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ABSTRACT

Federated Recommender Systems (FRSs) aim to provide recommendations to
clients in a distributed manner with privacy preservation. FRSs suffer from high
communication costs due to the communication between the server and many
clients. Some past literature on federated supervised learning shows that sam-
pling clients randomly improve communication efficiency without jeopardizing
accuracy. However, each user is considered a separate client in FRS and clients
communicate only item gradients. Thus, incorporating random sampling and de-
termining the number of clients to be sampled in each communication round to
retain the model’s accuracy in FRS becomes challenging. This paper provides
sample complexity bounds on the number of clients that must be sampled in an
FRS to preserve accuracy. Next, we consider the issue of demographic bias in
FRS, quantified as the difference in the average error rates across different groups.
Supervised learning algorithms mitigate the group bias by adding the fairness con-
straint in the training loss, which requires sharing protected attributes with the
server. This is prohibited in a federated setting to ensure clients’ privacy. We
design RS-FAIRFRS, a Random Sampling based Fair Federated Recommender
System, which trains to achieve a fair global model. In addition, it also trains local
clients towards a fair global model to reduce demographic bias at the client level
without the need to share their protected attributes. We empirically demonstrate
across the two most popular real-world datasets (ML1M, ML100k) and different
sensitive features (age and gender) that RS-FAIRFRS helps reduce communica-
tion cost and demographic bias with improved model accuracy.

1 INTRODUCTION

Recommender systems (RSs) have a wide variety of applications in online platforms like e-business,
e-commerce, e-learning, e-tourism, music and movie recommendation engines (Lu et al. (2015)).
Traditional RSs require gathering clients’ private information at the central server, leading to seri-
ous privacy and security risks. ML models can train locally due to edge devices’ increased storage
and processing power. This has led to Federated learning (FL) (McMahan et al. (2017)), which
allows clients to share their updates with the server without any data transfer. The server proposes
a common model which is communicated with all clients. Using their data and the global model,
clients train locally and communicate the updated model to the server. FL has found many applica-
tions in the past few years, e.g., Google keyboard query suggestion (Yang et al. (2018)), smartphone
voice assistant, mobile edge computing, and visual object detection (Aledhari et al. (2020)). These
applications face numerous challenges including communication efficiency (Smith et al. (2018)),
statistical heterogeneity (Smith et al. (2017)), systems heterogeneity (Bonawitz et al. (2019)), pri-
vacy, personalization, fairness (Kairouz et al. (2021)), and many more. This paper focuses on two
primary issues: communication efficiency and demographic bias in FRSs.

Unlike other applications of FL, where one client has data of many users, in FRS, each user acts as
one client constituting a user’s profile. FedRec (Lin et al. (2021)), an FRS, expects all the clients to
train parallelly using matrix factorization (MF). In each communication round, the server aggregates
the model updates from a huge number of local clients to obtain a global model, and this global
model is then sent back to all the clients. This whole procedure increases the communication cost.
We show that random sampling of clients in each communication round reduces the communication
cost even when only item gradients of sampled users are communicated. Theoretically, we provide
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bounds on an ideal fraction of clients to be sampled to maintain the model’s accuracy. Proving
sample complexity bounds is non-trivial as the clients may possess non-IID data. To circumvent this
issue, we assume an underlying clustering structure on the clients such that clients within a cluster
share similar item vectors. The main novelty lies in proving that the random sampling will fetch
enough representation from each cluster and the predicted ratings obtained after sampling small
number of clients will not be far (with high probability) from that of predicted ratings obtained after
communicating with all clients in all the rounds.

Fairness in FRSs is a critical yet under-investigated area. Empirically, we prove that FedRec offers
better recommendations to a particular group of clients. This unfair treatment can fortify the social
stereotypes based on gender, race, or age, resulting in significant repercussions. So far, researchers
have studied fairness in the domain of centralized RSs (Li et al. (2022)). Many past works (Islam
et al. (2019); Yao & Huang (2017); Li et al. (2021); Yang et al. (2020a)) develop bias mitigation
strategies in traditional RSs, which require sharing sensitive attributes with the server, causing pri-
vacy leakage in the federated setting. In FL framework, Yue et al. (2021); Kanaparthy et al. (2021);
Du et al. (2020); Zhang et al. (2020) ameliorate bias in classification setting where each client pos-
sesses data of many users and thus can train for fairness in each communication round. As opposed
to this, in FRS, each user acts as one client that sends its item gradients to the server after updating
the user vectors and item gradients locally. This makes it extremely difficult to train locally towards
fairness. We propose a dual-fair vector update technique with two phases. In Phase 1, the server
aggregates the received item vectors and trains them towards fairness on a small fraction of data.
Even if the global model is fair, local client updates may result in a heavily biased model. Thus in
Phase 2, the clients minimize local error and learn item vectors closer to the globally fair vectors.
In summary, our work aims at mitigating the issues of reducing the communication bottleneck and
group bias in Federated Recommendation system (FedRec) (Yang et al. (2020b)) for the first time.
We list down our main contributions below:

1. We provide sample complexity bounds on the fraction of clients required for maintaining
accuracy within the desirable limit in Theorem4.1. Our experiments prove that sampling
these many clients improve communication costs in FRS without affecting accuracy even
when the clients do not disclose their user vectors and share only updated item gradients.

2. We show the existence of group bias in FRS quantified by evaluating discrepancies in the
average group losses for each sensitive attribute. To mitigate this issue, we propose a novel
dual-fairness vector update technique that tackles the issue of group fairness at local as
well as global level.

3. Combining the ideas of random-sampling and dual-fairness vector update, we propose RS-
FAIRFRS, a novel FRS model which provides communication efficiency and improved
fairness as well as accuracy .

4. We show that RS-FAIRFRS mitigates demographic bias and improves accuracy via ex-
tensive experimentation on the two most popular datasets of ML1M and ML100K, with
different demographics (age and gender).

2 RELATED WORK

We divide the literature review into four sections: (i) federated recommender systems (FRS), (ii)
client sampling in federated learning, (iii) fairness in centralized RSs, and (iv) fair federated learning
models. We emphasize that there does not exist any work which targets fairness in FRS.

