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ABSTRACT

Measurement errors in quantum computers are very detrimental to quantum com-
putations. The ability to efficiently and accurately readout quantum states is cru-
cial for quantum error correction schemes and quantum algorithms. Readout fi-
delity is typically limited by a poor signal-to-noise (SNR) ratio between the quan-
tum states we intend to classify, as well as energy relaxation (e.g., T1 decay) from
an excited state to a lower state during readout. Superconducting quantum bits
(qubit), one of the leading candidates for scalable quantum computing hardware,
are particularly limited by energy relaxation due to their relatively short coherence
times. While most approaches for classifying the results of readout on supercon-
ducting qubits typically utilize clustering algorithms (e.g., a Gaussian mixture
model) on integrated readout signals, these cannot distinguish between a quantum
bit that was in the ground state prior to measurement from a qubit that decays to
the ground state during measurement. For this reason, we instead propose using
machine learning (ML) on the raw (non-integrated) analog signal and classifica-
tion models on the full time series data (i.e., the trajectory). We observe that
time series classification methods, such as our chosen long short-term memory
(LSTM) model, in combination with filtering and feature engineering techniques,
consistently outperform clustering models. In particular, we find that the largest
improvements come from reclassifying points in the boundary regions between
neighboring clusters. These boundary points correspond to measurement records
that deviate from the typical cluster, likely due to transient or noisy features in
the signal that are not captured when the data is integrated. By retaining tempo-
ral information, sequence-aware models such as LSTMs can better discriminate
these trajectories, whereas clustering methods based on integrated values are more
prone to misclassifications.

1 INTRODUCTION

Quantum computing offers exponential speedups for a range of important problems, including cryp-
tography and simulation (Shor, 1997a; Arute et al., 2019; King et al., 2024). However, to out-
perform state-of-the-art classical supercomputers, quantum processors must achieve significantly
lower error rates. This requirement can be met through error-correcting codes, as well as contin-
ual improvements in hardware, control, and qubit readout (Gidney and Ekerå, 2021; Shor, 1997b).
Among leading platforms, superconducting qubits stand out for their scalability and fast gate op-
eration times (Kjaergaard et al., 2020), but they are also highly susceptible to noise and decoher-
ence (Devoret and Schoelkopf, 2013). In fact, recent experiments with a 142-qubit superconducting
processor revealed that measurement and reset errors dominate the total error budget, underscoring
the critical need for more accurate readout methods (Acharya et al., 2023).

Superconducting qubit readout is typically performed using dispersive coupling, where a resonator
coupled to the qubit shifts its frequency depending on the qubit state (Wallraff, 2005). An analog
probe pulse traverses the resonator and acquires state-dependent amplitude and phase shifts, which
are digitized into in-phase (I) and quadrature (Q) components (Reed et al., 2010; Walter et al., 2017).
After integrating these signals over the readout window, each measurement corresponds to a single
point in the I-Q plane, forming clusters associated with different qubit states. The most widely
used method for distinguishing these clusters is the Gaussian Mixture Model (GMM), which fits a
two-dimensional Gaussian distribution to the integrated data (Jeffrey et al., 2014).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Beyond GMMs, supervised learning approaches such as feed-forward neural networks and support
vector machines have also been explored (Magesan et al., 2015; Vora et al., 2024). While these
integration-based methods provide relatively fast and high-fidelity readout, they often fail in regions
where temporal information is essential, particularly for signals corrupted by stochastic noise, de-
cay, or measurement-induced transitions (Khezri et al., 2023; Vijay et al., 2011; Gambetta et al.,
2007). These limitations highlight the need for readout strategies that explicitly leverage the tempo-
ral structure of the signal.

In this work, we introduce a classification framework based on a long short-term memory (LSTM)
network applied directly to the raw time-series data, combined with filtering and feature-engineering
techniques. By preserving temporal correlations that are lost in integration-based schemes, our ap-
proach provides robustness against transient errors and is especially effective in correctly classifying
states near cluster boundaries where decay events are most prevalent. We benchmark our method
against conventional approaches using experimental data collected from superconducting qubits in
a laboratory environment, demonstrating consistent improvements in classification accuracy.

The remainder of this paper is organized as follows. Section 2 provides an overview of the under-
lying physics of superconducting qubits. Section 3 describes the experimental setup and readout
architecture, along with the classification approaches we evaluated. Section 4 presents a detailed
comparison of classification performance, highlighting the regimes where our method offers signifi-
cant gains. Finally, Section 5, 6 concludes with a discussion of related works and potential directions
for future research.

