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Abstract
In this paper, we study theoretically inspired lo-
cal geometric descriptors of the data manifolds
approximated by pre-trained generative models.
The descriptors – local scaling (ψ), local rank (ν),
and local complexity (δ) — characterize the un-
certainty, dimensionality, and smoothness on the
learned manifold, using only the network weights
and architecture. We investigate and emphasize
their critical role in understanding generative mod-
els. Our analysis reveals that the local geom-
etry is intricately linked to the quality and di-
versity of generated outputs. Additionally, we
see that the geometric properties are distinct for
out-of-distribution (OOD) inputs as well as for
prompts memorized by Stable Diffusion, showing
the possible application of our proposed descrip-
tors for downstream detection and assessment of
pre-trained generative models.

1. Introduction
In recent years, deep generative models have emerged as a
powerful tool in machine learning, capable of synthesizing
realistic data across diverse domains (15; 16; 21). However,
evaluating these models remains a critical challenge that
extends beyond assessing mere sample quality and condi-
tional alignment to broader concerns about algorithmic bias
and responsible generation. Current methods for evaluating
generative models heavily rely on data-driven approaches
or human evaluators, both of which have inherent limita-
tions. Data-dependent assessments can be biased by the
availability and representativeness of the data, while human
evaluators introduce subjectivity, leading to potential biases
in the assessment process. Data-dependent assessments,
while valuable, are inherently constrained by the availability
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Latent Domain, Z ∈ R2 Data Manifold, Im(G) ∈ R3

z ∼ U(Z) x = G(z)

Figure 1. Analytical visualization of the piece-wise linear manifold
(top-right) learned by a toy MLP generator G : R2 → R3 with
Width 20 and Depth 3. The generator subdivides the input space
(top-left) into convex regions and affinely maps each region to the
output (top-right). Regions are colored by the local scaling ψω (↑
for blue), induced by their corresponding affine maps. Uniform
latent distribution (bottom-left) and generated samples (bottom-
right) colored by a Kernel Density Estimate (KDE) of the output
distribution (↓ blue), shows a strong correlation between KDE and
local scaling induced by the generator. Local scaling is indicative
of the un-normalized uncertainty of a latent vector.

and representativeness of the data used. This limitation can
inadvertently introduce bias into the evaluation process, as
models may be unfairly penalized or favored based on the
specific data they are evaluated against. Similarly, human
evaluators, though often considered the gold standard, in-
evitably bring their own subjective biases to the assessment,
leading to potential inconsistencies and unfair comparisons
between models (3).

In light of these challenges, our paper poses a fundamen-
tal question; Can we use local geometric characteristics
of a generator data manifold for assessment?. This ques-
tion is inspired by prior research that has demonstrated the
utility of curvature in various aspects of generative model-
ing, such as improving variance estimation (1), latent space
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Figure 2. Geometric descriptors for 1) left-panel: a Denoising Diffusion Probabilistic Model trained on a 1-manifold embedded in R2 and
2) right-panel: the Stable Diffusion (21) VQGAN decoder computed for a 2D subspace of the latent space that passes through the denoised
latents of ”a fox”, ”a cat” and ”a dog” (marked ’X’). We see that with decreasing t in the reverse diffusion process, local scaling ψt and
local rank νt decreases, while local complexity δt increases on the domain of a denoised gaussian distribution (zT ) at denoising step t
(zt). Note that ψt is proportional to the change in density between zt and zt−1. The variance of ψ0 and ν0 across R2 is significantly
lower than t ̸= 0. For the stable diffusion latent space subspace visualized here, we see that ψ,δ is higher and ν is in the convex hull of
the three denoised latents. For ν we see pockets of low rank regions in the convex hull, indicating that latents outside the latent space
domain of the VQGAN has considerably higher rank. See appendix for decoded images from the subspace.

sampling (13), and controlling attributes in generated sam-
ples (8).