Federated Recommender Systems (FRS): Federated Collaborative Filtering (FCF) (ud din et al.
(2019)) is the first FRS to use implicit feedback for providing personalized recommendations. Lin
et al. (2021) identifies the need for an FRS that uses explicit ratings and proposes FedRec that
deploys two techniques- Hybrid Filling (HF) and User Averaging (UA) for privacy preservation.
Researchers have been actively exploring many areas of research in FRS like denoising (Liang et al.
(2021)), personalization (Jalalirad et al. (2019); Anelli et al. (2021)), privacy enhancement (Wang
et al. (2021); Hu et al. (2021); Ali et al. (2021)), building robust FRS (Wu et al. (2022); Zhang
et al. (2022); Rong et al. (2022)),mitigating cold-start issue (Wahab et al. (2022)), and improving
accuracy of FRS (Perifanis & Efraimidis (2022)). FedFast (Muhammad et al. (2020)) speeds up
training in FRS by using an active sampling technique based on the clustering of the user vectors.
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However, Lin et al. (2021) argues that only item vectors of clients should be shared with the server to
preserve clients’ privacy. Further, Saito et al. (2019) explaints that usage of implicit feedback leads
to the positive-unlabeled problem. Thus, we aim to analyze FedRec (Lin et al. (2021)) as our base
model. It uses explicit feedback, unlike the other existing models like FCF (ud din et al. (2019)),
NCF (Perifanis & Efraimidis (2022)), and Federank (Anelli et al. (2021)), which either user implicit
feedback or convert explicit ratings to implicit feedback. Moreover, none of the aforementioned
works investigates fairness in federated recommendations. We identify two major challenges of high
communication costs and demographic bias, which remain uninvestigated. Since client sampling
methods can significantly reduce communication costs, we now discuss some existing papers that
use random sampling in FL.

Client Sampling in Federated Learning: Malinovsky et al. (2022) terms the selection of a
batch of clients by the server for participation in the training process as partial participation and
demonstrate that local steps can help to overcome the communication bottleneck. Charles et al.
(2021) conducted extensive experiments to elicit significant challenges such as generalization issues,
diminishing returns, training failures, and fairness concerns due to using large cohorts in FL models.
Authors in (Balakrishnan et al. (2022)) adopt a greedy strategy to select clients to represent the
overall population and provide convergence guarantees for the same. Fraboni et al. (2021a) used
clustered sampling for better client representation and reduced variance of stochastic aggregation
weight, and Chen et al. (2020) restricted the number of clients allowed to communicate their updates
to the server. Finally, Fraboni et al. (2021b) studies the impact of client sampling on the convergence
of FL models. While all the above methods assume unbiased client selection, another line of work by
Cho et al. (2020) offers the first federated optimization convergence study for biased client selection
techniques. Compared to classification settings, FRSs are different as out of the user, only item
gradients are communicated to the server. None of the above papers provide bounds on the ideal
number of samples required during communication even in federated learning setting. This paper,
for the first time provides the sample complexity bounds with respect to FRSs.

Group Fairness in RSs: Xiao et al. (2017) study group fairness by maximizing the satisfaction
of each group while minimizing the unfairness between them. Fu et al. (2020) propose a fairness
constrained approach via heuristic re-ranking to mitigate group bias in explainable RSs. Li et al.
(2021) categorizes clients into advantaged and disadvantaged groups according to their activity level
and provides a re-ranking approach to debias the recommendations. Beutel et al. (2019) introduce
novel metrics using pairwise comparisons to provide reasoning to bias and offer a regularizer to
encourage improving the corresponding metric. Yao & Huang (2017) formalizes four novel metrics
to quantify demographic bias and introduce a regularizer term in the objective function to mitigate
demographic bias; this approach is somewhat similar to Padala & Gujar (2020). All these methods
require the availability of sensitive features of clients to get fair recommendations, leading to privacy
leakage in federated settings. A few fair approaches like (Edizel et al. (2020); Bobadilla et al. (2020))
do not require sensitive attributes for mitigating bias but learn disparity from data while training to
get unbiased recommendations for the clients whose demographics are unknown. However, FedRec
only permits sharing item vector updates with the server, thus making these techniques inapplicable
to building fair FRS. Unlike all these approaches, our model RS-FAIRFRS uses an in-processing
method that neither disturbs the original data nor requires information leakage to the server.

Group Fairness in Federated Learning: Papadaki et al. (2022) provides an optimization al-
gorithm to improve group fairness with similar performance guarantees to centralized ML models.
Kanaparthy et al. (2021) proposes four heuristics by considering balanced and heterogeneous data
cases separately for fair federated classification models. Yue et al. (2021) propose GI-Fair to tackle
group and individual fairness in FLSs by using a regularization term to penalize the spread in the
aggregated loss. Recent work by Hu et al. (2022) uses the concept of bounded group loss to pro-
vide theoretical guarantees in group fairness. All these works were proposed to solve the issue of
demographic fairness in a federated classification setting. They can not be applied to FRS as in FRS
each user acts as one client, unlike classification, where one client can have data of many users.
Unique from all other methods, RS-FAIRFRS is the first algorithm to provide dual-fairness vector
updation in FRS by learning locally towards the global fair model for local fairness and achieving
global fairness by training aggregated vectors towards fairness.
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3 PRELIMINARIES

FedRec: In a typical FRS with explicit feedback, we have n users (or clients), u ∈ {1, 2, 3, ......., n}
and m items, i ∈ {1, 2, 3, ........,m}. Each client u has it’s rating vector [rui]mi=1 that depicts the
rating given by a client u to an item i. The true ratings given by the user and predicted ratings
are denoted using rui and r̂ui, respectively. We assume that rui = 0 if the client has not rated an
item. pui ∈ {0, 1} acts as an indicator variable for rated and unrated items. FedRec uses matrix
factorization that identifies the latent structure behind the data to generate two matrices U ∈ Rn×k

and V ∈ Rm×k in a way that each client u is associated with a vector Uu ∈ R1×k, called as user
vector and each item i is associated with a vector Vi ∈ R1×k, termed as item vector. The predicted
rating of ith item by uth user can be computed as r̂ui = Uu.V

T
i . The goal of FedRec is then to learn

the user vectors (locally) and item vectors globally to minimize the loss function:

LMF =
∑
u∈[n]

∑
i∈[m]

pui(rui − Uu.V
T
i )2 + λr(|| Vi ||2 + || Uu ||2) (1)

FedRec aims at predicting the rating of a client u for each item i without sharing their rating be-
haviors or records. For this, some unrated items are randomly sampled using sampling parameter ρ
and assigned virtual rating. Then, item gradients ∇V (u, i) for both truly as well as virtually rated
items are shared with the server. The server than aggregates these gradients and sends back the
aggregated item vectors to all the clients. Additionally, each client also computes the user gradient
∇Uu locally and is not shared with the server. Next section proposes RS-FAIRFRS that solves the
issue of communication inefficiency in FRS and mitigates demographic bias.

