define the symmetry group
of the weight space U to be the direct product of symmetric groups {Snl

} on all the hidden
layers: S = Sn1 × · · · × SnL−1 . Suppose h is an INR representing an image, permuting the
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hidden neurons in h modifies the weight matrices, but leaves the stored image information
unchanged (Hecht-Nielsen, 1990) — the network produces the same pixel value with same
input coordinates. In other words, h is invariant to S.

Let P = (P1, · · · ,PL−1) ∈ S. Particularly, Pl denotes the permutation matrix of layer l.
Equivalently on weight space, the rows in Wl, the columns in Wl+1, and bl are all permuted
by Pl,

W ′
l = P T

l WlPl−1, b′l = P T
l bl, l ∈ [1 : L]

Since the input neurons in INRs are position coordinates and the output neurons are pixel
values, the neuron orders in both the first and last layers are fixed, i.e., P0 and PL are
identity matrices.

Our goal in this paper is designing a neural network f that operates on weight space
V directly to extract representations which are ultimately invariant to S. Following the
notation routine in (Zhou et al., 2023a), we define S-invariant and S-equivariant functions
as,

f : U → Rd is S−invariant ⇐⇒ f(PU) = f(U), ∀ U ∈ U ,P ∈ S
f : U → U is S−equivariant ⇐⇒ f(PU) = P f(U), ∀ U ∈ U ,P ∈ S

An ultimately S-invariant f can be built by stacking any depth of S-equivariant modules
and appending an S-invariant module in the end of the stack. Thus, we focus on designing
two kinds of modules, the S-equivariant one and S-invariant one.

Appendix B. Building Node Features

Let V = {Vl ∈ Rnl×dn | l = [1 : L]} denote the nodes. dn denotes the dimension of node
features.
Source 1: Linked Edges. Suppose the INR is parametrized with weights and biases
(W , b) ∈ U . Each entry W ij

l ∈ R represents an edge connecting the j-th neuron in (l− 1)-

th layer to the i-th neuron in l-th layer. We first map each entry value from a scalar W ij
l

to a higher dimension Ŵ ij
l ∈ Rdn using dn weight embedding (WE) functions.

Ŵl = WE(Wl) = [WE1(Wl), · · · , WEdn(Wl)]

In this study, we investigate two kinds of weight embedding functions. The first kind is
Chebysehv Polynomials. Specifically, the k-th function is WEk(x) = Tk(x) where Tk(·) is the
k-th Chebyshev polynomial. The second kind is sinusoidal functions. In this case,

WE(Wl) = [sin(w1Wl), cos(w1Wl), · · · , sin(wdn/2Wl), cos(wdn/2Wl)]

where {w1, · · · , wdn/2} are evenly sampled from range from 0 to 10.

After we obtain higher-dimensional edge features Ŵl ∈ Rdn×nl×nl−1 , we incorporate the
edge information to the node features as follows,

V
(1)
l = bl + Ŵl[:, :, ∗] + Ŵl+1[:, ∗, :]

where ∗ denotes the pooling operation over the specified dimension and : denotes keeping
the specified dimension unchanged. We use max pooling as the pooling operation Qi et al.
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(2017). Briefly speaking, the above procedure initializes node features with the linked weight
matrix entries and biases.
Source 2: Layer Position Embedding. We further encode the layer position information
into the node features. We create L learnable parameters {LEl ∈ Rdn | l ∈ [0 : L]} as Layer

Embeddings, i.e., V
(2)
l = LEl.

Finally, we combine these two sources as the final node features Vl = V
(1)
l + V

(2)
l

Appendix C. Sinusoidal Weight Embedding Functions

WE(Wl) = [sin(w1Wl), cos(w1Wl), · · · , sin(wdn/2Wl), cos(wdn/2Wl)] (1)

where {w1, · · · , wdn/2} are evenly sampled from range from 0 to 10.

Appendix D. Complete Ablation Studies

LayerEmb WeightEmb #hint #query Aux
Same Tr/Ts
Init Weights

Accuracy

✓ Sinusoidal 256 64 ✓ ✓ 50.57%

✗ Sinusoidal 256 64 ✓ ✓ 49.20%
✓ ChebshevPoly 256 64 ✓ ✓ 50.09%
✓ Sinusoidal 64 64 ✓ ✓ 49.13%
✓ Sinusoidal 16 64 ✓ ✓ 47.89%
✓ Sinusoidal 256 256 ✓ ✓ 50.01%
✓ Sinusoidal 256 16 ✓ ✓ 49.19%
✓ Sinusoidal 256 64 ✗ ✓ 47.47%
✓ Sinusoidal 256 64 ✓ ✗ 47.01%

Table 3: Ablation Studies on INRFormer Design. INRFormer is robust to layer em-
bedding, different weight embedding options and the number of query points (the
points fed to the output INRs to get feature vectors). On the other hand, IN-
RFormer is sensitive to the number of hint points introduced in Sec. 2.5. The
auxiliary task is also important to get good results. We also test our model gener-
alization ability across different initial weights. Interestingly, our model can gen-
eralize to INRs which are initliazed with different random seeds from the training
initial random seeds.
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