We introduce a new self-assessment framework for gener-
ative models using local geometry based on the theory of
continuous piecewise affine spline generators (11; 2). We
define three geometric measures: local scaling (ψ), local
rank (ν), and local complexity (δ) to capture uncertainty,
dimensionality, and smoothness, respectively. Our experi-
ments show these correlate with quality, aesthetics, diversity,
and bias in generated data. Additionally, the framework al-
lows for out-of-distribution detection and model comparison.
Specifically, we make the following contributions: (A) De-
fine local descriptors (scaling, rank, complexity) based on
data manifold geometry (Section 2). (B) Investigate how
these descriptors correlate with quality, aesthetics, and diver-
sity in generated data, revealing potential for bias detection
(Section 3).

2. Geometric Descriptors of the Learned Data
Manifold

Consider a generative network G, which can be the decoder
of a Variational Autoencoder (VAE) (17), the generator of a
Generative Adversarial Network (GAN) (6) or an unrolled
denoising diffusion implicit model (DDIM) (22). Suppose,
G : RE → RD is a deep neural network containing with
L layers, input space dimensionality E and output space
dimensionality D.

Let, the generator layer operations and activation functions
be continuous piece-wise linear, e.g., fully-connected, con-
volution, or pooling layers and leaky-ReLU or ReLU activa-
tions. Therefore, the data manifold or image of the generator
Im(G) is formed via a continuous piece-wise affine mapping
of the latent space RE onto the output space RD, with the
data manifold having a dimensionality of at most E every-
where. The data manifold can thus be expressed as the union
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of sets:

Im(G) =
⋃
ω∈Ω

{Aωz + bω : z ∈ ω}, (1)

where, Ω is the partition of the latent space RE into
piecewise-linear regions, Aω and bω are parameters of
the affine mapping from latent space vectors z ∈ ω to
the data manifold. Here Aω, bω are functions of the neu-
rons/parameters of the network, such that entries in Aω are
non-zero only if the corresponding activation function is
active for all the vectors in ω. Aω, bω∀ω ∈ Ω are therefore
parameters of a continuous piecewise affine spline function
that represents the generator (2).

Illustrative Example: Toy generator trained on a f :
R2 → R3 task. To illustrate the idea of a continuous piece-
wise linear manifold, we train a toy generator G : R2 → R3

with depth 3 and width 20, to map a 2-dimensional latent
space onto a toy 2-manifold in a 3-dimensional output space.
In Fig. 1-top, we present analytically computed visualiza-
tion (10) of the piece-wise linear manifold learned by the
generator as well as the latent space partition Ω represented
by dark lines. Every black line represents a non-linearity of
the function that folds/bends the latent space while going
from R2 to R3. Therefore, the black lines are knots of the
continuous piecewise affine spline generator. Each convex
region ω formed by the intersection of the black lines, is
mapped to Im(G) via per region parameters as described in
Equation 1. Given such a piece-wise affine manifold we
propose the following local geometric descriptors:

Local scaling, ψ. For a continuous piece-wise linear mani-
fold produced by generator G the local scaling is constant
for every region ω and can be expressed as:

ψω =
k∑
i

log(σi), (2)

where {σi}i=ki=0 are k non-zero singular values of Aω. Con-
sider a uniform distribution at the input of G. The output
density on every region of Im(G) would therefore be propor-
tional to eψω , with lower likelihood for higher eψ. ψω can
therefore be considered an non-normalized log-uncertainty
measure for a given generator region ω. We demonstrate
the effect of ψ in Fig. 1-top, where each region in the top
row are colored by eψ .

Local complexity, δ. The local complexity of a continuous
piece-wise linear Deep Neural Network, is a measure of the
density of linear regions in a neighborhood (7). Therefore,
the local complexity of Im(G), for a latent vector z can be

written as:

δz =
∑

∀ω∈Vz

1ω

where Vz = {x ∈ RE : ||Bx−Bz||1 < r}.