4 PROPOSED METHODOLOGY

To reduce the communication cost, we randomly sample clients in each communication round who
communicate ∇V (u, i) with the server. Randomly sampling the clients has been proposed in liter-
ature under supervised federated learning (Charles et al. (2021); Fraboni et al. (2021b); Cho et al.
(2020)). However, since each client is a separate user in FRS and user only shares the item gradients
with the server, it is not clear if random sampling will aid the recommender system to reduce com-
munication cost without affecting its accuracy in a federated setting. More importantly, the main
question is that how many clients should we sample in each communication round. To answer this
question, next section provides sample complexity bounds on the number of clients required to be
sampled to obtained the desired accuracy.

4.1 RANDOM SAMPLING WITHOUT REPLACEMENT

Unlike FedRec (Lin et al. (2021)), where the server aggregates item vectors after all the clients have
sent their updates, in RS-FAIRFRS, the server uniformly samples a τ fraction of n clients. It is well
known that the users in FL are non-IID. However, users who provide ratings to items tend to possess
an underlying clustered structure. Various algorithms (Koren et al. (2009); Gupta et al. (2020)) work
by identifying the latent patterns of users to provide recommendations and within the cluster, users
are IID. We aim to utilize this homogeneity within the same clusters without the knowledge of the
K clusters and the users belonging to each cluster. For random sampling to work, it is important
that the sampled set of clients Cτ must represent the entire population. In the first result, we show
that when certain number of clients are sampled randomly at uniform, they represent each cluster
equally to ensure that this sampled set is enough to represent the entire population.

Lemma 1 Suppose n clients are uniformly distributed amongst K clusters. Then, a subset S ⊆ [n]
sampled uniformly at random (without replacement) will contain an approximately equal number of
clients from each cluster.

We use Hoeffding’s bound (Serfling (1974)), which holds for sampling without replacement but
provides a very loose bound. Let Xj

i ∈ {0, 1} denote the random variable taking the value
1 when ith sample belong to cluster j and 0 othersise. Then using Hoeffding’s bound, we get
P
(
|
∑

i X
j
i −

|S|
K | ≥ ϵ

)
≤ 2 exp

{
−2ϵ2

|S|

}
. If we take |Cτ | = 2100, i.e. 35% of the total number of

clients (6000), then we get this probability to be roughly around 0.62, which is obtained at K = 10.
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Hoeffding’s inequality provides a very loose bound but actually this probability is very high which
is evident from some basic experiments provided in the Appendix.

Lemma 2 Given n clients during the training, τ represents the fraction of clients sampled for each
communication round. If V̄ τ

i = 1
nτ

∑
i∈Cτ Vi denote the average of item vectors over some Cτ

clients and V̄ n
i = 1

n

∑n
i=1 Vi represent the average of item vectors over total n clients. Then,

E[UT
u V̄ τ

i ] = E[UT
u V̄ n

i ]

Here, UT
u V̄ τ

i and UT
u V̄ n

i denotes the predicted rating of any user u when aggregated item vectors are
obtained only via the sampled users and all the clients in the training set respectively. This lemma
holds inherently true if the underlying clients are homogeneous which is not true in FL. Thus we use
the latent clustering assumption and Lemma 1 to prove that the expected values of predicted ratings
of sampled as well as the entire population are equal. The detailed proof is provided in Appendix.

Now, we state our main theorem below:

Theorem 4.1 (Random Sampling of Clients) Given a rating matrix R, let <
{Uu}nu=1, {Vi}mi=1 > denote a Federated Recommendation Model with predicted ratings ly-
ing within a range of [a, b]. If V̄ τ

i = 1
nτ

∑
i∈Cτ Vi and V̄ n

i = 1
n

∑n
i=1 Vi represent the average of

item vectors over some τ fraction of clients and total n clients,respectively, then

P(|UT
u V̄ τ

i − UT
u V̄ n

i | ≥ ϵ) ≤ 2 exp

{
−nτϵ2

2(b− a)2

}
The above theorem can be proved using Hoeffding’s bound and Lemma 2 According to the above
theorem, if the ratings lie between [1, 5], then the probability that the error in predicted rating is
more than 10% is less than 1% with just 35% clients from the pool of 6000 clients. Therefore, from
our theorem if a dataset has around 6000 clients, we chose τ = 0.35 in our experiments.
It is important to note that our main contribution lies in showing that while bounding the sample
complexity, in general, is a hard problem, clustering assumption on the underlying data makes it
possible to provide the non-trivial bounds. Without this assumption, straightforward use of Hoeffd-
ing’s inequality will give trivial bounds of 100% on the sample complexity, whereas we need only
30%. It is important to note that we assume the existence of clusters of item vectors with almost
equal number of vectors in each cluster for theoretical analysis. We prove the same experimen-
tally in Appendix. Furthermore, the clustering only aids in acquiring a bound on ideal fraction of
clients to be sampled. The fairness of RS-FAIRFRSis independent of any clustering with or with-
out groups (age/gender). Since private clustering is an open challenge in FL and forming clusters
require sharing of sensitive attributes, RS-FAIRFRSensures privacy to most of its users by hiding
their demographics from the server.