2 BACKGROUND

2.1 QUANTUM BITS
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Figure 1: Bloch sphere repre-
sentation.

Quantum bits, or qubits, encode the quantum states of a system into
computational states. Unlike classical bits that can only take values
of 0 or 1, qubits can exist in coherent superpositions of both states.
This property is often visualized on the Bloch sphere (Figure. 1),
where any point on the sphere corresponds to a valid qubit state.
Extending this concept, our work considers qutrits, which allow
three basis states |0⟩, |1⟩, and |2⟩, with a general state given by

|ψ⟩ = a |0⟩+ b |1⟩+ c |2⟩ . (1)

Such higher-dimensional quantum systems expand the available
Hilbert space and enable richer encodings than classical counter-
parts, offering significant potential speedups in applications such as
quantum simulation and cryptography (Grover, 1996; Shor, 1997a).

Among various hardware platforms, superconducting transmon
qubits are one of the most widely used due to their scalability and
fast gate operation times (Kjaergaard et al., 2020). In these systems,
computational states correspond to physical energy eigenstates of a Josephson junction circuit (Koch
et al., 2007). However, superconducting qubits are inherently open quantum systems and are sub-
ject to energy relaxation and dephasing. The dominant error channel is energy relaxation, or T1
decay, where an excited state stochastically relaxes to a lower state. Additional contributions from
dephasing processes, collectively characterized as T2 decay, further degrade coherence (Gambetta
et al., 2007; Vijay et al., 2011). These decay mechanisms lead to measurement errors when a qubit
partially relaxes during the short time of the readout pulse, making accurate state discrimination
especially challenging.

To evaluate our proposed time-series classification methods across a range of experimental condi-
tions, we collected readout data from eight fixed-frequency transmon qubits, with coherence times
spanning from 24 µs up to 120 µs for the |1⟩ state. These qubits serve as a representative testbed for
assessing classification performance under realistic noise and decay dynamics in superconducting
architectures.
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2.2 READOUT SETUP

Our experiments were performed using the QubiC 2.0 control system, an FPGA-based platform
for scalable qubit control and readout (Xu et al., 2023; 2021). As shown in Fig. 2, qubit drive
and readout pulses are generated by an RFSoC (Radio Frequency System on Chip) with digital-to-
analog converters (DACs), transmitted through the cryogenic stack to the qubit processor, and then
amplified and digitized by analog-to-digital converters (ADCs).

In the standard approach, the readout signal is mixed with a local oscillator (DLO) and
then integrated over the duration of the pulse to obtain a single I-Q point for classi-
fication. This integration process removes most temporal information, making methods
such as Gaussian Mixture Models (GMMs) the conventional choice for state discrimination.
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Figure 2: Control and readout schematic

In contrast, our setup records the non-
integrated, mixed time-series directly from the
ADC using an acquisition buffer. This pre-
serves temporal dynamics in the readout sig-
nal, enabling sequence-aware models such as
LSTMs to exploit information that would oth-
erwise be averaged out.

To improve measurement fidelity, we imple-
ment a heralding step before each experiment
to verify that the qubit is in the ground state
|0⟩, discarding shots that fail preparation (John-
son et al., 2012). We then insert a 1 µs delay
between the heralding readout and the subse-
quent drive pulse to allow residual photons in
the resonator to dissipate. Additionally, small
state-dependent delays (120 ns for |0⟩ and 60 ns
for |1⟩) are applied between the drive and read-
out pulses. These delays ensure that all circuits
share a consistent effective start time, prevent-

ing artificial phase offsets that could bias time-series classification.

Each readout pulse lasted 750–1000 ns and was digitized at two samples per nanosecond, yield-
ing 1500–2000 sequential timesteps per shot. This high-resolution dataset forms the basis for our
comparison between integration-based classifiers and sequence-aware approaches.

3 APPROACH

3.1 DATA PRE-PROCESSING

Directly applying a time-series classifier to raw readout traces is not effective, as the signals are dom-
inated by environmental and electronic noise. To improve classifier performance, we first applied
pre-processing techniques to extract more informative features while suppressing spurious fluctua-
tions. In this work, we focused on two complementary approaches: path-based feature engineering
and bandpass filtering. The impact of these methods on the readout signal can be seen in Figures. 3
and 4.

