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ABSTRACT

Developing robust physics-informed representations of chemical structures that en-
able models to learn topological inductive biases is challenging. In this manuscript,
we present a representation of atomistic systems. We begin by proving that our rep-
resentation satisfies all structural, geometric, efficiency, and generality constraints.
Afterward, we provide a general algorithm to encode any atomistic system. Finally,
we report performance comparable to state-of-the-art methods on numerous tasks.
We open-source all code and datasets. The anonymized code and data are available
in the supplementary material.

1 INTRODUCTION

Recent advances in machine learning have enabled us to leverage representations of chemical state at
different levels of chemical scale to learn meaningful patterns in chemical data. This is a particular
kind of representation learning. In cheminformatics and bioinformatics numerous representations
of chemical structures exist. The most popular representations are SMILES, ECFP fingerprints,
SELFIES, and Graphs. The following section briefly presents existing molecular representations and
their construction.
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Figure 1: We graphically describe, with the example of HoO, how to construct a Polyatomic complex.
The first step is to encode each individual atom in detail (protons, neutrons, electrons). We view
protons, neutrons and electrons as n-spheres. Afterward we combine our representations of each
individual atom together to form molecules/atomistic systems. One can choose to further augment
the representation at this step. Finally, one can feed the representation into a machine learning model
to predict a property of interest.
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Graphical Abstract In Figure 1 we graphically outline how to construct a polyatomic complex. In
the first step we encode each individual atom by describing it as a particular kind of CW-complex,
which we term an atomic complex. We discuss how to mathematically construct the atomic complex
in Section 2] For every atom, we leverage its corresponding atomic complex and combine them to
construct a CW-complex which we term a polyatomic complex. Upon constructing the geometric
representation one may augment with additional features derived from force fields or molecule
specific properties of interest. In our algorithm, by default, we compute a random matrix encoding
pairwise forces and energetics, radial contribution. The resulting representation can be fed into a
machine learning model. In practice, the final form of our representation is a PyTorch tensor. We
elaborate on this in Section

SMILES Simplified molecular-input line entry systems are obtained by printing symbol nodes
encountered in a depth first traversal of a chemical graph (Weininger; [1988)). SMILES are suitable for
small molecules, but not large molecules. Additionally, they generate a substantial number of invalid
molecules and fail to efficiently handle rings, branches, and bonds between atoms (Bhadwal et al.,
2023).

DeepSMILES DeepSMILES was created to resolve some of the issues with SMILES. In particular,
DeepSmiles addresses concerns with unmatched parentheses and ring closure symbols (O’Boyle &
Dalkel 2018). However, DeepSMILES still allows for semantically incorrect strings (Krenn et al.|
2022).

ECFP Fingerprints ECFP fingerprints are derived using a variant of the Morgan algorithm (Rogers
& Hahnl [2010). Specifically, in the iterative updating stage, ECFP fingerprints encode the numbering
invariant atom information to an atom identifier. During the duplicate removal stage, ECFPs reduce
occurrences of the same feature (Rogers & Hahn, |2010). It is important to note that ECFPs are not
ideal for substructure searching, as they are slow when applied to large databases. In addition, ECFP
fingerprints are non-invertible because the hash function maps randomly to integers. Further, ECFPs
do not contain the chemical properties of each atom (Le et al., [2020; |Probst & Reymond, [2018}; | Xie
et al.l [2020).

SELFIES SELFIES follow a specific set of derivation rules, which enable the representation to
satisfy semantic and syntactic constraints, while also avoiding syntactic mistakes (Krenn et al., 2020).
SELFIES cannot fully represent macromolecules, crystals, and molecules with complicated bonds
(Krenn et al.}2022). Similarly, SELFIES suffer from issues with substructure control, as described in
Cheng et al.[(2023)).

GroupSELFIES GroupSELFIES are a more recent modification of SELFIES (Cheng et al., [2023)).
They remedy some of the issues with SELFIES by cleverly adding group tokens. Such an approach
ensures that structures, like benzene rings, are more often preserved if shuffling occurs (Cheng et al.|
2023)). The primary limitation with GroupSELFIES is that groups cannot overlap. Consequently, one
cannot represent polycyclic compounds (Cheng et al.,[2023).

Graphs A graph G is an ordered pair (V, £), where )V comprises a set of verticesand £ C V x V
is composed of a set of edges (Griffiths et al.,|2023). For molecules, the vertices ¥V = {v1,...,v,}
represent the atoms of a molecule and the edges £ represent covalent bonds between the atoms
(Griffiths et al.l [2023). Additional vertex and edge labels may be incorporated. The simplicity of
graph representations poses some weaknesses, however. For example, there is no natural way to
represent 3-dimensional structures of molecules and many other chemical properties that are essential
to the molecule’s functionality (Liu et al., 2022]).

Atomic Cluster Expansion (ACE) Atomic Cluster Expansion is a technique which enables one
to efficiently parameterize many atom interactions (Bochkarev et al.,[2024). The basis functions of
ACE are complete and can represent other local descriptors such as SOAP. In fields such as high
energy physics, ACE is utilized to construct many-body interaction models which respect physical
symmetries (Ho et al.| 2024). However, standard ACE is known to be inefficient, thereby leading to
numerous proposed variants with different trade-offs (Ho et al., 2024} Lysogorskiy et al.,[2021al).

Behler-Parrinello Descriptor Behler-Parrinello is an ANN architecture that describes atomic
environments with symmetry functions and relies on an element-specific neural network for atomic
energies (Behler, 2015a)). Behler-Parrinello belongs to a class of machine learning potentials wherein
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the potential-energy surface (PES) is learned by adjusting parameters. The goal of fitting the PES is
usually to accurately reproduce reference electronic structure data (Behler, |2015b)).

Bartok/SOAP Descriptor Smooth Overlap of Atomic Positions (SOAP), sometimes called the
Bartdk descriptor, is a technique to encode regions of atomic geometries (Barnard et al.|[2023). SOAP
relies on locally expanding a gaussian smeared atomic density with orthonormal functions (Barnard
et al.,[2023)). The descriptor has been proven to be invariant to the basic symmetries of physics namely
rotation, reflection, translation, and permutation of atoms of the same species Barnard et al.|(2023)).

We summarize our comparison of these methods by using tables found in the Appendix ??.

1.1 MOTIVATION AND REPRESENTATION CRITERIA

All representations listed above violate a non-empty subset of these criteria: invariances, uniqueness,
continuity, differentiability, generality, computational efficiency, topological accuracy, ability to
consider long-range interactions, and chemical informedness (Behler, 2011 |Langer et al.| 2022} [Pozd;
nyakov et al.,|2020; Todeschini & Consonni, 2008). In this work, we propose a new representation,
polyatomic complexes, that mathematically satisfies the above constraints, consequently addressing
the limitations of all discussed representations.

Invariances We consider invariance under changes in atom indexing and those fundamental to
physics. These invariances are rotation, reflection, and translations. We prove that polyatomic
complexes satisfy all these invariances ([2.12).

Uniqueness As described by Langer et al. (2022), uniqueness refers to the idea that two systems
differing in properties should be mapped to different representations. Systems with equal representa-
tions that differ in property induce errors. Uniqueness is necessary and sufficient for reconstruction,
up to invariant transformations, of an atomistic system from its representation (Langer et al., [2022).
We prove that polyatomic complexes satisfy uniqueness([2.12).

Continuity and Differentiability Representations of atomistic systems should be continuous and
differentiable with respect to atomic coordinates (Langer et al.l [2022)). Moreover, discontinuities
work against regularity assumptions of many machine learning models. We prove that polyatomic
complexes are continuous and differentiable with respect to atomic coordinates ([2.12).

Generality We say a representation of atomistic systems or molecules is generalizable only if it can
encode any atomistic system. SMILES, SELFIES, and GroupSELFIES are not generalizable, as they
cannot represent certain kinds of molecule (crystals, polycyclic compounds, etc.) or they generate
invalid molecules. However, we prove that polyatomic complexes are generalizable ([2.12).