4.2 DUAL-FAIR UPDATE

This section firstly discusses the inability of existing fairness notions in RSs to be able to measure
group bias in a federated setting. We then propose fairness metric which when added as a constraint
in optimization function at server helps achieve a fair global model. Furthermomre, we discuss a
two phase mechanism which helps in achieving global as well as local fairness.
Existing fairness notions in RS, namely value unfairness, absolute unfairness, and non-parity fair-
ness (Yao & Huang (2017)) consider the difference in average loss on a specific item i concerning
users belonging to advantaged and disadvantaged groups. It is not feasible in FL as each client is
distinct and prohibited from sharing its ratings with the server and other clients. Moreover, Man-
soury et al. (2020) mentions profile size as an important factor in group bias as more active clients
receive better recommendations. We define user activeness as the number of items rated by a user,
i.e. a user is more active if he or she has rated more items Iu out of all the items in the item set I .
Thus, with an assumption of a binary attribute, our metric accuracy parity (Lap) normalizes the sum
of squared loss over all the items rated by a client and is given as:

Lap =
1

|g|
∑
u∈g

1

|Iu|
∑
I∈Iu

(r̂ui − rui)
2 − 1

|¬g|
∑
u∈¬g

1

|Iu|
∑
I∈Iu

(r̂ui − rui)
2 (2)

Here, g and ¬g denote the disadvantaged and advantaged groups, respectively. Iu is the set of items
rated by u and r̂ui, rui depict the predicted and true ratings, respectively. For models θ and θ̄, we
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say that θ is a demographically fairer model if Lap(θ) < Lap(θ̄). Designing a fair FRS involves
tackling three significant challenges which must be tackled. (i)Designing debiasing techniques for
local clients becomes challenging if they are reluctant to share their sensitive attributes (Ezzeldin
et al. (2021)).(ii) Considering the settings where each user is not one client, local fairness does not
ensure global fairness in FL. The non-IID data in FL makes it impossible for the entire distribution
to be represented by one standard distribution.(iii) To achieve fairness, simple federated models
usually do weighted aggregation; however, it becomes infeasible to assign weights to the updates
sent to the server without knowing the group to which they belong. Dual-Fair Updation involves
training towards fairness in two phases described below.
FairMF: We assume the availability of data of very few (20%) clients Dserver at the server for
evaluating the fairness loss.This assumption was also considered by Kanaparthy et al. (2021) for
building a fair federated model for face classification. Previous works considered 5% of the overall
data on the server. Choosing 5% of the overall data in RSs may lead to the privacy leakage of
more users. Hence, instead of selecting 5% of the entire population, we select data of only 20% of
the users. This assumption helps achieve fairness without expecting clients to reveal their private
sensitive attributes to the server even during training. Therefore, unlike a simple FRS, the server in
RS-FAIRFRS not only aggregates but also helps achieve fairness. We denote each client at the server
as s ∈ {1, ...., S} such that S << n, i.e. the number of clients at the server will always be much
less than the number of local clients. FairMF trains the data at server Dserver for obtaining global
fairness objective. The goal of FairMF is to optimize the loss function defined as the combination
of regularized MF (equation 1) and fairness penalty (equation 2). The final loss function is

min
U,V
LMF + λfLap (3)

The hyperparameter λf acts as a fairness penalizer. The update equations for client vector Uu and
item vector Vi are obtained by taking derivatives of the fairness loss function with respect to client
and item vectors respectively. Server runs FairMF for some iterations ts and obtains final Ufair and
Vfair. Finally, Vfair and [Vi]

m
i=1 (aggregated item vectors) are communicated to all the clients. We

provide the exact procedure for FairMF in Algorithm 1.

FO-ClientBatch: Fairness Oriented Client Batch ensures local fairness by learning locally towards
fair global model. Each client downloads both Vfair and Vi from the server. While Vfair contributes
towards fairness, communication of aggregated Vi provide each user with the benefit of other users’
participation. Since in FL models global fairness does not ensure local fairness, it is important
that each local client also trains towards the fair model. Then, each user vector is updated locally,
followed by an updation in the Vi towards Vfair. Thus the local objective function changes to

min
U,V
LMF + η(||Vfair − Vi||2) (4)

Clients keep ∇Uu with themselves and communicate only ∇V to the server.
The section below describes the detailed algorithm and communication details.

Algorithm 1 FairMF (Dserver, Ufair, V )

1: for Ts = 1, 2, ...., ts do
2: for each (s, i) in Dserver do
3: if rui ̸= 0, update Us and Vi by cal-

culating gradients by differentiating equa-
tion equation 3

4: end for
5: end for
6: Ufair ← Us, Vfair ← Vi

7: return Ufair, Vfair

Algorithm 2 ClientFilling( Vi, i =
1, 2, ....,m;Uu;u; t)

1: if strategy == HF then
2: for tlocal = 1, 2, ....., Tlocal do
3: Calculate the gradient∇Uu

4: Uu ← Uu − γ∇Uu

5: end for
6: Assign r

′

ui to each item i ∈ I
′

u via HF
7: else
8: Assign r

′

ui to each item i ∈ I
′

u via UA
9: end if

4.3 RS-FAIRFRS

Algorithm3 describes RS-FAIRFRS in whole. With the assumption of the availability of a small
dataset (Dserver) corresponding to s users at the server, the procedure begins by initializing V =
[Vi]

m
i=1 and U = [Uu]

s
u=1 which represent the item and user vectors respectively. Then, some τ
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Algorithm 3 RS-FairFedRec Communication Efficient and Fairness Aware Federated Recom-
mender System

Input: Dserver, Dtrain, τ, γ, λ
r, λf , α, ρ

Output: Uu, Vi

1: Initialize V = [Vi]
m
i=1 and U = [Uu]

s
u=1

2: for t = 1, 2, ......, T do
3: Cτ ← {Randomly sub-sample τ fraction of clients from all the users in Dtrain}
4: Ufair, Vfair ← FairMF(Dserver, V , Ufair)
5: for each client u ∈ U in parallel do
6: Sample I

′

u from I \Iu with |I ′

u| = ρ|Iu|
7: ClientFilling(Vi, i = 1, 2, ....,m;Uu;u, t)
8: Calculate the gradients∇Uu and ∇V (u, i) by differentiating equation 3
9: Update Uu via Uu ← Uu − γ∇Uu

10: end for
11: for i = 1,.....,m do
12: Calculate the aggregated gradient∇Vi for clients in Cτ

