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Abstract
Distributionally robust optimization (DRO) is a powerful framework for training robust models
against data distribution shifts. This paper focuses on constrained DRO, which has an explicit
characterization of the robustness level. Existing studies on constrained DRO mostly focus on
convex loss function, and exclude the practical and challenging case with non-convex loss function,
e.g., neural network. This paper develops a stochastic algorithm and its performance analysis for
non-convex constrained DRO. The computational complexity of our stochastic algorithm at each
iteration is independent of the overall dataset size, and thus is suitable for large-scale applications.
We focus on the general Cressie-Read family divergence defined uncertainty set which includes
χ2-divergences as a special case. We prove that our algorithm finds an ϵ-stationary point with
an improved computational complexity than existing methods. Our method also applies to the
smoothed conditional value at risk (CVaR) DRO.

1. Introduction

Machine learning algorithms typically employ the approach of Empirical Risk Minimization (ERM),
which minimizes the expected loss under the empirical distribution P0 of the training dataset and
assumes that test samples are generated from the same distribution. However, in practice, there
usually exists a mismatch between the training and testing distributions due to various reasons, for
example, task domains differences [3, 8]; minority group samples [15, 17] and adversarial attacks
[14, 25]. Such a mismatch may lead to a significant performance degradation.

This challenge spurred noteworthy efforts on developing a framework of Distributionally Robust
Optimization (DRO) e.g., [2, 31, 34]. In DRO, one seeks to optimize the expected loss under the
worst-case distribution in an uncertainty set of distributions. Specifically, DRO aims to solve the
following problem:

inf
x

sup
Q∼U(P0)

ES∼Q ℓ(x;S), (1)

where U(P0) is an uncertainty set of distributions centered at P0, P0 is the empirical distribution
of the training dataset, ℓ is the loss function, and x is the optimization variable. For example, the
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uncertainty set can be defined as

U(P0) := {Q : D(Q∥P0) ≤ ρ}, (2)

where D is some distance-like metric, e.g., Kullback-Leibler (KL) divergence and χ2 divergence,
and ρ is the uncertainty level. In practice, for ease of implementation and analysis, a relaxed formu-
lation of eq. (1), which is referred to as the penalized DRO, is usually solved [20, 23, 28, 35]:

inf
x
sup
Q

ES∼Q ℓ(x;S)− λD(Q∥P0), (3)

where λ > 0 is a fixed hyperparameter that needs to be chosen manually. In contrast to constrained
DRO in eq. (1), a regularization term is added to the objective function to keep the distribution Q
and the distribution P0 close, and the hyperparameter λ is manually chosen beforehand to control the
tradeoff with minimizing the loss. From a Lagrangian perspective, the dual problems of these two
formulations in eq. (1) and eq. (3) are similar. But for the penalized DRO, the Lagrangian multiplier
λ is chosen beforehand, whereas in the constrained DRO, λ needs to be optimized, and thus the
problem is more challenging. Compared with the penalized DRO setting, the constrained DRO
problem in eq. (1) requires that the distribution Q to be strictly in the uncertainty set. Therefore, the
obtained solution from the constrained DRO is minimax optimal for distributions in the uncertainty
set, whereas it is hard to get such a guarantee for the penalized DRO relaxation.

In this paper, we focus on the challenging constrained DRO problem in eq. (1). In particular,
we study the practical non-convex loss functions and focus on the general Cressie-Read family
divergence defined uncertainty set [9, 20], which includes, e.g., χ2 divergence, as a special case
(see Section 2 for more details). We also investigate the smoothed conditional value at risk (CVaR)
DRO problem. More importantly, we focus on the practical yet challenging large-scale scenario,
where P0 is the empirical distribution of N samples and N is very large. Our contributions can be
summarized as below:

• In this paper, we generalize the analysis of the subsampling bias in [23] to the general Cressie-
Read family. We further develop a Frank-Wolfe update on the dual variables in order to bound
the gap between the objective and its optimal value given the optimization variable x and the
biased estimate.