Efficiency Traditionally, computational efficiency is a measure of how well an algorithm utilizes
memory or time when completing a task. In the context of molecular representations, efficient
representations run in polynomial time and with polynomial space. Ideally, representations are linear
in the number of elements in a molecule, O(.S), as is the case with molecular graphs. In practice,
polyatomic complexes are linear in the number of elements in a molecule, essentially O(S). We
provide a complete proof of time complexity in Theorem 2.12] However, in the case of Atomic
Cluster Expansions (ACE), the algorithm described is not computationally efficient (Dusson et al.,
2021)). Traditionally ACE models are built using atomic properties ®; which are expanded in terms
of body-ordered functions from the set of neighbors of each atom 7. Classically, this leads to, for
v ordered basis-functions, O(N") computational cost, where N denotes the number of interacting
neighbors (Lysogorskiy et al.,[2021b). However, using the density trick leads to faster evaluation
leading to the computational cost of an atomic property ®; scaling linearly in /N and also linearly in v
(Lysogorskiy et al.,2021b; |Dusson et al., |2021). More efficient schemes such as PACE developed by
Lysogorskiy et al.|(2021b) avoid the v scaling altogether, yet are still two orders of magnitude slower
than empirical potentials (Lysogorskiy et al.,|2021b). In the case of the Bartok/SOAP descriptor, we
observe a rapid increase in descriptor size for environments composed of multiple elements (Darby:
et all[2022). The SOAP power spectrum scales quadratically with the number of elements .S, while
the length of the bispectrum scales as S®. As a result, SOAP descriptors are significantly less efficient
than graph based methods which run in O(S). As a result of the design of Behler-Parrinello, they
are slower than O(.S) (Behler, 2015a). It should be noted that ACE, SOAP, and Behler-Parrinello
are traditionally used for quantum-chemistry applications and are not designed for more typical
computational chemistry tasks.
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Topological Accuracy A representation is deemed topologically accurate if it can correctly represent
the geometry of any molecule or atomistic system. Correctness requires representing the shape, bond-
angles, dihedrals/torsion, and electronic structure aspects accurately. Only polyatomic complexes,
SOAP, and ACE are “reasonably” topologically accurate. Polyatomic complexes are not necessarily
topologically accurate when it comes to electronic structure. Our representation, in practice, uses
s-orbitals to represent electronic wave functions, which is an oversimplification. However, this can be
altered at the cost of additional time complexity. Inclusion of a complete set of commuting observables
(CSCO) would potentially enable perfect topological accuracy. SOAP enforces differentiability with
respect to the atoms and invariance with respect to the basic symmetries of physics. Additionally,
SOAP considers the potential energy surfaces (PESs) and electrostatic multipole moment surfaces.
Similarly, polyatomic complexes enforce differentiability, are invariant to the basic symmetries of
physics, and can be augmented with electronic structure aspects and forces. ACEs are invariant under
the basic symmetries of physics and systematically describe the local environments of particles at any
body order.

Long-range interactions The term long-range interactions refers to electrostatic potential energies
between atoms and molecules, with mutual distances ranging from a few tens to a few hundreds
Bohr radii (Lepers & Dulieu, 2017). Interactions can only be evaluated up to a certain distance. The
maximum distance applied in a simulation is usually referred to as the cut-off radius, 7., because
the Lennard-Jones potential is radially symmetric. Behler-Parinello neglects long-range interactions,
which are electrostatics beyond the cutoff radius (Ko et al., 2021). Contrastingly, polyatomic
complexes can adjust for varying definitions of cutoff radius (A.19). Similarly all string based
representations and graph representations neglect long-range interactions. It should be noted that
the precise definition of cutoff radius is dependent on the force field. The value of r. is generally
obtained empirically.

Chemical and Physical Informedness We say a representation is well-informed by chemistry or
physics if it contains information about the chemical properties of each individual atom. ECFP
fingerprints are not well-informed under this definition. If one compares ECFP fingerprints, Graphs,
SMILES, or SELFIES to representations like ACE, SOAP, or polyatomic complexes, it is apparent
that the former group does not contain the same level of chemical information as the latter. In
essence, the representations should encode electronic structure, radial functions, spherical harmonics,
wave-functions, and long-range interactions effectively. ACE utilizes basis functions to efficiently
parameterize many-atom interactions (Qamar et al.| 2023). SOAP relies on the local expansion of
a Gaussian smeared atomic density with orthonormal functions (Barnard et al.,[2023)). Polyatomic
complexes describe the geometry of individual atoms and encode radial functions in an efficient
manner. They are flexible enough to potentially encode information about spherical harmonics as
well. Additionally, they are compatible with force fields and can calculate the RDF as outlined in
Section [2.3] It is theoretically shown that such an integration can be done. In practice, encoding
spherical harmonics is left for future work.

In order to address the limitations of other representations, we develop Polyatomic Complexes. We
propose a computationally efficient sampling-based approach for representing atomistic systems as
CW-complexes. Our proposed sampling-based approach is computationally efficient and compatible
with traditional physics-based methods. We delve into the mathematical construction in subsections
and[2.2] In subsection[A.T9} we discuss how our representation can integrate with techniques in
chemistry and physics. The experiments can be found in section[3] Our conclusion is in section 4]
All proofs of theorems, lemmas, and additional definitions are found in the appendix [A]

1.2 CONTRIBUTIONS
Our theoretical contributions are as follows. We develop a representation that:

« satisfies all constraints outlined in Section[I.1]
* is generalizable (unlike SELFIES, SMILES, etc.).

* is simultaneously computationally efficient and can consider long-range interactions (unlike
traditional representations in quantum chemistry).

* is geometrically and topologically accurate, regardless of the molecule/atomistic system one
tries to model.
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* is well-informed by physics and chemistry.
Contributions from our experiments are as follows. We provide/demonstrate:

* strong statistical evidence that our representation is competitive (in terms of accuracy) with
the most commonly used representations in computational chemistry.

* our representation works well on crystal and materials datasets (Matbench, Materials Project)
and smaller molecule datasets.

* a Gaussian process in tandem with our representation is competitive with GNN’s (Matbench).

In summary, we develop a representation that provides theoretical guarantees (invariance with respect
to the fundamental symmetries of physics, etc.) while being computationally efficient, competitive in
terms of accuracy, and agnostic concerning the atomistic system one chooses to model.

2 CORE METHODS AND REPRESENTATION

In this section, we outline how we model protons, neutrons, and electrons. These assumptions
are, to an extent, simplifications. We assume that an atom consists of a positively-charged nucleus,
containing protons and neutrons, and is surrounded by negatively-charged electrons. Additionally, a
proton p is isomorphic to a sphere with radius r # 1. Similarly, a neutron 7 is isomorphic to a sphere
with radius r # 1. Further, an electron e is isomorphic to a sphere and is paired up with a collapsed
wave-function w,, wherein the position is not definite; instead, the probability of finding an electron
in a certain region can be calculated (Section[2.I). An atom, then, is a particular CW-complex formed
by gluing together protons, neutrons, and electrons. We view protons, neutrons and electrons as
objects in the category of topological spaces, and the gluing maps between spaces as an implicit force
model.

2.1 MATHEMATICAL REPRESENTATION OF AN ATOM

We now develop formal mathematical definitions that can be used to reason about the objects we
construct in our computational representation.

Definition 2.1. We define the set ee’ := {x € R"! | ||z||< 2.8fm} where 1fm =1 x 10715 m.
Definition 2.2. We define the set PD* := {z € R" | ||z||[< 1fm} where 1fm =1 x 107° m.
Definition 2.3. We define the set ND' := {z € R? | ||z||[< 0.8fm} where 1fm =1 x 1071% m.

An atom is composed of protons, neutrons, and electrons. We construct protons, neutrons, and
electrons using the sets ee*, PD* and N D".

(1) Electrons: We know from above that an electron is isomorphic to a sphere and is paired
up with a collapsed wave-function w,. We know that ee’ is a set and w, is a function.
Functions can be represented as sets of ordered pairs (x,y) suchthatz € X andy € YV
when w, : X — Y. We can then let Z = {ee, {(z,y) | * € X,y € Y}}. Give Z the
indiscrete topology 7. A single electron e is then (Z, 7). Therefore electron e € Top.
Consequently, we can view e as an object in the category of topological spaces.

(2) Protons: A proton is isomorphic to a sphere therefore we represent a single proton p as a
set PD" for ¢ € N. Geometrically this set is a filled ¢ — 1-sphere with a radius of 1 fm for
instance realized up to homeomorphism as a closed ball in Euclidean space.

(3) Neutrons: A neutron is isomorphic to a sphere therefore we represent a single neutron n as

aset ND' fori € N. Geometrically this set is a filled i — 1-sphere with a radius of 0.8 fm
for instance realized up to homeomorphism as a closed ball in Euclidean space.

It should be noted that one can change the values we have set for all the radii at will. We mention this
because the exact radius of a proton is contested (Lin et al.,[2022)). We now proceed to develop our
representation in a manner following the usual conventions in Algebraic Topology (Hatcher, [2002).

Definition 2.4. We define the Atomic Complex with in mind.
Suppose that atom A has N' € N many neutrons P € N many protons and £ € N many electrons.
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Let [, = {1,...,N}, I, = {1,...,P}, I. = {1,...,&} be index sets enumerating protons,
neutrons and electrons respectively. Additionally we assert that K = P + N + £. [1_-]

Let 7 ={0,1,..., K} such that 7 is ordered and 7; € T.

Then for any 7; we can generalize [A.T7]by attaching many protons, neutrons and electrons.

We let P be our complex of protons, /N be our complex of neutrons, E our complex of electrons.
We then construct sets of attaching maps for each complex x, = {¢p; : OPD™ — P; |¥i € I,},
Xn = {¢n,i : OND™ — N; |Vi € I}, and xo = {¢; : Dee™ — E; | Vi € I.}.

We can think of these sets as continuous functions between the disjoint union spaces.