13: Update Vi = Vi − γ∇Vi

14: end for
15: Decrease the learning rate γ ← 0.9γ
16: end for

fraction of total clients present in the training dataset (Dtrain) are randomly sampled by the server
denoted by Cτ . The assumption of Dserver helps in obtaining fair item vectors Vfair which are
communicated to all the clients for local fairness. Alongwith these, V is also sent to each client to
retain the federated properties of FedRec and allow benefits of the participation of other clients. For
initial round, the initialized item vectors are communicated, however as the training preoceeds, V
gets updated by the aggregated item vectors. Further, the server aggregates item vectors sent by Cτ

clients only. The fair item vectors Vfair and aggregated item vectors communicated by the server are
received by each client u and local training happen at all the clients. Similar to FedRec, using UA,
every client will receive some (ρ) virtual ratings. In UA, some unrated items are sampled and then a
virtual rating r

′

ui is assigned to these items. In HF, after a certain amount of time Tpredict the virtual
rating is replaced by the predicted rating. To acquire predicted rating each client evaluates its user
gradients and then updates its user vector. This procedure is called Client Filling (Lin et al. (2021))
explained in Algorithm 2. The user and item gradients are evaluated simply by differentiating the
equation 4. The proposed local objective minimizes the squared loss between the global item vectors
and local ones. The updated item gradients are uploaded to the server to train FairMF on the Dserver

and obtains Ufair and Vfair. This procedure is repeated till convergence.

5 EXPERIMENTS

We empirically show that (i) random sub-sampling of clients reduces communication costs without
any slump in accuracy of an FRS , (ii) FedRec suffers heavily from demographic bias, and (iii) RS-
FAIRFRS significantly reduces bias without any leakage of client’s privacy and improves accuracy.

5.1 EXPERIMENTAL SET-UP

We use two benchmark datasets ML1M 1 and ML100K 2 with explicit ratings ranging from 1 to 5.
ML1M dataset consists of 1, 000, 209 ratings of 3, 706 movies by 6, 040 users and ML100K consists
of 943 users with 100, 000 ratings for 1, 682 items. ML1M has 4, 331 males and 1, 709 females;
also, there are 5, 818 people with age > 18 and 212 users with age < 18. Similarly, in ML100k,
users with age above 18 (889) are much more than ones with under 18 (54). Furthermore, ML100k
has only 273 females as compared to 670 males. All our experiments use RMSE (Root Mean Square
Error) as used by Lin et al. (2021) to provide a fair comparison of the accuracy of our model with

1https://grouplens.org/datasets/movielens/1m/
2https://grouplens.org/datasets/movielens/100k/
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(a) RMSE (b) Time(in sec)

Figure 1: Comparison plots for accuracy and average time per communication round on different
values of τ in RS-FedRec on two datasets of ML1M and ML100k

(a) ML1M (b) ML100k

Figure 2: Difference in RMSE scores for different sensitive attributes by FedRec over two datasets.

the FedRec. We also provide an analysis of Group Losses, calculated using the average sum of the
RMSE score of all clients belonging to a certain group. Finally, we use Lap [equation 2] to evaluate
demographic bias in all the experiments. We split each dataset randomly by keeping 20% of the
data for the test set and the rest for training. Similar to Lin et al. (2021), we use k = 20 latent
features and set the value of sampling parameter to ρ = 2. We run all the models till convergence
(T = 20) and the FairMF procedure is executed to ts = 15 runs. We report all our results over
an average of 10 runs. The final tuned hyperparameter values and other details are provided in the
Appendix. While it can be apparent that more data on the server will yield better performance, we
run all our experiments on RS-FAIRFRSwith 100% and RS-FAIRFRS with 20% data on the server
to show that even with all the data on the server, RS-FAIRFRS with only a 20% data can provide
much better accuracy as well as fairness. For exact numbers of the training and testing results, refer
Appendix. Now we provide interesting results via various graphical representations.

5.2 EMPIRICAL EVALUATION

Random Sampling of Clients without Replacement: We randomly sample τ fraction of all the
available clients. The model’s accuracy is analyzed for a wide range of τ values in Figure 1a. Our
model has a very high error for small τ values. This indicates the failure to converge and with around
35% of clients, the model performs nearly the same as with 100% clients. From Theorem4.1, it can
be shown that the predicted rating of each client with sampled item vectors will be within 5% error
with a probability of at least 0.96. In line with the findings of Charles et al. (2021), increasing τ
increases the training loss. Figure 1b presents the average time taken (in sec) for one communication
round by FedRec with different values of τ . From these inferences, for all our experiments we select
τ = 35 as an ideal value which provides reasonable accuracy in very less time.

Disparate treatment of FedRec for certain sensitive attributes: To demonstrate the biased treat-
ment of FedRec towards certain sensitive groups, we compute average losses on each sensitive
attribute. Figure 2 shows that the groups with more number of clients (advantaged groups) enjoy
more accurate recommendations where as ones with lesser number of clients (disadvantaged groups)
receive more erroneous recommendations. In both the datasets, clients with age > 18 enjoy recom-
mendations with lesser RMSE as compared to the ones with age < 18. Similarly, females of both the
datasets obtain recommendations with much higher RMSE as compared to the males. This shows
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(a) ML1M[Age] (b) ML1M[Gender] (c) ML100k[Age] (d) ML100k[Gender]

Figure 3: Lap on two datasets and two different demographics for different algorithms.

(a) ML1M[Age] (b) ML1M[Gender] (c) ML100k[Age] (d) ML100k[Gender]

Figure 4: Fairness vs Accuracy plots

that the existing class imbalance affects the recommendations provided by FedRec which motivates
us to develop a fair FedRec that trains towards mitigating this disparate treatment of FedRec.