3.1.1 PATH FEATURES

Errors in qubit readout can arise from transient fluctuations, environmental noise, or relaxation pro-
cesses that occur during the measurement window. To better capture these time-dependent effects,
we engineered path-based features inspired by prior work (Cao et al., 2025). The path transform of
a signal is defined as

X(t) =

∫ t

0

w(τ)dX(τ), (2)

where each time step accumulates the weighted contributions of all previous samples. This cu-
mulative representation reduces the impact of short-timescale noise while emphasizing longer-term

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

dynamics across the readout pulse. As illustrated in Figure. 4, raw trajectories exhibit irregular
fluctuations, whereas the path-transformed trajectories form smoother and more separable curves
between states. We additionally evaluated path signatures (Chevyrev and Kormilitzin, 2025), which
provide a systematic way to compress two-dimensional trajectories into compact feature sets, yield-
ing 63 features at order five.

Readout
Frequency
(Aliased)

Figure 3: Fourier spectra of the readout signal before and after bandpass filtering. The raw signal
(left) exhibits broadband noise across the spectrum, while the filtered signal (right) isolates a sharp
peak at the aliased readout frequency, significantly reducing off-resonant noise contributions.

3.1.2 BANDPASS FILTERING

In parallel, we employed frequency-domain filtering to suppress noise outside the readout band.
Specifically, a ±5 MHz bandpass filter centered on the qubit readout frequency was applied to each
trace. This removes broadband environmental fluctuations while preserving the signal components
most strongly coupled to the qubit state. Figure 3 compares the Fourier spectra of raw and filtered
signals: the unprocessed data contain strong noise across the band, whereas the filtered spectrum
isolates a clean peak at the aliased readout frequency. The corresponding trajectories in Figure 4
show improved clustering and reduced distortion compared to the raw case, further supporting the
benefit of filtering.

Together, these pre-processing methods reduce the sensitivity of the classifier to stochastic fluctua-
tions while enhancing the temporal and spectral features that reflect true qubit state dynamics.

3.2 LSTM

Time-dependent fluctuations, environmental noise, and relaxation processes can occur at any point
during a readout sequence, making classification challenging. Conventional integration-based meth-
ods average out these effects, whereas sequence-aware models are capable of learning features dis-
tributed across the entire trajectory. To address this, we employ a long short-term memory (LSTM)
network (Bengio et al., 2000), which is well-suited for capturing temporal dependencies in sequen-
tial data.

A practical challenge is that directly fitting the full-resolution traces, which contain up to 2000
timesteps per shot, often leads to poor convergence due to the dominance of redundant information.
To mitigate this, we perform binning of the time-series before passing it to the LSTM. Each binned
input represents the average of consecutive timesteps, effectively reducing noise while retaining the
temporal structure. This binning procedure is applied consistently across all variants of the input
data: raw traces, path-transformed signals, and bandpass-filtered signals, ensuring a fair comparison
between preprocessing strategies.

The LSTM architecture consists of one or more hidden layers with tunable size, followed by a
sigmoid activation layer for multi-class classification. Training is performed using categorical cross-
entropy loss. To further improve performance, we adopt a sample-weighting scheme inspired by
cost-sensitive learning (Zadrozny et al., 2003). Specifically, points near the centers of Gaussian
mixture model (GMM) clusters, where misclassifications are least expected, are weighted more
heavily. Intuitively, these central points represent “clean” readouts that are well-separated in the I-Q
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plane and correspond to qubits that remained in their prepared states throughout the readout window.
By giving them higher weights, the LSTM is penalized more strongly for misclassifying cases that
even a simple GMM would handle correctly.

In this way, the weighting scheme strikes a balance: it anchors the classifier to perform reliably
on high-confidence data while encouraging it to improve upon the conventional GMM in the more
challenging regions of state overlap. Performance across hidden layer sizes and preprocessing con-
figurations is presented in Section 4. As shown there, the combination of LSTMs with binning
enables stable training and consistent accuracy improvements over baseline classifiers.

Start 
T= 0ns

∆T = 50ns

Figure 4: Comparison of qubit state trajectories in the I-Q plane under different preprocessing meth-
ods. Raw trajectories (left) contain irregular fluctuations and overlapping regions between states.
Path-transformed trajectories (middle) smooth out short-timescale noise and highlight longer-term
dynamics, leading to clearer separation between states. Filtered trajectories (right) suppress high-
frequency noise, further improving cluster structure and discriminability.