More formally we can write (¢p,i)icr, : |_|i61p OPD™ — P, (¢ni)ier, : Lie;, OND™ — Nj,
and (Qbe,i)iele : I—liEIe 366‘” — Ez

Recalling from above we know that PD™ N D™ ee™ & Top. Therefore we have three sequences
of topological spaces P = Py — P, < --- — Pp, N = Ny — N; — --- — Ny, and
E:E0‘—>E1‘—>'~"—>Eg.%

For each P; — P;1, N; < N,41,and E; — E;,; we have that the following commute:

(ép.)icr, S "
Lliefp OPD™ b Uieln ONDT™ (Mn N; Uie[e Oeei (L)GI; E;

! o L |

Ti A Ti . Ti .
Llie],) PD > Pipa Llieln ND > Nit1 Lliele ee > Bt

We combine the spaces P,IN,E together to get our atomic complex A. We let ¢, : 0P — ON,
¢n : ON — OE,and ¢ : OF — A. Thus A= AUy, P Uy, N Uy, E € Top.[]

2.2 MATHEMATICAL REPRESENTATION OF POLYATOMIC SYSTEMS

In this section, we provide a generalized mathematical algorithm for modeling any polyatomic system.
An atom, from this point onward, is represented by an atomic complex A € Top with the monad
structure from Ato. We describe this structure in the Appendix |A.20)

Definition 2.5. We define the Polyatomic Complex with[A.5]and [2.4]in mind.

Suppose that atomistic system M has K many atoms. Let I, = {1,...,K — 1} be an index set
enumerating atoms. We can generalize[A.5|by attaching I many atoms, the corresponding force field,
and electronic structure spaces. We let ¢4, : 0Ax — M and construct our set of attaching maps:
Xa = {@a,i : 0A; — A;41 | Vi € I, }. We can think of these sets as continuous functions between
the disjoint union spaces. In essence, (¢q,i)ic1, |—|ie I, 0A; — A;. Recalling from above, we know
that Vi € I, that A; € Top. Therefore, we have a sequence of topological spaces:
M:AO;}A]_%""—)AKH

uie]a aAZ_(%,i)ieIaaA}C

D |

Uier, Ai Ax M =M U, yier (Uier, 4i) Upa, Ak

bax

Thus, M = M U(¢a,i)i€1a (l_liela Al) U¢A;< A’C'E]
Remark 2.6. 1t is apparent, at this point, that Polyatomic Complexes and Atomic Complexes are, by
construction, finite n-connected CW-complexes. In any case, we prove each statement.

Lemma 2.7. Atomic complexes are finite n-connected CW-complexes.
The full proof can be found in the Appendix[A.6]

Lemma 2.8. Polyatomic complexes are finite n-connected CW-complexes.
The full proof can be found in the Appendix[A.7]

'We explicitly make a design choice to let K = P + N -+ £ primarily for dimensionality reasons.

’The reasoning for why we need three separate complexes that we combine, is that P may not equal N
which may not equal £. Note that each of the inclusions P; < P;1, N; < N;4+1,and E; — FE;4; induces an
isomorphism on 7; for all 7 < n. Additionally note that 7; denotes the i-th fundamental group.

3 A is initially the empty space A = @

“Note that each inclusion A; < A;41 induces an isomorphism on 7; for i < n.

> M is initially the empty space M = @
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Theorem 2.9. Every Polyatomic complex has a smooth approximation.
The full proof can be found in the Appendix[A.3|

Remark 2.10. Note that the atomic coordinates are contained in a linear subspace of R?. Therefore,
the atomic coordinates are a smooth embedded submanifold of R? by

Theorem 2.11. Atomic complexes are unique, continuous and differentiable with respect to atomic
coordinates.

The proof for uniqueness can be found in the Appendix[A.9) The proof of continuity and differentiability
is found in the Appendix[A.10]

Theorem 2.12. Polyatomic complexes satisfy all requirements for representations of atomistic
systems, as outlined byLanger et al.|(2022).

In essence, we want to prove invariances, uniqueness, continuity, differentiability, generality, and
efficiency are all satisfied. All the aforementioned conditions are defined in Section[I.1} The full
proofs for every condition are found in the Appendix.

Invariances: The full proof of satisfying all invariances can be found in the Appendix[AT])

Uniqueness: Uniqueness is necessary and sufficient for reconstruction, up to invariant transforma-
tions, of an atomistic system from its representation. The full proof of uniqueness can be found in the

Appendix[A12]

Continuity and Differentiability: The full proof of continuity and differentiability with respect to
atomic coordinates can be found in the Appendix[A.13]

Generality: The full proof of generality can be found in the Appendix[A.14)

Regressions: An important condition to demonstrate is that the structure of of our representation is
suitable for regression. We provide statistical evidence of this in our experiments.

Computational efficiency: A proof of computational efficiency relative to the reference simulations is
found in the Appendix[A.13]

2.3 ALGORITHMS

In this section, we discuss our implementation of the algorithm for Atomic and Polyatomic complexes.
We provide the full pseudocode in the Appendix [A.T6] We refer to the pseudocode as Algorithm 1
and 2 respectively.

2.3.1 ALGORITHMIC METHOD FOR ATOMIC COMPLEXES

In Algorithm [T} we provide our approach. In practice, we sample from the surface of each n-
sphere uniformly when i > 0 for PD*, ND? ee’. In Algorithm |I} we let Dy denote a random
matrix encoding pairwise forces and energetics. Dp may be derived from a known force field
model or be randomly initialized (Brooks et al. [2009; [Grimme], 2014} [Senftle et al.| 2016). The
method update_distances uses information from the electron wave function to update distance
information (radial contribution). The matrix Dg keeps track of this distance information. The
function glue(T, o, ¢) glues object o to space T by using gluing map ¢. Gluing can be as simple as
an append or as complex as one likes. Using a dictionary allows one to specify a gluing scheme.

2.3.2 ALGORITHMIC METHOD FOR POLYATOMIC SYSTEMS

In Algorithm |Z[, we assume that all atoms are connected. This makes intuitive sense, as there
are electromagnetic forces, strong nuclear forces, and weak nuclear forces present. Additionally,
there are strong attractive forces, or intermolecular forces acting on all constituents. The functions
update_radial and update_forces can optionally be provided by the user or default to standard
behavior. If utilized, update_radial calculates the RD F' by picking a particular atom and calculating
the density within the sphere. This can be implemented via Monte-Carlo methods as described by
[Cyubartsev & Laaksonen| (I995). We use approximations of Algorithm [2]below.

Fast Complex In this approximation algorithm, we disconnect all cells in complex C' and project the
entire representation onto the real plane to get a corresponding matrix M € GL,,(R). We zero-pad
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to ensure all matrices in our dataset have the same shape. We do not use any force field model,
update_forces or update_distances.

Deep Complex In this approximation algorithm, we project all cells in C' onto the real plane to get
a corresponding matrix M € GL,,(R). We do, however, preserve connectedness information. We
zero-pad to ensure all matrices in our dataset have the same shape. We do not use any force field
model, update_forces, or update_distances.

3 BENCHMARKS AND EXPERIMENTATION

In each experiment, we do the following. First, for all representations, n¢riqis = 20, Nepochs = O,
and the train/test split is 67/33, except for Materials project where we use 10/90. Then, we process
our dataset by converting SMILES to the representation being tested. We choose a kernel and fit an
exact Gaussian process to our data. Upon completion, we report the average MAE, RMSE, and CRPS
across all trials. We calculate 1-sigma error bars using bootstrapping, which represent the standard
error across trials. For reference, choosing SELFIES as a representation with the Tanimoto Kernel is
state-of-the-art for molecular learning tasks (Griffiths et al.} 2023)). See[A.21]for the compute cost.

3.1 DATASET OVERVIEW

* Photoswitches: The Photoswitches dataset comprises of approximately four hundred photo-
switchable molecules and associated chemical properties |Griffiths et al.| (2022). A photo-
switchable molecule displays two or more isomeric forms accessible using light. Separating
the electronic absorption bands of these isomers enables addressing a specific isomer and
achieving high photostationary state (PSS) |Griffiths et al.| (2022)). The dataset contains
transition wavelengths and photophysical properties predicted using DFT.

e ESOL: The ESOL dataset contains approximately eleven hundred organic small molecules
and their corresponding logarithmic aqueous solubility values (2004). Aqueous
solubility is the maximum amount of a compound that can dissolve in a given volume of
water at a specific temperature, and pressure. This is a key property to predict in areas such
as drug design, and biochemistry.

FreeSolv: The FreeSolv dataset contains approximately six hundred molecules and their
corresponding hydration free energies Mobley & Guthrie| (2014). Hydration free energy
(HFE) is a physicochemical property of molecules describing how small molecules transfer
between gas and water, or their relative populations in gas and water at equilibrium. HFE is
a surrogate for performance in estimating protein-ligand binding free energy and has been
used to assess and optimize the accuracy of non-bonded parameters in empirical force fields
[Mobley & Guthrie| (2014).