Fairness of RS-FAIRFRS: To analyze fairness of RS-FAIRFRS, we compare our results with
FedRec, RS-FedRec (FedRec with sampling) and RS-FAIRFRS with (100%) data at the server. We
also provide bias results on MF to show that FedRec amplifies the bias due to aggregation. In Figure
3, we show that only (20%) of client’s data at the server helps in achieving better fairness than 100%
because our model uses random sampling of clients in each round. The sampled clients make use
of the server dataset to obtain fair results. 100% data on the server includes many outliers which
worsens the fairness of sampled clients thus generating poor fairness as well as accuracy. Our results
in Appendix show that even with only 25% and 50% of the items at the server, our model is able
to reduce bias. Further, it is important to note that our model uses randomly initialized user and
item vectors. Slowly as the training proceeds towards minima, the random vectors get trained and
updated to obtain closest rating predictions. Thus, over a period of time, the curve smoothens but
the initial readings can be very fluctuating. It is evident from all the four graphs in Figure 3 that
RS-FAIRFRS with 20% data on the server manages to acquire least bias on both the datasets for
all the sensitive attributes. Thus, RS-FAIRFRS(20%) manages to significantly reduce the bias in
FedRec without leaking any sensitive information of most of the users during training.

Fairness vs Accuracy in RS-FAIRFRS: RS-FAIRFRS improves group bias and generates more
accurate recommendations. We compute RMSE as well as Lap to depict the excellence of our model
in both the aspects. Figure 4 shows that RS-FAIRFRS(20%) provides more fair and accurate rec-
ommendations to the clients in both datasets for both the genders as well as users with age above and
under 18. It can be easily inferred that a lower value in both Demographic bias and RMSE accounts
for better model. Users belonging to both the age groups in ML100k dataset enjoy fair recommen-
dations with RS-FAIRFRS(20%). Though, MF performs slightly better in terms of accuracy as well
as fairness for users in ML100k for gender attribute due to the efficiency of centralized settings for
smaller datasets, overall, RS-FAIRFRS(20%) outperforms all the existing federated algorithms.

6 CONCLUSION AND FUTURE WORK

We propose RS-FAIRFRS which incorporates two key ideas (i) random sampling of clients to re-
duce the communication cost, and (ii) dual-fair updation to mitigate group bias. We are first to
theoretically bound the sample complexity on the fraction of clients to be sampled without affecting
model’s accuracy. We empirically demonstrate our theoretical results and provide extensive exper-
iments to show that we can achieve much-reduced bias and improved model accuracy. Exploring
various other types of biases in FRSs can be an interesting research direction. We would also like
to extend our analysis to provide theoretical fairness guarantees of RS-FAIRFRS and explore the
usage of dual-fair updation-like techniques in many other FL domains in future.
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A APPENDIX

A.1 NOTATIONS

We list down all the important and frequently used notations in Table 1.

Symbol Meaning

n Number of clients in training set
m Number of items in training set
K Number of Latent factors
R = {1, ......5} Rating range
rui True rating
r̂ui Predicted rating
r
′

ui Virtual rating
pui Indiactor variable
u client
i item
I Set of all items
Ui Set of clients who rated item i

U
′

i Set of all clients who rated an item i virtually
Iu Set of items rated by u

I
′

u Set of items rated virtually by u
U client vectors matrix
V Item vectors matrix
Uu client vector for client u
Vi Item vector for an item i
∇V (u, i) Item gradient for ith item which was rated by a user u
R Rating Dataset
Dtrain Training set
Dserver Dataset at server
g Disadvantaged Group
¬g Advantaged Group
ρ Sampling parameter
λr Regularizer to prevent overfitting in FairMF
λf Fairness regularizer in FairMF
α Learning rate in FairMF
τ Fraction of clients sampled for one communication round
γ Learning Rate for clients
η Fairness Penalizer for clients
T Number of communication rounds
Ts Number of epochs in FairMF
Tlocal Number of iterations required to obtain prediction in Client Filling

Table 1: Notations and their meaning

A.2 EXPERIMENTAL PROOF FOR LEMMA 1

This section provides the experimental proof for Lemma 1. FedRec generates item vectors at each
communication round. We cluster these item vectors generated by FedRec by using K-means clus-
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tering (Bock (2007)). Figure 5 shows the elbow curve obtained after plotting clustering loss Inertia
(Hedman et al. (2007)) corresponding to the number of clusters. Inertia is one of the most populalr
metrics to evaluated clustering results. It is calculated as the sum of distances to each cluster center.
A high value of total distance implies that the points are far from each other which is a clear indica-
tion that they are less similar to each other. It can be seen that for both the datasets we get K = 20
as the ideal number of clusters.

(a) ML1M (b) ML100k

Figure 5: Ideal number of clusters for item vectors in both datasets

Considering K = 20 and asssuming that we have total number of clients n = 6000, we randomly
assign each client to one out of 20 clusters. Then, we randomly sample some of the clients and
observe some interesting observations depicted in Figure 6. Figure 6a shows that after sampling
some clients randomly at uniform, the average number of clients from each cluster are almost same.
Further, Figure 6b clearly shows that the probability of getting > 15% error in above experiment
is as small as 7.5% when averaged over 500 runs. Finally, Figure 6c demonstrates that minimum
number of samples in each cluster is also same. Thus all the three experiments support our Lemma
1.

(a) (b) (c)

Figure 6: Experimental Analysis of Random Sampling of Clients and Clustering

A.3 THEORETICAL ANALYSIS OF CLIENT SAMPLING

We first recall Lemma 2 and then provides its proof below:

Lemma 2 Given n clients during the training, τ represents the fraction of clients sampled for each
communication round. If V̄ τ

i = 1
nτ

∑
i∈Cτ Vi denote the average of item vectors over some Cτ

clients and V̄ n
i = 1

n

∑n
i=1 Vi represent the average of item vectors over total n clients. Then,

E[UT
u V̄ τ

i ] = E[UT
u V̄ n

i ]

Proof: Let Sj denote the set of clients in cluster j, and Cj denote the set of clients sampled from
cluster j. Since in each cluster, the item vectors are coming from identical distribution, we have
E[UT

u V̄ Si
i ] = E[UT

u V̄ Ci
i ]. Here, V̄ Si

i , V̄ Ci
i represent the average of item vectors Vi’s from sets Si

and Ci respectively. From Lemma 1, if τ fraction of clients are selected from n clients uniformly at
random without repetition, then we have Cj ≈ τSj with high probability. Then,

E[UT
u V̄ τ

i ] =
1∑l

j=1 |Ci|

l∑
j=1

|Ci|E[UT
u V̄ Ci

i ]
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=
1∑l

j=1 τ |Si|

l∑
j=1

τ |Si|E[UT
u V̄ Si

i ]

= E[UT
u V̄ n

i ]

We now recall our main Theorem 4.1 and provide its detailed proof using above Lemma and Ho-
effding’s bound.