Here, B is an arbitrary wide orthonormal matrix, ||.||1 is
the ℓ1 norm operator and r is a radius parameter denoting
the size of the locality to compute δ for. We use the method
described in (14) to estimate the number of regions ω inside
ℓ1-ball Vz centered on z.

Local rank, ν. Similar to ψω , local rank νω is also constant
per-region and can be expressed as:

νω = exp

(
−
∑
i

pi log(pi)

)
where pi =

σi∑
i σi

+ eps.

Here, σi are singular values of Aω and eps= 10−30

is a constant. The local rank νω therefore denotes the
dimensionality of the locally linear subspace on the data
manifold to which ω is mapped to.

;

Figure 3. Images with the lowest (left) and highest (right) local
rank ν from a set of 20000 randomly sampled ImageNet dataset
samples. Low rank images contain simpler textures for every class
compared to the high rank samples. This is because for images
with higher local rank, the learned manifold is higher dimensional
locally therefore allowing higher independent degrees of variations
for the generated images.

What do these descriptors describe? Metrics like local
scaling, local complexity, as well as the local rank have pre-
viously been used in the context of Deep Neural Networks
(7; 14), Self-Supervised Learning (5) as well as Generative
Modeling (18; 12). The local scaling for any given region of
a continuous piecewise linear function denotes the change
of density by the input-output mapping (12), with higher
scaling resulting in higher uncertainity. The local complex-
ity of a network has been shown to quantify the smoothness
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Figure 4. Geometric descriptors computed for the VQGAN decoder, during 50 stable diffusion denoising steps, for (top) 100 COCO and
100 memorized prompts (23) with guidance scale 7.5 and (bottom) 100 COCO prompts with varying guidance scales. Each prompt is
generated for 4 seeds and we use the same set of seeds for different guidance scales as well as prompt types. Shaded region represents
95% confidence interval. We see that the local geometry trajectories are discriminative of memorization, as well as increased quality
when using stronger classifier free guidance.

or expressivity of the function learned by a DNN (19). The
local rank for any given region, is the rank of the linear
operation for that region. Therefore it denotes the local
dimensionality of the learned manifold.

Going back to Fig. 1, we sample uniformly from the latent
space Z and fit a gaussian kernel density estimator on the
samples generated in R3. In Fig. 1-right, we present uniform
samples from the latent space, as well as samples from the
data manifold colored by the kernel density estimate (KDE).
Therefore local scaling ψ is inversely proportional to the
density of the learned distribution by a generative model, or
proportional to the uncertainity of the model for any latent
vector.

3. Exploring Generative Model Manifolds
using Descriptors

In this Section we will be exploring the geometry of the
data manifolds learned by various generative models, e.g.,
denoising diffusion probabilistic models (9), latent diffusion
models like Stable Diffusion (21).

DDPM trained on toy f : R2 → R2 generation task.
We train a denoising diffusion probabilistic (9) model on
a toy dataset1 and present the local complexity δt, local
scaling ψt and local rank νt at denoising timesteps t ∈
{6, 17, 28, 39, 50} in Fig. 2-(Left Panel). For any given
timestep, the local scaling ψt is proportional to the local
concentration of density going from timestep t to t− 1. We

1http://www.thefunctionalart.com/2016/08/download-
datasaurus-never-trust-summary.html

Figure 5. Chest X-ray vs Imagenet local scaling and local rank
for Stable Diffusion. Local geometry is descriptive of whether a
dataset is out of distribution.