* ChEMBL/lipophilicity: The lipophilicity dataset contains approximately four thousand
compounds curated from the larger ChREMBL dataset along with their octanol/water distri-
bution coefficient (log D at pH 7.4)|Gaulton et al.| (2011)). The octanol/water distribution
coefficient is used to determine the hydrophobicity (lipophilicity) of a chemical compound,
thereby enabling the prediction of its environmental fate, and potential for bioaccumulation
in organisms.

Materials Project: The Materials Project dataset is a large open source dataset consisting
of approximately one hundred seventy thousand complex materials along with a myriad
of properties (2013). In this manuscript, we predict the equilibrium reaction
energy and magnetization normalized vol. However, there are numerous electrochemical
and thermodynamic properties one can predict.

Matbench - JDFT2D: The Matbench benchmark consists of thirteen tasks that vary in size
and contain data from DFT derived and experimentally derived sources. Important tasks
supported include predicting optical, electronic, thermodynamic and tensile properties of a
given material or crystal. In particular we select the JDFT2D task in which one must predict
exfoliation energies from crystal structure. The exfoliation energy is defined as the amount
of energy required to extract a two-dimensional sheet from the surface of a bulk material.
This is a key property when determining the synthesizability of certain compounds.
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3.2 PHOTOSWITCHES DATASET

The photoswitches dataset consists of photoswitchable molecules reported as SMILES, experimental
transition wavelengths reported in nanometers, and DFT-computed transition wavelengths reported in
nanometers among others (Griffiths et al.| 2022). It should be noted that, for particular columns of
the Photoswitches dataset, there are some missing values. Since we believe the values to be missing
at random, we utilize mean imputation, instead of discarding experimental data. Additional tables are
found in Appendix[A.T8]

Table 1: Photoswitches benchmark

Z isomer 7-7* wavelength (nm) DFT Z isomer 7-7* wavelength (nm)

Kernel Representation ~ RMSE MAE CRPS RMSE MAE CRPS
Tanimoto SELFIES 77+03 39401 29 43402 11+01 08
Tanimoto SMILES 69+03 34401 28 42402 1.0+01 0.8
Tanimoto ECFP 70+£02 33+01 28 43+£03 1.1+£01 0.8
Tanimoto Fast Complex 80403 29+0.1 29 43+03 09+01 09
Tanimoto Deep Complex 8.0+0.3 29+0.1 29 43+03 09+01 09
Weisfeiler-Lehman  Graphs 79403 36401 27 47402 13+01 0.8

3.3 EXPERIMENT: ESOL

ESOL describes a simple method for estimating the solubility of a compound directly from its
structure (Delaney, 2004)). We convert all SMILES strings to all other representations prior to fitting
as part of the data processing step. The predicted log solubility column contains theoretical values.
The measured log solubility column contains values obtained through experimentation. We report all
values rounded up to one decimal place and the confidence limits to two places.

Table 2: ESOL benchmark

Predicted log solubility (mol/L) Measured log solubility (mol/L)

Kernel Representation ~RMSE MAE CRPS RMSE MAE CRPS
Tanimoto ~ SELFIES 0.5+£0.01 044001 09 0.8+0.01 06+£0.01 1.2
Tanimoto  SMILES 0.64+0.01 0.440.00 1.0 0.8+0.01 0.6+£0.00 1.2
Tanimoto ECFP 0.7£0.01 054001 1.0 1.0+£0.01 08£0.01 1.2

Tanimoto  Fast Complex 1.7+0.01 13£0.01 1.3 2.140.01 1.74+0.01 1.7
Tanimoto Deep Complex 1.7+0.01 1.3+£0.01 1.3 214001 1.74+0.01 17
WL Graphs 0.44+0.00 0340.02 09 0.8+0.01 06+£001 1.2

3.4 EXPERIMENT: FREESOLV

The Free Solvation database (FreeSolv) consists of experimental and calculated hydration free
energies for small neutral molecules in water, along with molecular structures, input files, references,
and annotations (Mobley & Guthrie, 2014). We convert all SMILES strings to all other representations
prior to fitting as part of the data processing step. The experimental and calculated values correspond
to hydration free energies reported in kcal/mol. The calculated column contains theoretical values.
The experimental column contains values obtained through experimentation.

Table 3: FreeSolv benchmark

experimental (kcal/mol) calculated (kcal/mol)
Kernel Representation RMSE MAE CRPS RMSE MAE CRPS
Tanimoto ~ SELFIES 1.7+£0.10 1.2£0.03 2.0 1.6+0.06 1.2£0.05 2.3
Tanimoto  SMILES 1.94+£0.05 14£0.02 2.1 1.84+0.02 1.3£0.02 2.3
Tanimoto ECFP 20+0.06 144002 2.1 22+40.04 154002 23

Tanimoto Fast Complex 3.8+0.05 2.8+0.03 2.8 424005 3.1+£0.04 3.1
Tanimoto Deep Complex 3.9+0.06 28+0.04 2.8 42£0.05 3.1+£0.04 3.1
WL Graphs 144002 1.0£0.01 2.0 1.2+£0.02 08%£0.01 22

3.5 EXPERIMENT: CHEMBL/LIPOPHILICITY

ChEMBL is an Open Data database containing binding, functional, and ADMET information for
a large number of drug-like bioactive compounds (Gaulton et al., 2011). We convert all SMILES
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strings to all other representations prior to fitting as part of the data processing step. The experimental
values contain log octanol-water partition coefficients log(K,,,) for bioactive compounds.

Table 4: ChEMBL benchmark

experimental

Kernel Representation RMSE MAE CRPS
Tanimoto ~ SELFIES 09+0.01 0.74+0.01 0.7
Tanimoto  SMILES 0.7+£0.01 0.6%£0.01 0.7
Tanimoto ECFP 0.7+£0.01 0.640.00 0.7

Tanimoto  Fast Complex 1.2+0.01 1.0+£0.00 1.0
Tanimoto Deep Complex 1.2+0.01 1.0+0.00 1.0
WL Graphs 0.7+£0.01 0.54+0.00 0.7

3.6 MATERIALS PROJECT

Materials Project is a large database containing =~ 173,000 complex materials (Jain et al., [2013)).
We run our GP using a fixed batch size. The experimental values are equilibrium reaction energy
reported in eV/atom and magnetization normalized vol. reported in 4B. We utilize the entire Materials
Project database, not a subset. Some example materials are Us(HOs5)2, LuTaOy, and Dy(SiPd)s,
referenced by their materials project codes mp-626062, mp-5489, and mp-3301 respectively.

Table 5: Materials Project Benchmarks

Quantity Fast Complexes
RMSE MAE CRPS

Equilibrium Reaction Energy (eV/atom) 0.3296 + 0.0005 0.1017 £ 0.0005  0.1017 £ 0.0005
Total Magnetization Normalized Vol (zB)  0.0196 +0.0000 0.0101 £ 0.0000  0.0101 + 0.0000

3.7 MATBENCH: JDFT2D

Matbench: JDFT2D is a task in which one must predict exfoliation energies from crystal structure.

Table 6: Matbench: JDFT2D Benchmarks

Exfoliation Energy (meV/atom)

ML Model Representation ~ RMSE MAE
MODNet (v0.1.12) Graph 96.7332  33.1918
SchNet Graph 111.0187 42.6637
ALIGNN Graph 117.4213  43.4244
GP + Tanimoto Fast Complexes 117.5536 60.8629
GP + Tanimoto Deep Complexes 117.7818 60.8381
Finder_v1.2 (structure-based) ~ Graph 120.0917 46.1339
CrabNet Graph 120.0088 45.6104
MegNet Graph 129.3267 54.1719

4  DISCUSSION

Polyatomic complexes are a generalizable, topologically-informed method for encoding atomistic
systems. Our results raise several important questions for future work. How can we develop better
learning methods and kernels that operate on CW-complexes? Our results suggest that the Tanimoto
kernel is not well-suited to our representation, as it does not consider geometric information. The
primary limitation of our method is that the observed accuracy is only comparable with existing
methods and not significantly better. Future work may involve investigating how to improve the
accuracy we observe. Discovering the ideal balance of computational cost and accuracy when
comparing a precise wave-function to an approximated representation is an exciting direction.
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A APPENDIX

A.1 MOLECULAR KERNELS FOR GAUSSIAN PROCESSES

In this section we provide some common kernels used with Gaussian processes for molecular machine
learning tasks.

Definition A.1. Tanimoto: Let d € N>; and z,2" € {0,1}¢ be binary vectors where ||-| is the
Euclidean norm and 0']% is the scalar signal variance hyperparameter. Then define

(z,2')

|2+ |2 = (, )

2
Etanimoto = gf - |
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Definition A.2. String Kernel: Let S be a SMILES or SELFIES string, d € N>; and ¢ : S — R% be
a bag-of-characters representation then define for any strings S, .S’

kstring(sa S/) == (72 <¢(S)7 ¢(Sl)>

Definition A.3. Let G be a graph domain and A be a reproducing kernel Hilbert space (RKHS) in
which an inner product between g, ¢’ € G is well defined. Let ¢, : G — H where X is a kernel
specific hyperpameter and o2 is a scale factor. then define

kgraph(gag/) = 02 : <¢A(g)v d))\(g,»?-[

A.2 DEFINITIONS: CW-COMPLEXES

We utilize the standard definitions of CW-complexes as defined by |Whitehead| (1949).