• The dual form of constrained DRO is neither smooth nor Lipschitz, making the convergence
analysis difficult. We design an approximation of the original problem, and show that it is
smooth and Lipschitz. The approximation error can be made arbitrarily small so that the
solution to the approximation is still a good solution to the original. We then prove the
strong duality of the approximated problem. Moreover, our strong duality holds for any φ-
divergence DRO problem.

• We design a novel algorithm to solve the approximated problem and prove it converges to
a stationary point of the constrained DRO problem with computational complexity at each
iteration being independent of the training dataset size. Our proposed algorithm converges to
a stationary point faster than existing methods [12].

Related work: φ-divergence DRO problems [1, 6] were widely studied, for example, CVaR in
[7, 33, 36, 37], χ2-divergence in [13, 16, 23], KL-divergence in [18, 28, 29] and Sinkhorn distance
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[39]. However, the above studies are for some specific divergence function and can not be extended
directly to the general Cressie-Read divergence family. The general φ-divergence DRO problem
was studied in [20] but their method is for the penalized formulation and does not generalize to
the constrained DRO. The general φ-divergence constrained DRO problem was studied in [9, 10,
26]. However, the above studies are for convex loss functions. To the best of our knowledge,
our work is the first paper on large-scale non-convex constrained DRO with the general Cressie-
Read divergence family. We note that the KL DRO was studied in [29], which however needs an
exponential computational complexity. We achieve a polynomial computational complexity for the
Cressie-Read divergence family.

2. Preliminaries and Problem Model

2.1. Notations

Let s be a sample in S and P0 be the distribution on the points {si}Ni=1, where N is the size of the
support. Denote by ∆n := {p ∈ Rn|

∑n
i=1 pi = 1, pi ≥ 0} the n-dimensional probability simplex.

Denote by x ∈ Rd the optimization variable. We denote by 1X(x) the indicator function, where
1X(x) = 0 if x ∈ X, otherwise 1X(x) = ∞. Let ℓ : Rd × S → R be a non-convex loss function.
Let ∥ · ∥ be the Euclidean norm and (t)+ := max{t, 0} be the positive part of t ∈ R. Denote ∇x

by the gradient to x. For a function f : Rd → R, a point x ∈ Rd is said to be an ϵ-optimal solution
if |f(x) − f(x∗)| ≤ ϵ, where f(x∗) is the optimal value of f . If the function f is differentiable, a
point x ∈ Rd is said to be first-order ϵ-stationary if ∥∇f(x)∥ ≤ ϵ.
2.2. Assumptions

In this paper, we take the following standard assumptions that are commonly used in the DRO
literature [9, 23, 28, 29, 36, 39]:

• The non-convex loss function is bounded: 0 ≤ ℓ(x; s) ≤ B for some B > 0, ∀x ∈ Rd, s ∈ S.

• The non-convex loss function is G-Lipschitz such that |ℓ(x1; s) − ℓ(x2; s)| ≤ G∥x1 − x2∥
and L-smooth such that ∥∇xℓ(x1; s)−∇xℓ(x2; s)∥ ≤ L∥x1 − x2∥ for any x1, x2 ∈ Rd and
s ∈ S.

2.3. DRO objective and its dual form

DRO problems shown in eq. (1) under different uncertainty sets are fundamentally different. Con-
sider the uncertainty set defined by φ-divergence Dφ(Q∥P0), which is one of the most common

choices in the literature and can be written as Dφ(Q∥P0) :=
∫
φ
(

dQ
dP0

)
dP0, where φ is a non-

negative convex function such that φ(1) = 0 and φ(t) = +∞ for ant t < 0. Then let the uncertainty
set U(P0) := {Q : Dφ(Q∥P0) ≤ ρ} where ρ > 0 is the radius of the uncertainty set.

In this paper, we study the general Cressie-Read family of φ-divergence [5, 38], where φk(t) :=
tk−kt+k−1

k(k−1) , k ∈ (−∞,+∞) \ {0, 1}. Let k∗ = k
k−1 . This family includes as special cases χ2-

divergence (k = 2) and KL divergence (k → 1). When k > 2, the conjugate function of φk(t)
(which will be introduced later) is not smooth, thus the problem becomes hard to solve even in the
penalized formulation [20]. In this paper, we focus on k ∈ (1, 2] (k∗ ∈ [2,∞)).