Theorem 4.1 (Random Sampling of Clients) Given a rating matrix R, let <
{Uu}nu=1, {Vi}mi=1 > denote a Federated Recommendation Model with predicted ratings ly-
ing within a range of [a, b]. If V̄ τ

i = 1
nτ

∑
i∈Cτ Vi and V̄ n

i = 1
n

∑n
i=1 Vi represent the average of

item vectors over some τ fraction of clients and total n clients,respectively, then

P(|UT
u V̄ τ

i − UT
u V̄ n

i | ≥ ϵ) ≤ 2 exp

{
−nτϵ2

2(b− a)2

}
Proof of Theorem 4.1: From Hoeffding’s inequality, we have,
P(|UT

u V̄ τ
i − E[UT

u V̄ τ
i ]| ≥ ϵ) ≤ 2 exp{−2nτϵ2

(b−a)2 }, and

P(|UT
u V̄ n

i − E[UT
u V̄ n

i ]| ≥ ϵ) ≤ 2 exp{ −2nϵ2

(b−a)2 }

Thus with probability atleast 1− 2 exp{−2nτϵ2

(b−a)2 }, we have,

E[UT
u V̄ τ

i ]− ϵ ≤ UT
u V̄ τ

i ≤ E[UT
u V̄ τ

i ] + ϵ

=⇒ E[UT
u V̄ n

i − ϵ ≤ UT
u V̄ τ

i ≤ E[UT
u V̄ n

i ] + ϵ

(From Lemma 2)

=⇒ UT
u V̄ n

i − 2ϵ ≤ UT
u V̄ τ

i ≤ UT
u V̄ n

i + 2ϵ

Thus, we get P(|UT
u V̄ τ

i − UT
u V̄ n

i | ≥ ϵ) ≤ 2 exp{ −nτϵ2

2(b−a)2 }.

A.4 HYPERPARAMETER TUNING

We carefully tune all the hyper-parameters and list down the final tuned values in Table 2. It is
important to note that server in FedRec and RS-FedRec acts as an aggregator. Thus, the server does
not require any tuning and the final tuned values for both the algorithms account for client side
parameters. Opposite to this, server in RS-FAIRFRS[100%] as well as RS-FAIRFRS[20%] require
fairness oriented training. Therefore, we present separate hyper-parameter values for client side and
server side. Since, regularizers at server as well as client side prevents overfitting, we use λr to
denote them, but fairness regularizer at server λf trains aggregated item vectors towards fairness
using Dserver and fairness regularizer η at client side trains local models towards globally fair
item vectors. Experimentally, we observe that all the models converge well at T = 20, thus we use
T = 20 in all our experiments. However, while executing FairMF at the server, we train FairMF
for Ts = 15 after each communication round. We obtain better fairness when we train FairMF for
some epochs instead of letting it converge fully over each communication round which can be time
consuming and it increases the load at server too. Thus FairMF executes for only 15 epochs and
provides the updated item vectors to be communicated to all the local clients.

A.5 TRAINING AND TESTING RESULTS

We report the train as well as test results of all the four federated algorithms on two real-world
datasets of ML1M and ML100k with two different sensitive attributes in Tables 3 and 4. It is
noted that similar to training results, RS-FAIRFRS[20%] performs the best in terms of accuracy
as well as fairness. From the tables, it is evident that FedRec and RS-FedRec performs nearly the
same which shows that random sampling retains the model accuracy. Then, our results (rows for
RS-FAIRFRS[20%] and RS-FAIRFRS[100%]) provide an empirical proof to the claim we made in
the main paper which states that we do not need huge amount of data at the server. With a minimal
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Algorithm Hyper-parameter Tuned Values
ML1M ML100k

FedRec Learning Rate (γ) 0.1 0.08
Regularizer (λr) 0.02 0.01

RS-FedRec Learning Rate (γ) 0.1 0.08
Regularizer (λr) 0.02 0.01

RS-FairFRS[20%]

Server
Learning Rate (α) 0.012 0.009
Regularizer (λr) 0.05 0.02

Fairness Regularizer (λf ) 1.5 1.25

Clients
Learning Rate (γ) 0.5 0.2
Regularizer (λr) 0.01 0.02

Fairness Regularizer (η) 1.75 1.55

RS-FairFRS[100%]

Server
Learning Rate (α) 0.04 0.15
Regularizer (λr) 0.05 0.01

Fairness Regularizer (λf ) 2.5 2.0

Clients
Learning Rate (γ) 0.65 0.22
Regularizer (λr) 0.01 0.02

Fairness Regularizer (η) 1.75 1.55

Table 2: Hyperparameter Values

Datasets Attribute Algorithms RMSE RMSE on Advantaged Group RMSE on Disadvantaged Group Demographic Bias

ML1M

Age

FedRec 0.89890 ± 0.00024 1.00784 ± 0.00212 0.89476 ± 0.00026 0.22409 ± 0.00432
RS-FedRec 0.89922 ± 0.00040 1.00855 ± 0.00181 0.89506 ± 0.00042 0.22479 ± 0.00405

RS-FairFRS [20%] 0.80581 ± 0.00165 0.86298 ± 0.00441 0.80364 ± 0.00161 0.10244 ± 0.00660
RS-FairFRS [100%] 0.90466 ± 0.00080 1.00881 ± 0.00084 0.90071 ± 0.00085 0.21397 ± 0.00285

Gender

FedRec 0.89890 ± 0.00024 0.91902 ± 0.00101 0.89112 ± 0.00047 0.05446 ± 0.00218
RS-FedRec 0.89922 ± 0.00040 0.91923 ± 0.00045 0.89134 ± 0.00047 0.05448 ± 0.00171

RS-FairFRS [20%] 0.80695 ± 0.00104 0.81883 ± 0.00404 0.80365 ± 0.00652 0.03354 ± 0.00282
RS-FairFRS [100%] 0.90443 ± 0.00062 0.92200 ± 0.00095 0.89750 ± 0.00079 0.04826 ± 0.00271