Definition A.4. A cell complex K, or alternatively a complex, is a Hausdorff space which is the union
of disjoint open cells e, e, e} subject to the condition that the closure €™ of each n-cell, e™ € K is
the image of a fixed n-simplex in a map f : ™ — €" such that

(1) flo™ — Oc™ is a homeomorphism onto ™

(2) de™ C K"1, where 9e™ = foo™ = &" — e" and K" ! is the (n — 1)-section of K
consisting of all the cells whose dimension do not exceed n — 1.
Definition A.5. A complex K, can be described as closure finite <= K (e) is a finite subcomplex,

for every cell e € K. Moreover since K (p) = K(e) if p € e this is equivalent to the condition that
K (p) is finite for each point p € K (Whitehead, [1949).

Lemma A.6. If L C K is a subcomplex and e € L then L(e) = K (e). As a result any subcomplex
of a closure finite complex is closure finite (Whitehead| |1949).

Definition A.7. A complex K has the weak topology <= asubset X C K is closed provided
X N éeis closed for each cell e € K (Whitehead, [1949).

Definition A.8. A CW-Complex is a complex which is closure finite and has the weak topology
(Whitehead, |1949).

Algorithm 0 Construction of a Cell Complex or CW-Complex | Hatcher| (2002)

Lete' :={z e R" | ||lz||< 1}

Let D := {x € R | ||z||< 1}

Let 1= {zx e R | ||z||= 1}

Start with a set of points K°

(n = 1) Build K'! by attaching the boundary of the 1-cell e! to K°

(n = 2) Build K2 by attaching the boundary of the 2-cell e? to K!

General case (n = j): Build K7 by attaching the boundary of the n-cell to K7~!

K71, D3
T k~palk)

Remark: Attaching a boundary means 3y, : S7~! — K7~! such that K7 <

In essence one is inductively forming the n-skeleton K™ from K"~ by attaching n-cells via attaching
maps ¢, : 5771 — K771 Therefore K™ is the quotient space of the disjoint union K"~ ! [[_ D~
of K"~ with a collection of n-disks D" under identifications k ~ ¢ (k) for k € dD". Thus
K™= K" '], €. One can stop the induction at a finite state setting K = K" for n < co or one
can continue indefinitely setting ' = [ J,, K™. In the second case K has the weak topology (Hatcher,
2002).

Definition A.9. Given a CW-Complex X, one denotes the j-th cell of dimension k as ef . Traditionally,
one lets the relation < denote incidence (Sardellitti & Barbarossa, [2024)). If two cells ef‘l and ei—"

are incident, we write e? -1 ef. For not incident, we write e;‘?*l A ef. Let the relation ~ denote
orientation. We write e;’? -1

k—1 k
;e

~ e¥ if the cells have the same orientation. For the opposite orientation

we write e
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Definition A.10. The Hodge Laplacian Ay : C*(X) — C¥(X) on the space of k-cochains is
then Ay, := di—q o dj_, + dj o dj. The matrix representation is then Ay := B;ka_llBka +
W, ' Biy1Wis1 B/, . Here, W, = diag(w}, ..., wk, ) is the diagonal matrix of cell weights and
By, is the order k incidence matrix, whose j-th column corresponds to a vector representation of the
cell boundary 66? viewed as a k£ — 1 chain (Khoranal, [2024).

A.3 THEOREMS: MANIFOLDS AND EMBEDDINGS

Theorem A.11. (Whitney) The strong Whitney Embedding Theorem states that any smooth real
m-dimensional manifold (Hausdorff and second-countable) can be smoothly embedded in R*™, if
m > 0 (Whitney, |1944)).

Theorem A.12. (Whitney) The weak Whitney Embedding Theorem states that any continuous function
from an n-dimensional manifold to an m-dimensional manifold may be approximated by a smooth

embedding provided m > 2n. Moreover, such a map can be approximated by an immersion provided
m > 2n — 1 (Whitneyl |[1944).

Theorem A.13. (Lazarus) Any finite simplical complex of dimension n embeds linearly into R?"*1,
This follows from the Whitney embedding theorem extended to simplical complexes. We reproduce the
full proof given by Lazarus (Lazarus, 2020)).

Proof. Define a linear mapping f of the n-dimensional complex K into R?"*! by mapping the
vertices of K to points in general position in R2"*1, such that no hyperplane contains more than
2n + 1 points. Then f is an embedding. This is apparent when restricted to any simplex of K:
the simplex has at most n + 1 vertices which are sent to affinely independent points by the general
position assumption. To see that f is injective we need to prove that distinct simplicies have their
interior sent to disjoint sets. So let o = (v1,...,v) and 7 = (wy, ..., wy) be two distinct simplicies
of K. Since k + ¢ < 2n + 2, the general position assumption implies that the image points
flor), .., flog), f(wi),..., f(we) span a simplex of dimension k + ¢ — 1 and that f(o) and f(7)
are two distinct faces of this simplex. It follows that f(7) and f (o) are disjoint, Then by injectivity
we have embedding for finite simplical complexes.

Definition A.14. (Fushida) If f : R™ — R is a smooth function then its gradient is the vector field
grad f defined by grad, f = ( OF (z),--- ﬂ(z)) Equivalently the vector field is defined by

0wy ’ 0xy,
g(gradf,Y) = df (V) for all vector fields Y (Fushida-Hardy).
Definition A.15. A subset M of linear space E of dimension d is a smooth embedded submanifold
of dimension n if Yo € M there exists neighborhood U of x in E and open set V C R? and
diffeomorphism ¢ : U — V such that (U N M) = V N E where E is a linear subspace of
dimension n (Lee & Lee), [2012).

Remark A.16. Rotations, reflections, and translations are coordinate transformations (Gower &
Dijksterhuis) 2004).

A.4 EXAMPLE: ATOMIC COMPLEX CONSTRUCTION FOR DEUTERIUM

Lemma A.17. For the sake of illustration we describe a simple case, namely how we encode
deuterium which contains 1 proton, 1 neutron, and 1 electron. Let Top be the category of topological
spaces.

Let p = PD? be a proton, n = N D? be a neutron and e = (Z,7) be an electron. Then we know
that p,n, e, Op,0n,0e € Top. Let ¢, : Op — p, vy, : On = n, @, : Oe —> e be the generating
cofibrations for protons, neutrons and electrons. Let the n-cell attachment to space X be the result
of gluing either p,n, or e along a prescribed image of it’s boundary. In essence ¢, : Op — On,
Gn : On — e, ¢ : de — X and all are continuous functions. The attaching space is then
X Ug, pUg, nUg, e € Top which makes the following diagram commute:

ap % o —2m .y 9e e X
J{tpp J{@n J{‘Pe J/
D n e X Ug, pUg, nUg, €

16



Under review as a conference paper at ICLR 2025

A.5 EXAMPLE: POLYATOMIC COMPLEXES (TWO-ATOMS)

Lemma A.18. For the sake of illustration we describe the simplest possible case of connecting
2 atoms. Let Ay and Ay be atoms. We know that A1, As € Top. Let w4, : 0A1 — Ai, @a, :
0As — As be the generating cofibrations for each complex. Let the n-cell attachment to space
X be the result of gluing either Ay, or As, along a prescribed image of its boundary. In essence
¢a,  0A1 = 0As, ¢pa, : 0As — 0X such that all are continuous functions.

The attaching space is then X Uy, A1 Uy, Az which makes the following diagram commute:

¢A1 ¢A2

0A; 0A, X
l@Al LPM l
Aq As X U¢A1 Aq U¢A2 Ay

(o g)(@)(2) = /A Gy (Z)df o, (a2)

A.6 PROOF: LEMMA 2.7

Proof. We want to show atomic complex A is finite.

By [2.4] an atomic complex is a union of P;, Nj, and Ej. The frequency of each is governed by
N, P, € which correspond to the number of protons, neutrons and electrons found in an atom. Since
individual atoms have a finite number of protons neutrons and electrons, we know each cell is finite
and there are finitely many cells in each dimension. Therefore A must be finite.

We want to show that an atomic complex A is n-connected.

For every i € I,, let g; be a map from a one point space to P; or IN; or Ej. Since both spaces have
all homotopy groups trivial, V¢ g; induces an isomorphism on all the homotopy groups. Therefore by
Whitehead’s Theorem for every ¢ we know g; is a homotopy equivalence and so P is contractible
—> P is n-connected.

Thus atomic complex A is finite and n-connected. O

A.7 PROOF: LEMMA[2.8l

Proof. We want to show polyatomic complex P is finite.

By[2.5]an polyatomic complex is a union of atomic complexes A;. The frequency of atomic complexes
is governed by K which corresponds to the number of atoms in the system. Since the atomistic
systems we model are finite, we know each cell is finite and there are finitely many cells in each
dimension. Therefore P must be finite.