Solving (1) directly is challenging due to the sup over Q. In [26], a finite-dimensional vector q
was used to parameterize the distributions in the uncertainty set since Q ≪ P0 for φ-divergence.
Then the DRO problem becomes a convex concave min-max problem. This method can be extended
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to the case with non-convex loss function by applying the algorithms for non-convex concave min-
max problems [24, 30, 40]. However, the dimension of distribution in the uncertainty set is equal
to the number of training samples. Thus, the computational complexity at each iteration is linear in
the sample size and is prohibitive in large-scale applications.

To obtain a complexity independent of the sample size, one alternative is to use its dual. By du-
ality, we can show that the DRO objective (1) can be equivalently written as [23, 34] infx infλ≥0,η̃∈R

ES∼P0

[
λφ∗

k

(
ℓ(x;S)−η̃

λ

)
+ λρ+ η̃

]
, where φ∗

k(t
′) = supt{t′t−φk(t)} is the conjugate function of

φk(t
′). In this way, the optimization problem under an unknown distribution is rewritten into one

under a known distribution. The subsampling method can then be used, which leads to a complexity
independent of the sample size (which will be introduced later). For the Cressie-Read family in
(2.3), the corresponding objective can be written as

inf
x

inf
λ≥0,η∈R

F (x;λ; η) = ES∼P0

[
f(x;λ; η;S)

]
, (4)

where f(x;λ; η; s) = (k−1)k∗

k (ℓ(x;S)− η)k∗+ λ1−k∗ +λ
(
ρ+ 1

k(k−1)

)
+ η. Therefore, we reformu-

late the DRO problem as one to minimize an objective function under a known distribution, where
subsampling method could be used to reduce the complexity.

3. Analysis of Constrained DRO

3.1. Smooth and Lipschitz approximation

For λ ∈ [0,+∞), η ∈ R, the objective function F (x;λ; η) is neither smooth nor Lipschitz. Thus
it is difficult to implement gradient-based algorithms. In the following, we will construct an ap-
proximation of the original problem so that the objective function F (x;λ; η) becomes smooth and
Lipschitz by constraining both λ and η in some bounded intervals.

Since the loss function is bounded such that 0 ≤ ℓ ≤ B, we can show that there exists an upper
bound λ̄ which only depends on k, ρ and B such that the optimal value λ∗ ≤ λ̄. In this paper, we do
not assume that λ∗ ≥ λ0 > 0 as in [39]. Instead, we consider an approximation with λ ∈ [λ0, λ̄],
and show that the difference between the orignial and the approximation can be bounded. We can

show corresponding optimal η∗ ∈ [−η̄, B], where η̄ = λ̄
(

k
(k−1)k∗k∗

) 1
k∗−1 . The proof can be found

in Appendix B.
We show that the difference between the original and the approximation can be bounded in the

following lemma.

Lemma 1 ∀x ∈ Rd, 0 ≤ λ0 ≤ λ̄,
∣∣∣infλ∈[λ0,λ̄],η∈[−η̄,B] F (x;λ; η)− infλ≥0,η∈R F (x;λ; η)

∣∣∣ ≤
2λ0ρ.

The proof can be found in Appendix C. Lemma 1 demonstrates that the non-smooth objective
function can be approximated by a smooth objective function. A smaller λ0 makes the gap smaller
but the function ”less smooth”.

3.2. Convexity and smoothness on parameters

The advantage of our approximated problem is that the function is smooth in all x, λ, and η. More-
over, We find that the objective function is convex in λ and η though the loss function is non-convex
in x in the Lemma 3. The proof can be found in Appendix D.
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4. Mini-batch Algorithm

Existing constrained stochastic algorithm for general non-convex functions [12] can be used to solve
the approximated problem directly. However, their method optimizes y = (x;λ; η) as a whole. It
can be seen that the objective function is non-convex in y and the computation complexity to get the
ϵ- stationary point is O(ϵ−3k∗−5).