Figure 6. Vendi Score Computed on Clip Image Embeddings for
50k Generated Samples of ImageNet Classes. The y-axis repre-
sents the Vendi score, while the x-axis displays bins for sorted
values of local scaling (blue) and local rank (orange), increasing
from left to right. See Figure 8 and Figure 9 in the Appendix for
samples of generated images corresponding to each bin for local
scaling and local rank respectively.

see that ψt for smaller t is low on the data manifold, and
higher in the regions adjacent to the data manifold. The local
complexity is higher around the data manifold denoting
higher expressivity (20) of the network, increasing with
decreasing t. Local rank is lower around the data manifold
until the last few denoising steps, when the variance of ψ
and ν across the input space diminishes.
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Local geometry of Stable Diffusion We explore how the
geometric descriptors vary for Stable Diffusion v1.4 (21)
which is a text-to-image latent diffusion model. We compute
the geometric descriptors for the decoder only. Note that in
Section 2, we introduce the local descriptors for piece-wise
linear manifolds only. However, for foundation models like
Stable Diffusion, it is generally less likely to be piece-wise
linear. In such cases Aω can be approximated by taking
the jacobian of the input-output mapping of G evaluated
at a point z ∈ ω of the latent space. For non-piecewise
linear generators, this would be equivalent to a first-order
approximation of the descriptor around a vector z. Instead
of computing the full jacobian matrix, we do a random
orthonormal projection of the output manifold onto a 120
dimensional subspace for Stable Diffusion, and compute
the input-output jacobian considering the random projection
as the output. The projection is kept fixed for all latent
vectors z. For δ, we use the method described in (14) and
consider 20 dimensional ℓ1 balls of radius r = 1e − 4 as
the neighborhoods to compute δ.

Geometric descriptors can be used to perform out-of-
distribution detection. In Figure 5 we present the local
scaling and local rank computed for Imagenet (consid-
ered in-distribution) and Chest X-ray (considered out-of-
distirbution) images encoded in the latent space of Stable
Diffusion. Both local scaling and rank are discriminative of
Chest X-ray images.

We also explore the relationship between local scaling, local
ranking, and diversity using the well-known diversity score,
the Vendi score (4). The results are illustrated in Figure 6.
As shown in this figure, for both local scaling and local
rank vendi score correlates positively with increase in the
descriptor values. The observed drop in the Vendi score for
high local scaling is anticipated; at very high uncertainty
levels, the model targets regions with very low probability in
the learned manifold, effectively collapsing to the strongest
anti-mode.

In Figure 3 we show how that the textural diversity of gener-
ated images is connected with ν computed at stable diffusion
latents for the decoder. Images with higher ν, has higher
frequency textures. In Figure 4 we show that connections
between local geometry and memorization/quality-diversity
of generation.

4. Conclusion & Future Directions
In this paper, we proposed a novel assessment approach to
evaluate generative models using geometry-based descrip-
tors – local scaling (ψ), local rank (ν) and local complexity
(δ) - effectively while utilizing only the model’s architec-
ture and weights. Our approach characterizes uncertainty,
dimensionality, and smoothness of the learned manifold
without requiring original training data or human evaluators.

Our experiments demonstrated how these descriptors relate
to generation quality, diversity, and memorization. While
using the geometry of manifolds offers a novel approach to
self-assess generative models, we acknowledge two main
limitations that warrant further investigation. First, the ge-
ometry of the learned manifold is inherently influenced by
the training dynamics of the model. A deeper understanding
of this relationship is needed to fully leverage geometric
analysis for model assessment and improvement. Second,
the computational complexity of our method, particularly
the calculation of the Jacobian matrix, poses a practical
challenge, especially for large-scale models. Future work
should explore more efficient algorithms or approximations
to address this limitation.
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A. Appendix / supplemental material
B. Broader Impact Statement
Our proposed framework for assessing and guiding generative models through manifold geometry offers several potential
benefits to society. By providing a more objective and automated approach, we can significantly reduce the cost and time
associated with human evaluation, making the auditing and mitigation of biases in large-scale models more accessible and
efficient. This has implications for promoting fairness and equity in AI systems, particularly in domains where biases can
have significant societal consequences.