We want to show that an polyatomic complex P is n-connected.

For every i € I, let g; be a map from a one point space to A;. Since both spaces have all homotopy
groups trivial, Vi g; induces an isomorphism on all the homotopy groups. Therefore by Whitehead’s
Theorem for every 7 we know g; is a homotopy equivalence and so P is contractible = P is
n-connected.

Thus polyatomic complex P is finite and n-connected. [

A.8 PROOF: THEOREM[2.9]

Proof. Let P be a polyatomic complex. By 2.8 P is a finite CW complex.

It is then implied that each P is homotopy equivalent to a finite dimensional locally finite simplical
complex S (Theorem 2C.5 Hatcher (Hatcher, [2002))). By we know S has linear embedding
X € R*. Pick regular neighborhood M, of X € RF. It will be homotopy equivalent to X and a
complex PL submanifold with boundary. Take the interior int(M,) = M. Then, M is a smooth
manifold. O

A.9 PROOF: THEOREM 2.1 UNIQUENESS

Proof. We want to show that an atomic complexes are unique. In essence two systems differing in
property should be mapped to different representations.

17
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This immediately follows from Hatcher Corollary 4.19 (Hatcher, 2002)), an n-connected CW model
is unique up to homotopy equivalence rel A. By lemmaa polyatomic complex P is n—connectedﬂ
O

A.10 PROOF: THEOREM [2.T1]CONTINUITY AND DIFFERENTIABILITY

Proof. We want to show that atomic complexes are continuous and differentiable with respect to
atomic coordinates.

We want to show that atomic complexes are continuous with respect to atomic coordinates. Let M 4
be the embedded smooth submanifold of atomic coordinates as in Similarly let the smooth
manifold M¢ correspond to an atomic complex C' as in[2.9] Claim: The map F' : M¢c — M4 is
smooth and therefore continuous. It is sufficient to show that F' is locally continuous i.e. Vx € M 3
neighborhood U, such that F'|y;, is continuous. Then since both M 4 and M ¢ are smooth manifolds
there exist local coordinate systems (U, £) at z and (V, x) at F'(x) such that the coordinate expression
O =yoFolt:{UNF1(V)) — R™is smooth. Pick U, = U N F~(V). Then it follows that
U, CFY(V) = F(U,) C F(F~YV)) C V. Thus the maps £ ! and y are homeomorphisms
and @ is a smooth map between euclidean spaces and F'|y;, is a composition of continuous maps
= Fis continuous. Then let g : C — M be continuous and h : M4 — A be continuous. Then
composition of continuous functions are continuous g o F' o h. Therefore we have continuity.

We want to show that atomic complexes are differentiable with respect to atomic coordinates. Let
M 4 be the embedded smooth submanifold of atomic coordinates as in[2.10] Similarly let the smooth
manifold M correspond to an atomic complex C' as in[2.9] Then the differential of the map F :
Mg — My is well defined. The differential of smooth map F' at x dF(z) : TuMc — TpgyMa
is defined by: dF'(z)[v] = (Foc)'(0) = lim;_ 717(0(’5)1_}7(“) where ¢ : R — M satisfies ¢(0) = z
and ¢/(0) = v. This map is linear and we have a chain rule. If F' is the smooth extension of F, then
dF (z) = dF(z)|1, M- In general bywe just write g(gradF, X') = dF(X) for vector field X.
We can let dF'(z) be our (approximate) derivative for C' with respect to atomic coordinates. We can
alternatively let f : C' — M be a continuous differentiable map, let g : M 4 — A be continuous
and differentiable, and rely on chain rule. Therefore we can define the derivative with respect to
atomic coordinates. O

A.11 PROOF: THEOREM [2. 12| INVARIANCES

Proof. We want to show polyatomic complexes are invariant with respect to rotations, changes in
atom indexing, translations and reflections.

It suffices to choose an atlas such that all the coordinate change maps are smooth. Let the smooth
manifold M correspond to an polyatomic complex C' as in[2.9] Additionally, let C>°([a, b]) denote
the space of smooth functions f : [a,b] — M. Then, for functionals S : C*([a,b]) — R of

the form S[f] = f:(L o f)(x)dz where L : TM¢ — R is the Lagrangian, we know dS; =

0 <= Vt € [a,b] each coordinate frame trivialization (2, X*) of a neighborhood of f(t) yields
the following dim M equations: Vi : %%| Flo) = %| f(x)- This recovers the Euler-Lagrange
equations[]ﬁ& 1. = dL which are invariant under coordinate transformations and therefore rotationally,
reflectionally, and translationally invariant. [

We want to show polyatomic complexes are invariant w.r.t changes in atom indexing.

Let] ={1,...,4,i+1,...,n}andn € Ns.it. 1 <i < i+ 1 < n. Suppose that polyatomic
complex P is composed of atomic complexes [A1, ..., A;, Ait1,. .., A,]. Suppose that we swap A;
and A, and construct polyatomic complex O = [A1,..., A;y1, Ai, ..., Ay]. Then, it suffices to
show that O = P. We know that O and P are homeomorphic with isomorphic fundamental groups.

~

In essence V i we have m;(P) — m;(O). Since polyatomic complexes are contractible = all
homotopy groups are trivial = Vi 7;(P) = m;(O) = 0. Thus O = P. In essence, they encode
the same information regardless of whether one re-indexes. O

®All chemical elements are distinguished by their number of protons. In the case of isotopes the number of
neutrons would differ. You would have a different number of cells.

"We can use the lie derivative £ and local charts (¢%, ¢®) such that 1, = %dq“ and A = % José &
Saletan| |1998)).

°A change of coordinates is a diffeomorphism between manifolds.
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A.12 PROOF: THEOREM [2.12] UNIQUENESS

Proof. We want to show polyatomic complexes are unique.
By Hatcher Corollary 4.19 (Hatcher, 2002), an n-connected CW model is unique up to homotopy
equivalence relA. By lemma|2.8] a polyatomic complex P is n-connected.

O

A.13 PROOF: THEOREM [2.12] CONTINUITY AND DIFFERENTIABILITY

Proof. We want to show that polyatomic complexes are continuous and differentiable with respect to
atomic coordinates.

We want to show that polyatomic complexes are continuous with respect to atomic coordinates. Let
M 4 be the embedded smooth submanifold of atomic coordinates as in@ Similarly, let the smooth
manifold M ¢ correspond to an polyatomic complex C' as in[2.9] Claim: The map F' : Mo — M4 is
smooth and therefore continuous. It is sufficient to show that F’ is locally continuous i.e. Vo € M 3
neighborhood U, such that F'|;, is continuous. Then since both M 4 and M ¢ are smooth manifolds
there exist local coordinate systems (U, £) at z and (V, x) at F'(x) such that the coordinate expression
O =xoFol1:&UNF~1(V)) — R"is smooth. Pick U, = U N F~1(V). Then, it follows that
U, CFYV) = F(U,) C F(F~1(V)) C V. Thus, the maps ¢! and y are homeomorphisms
and ® is a smooth map between euclidean spaces and F'|y, is a composition of continuous maps
— [ is continuous. Then we see g : C' — Mg and h : M 4 — A are continuous, since they
are smooth embeddings. Essentially, we know ¢ is continuous on the restriction to every space in
the diagram == by the universal property of a colimit that g is continuous. Then, composition of
continuous functions are continuous. Therefore, we have continuity.

We want to show that polyatomic complexes are differentiable with respect to atomic coordinates. Let
M 4 be the embedded smooth submanifold of atomic coordinates as in[2.10} Similarly, let the smooth
manifold M ¢ correspond to an polyatomic complex C' as in Then the differential of the map F' :
Mc — M4 is well defined. The differential of smooth map F at x dF'(x) : T Mc — Tp)Ma
is defined by: dF'(z)[v] = (Foc)'(0) = limy;_o w where ¢ : R — M satisfies ¢(0) = =
and ¢/(0) = v. This map is linear and we have a chain rule. If F' is the smooth extension of F,
then dF(x) = dF(x)|1, m- In general, by we just write g(gradF, X) = dF(X) for vector
field X. We can let dF'(z) be our (approximate) derivative for C' with respect to atomic coordinates.
Alternatively, we know f : C — Mg, and g : M4 — A are smooth embeddings — the
derivatives are everywhere injective. Thus, we can compose these functions and apply chain rule.
Therefore, we can define the derivative with respect to atomic coordinates.