In Lemma 3, we show that F (x; z) is Lz-smooth in z and Lx-smooth in x. Moreover, Lz ∼
O(λ−k∗−1

0 ), which is much larger then Lx when λ0 is small, since Lx ∼ O(λ−k∗+1
0 ). If we optimize

all the parameters together, we need to implement non-convex algorithms to optimize a smooth
function with a large smooth constant, which is not computationally efficient. However, if we
optimize x and z separately, though Lz > Lx which requires more resources to optimize z, the
convexity in z makes it faster to converge to the optimal value of z.

This motivates us to consider a stronger convergence criterion. Instead of finding the ϵ- station-
ary point for F (y), we can find (x, λ, η) such that |∇xF (x;λ; η)| ≤ ϵ, |F (x;λ; η)− infλ′≥0;η′

F (x;λ′; η′)| ≤ ϵ. We then provide our Stochastic gradient and Frank-Wolfe DRO algorithm (SFK-
DRO), which optimizes x and z separately (see Algorithm 1). Define D = maxz1,z2∈M ∥z1 − z2∥,

σ = (k−1)k∗

k k∗(B + η̄)k∗−1Gλ1−k∗
0 , ∆ = F (x1; z1) − infx,z∈M F (x; z) and C is a constant such

that C ≥ DLz . The convergence rate is then provided in the following theorem.

Theorem 2 With a suitable mini-batch size nx ∼ O(λ−2k∗+4
0 ϵ−2), nz ∼ O(ϵ−k∗) and α =

1
C , λ0 = ϵ

8ρ , for any small ϵ > 0 such that DLz
Lx

∼ O(ϵ−2) ≥ 2 and g
C ∼ O(ϵ) ≤ 1, at most

T = 16C∆ϵ−2 ∼ O(λ−k∗−1
0 ϵ−2) iterations are needed to guarantee a stationary point (xt′+1; zt′)

in expectation: E∥∇xF (xt′+1; zt′)∥ ≤ ϵ,E
[∣∣∣F (xt′+1; zt′)− infλ≥0;η∈R F (xt′+1;λ; η)

∣∣∣] ≤ ϵ.

The proof of Theorem 2 can be found in E and relies on the following lemma for our subsampling
method. When we optimize z, an estimator fz(x, z) =

∑nz
j=1

f(x;z;sj)
nz

is build to estimate F (x; z) =

ES∼P0

[
f(x; z;S)

]
. Though the estimator is unbiased, in our Frank-Wolfe update process [11, 19,

22] we need to estimate minF (x; z) via Emin fz(x; z). In lemma 4, we show that this gap can be
bounded by a decreasing function of the sample batch nz and is independent of the total number of
samples and can be found in Appendix F.
5. Smoothed CVaR

Our algorithm can also solve other DRO problems efficiently, for example, the Smoothed CVaR
proposed in [20]. The CVaR DRO is an important φ-divergence DRO problem, where φ(t) = 1[0, 1

µ
)

if 0 ≤ t < 1
µ , and 0 < µ < 1 is some constant. The dual of CVaR is non-differentiable, which is

undesirable from an optimization viewpoint. To solve this problem, [20] proposed a new divergence
function, which can be seen as a smoothed version of the CVaR. Their experiment results show
the optimization of smoothed CVaR is much easier. However, [20]’s method only works for the
penalized formulation of DRO. We show that our method can solve the constrained smoothed CVaR
and and the complexity to get the ϵ-stationary point is O(ϵ−7). The detailed proof can be found in
Appendix G.
6. Numerical Results

In this section, we verify our theoretical results in solving an imbalanced classification problem.
In the experiment, we consider a non-convex loss function and k is set to be 2 for the Cressie-
Read family. We will show that 1) to optimize the same dual objective function, our proposed
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Class 0 1 2 3 4 5 6 7 8 9

EMR 77.64 86.19 69.33 54.03 51.53 47.05 87.66 85.35 87.12 83.15
SFK-DRO 76.11 84.71 66.18 54.95 58.65 49.36 89.06 84.03 88.41 83.09
PAN-DRO 74.92 85.62 65.72 52.69 55.83 49.50 88.85 84.06 88.68 81.29

Table 1: Test Accuracy of each class for imbalanced CIFAR 10.

algorithm converges faster than the general Proximal Gradient Descent(PGD) algorithm [12]; 2)
The performance proposed algorithm for the constrained DRO problem outperforms or is close to
the performance of the penalized DRO with respect to the worst classes. Both of them outperform
the baseline. The details can be found in Appendix H.
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Figure 1: Training curve of classification task.
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Figure 2: Test curve of classification task.