4 RESULTS

All experiments were performed with an 80-20 train–test split on datasets collected from real super-
conducting transmon qubits. Each dataset contained approximately 25,000 shots per state, or 75,000
shots per qubit. Ground truth labels were defined by the control pulses sent to prepare each qubit
state. For example, a shot was labeled as state |1⟩ if the board was instructed to apply an X-180 drive
pulse, regardless of whether the qubit fully transitioned into |1⟩. Preparation errors of this kind are
negligible compared to measurement noise and stochastic fluctuations during readout.

The readout pulses used in our experiments had durations generally in the range of 750 ns to 1000
ns, which is typical for high-fidelity dispersive readout schemes balancing speed and measurement
accuracy.

4.1 LSTM VS. GMM CLASSIFICATION

Across all eight qubits, the LSTM classifier achieved higher readout fidelities than the Gaussian
Mixture Model (GMM) baseline (Table 2). Figure 5 illustrates the source of these gains: the LSTM
correctly classifies many boundary points between neighboring clusters (panel B), where transient
fluctuations or relaxation processes make states ambiguous. Importantly, the LSTM does not mis-
classify points at the centers of clusters (panel C), ensuring robustness on high-confidence data while
improving accuracy in difficult regions. This demonstrates that temporal information preserved in
the raw traces provides a genuine advantage over integration-based methods.

A detailed state-resolved comparison is shown in Table 1, where LSTM + filtering improves GMM
performance across nearly all qubits and states, with the most pronounced gains in the |1⟩ subspace.

In summary, LSTM classifiers outperform GMMs by recovering ambiguous boundary cases while
maintaining accuracy on well-separated cluster centers.

5
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A B C

Figure 5: Comparison of LSTM and GMM classification performance in the I-Q plane. (A) Cluster
distributions of the three prepared states (|0⟩, |1⟩, |2⟩), showing the overlap regions where misclas-
sifications are most likely. (B) Points highlighted in color indicate cases correctly classified by the
LSTM but misclassified by the GMM. These improvements are concentrated near cluster bound-
aries, where transient fluctuations and relaxation effects create ambiguity. (C) Points highlighted in
color represent cases misclassified by the LSTM but correctly classified by the GMM, which are
comparatively fewer. Overall, the LSTM provides more robust classification in boundary regions by
leveraging temporal information from the full readout trace.

4.2 COMPARISON OF PREPROCESSING METHODS

We next compared LSTM classifiers trained on raw, path-transformed, and filtered signals. In all
cases, binning of the input sequences was applied to suppress high-frequency noise and reduce
model complexity. As shown in Table 2, performance differences between raw, path, and filtered
inputs are small; however, filtering consistently provides the best or near-best fidelity across qubits.
Path-based features occasionally smooth trajectories but do not offer significant improvements over
raw inputs. We therefore identify bandpass filtering combined with LSTM as the most reliable
approach across devices.

GMM LSTM+Filter
Qubit 0|0⟩ 1|1⟩ 2|2⟩ 0|0⟩ 1|1⟩ 2|2⟩

0 0.988 0.972 0.962 0.996 0.990 0.961
1 0.994 0.983 0.973 0.997 0.985 0.978
2 0.989 0.975 0.958 0.996 0.978 0.967
3 0.954 0.879 0.971 0.972 0.940 0.970
4 0.988 0.930 0.951 0.996 0.946 0.956
5 0.999 0.976 0.964 0.998 0.985 0.969
6 0.991 0.864 0.938 0.991 0.912 0.935
7 0.996 0.944 0.902 0.998 0.962 0.900

Table 1: State-wise classification fidelity for GMM vs. LSTM+Filter across all qubits.

4.3 ERROR MITIGATION AND ROBUSTNESS

The largest accuracy gains appear in the |1⟩ and |2⟩ states, consistent with the fact that these are most
affected by noise and fluctuations. Notably, the LSTM also improves |0⟩ classification, highlighting
its sensitivity to measurement-induced transitions and other non-decay errors. Improvements are
observed regardless of qubit coherence times, indicating that the model captures general temporal
signatures beyond simple T1 relaxation. This suggests that LSTM-based classifiers remain useful as
superconducting hardware advances toward longer coherence and higher fidelities.