A.14 PROOF: THEOREM [2. 12l GENERALITY

Proof. Suppose for the sake of contradiction that a polyatomic complex cannot encode any atomistic
system. This implies, by definition an atomistic system, that there exists a finite collection of atoms
{Ay,..., A} such that A a corresponding polyatomic complex P. However, we can construct
such a P. By[2.4|VA; € {A1,..., A} there exists corresponding atomic complex A;. Let our
corresponding set of atomic complexes be { A1, ..., A;}. Then, can define attaching maps x, =
{¢q; : 0A;, — A; | a correspondsto A;}. Then, we have a sequence of topological spaces
Ag = ... — Ak and can form P such that a diagram D isomorphic to the one in@ commutes.
Therefore, we have a valid polyatomic complex P. As a result, we have a contradiction and the
opposite must be true. O

A.15 PROOF: THEOREM 212 TIME COMPLEXITY

Proof. Suppose the reference simulation is a system with k¥ = | M 4| many atoms. By Algorithm
we can show that we can construct a polyatomic complex in O(C') which is polynomial time.

For an atomic complex, Algorithm|[I|runs in O(M - (d,, - N 4+ d. - E - S +d,, - P)) = O(A) where
P, N, E are the number of protons, neutrons, and electrons and dy,, d,,, d. correspond to the range of
dimensions for protons, neutrons, and electrons; additionally, S is the time complexity of the method
in (Motta & Zhang, [2018)), and M is the time complexity of constructing an attaching map via helper
function. Then, we know that Algorithm2jruns in O(k - A - F - M - R) = O(C) where M is the
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time it takes to construct 1 attaching map, F' is the time complexity of update_forces, and R is the

time complexity of update_radial. Thus, Algorithm 2]runs in O(C)).

A.16 ALGORITHMS

In this section, we provide the pseudo-code for Atomic and Polyatomic complexes.

Algorithm 1 Atomic Complexes

Let A be an atom.
Input: Let P be the number of protons, E be the number of electrons,
and N be the number of neutrons. Pick a desired maximum dimension K
based on what one wants 7; to be. Note that K = |7 |= P+ N + E
as in deﬁnition@ By default we fix 7; = 3 for protons and neutrons
and 7; = O for electrons. If one wants to form complexes over a range of
dimensions [0, d], run each while loop O (d) times and ensure |A g |=
E-d |Ap|=P-d |ANy|= N -d.
Let Ap := {[ee?, wil,. .. [ee%, wpg]}suchthat |[Ap|= E.
Let Ap [PDTi,...,PD7i]suchthat |Ap|= P.
Let Ay := [ND7i,..., ND7i]suchthat |AxN|= N.
Let D p denote a random matrix encoding pairwise forces and energetics
between all protons and neutrons.
Let D g denote a random matrix encoding radial contribution for electrons.
Note that in general ¢¢ j : OTp, — Ty forall k € Iy are the
attaching maps for protons, neutrons and electrons respectively.
Let Pp = @
Letip = 0.
while |[Ap|> 0do

Letp = A p.pop()

Pi, < glue(Pi,—1,p, ¢r;,ip)

ip = ip + 1
end while
Let Ng = @
Letiy, =0

while |Ax|> 0do
Letn = A pn.pop()
Nip, « glue(Ni, —1,n,¢r; ip)

ip = ip 4+ 1
end while
Let Eg = 9
Letie = 0

while |Ag|> 0do
Lete, w;,+1 = Ag.pop()
Ei, « glue(Ej, —1,€, 7, i,
update_distances(De wj, 41, €)
fo = ic 4+ 1
end while
Note that 4, : aPip — ON;,, andpp : ON;,, — OE;,.
K = Pi, Upp Nip, Upe Eig

return A = (K, Ap,Dp,Dg)

A.17 METHOD COMPARISON:

‘We summarize the differences between metho

Algorithm 2 Polyatomic Complexes
Let P be a polyatomic complex.
Input: Let M4 be a list of atoms present in the system. Let

using_radial and using_force_model be boolean values.
/I Note that for every a € M 4 a := (p, n, e, d) corresponding to
number of protons, neutrons and electrons and desired dimensions or range
of dimensions.
Let A < List() be an empty dynamic array.
foralla € M4 do
A < Algorithm1(a) [T]
append(A, A)
end for
LetC = o
Let E = matrix(0, 0)
Let F = matrix(0, 0)
Let D = matrix(0, 0)

Leti =0
Note that ¢ ; : OK; — K;1 fori € I are the attaching maps
for the zeroth element of the atomic complex result in essence A[0] = K.

while | A|> 0 do
k,ae,dg,de = A.pop()
C'  glue(C Lk, 4,0)
E =FE® ae
if using_force_model then
F=F®ds
update_forces(F)
end if
if using_radial then
Dp =Dp & de
update_radial(Dpg)
end if
i=i+1
end while .
return P = (C*, E, F,Dpg)

ds in the following tables.

Table 1: Method Comparison I

Invariance | Uniqueness | Continuity & Differentiability | Generalizability | Efficiency

Polyatomic Complex v v v v v/ 0(5)
SMILES X v i X v
SELFIES A0 AT | X v
2D Graphs 4 v v v
3D Graphs | 4 v 4 v
ACE v v v v X
SOAP/Bartck v v v v X
Behler-Parrinello v v v v X

“Dependent on canonicalization.

!Not invariant under changes in atom indexing.
""Each atom symbol is semantically unique.
12Requires post-processing for bijectivity.

3Yes there are some which are E(3) invariant.
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Table 2: Method Comparison 11

Topologically Accurate | Consider long-range interactions | Chemistry/Physics informed
Polyatomic Complex v v v
SMILES X X
SELFIES X X
2D Graphs X X
3D Graphs X
ACE v v v
SOAP/Bart6k v v v
Behler-Parrinello X v

A.18 DATA: PHOTOSWITCHES TABLES

Table 3: Photoswitches Benchmark

E isomer n-7* wavelength (nm) DFT E isomer n-7* wavelength (nm)

Kernel Representation RMSE MAE CRPS RMSE MAE CRPS
Tanimoto ~ SELFIES 89+02 57+£01 64 73£02 36+01 26
Tanimoto  SMILES 86+02 51+01 64 6.5+02 324+0.04 25
Tanimoto ECFP 78+£02 444+01 6.3 62+02 31+01 25

Tanimoto  Fast Complex 13.8+0.3 7.0£0.1 6.9 8.0+0.2 25+£0.1 2.5
Tanimoto Deep Complex 13.8+0.3 7.0+£0.1 7.0 8.0£0.2 25+01 25
WL Graphs 7.8+£0.2 444+0.1 6.2 6.2+0.2 3.1+£0.1 2.5

Table 4: Photoswitches Benchmark

E isomer m-7* wavelength (nm)  DFT E isomer 7-7* wavelength (nm)

Kernel Representation RMSE MAE CRPS RMSE MAE CRPS
Tanimoto ~ SELFIES 31.8+0.7 222+£0.5 357 26.1£0.5 17.1+£0.2 15.1
Tanimoto SMILES 30.8+0.6 221+£0.3 359 229+0.5 146+£02 14.6
Tanimoto ECFP 30.5+0.6 21.6+0.3 36.4 229+0.5 13.7+£0.3 14.6

Tanimoto Fast Complex  64.4+0.7 52.1+0.5 52.1 320+0.5 15.7+£0.5 15.7
Tanimoto Deep Complex 64.4+0.7 52.1+0.5 52.1 320+£0.5 15.7+£0.5 157
WL Graphs 28.1+0.8 17.9+04 35.5 23.84+0.6 15.3+0.3 14.9

Table 5: Photoswitches Benchmark

Z isomer n-7* wavelength (nm) DFT Z isomer n-7* wavelength (nm)

Kernel Representation RMSE MAE CRPS RMSE MAE CRPS
Tanimoto ~ SELFIES 78+£02 39x01 33 13.0+£0.8 41401 28
Tanimoto SMILES 74+02 34+01 33 128+1.0 324+02 27
Tanimoto ECFP 6.7£02 3.0+01 3.2 1244+09 4.04+0.1 28
Tanimoto  Fast Complex 8.1+0.2 3.6+0.1 3.6 128 £1.0 28+03 28
Tanimoto Deep Complex 8.1+£0.2 3.6+0.1 3.6 128+ 1.0 28403 28
WL Graphs 73+£02 31+01 3.2 1284+1.0 28403 28

Table 6: Photoswitches Benchmark

Z Photostationary State (% isomer) E Photostationary State (% isomer)

Kernel Representation RMSE MAE CRPS RMSE MAE CRPS
Tanimoto  SELFIES 50+£0.2 23+01 18 6.2+0.3 28+£0.1 20
Tanimoto SMILES 48+0.2 22+£01 18 6.1£03 26+£01 20
Tanimoto ECFP 46+02 20+£01 1.7 58£0.3 25+£01 1.9
Tanimoto  Fast Complex 5.1+0.2 18+0.1 1.8 6.1£03 21+£01 20
Tanimoto Deep Complex 5.1£0.2 1.8+0.1 1.8 6.1+03 21+01 21
WL Graphs 49+02 21+£01 1.8 6.5+02 28+0.1 20
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A.19 FORCE MODELS

As described by Lin et al. (2019), in the context of force fields, the typical potential energy function
is as shown in equation (1) (Lin & MacKerell, 2019).