ML100k

Age

FedRec 0.88866 ± 0.00159 0.95684 ± 0.00537 0.88452 ± 0.00156 0.15253 ± 0.00980
RS-FedRec 0.88985 ± 0.00114 0.95893 ± 0.00475 0.88565 ± 0.00116 0.15483 ± 0.00937

RS-FairFRS [20%] 0.87343 ± 0.00316 0.90889 ± 0.00422 0.87127 ± 0.00321 0.07833 ± 0.00596
RS-FairFRS [100%] 0.90292 ± 0.00188 0.953335 ± 0.01394 0.90092 ± 0.00199 0.11760 ± 0.00325

Gender

FedRec 0.88866± 0.00159 0.93465 ± 0.00214 0.89249 ± 0.00098 0.08380 ± 0.00370
RS-FedRec 0.88985 ± 0.00114 0.93512 ± 0.00147 0.89315 ± 0.00094 0.08389 ± 0.00387

RS-FairFRS [20%users] 0.88824 ± 0.00275 0.91282 ± 0.00510 0.87958 ± 0.00272 0.06503 ± 0.01114
RS-FairFRS [100%users] 0.90241±0.00179 0.93135±0.00231 0.89062±0.00219 0.079656±0.00600

Table 3: Training results of 4 different algorithms on real-world datasets.

Datasets Attribute Algorithms RMSE RMSE on Advantaged Group RMSE on Disadvantaged Group Demographic Bias

ML1M

Age

FedRec 1.28992 ± 0.0009 1.34240 ± 0.00050 1.26220± 0.00050 0.45860 ± 0.00021
RS-FedRec 1.30870 ± 0.00844 1.41004 ± 0.00085 1.28991± 0.00122 0.47445 ± 0.00311

RS-FairFRS [20%] 1.07941 ± 0.00355 0.90014 ± 0.00233 0.88700± 0.00220 0.20124 ± 0.00876
RS-FairFRS [100%] 1.50866 ± 0.00070 1.55281 ± 0.00081 1.10155 ± 0.00080 0.30369 ± 0.00549

Gender

FedRec 1.27881 ± 0.00012 1.29940 ± 0.00120 1.25531± 0.000131 0.09971 ± 0.00880
RS-FedRec 1.28808 ± 0.00043 1.30001 ± 0.00032 1.26101 ± 0.00014 0.09818 ± 0.00160

RS-FairFRS [20%] 1.00121 ± 0.00812 0.90144 ± 0.00555 0.86652 ± 0.00853 0.06164 ± 0.00372
RS-FairFRS [100%] 1.44441 ± 0.00022 1.29909 ± 0.00099 1.27713 ± 0.00069 0.08929 ± 0.00221

ML100k

Age

FedRec 1.33451± 0.00331 1.45421 ± 0.00549 1.38331 ± 0.00106 0.30133 ± 0.00860
RS-FedRec 1.32320 ± 0.00450 1.42773 ± 0.00220 1.37877± 0.00545 0.30311 ± 0.00568

RS-FairFRS [20%] 1.12250 ± 0.00113 0.98182 ± 0.00661 0.90973 ± 0.00435 0.21243 ± 0.00601
RS-FairFRS [100%] 1.38915 ± 0.00087 1.43470 ± 0.00995 1.38001 ± 0.00221 0.28823 ± 0.00221

Gender

FedRec 1.323112 ± 0.00229 1.37360 ± 0.00189 1.31004 ± 0.00022 0.10119 ± 0.00283
RS-FedRec 1.329914 ± 0.00654 1.36915 ± 0.00441 1.30899 ± 0.00107 0.11218 ± 0.00471

RS-FairFRS [20%] 1.01877 ± 0.00334 0.80817 ± 0.00190 0.77521 ± 0.00162 0.08225 ± 0.00188
RS-FairFRS [100%] 1.39592 ± 0.00227 1.29280 ± 0.00779 1.12118 ± 0.00911 0.90718 ± 0.00901

Table 4: Testing Results of 4 different algorithms on real-world datasets

amount, we can acquire much better accuracy and demographic fairness too. Further, our results
emphasize an important and interesting reasoning to improved accuracy as RS-FAIRFRS[20%] not
only reduces the loss on advantaged group but also on the disadvantaged group. Our model is able
to achieve this due to the uniqueness of the metric lap which when added to optimization function
of MF, reduces loss as well as the difference between the loss on the various attributes over each
stochastic gradient descent step.
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(a) ML1M[Age] (b) ML1M[Gender]

(c) ML100k[Age] (d) ML100k[Gender]

Figure 7: Fairness vs Accuracy plots

A.6 ADDITIONAL EXPERIMENTS

This section introduces some additional findings which validate the ability of our model to improve
fairness when we further reduce the amount of data on the server. Initial experiments use entire
rating data from 20% users. We use the data of 20% users which are enough to represent entire
local population and belong to same platform. This is a reasonable proportion to assume as atleast
these many users who already use the online platform might agree to share their sensitive attributes
with the server. We further toughen this assumption by considering only few of the previously rated
items by these 20% users. This is done by keeping a certain proportion of items on the server. We
consider 25% and 50% items of the selected 20% users. Figure 7 presents the final results obtained
on these additional experiments. We plot Demographic bias vs RMSE to represent our results using
scatter plot. We show the promising results of our algorithm even when dataset is further reduced
on the server. The consistency of results on accuracy as well as fairness can be seen across all the
datasets and sensitive attributes. Though intutive, our results suggest that having entire data of 20%
users can be very conducive in obtaining a fairer as well as more accurate results. However, with
only 25% of the item ratings, we are still able to obtain much reduced bias and better accuracy for
all the four datasets. Moving further, if we increase data on the server by considering 50% of the
item ratings, then we results which are slight better than the previous consideration of 25%. And,
the best outcomes are encountered with all the item ratings.

Since RS-FAIRFRSpromotes having small amount of user’s data on the server, it is evident from
the results that RS-FAIRFRSwith 100% data on the server performs the worst. This happens due
to the consideration of outliers which participate when all the users happen to occur on the server.
Whereas, only 30% of the users from local population participate in the aggregation at server. This
result emphasizes that RS-FAIRFRSneed not consider heavy fraction of users at the server. Client
fraction as minimal as 20% can help in improving fairness as well as accuracy of the model.
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