6
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Qubit Baseline (GMM) LSTM Path + LSTM Bandpass filter
+ LSTM

Q0 0.973 ± 0.003 0.980 ± 0.001 0.981 ± 0.001 0.982 ± 0.001
Q1 0.983 ± 0.001 0.986 ± 0.001 0.985 ± 0.001 0.986 ± 0.001
Q2 0.973 ± 0.002 0.979 ± 0.001 0.979 ± 0.001 0.980 ± 0.001
Q3 0.934 ± 0.003 0.961 ± 0.002 0.962 ± 0.002 0.960 ± 0.002
Q4 0.956 ± 0.002 0.965 ± 0.002 0.965 ± 0.002 0.965 ± 0.002
Q5 0.979 ± 0.001 0.983 ± 0.001 0.983 ± 0.001 0.983 ± 0.001
Q6 0.930 ± 0.002 0.944 ± 0.002 0.944 ± 0.002 0.946 ± 0.002
Q7 0.947 ± 0.002 0.949 ± 0.002 0.940 ± 0.002 0.953 ± 0.002
Avg 0.959 ± 0.002 0.968 ± 0.002 0.967 ± 0.002 0.969 ± 0.002

Table 2: Comparison of average classification fidelity across three states for different models.

4.4 IMPLEMENTATION AND TRAINING

All LSTM models were trained with consistent hyperparameters: a learning rate of 0.0001 with
exponential decay every 10 epochs, batch size of 256, and 100 epochs. Binning was critical to ensure
convergence: without binning, models required significantly larger hidden layers to beat the GMM
baseline, whereas binning allowed smaller models (as few as 4–8 hidden nodes, corresponding to
112–768 parameters) to achieve superior performance. These compact models make the approach
feasible for deployment in real-time readout hardware.

This consistency in hyperparameters and efficiency of small models highlights the practicality of
deploying LSTM classifiers directly in superconducting qubit readout pipelines.

5 RELATED WORKS

Time-dependent classifiers for qubit readout have been investigated in several prior studies. Hidden
Markov Models (HMMs), deep neural networks, and path signature–based classifiers are among the
most common approaches (Martinez et al., 2020; Lienhard et al., 2022; Cao et al., 2025). HMMs
are particularly effective at detecting decay events, as they explicitly model state transitions during
the readout pulse. However, their improvements are strongly dependent on readout length and qubit
coherence time, and they are less effective in addressing other sources of time-dependent noise such
as environmental fluctuations.

Neural network–based classifiers, including deep feed-forward networks and autoencoders, have
demonstrated fidelity improvements by leveraging nonlinear feature learning. These methods pro-
vide advantages such as transfer learning and flexible adaptation to new datasets, but they often
require large parameter counts or qubit-specific tuning. Path signature methods [ (Cao et al., 2025)]
offer another alternative by compressing trajectories into structured features, which can then be
classified by random forests or similar models. While path signatures capture decay-like features
effectively, they introduce substantial computational overhead and, at higher orders, require more
features than simpler binning strategies without consistently yielding better results.

In comparison, our LSTM-based approach retains the key strengths of time-series models—namely
the ability to exploit temporal correlations—while remaining lightweight and hardware-efficient.
Across the same datasets, the GMM baseline achieved an average fidelity of about 95.9%, while
path signature random forest [Cao et al. (2025)] methods improved slightly to 96.2%. Our LSTM
classifier with bandpass filtering reached 96.9%, providing the most consistent improvement across
all qubits. Moreover, the model trains with consistent hyperparameters across devices, requires
fewer parameters than many deep learning alternatives, and demonstrates robust improvements even
on high-coherence, less noisy qubits. This combination of consistency, efficiency, and generalizabil-
ity makes LSTM + filtering a practical choice for near-term superconducting quantum processors.
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6 CONCLUSION AND FUTURE WORK

Measurement remains a leading source of error in superconducting quantum processors. While
conventional approaches rely on time-integrated classifiers such as Gaussian Mixture Models, we
demonstrated that an LSTM-based classifier applied to bandpass-filtered readout traces can better
exploit temporal correlations. Using data from eight superconducting transmon qubits, our method
achieved an average ∼ 1% fidelity improvement over GMMs, with the greatest gains in the |1⟩ and
|2⟩ subspaces. Crucially, the LSTM improved classification of ambiguous boundary cases without
sacrificing accuracy on high-confidence points, confirming its robustness to time-dependent fluctu-
ations and noise.

These results highlight LSTMs as a lightweight and hardware-feasible enhancement to readout fi-
delity, directly contributing to improved circuit performance and reduced overheads for fault tol-
erance. Future work will extend this approach to multi-qubit readout, where correlated noise and
crosstalk present new challenges, and explore integration into FPGA-based hardware for real-time
feedback. More generally, sequence models such as LSTMs provide a flexible framework that can
be applied across qubit modalities, making time-series–based classification a practical path toward
more reliable quantum computing.
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