Nbond angle Nd'ihedr‘al nonbonded
V;&otal - § ‘/bond + § Vangle E Vdihedral + E VNb E k Teq
i=1 bonds
qiq;
+§ ko (0 — 0cq)? § ki [1 4 cos(nw — 7+§ § =
47T€7"”
angles dihedrals 1<j

For polyatomic complexes one can write the above equations as sums over 1n01dent cells. The
definitions of the relations <, 4, ~ and ~ are found in the Appendlx- [A.9] For the j-th proton of
dimension 73, we let Np e := {PD}' | PDI}™" < PDj* A T~ PD}*V PD" o
J
PD7*)} contain all protons incident to proton PD7*. For the ]-th neutron of dimension 75, we
L I Tk—1 Tk—1 T Tk—1 Tk Tk—1 T
similarly letNND;k ={ND; " |[ND;"' < ND*AN(ND;/~" ~ND*VND; " = ND*)}
contain all neutrons incident to neutron NV DT’“ Finally for the j-th electron of dimension 7 we let
T T .
Nee;'k = {ee; " [eey ™ < eelt /\(ee]f '~ eelt Vee; 7t o eel* )} contain all electrons incident

to ee}*. For the i-th atom of dimension &k we similarly let Ny := {Af, o Af, t< Ak A (Af, t
J
A? v A?Tl " Af)} contain all atoms incident to A;?. The set N4« then describes an atom’s local
J
environment. One can choose radius r > 0, and distance function d such that:

ENV i = {AF7 V(i 5) d(AFH AT <r A AT < AP AATTH < AT 2)

ENV Ak more generally defines environments in a molecule or polyatomic system.

This setup enables us to write out an equatlon analogous to (1). In particular, let X be a polyatomic
complex. Let dy, j, : A¥ x AF x ... x AF — R be a valid metric defined on products of atoms
(e.g. sup metric). Then let Vbond = {(Ak ARY | do i (AF, A¥) < riona VE < dim(X)}. In
essence, Vyongq 1S the set of all pairs of atoms whose separation is only 1 bond, given by 7p,4. Let
Vangle = {(AF, A¥, AY) | ds (A}, AY, A}) < Tangie VE < dim(X)}. In essence, Vangie is the set
of all triples of atoms whose separation is only 2 bonds, thereby forming an angle, given by 74,41
Let Vainearal := {(A}, Ay, Af, AR | dy i (AF, A%, A}, A% ) < rgin Yk < dim(X)}. In essence,
Viihedral 18 the set of all quadruples of atoms whose separation is only 3 bonds, thereby forming a
dihedral potential or torsion potential, given by r4;,. Let Vyp, := {(AiC X A’;) | dg’k(Af X A;“) >
rap Yk < dim(X)}. In essence, V,; is the set of all tuples of atoms whose separation is greater
than 3 bonds given by 7,,;,. The definitions of Vyond, Vangies Vdinedrai> and Vy;, are motivated by the
parameterizations given by the General Amber Force Field (Wang et al., [2004} [Lin & MacKerell,
2019). For classification one can apply numerous force fields such as GAFF (Grimme, |2014} [Senftle
et al., [2016; [Wang et al., 2004). The function p describes the separation between the atoms. The
function 1) determines the angle between atoms. The function £ determines angles formed by the
planes defined by atoms.

Vvtotal - Z k Teq)2 + Z k@ (19(1}@) - eeq)z

V- €Vpond vaevan,gle
A B ¢iq:
+ ki1 + cos(n - &(vg) — + Y Y|+ o 3)
T wltrentnson-nl+ 3 | - 0]+
va€Vdihedral Vo EVnp
More complex interactions can be modeled by considering sets like
Int, = {(AF x - x AF )| dni(AF x - x AF ) <7 Vk < dim(X)} “4)

Note that all parameters can be chosen to reproduce experimental data or quantum mechanical
calculations (Grimmel [2014; Wang et al., 2004). If one wishes to consider more complex dynamics,
in the context of polyatomic complexes, doing so is possible. Suppose we wish to model the dynamics
of evolution of a non-relativistic quantum system determined by the time-dependent Schrédinger
equation (TDSE) (Scully} 2008)). The time-dependent Schrédinger equation is defined as

m%w(r, R,t)) = H(r,R)|¥(r, R, 1)) 5)
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where R = {R;} are nuclear positions and {r;} are electronic positions. One can write approxima-
tions to the TDSE using polyatomic complexes. In physics one usually writes out the Hamiltonian as
a sum of kinetic energy, potential energy, nuclear repulsion, electronic repulsion and electron-nuclear
interaction (Jecko, [2014; Tsai et al.| 2024).

Hr,R) =T +V =Ty +T. + Vyn + Vee + Ven ©6)
We approximate this quantity in the following way.
Let NUC i= U™ UJt, (Wpprme UNypr ) and ELEC i= U™ UpS, N,

7 n’ n’ ZaZpe?
Hr,Ry~— > ——AI- % AT+ Y
IENUC 2M; i€ELEC ¢ I#£JENUC Ameo|pos(I) — pos(J)|
e? Z se?
; c @
Z 4rreg|pos(i) — pos(f)| Z drreg|pos(I) — pos(i)|

i#jEELEC iEELEC,IeENUC

where pos determines the nuclear or electronic positions and Ay, is the Hodge-Laplacian as described
in Appendix[A.T0] The Hodge-Laplacian terms approximate the derivatives with respect to the nuclear

. . . 2
coordinates and electronic coordinates A? ~ -—%—— and A? ~ ﬁw. The last four terms can be

5] 05(1
combined into an approximation for the electronic Hamiltonian He(r7 R) ~ HNnuc,eLEc (Albareda
et al.,[2021). Which enables us to write:

~ — K2 ~

H ~— — A2 H

(r, R) Z ont; o + HNuc,ELEC (3)
IeENUC

Then by substitution of (8) into (5) we see

e —h?
ih= [0 (r, B, ) ~ < > MAI+HNUC ELEC) | (r, R, 1)) )
IENUC
By the Born-Huang approximation we can approximate the total wave-function (T'sai et al., 2024).
W (r, R, t)) Zm (r; R)Qu(R, t)) ZW’”/’I (10)
=0

Here, the ¢; correspond to the attaching maps (gi)p 1)16 1, and (¢n.i)ier, asin Deﬁmtlon Similarly,
1y correspond to the attaching maps (¢e ;)icr, asin Definition Usually, X¢(r; R) are the time-
dependent nuclear wave-functions and §2,(R, t) are the solutions of the time independent SE.

A.20 THE STRUCTURE Ato

We now introduce the idea of a monad of atomic complexes. Fundamentally, in probability theory,
one can consider the category of topological spaces Top and equip it with a monad whose functor
assigns a space P A of probability measures on X to each element A. In the case of Ato, a monad, we
define a functor that assigns atomic complexes, elements of Top, to a space of probability measures.

Definition A.19. Ato is a monad whose objects are atomic complexes. Atoms are contained within
ob(Top). The morphisms are measurable functions encoding the probability that an atom forms a
chemical bond. More explicitly:

Let A; and A5 be atomic complexes and f : A; — A be a measurable function. Let f, denote the
pushforward, n be a natural transformation, 7" be a functor, and i : A — T A. Then the diagrams
commute:

A —1— a4, Iy A TA S TTA TTTA T TTA
iu lll \ lﬂ \ lﬂ LMT lﬂ
TA, —I T4, TA TTA —"—TA

Remark A.20. The full proof is found below in this section. At a high level, since atomic complexes
are topological spaces, they can be equipped with a o-algebra, and the morphisms are measurable;
the result follows mutandis mutatis from the Giry monad on Meas (Giryl 2000).

23



Under review as a conference paper at ICLR 2025

Remark A.21. This property allows a user to encode and make statements about the probability
of two atomic complexes forming a chemical bond in a compact way. In essence, the % Coulomb
potential that gives the attraction between charges.

Proof. We want to show that Ato defines a monad structure. Since atomic complexes are topological
spaces that you can equip with a o-algebra and the morphisms are measurable the result follows
mutandis mutatis from the Giry monad on Meas |Giry|(2006). You can generate the o-algebra by the
integration functions ey : PA — R by

P / fdp,

forall f: A — [0, 1] measurable. You can define multiplication in the usual way:

E.(X):= /PAP(X)dﬂ'(p)

when given A and measure 7 € PPA. By composition of morphisms you can reproduce the
Chapman-Kolmogorov equation for general measures given f : Ay — PAs and g : Ay — PA3z we
see:

(f 0 )(a)(2) = /A s (Z)df 0, (a2)

for each a; € Ay and Z C As. This composition is associative and unital. Thus we have a monad
structure. O

A.21 COMPUTE COST

All reported experiments can be reproduced using an AWS m7g.4xlarge instance (16 vCPU, 64 GiB)
in under three hours per experiment. The full project required more compute than the experiments
reported in the paper. This is because we conducted a wider variety of experiments on different
datasets which are not reported. Certain experiments require resources equivalent to that of an AWS
pS.48xlarge (192 vCPU, 2TiB, 8 GPU-H100) and approximately ten hours per experiment.
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