Results. In Figure 1, 2, we plot the value of the CE loss using different algorithms through
the training process. It can be seen that to optimize the same dual objective function with the
same learning rate, the PGD algorithm converges slower than our proposed DRO algorithms, which
matches our theoretical results. Moreover, compared with ERM, the DRO algorithms have higher
training losses but lower test losses, which demonstrates they are robust. We also provide the test
accuracy of trained models in Table 1. It can be shown that for class 4, 5, 6, the accuracies are the
lowest due to the limited samples. For these classes, the performance of our SFK-DRO algorithm
for the constrained DRO is better or close to the performance of PAN-DRO for the penalized DRO.
Both DRO algorithms outperform the vanilla ERM algorithm.

7. Conclusion

In this paper, we developed the first stochastic algorithm for large-scale non-convex stochastic con-
strained DRO problems in the literature with theoretical convergence and complexity guarantee. We
developed a smooth and Lipschitz approximation with bounded approximation error to the original
problem. Compared with existing algorithms, the proposed algorithm has an improved conver-
gence rate. The computational complexity at each iteration is independent of the size of the training
dataset, and thus our algorithm is applicable to large scale applications. Our results hold for a gen-
eral family of Cressie-Read divergences. It is of future interest to generalize our results to other
distance-like metric, e.g., KL divergence, Wasserstain distance.
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Appendix A. SFK-DRO algorithm

Algorithm 1 SFK-DRO
Input: Iteration number K, initial point (x1, z1), sample numbers nx, nz , step size α, and one
constant C

1: Let t = 1
2: while t ≤ K do
3: randomly select nx samples and compute ∇xfx(xt, zt) =

∑nx
i=1

∇xf(xt;zt;si)
nx

.
4: xt+1 = xt − α∇xfx(xt, zt)

5: randomly select nz samples and compute ∇zfz(xt+1, zt) =
∑nz

j=1
∇zf(xt+1;zt;sj)

nz

6: et= argmine∈M⟨e,∇zfz(xt+1; zt)⟩
7: dt = et − zt
8: gt = ⟨dt,−∇zfz(xt+1; zt)⟩
9: γt = min

{gk
C , 1

}
10: zt+1 = zt + γtdt
11: t = t+ 1
12: end while
t′ = argmint ∥∇xfx(xt; zt)∥2 + g2t
Output: (xt′+1, zt′)

Appendix B. Bounds on the parameters

Proof Firstly, we show for bounded loss function ℓ, the optimal value λ∗ has an upper bound. If
λ∗ = 0, then absolutely it has an upper bound. Otherwise, denote by λ∗(η) for the optimal value of
λ given η and λ∗ = λ∗(η∗). We then have ∇λF (x;λ∗(η); η) = 0 since F (x;λ; η) is convex in λ

and η (which will be shown in ). Denote by ω = (k(k − 1)ρ+ 1)
1
k∗ . It then follows that

λ∗(η) = (k − 1)ω−1ES∼P0

[
(ℓ(x;S)− η)k∗+

] 1
k∗ . (5)

If η∗ ≥ 0, then λ∗(η∗) ≤ (k − 1)ω−1B.
If η∗ < 0, combine (4) and (5), the objective changes into

inf
x;η∈R

F̄ (x; η) = ω
(
ES∼P0(ℓ(x;S)− η)k∗+

)1/k∗
+ η.

For the optimal value η∗, we have ∇ηF̄ (x; η∗) = 0. It follows that

∇ηF̄ (x; η∗)

=− ω
(
ES∼P0(ℓ(x;S)− η∗)k∗+

) 1−k∗
k∗

×
(
ES∼P0(ℓ(x;S)− η∗)k∗−1

+

)
+ 1 = 0.