Furthermore, our approach can empower researchers and practitioners to better understand the relationship between the
geometry of learned representations and various aspects of model behavior, such as generation quality, diversity, and
bias. This deeper understanding can inform the development of more robust and reliable generative models, leading to
advancements in various fields, including art, design, healthcare, and education.

However, we recognize that our approach is not without limitations and potential risks. While it can be a valuable tool for
identifying and mitigating biases, it should not and cannot fully replace human annotators, especially in high-risk domains
where human judgment and contextual understanding are crucial. Our method focuses on reducing costs and improving the
auditing process, but it should not be used as a standalone approach.

Moreover, the increased automation enabled by our approach raises concerns about the potential displacement of human
annotators, leading to job losses and economic disruptions. While our method addresses some aspects of model evaluation,
it is not comprehensive and cannot assess all facets of model behavior. Therefore, it should be used with caution and in
conjunction with other evaluation methods, including human expertise.

C. Extra Figures

Increasing ψ

Figure 7. ImageNet samples ordered along the columns (from left to right), with increasing local scaling ψ of the Stable Diffusion decoder
learned manifold. We observe that ImageNet samples with lower values of ψ contain simpler backgrounds with modal representation
of the object category. Conversely for higher ψ we have increasing diversity both in background and foreground features. This is
indicative that for non-piecewise linear manifolds like that learned by Stable Diffusion, the local scaling ψ is still inversely proportional to
uncertainty.
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Increasing ψ

Figure 8. ImageNet generated samples ordered along the columns (from left [-100.47] to right [-2.288]), with increasing local scaling ψ of
the Stable Diffusion decoder. Similar to ImageNet real samples, generated samples with lower values of ψ contain simpler backgrounds
with modal representation of the object category. Conversely for higher ψ we have increasing diversity both in background and foreground
features. We also observe that with very high ψ values (very uncertain samples) the model focuses on lowest probability regions in the
manifold corresponding to strongest anti-mode

Increasing (ν)

Figure 9. ImageNet generated samples ordered along the columns (from left [109.287] to right [119.752]), with increasing local rank ν of
the Stable Diffusion decoder.
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Figure 10. Images generated during 50 diffusion denoising steps for top to bottom, COCO prompts generated with guidance scale 1,5,9
and memorized prompts generated with guidance scale 7.5. Higher guidance scale images, as well as memorized images, tend to resolve
faster during the denoising process.
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Figure 11. DDPM presented in Figure 2-left-panel, earlier in training after 11395 optimization steps.

Figure 12. Decoded images for the three latent vectors used to determine the 2D subspace in the stable diffusion latent space, presented in
Figure 2-right-panel.
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Figure 13. Decoded images (right) using 32 latents (left) along a straight line on 2D subspace. Each image bounding box (right) is color
coded according to the corresponding latent vector (left).

Figure 14. Decoded images (right) using 20 latents (left) from the 2D subspace, with highest ψ. Each image bounding box (right) is color
coded according to the corresponding latent vector (left).
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Figure 15. Decoded images (right) using 20 latents (left) from the 2D subspace, with lowest ψ. Each image bounding box (right) is color
coded according to the corresponding latent vector (left). Selected latents lie outside the domain of the VQGAN latent space.

Figure 16. Decoded images (right) using 20 latents (left) from the 2D subspace, with highest ν. Each image bounding box (right) is color
coded according to the corresponding latent vector (left). Selected latents lie outside the domain of the VQGAN latent space.
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Figure 17. Decoded images (right) using 20 latents (left) from the 2D subspace, with lowest ν. Each image bounding box (right) is color
coded according to the corresponding latent vector (left).

Figure 18. Decoded images (right) using 20 latents (left) from the 2D subspace, with highest δ. Each image bounding box (right) is color
coded according to the corresponding latent vector (left).
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Figure 19. Decoded images (right) using 20 latents (left) from the 2D subspace, with lowest δ. Each image bounding box (right) is color
coded according to the corresponding latent vector (left).
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