10
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Therefore, we have

1

ω
=

ES∼P0(ℓ(x;S)− η∗)k∗−1
+[

ES∼P0(ℓ(x;S)− η∗)k∗+

]1− 1
k∗

≥ |η∗|k∗−1

(B + |η∗|)k∗−1
,

where the last inequality is due to the fact that ℓ(x;S) is bounded. Since ω > 1, we have that

|η∗| ≤
( 1ω )

1
k∗−1B

1− ( 1ω )
1

k∗−1

.

Thus, from (5) we have that

λ∗ ≤ (k − 1)ω−1

(
1 +

( 1ω )
1

k∗−1

1− ( 1ω )
1

k∗−1

)
B = λ̄, (6)

where λ̄ only depands on the parameter k and the upper bound on the loss function B. In addition,
for any fixed λ, for the optimal value η∗(λ), we have ∇ηF (x;λ; η∗(λ)) = 0. Thus, we have

ES∼P0

[
(ℓ(x;S)− η∗(λ))k∗−1

+

]
= λk∗−1 k

(k − 1)k∗k∗
.

Since λ ∈ [λ0, λ̄], we have η∗ ∈ [−η̄, B], where η̄ = λ̄
(

k
(k−1)k∗k∗

) 1
k∗−1 . This completes the proof.

Appendix C. Proof of Lemma 1

Proof We consider the following question first:

sup
Dφk

(Q∥P0)≤ρ
ES∼Q ℓ(x;S)− λ0Dφk

(Q∥P0).

Suppose ζ(s) = dQ(s)
dP0(s)

, then the question can be written as

sup
ζ⪰0

∫
ℓ(x;S)ζ − λ0φk(ζ)dP0

s.t.

∫
φk(ζ)dP0 ≤ ρ,

∫
ζdP0 = 1.

The Lagrangian of the above problem can be written as

L(x; ζ;λ; η) =
∫

ℓ(x;S)ζ − (λ0 + λ)φk(ζ)− ηζdP0

+ λρ+ η.

11
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The problem is equivalent to

sup
ζ⪰0

inf
λ≥0,η

L(x; ζ;λ; η).

Since the Slater condition holds, we can exchange the positions of sup and inf thus getting the dual
form

inf
λ≥0,η

λρ+ η + sup
ζ⪰0

∫
ℓ(x;S)ζ − (λ0 + λ)φk(ζ)− ηζdP0.

Since the maximum operation can be moved inside the integral ( Theorem 14.60 of [32]), we have
that

sup
ζ⪰0

∫
ℓ(x;S)ζ − (λ0 + λ)φk(ζ)− ηζdP0

=

∫
sup
ζ⪰0

ℓ(x;S)ζ − (λ0 + λ)φk(ζ)− ηζdP0

=

∫
sup
ζ⪰0

ζ[ℓ(x;S)− η]− (λ0 + λ)φk(ζ)dP0

=

∫
((λ0 + λ)φk)

∗(ℓ(x;S)− η)dP0.

For each λ > 0 we get (λφ(ℓ))∗ = λφ∗( ℓλ). Therefore, the objective function changes into

inf
λ≥0,η

λρ+ η + (λ0 + λ)ES∼P0φ
∗
k

(
ℓ(x;S)− η

λ0 + λ

)
.

We then have

inf
λ∈[λ0,λ̄],η∈[−η̄,B]

F (x;λ; η)− λ0ρ

= inf
λ≥λ0,η̃∈R

ES∼P0

[
λφ∗

k(
ℓ(x;S)− η̃

λ
) + (λ− λ0)ρ+ η̃

]
= sup

Dφk
(Q∥P0)≤ρ

ES∼Q ℓ(x;S)− λ0Dφk
(Q∥P0), (7)

where the first equality is due to the definition of F , λ∗ ∈ [λ0, λ̄], η
∗ ∈ [−η̄, B], and the second

equality is due to the strong duality we provide above. Moreover, we have

sup
Dφk

(Q∥P0)≤ρ
ES∼Q ℓ(x;S)

− sup
Dφk

(Q∥P0)≤ρ
ES∼Q ℓ(x;S)− λ0Dφk

(Q∥P0)

≤ λ0ρ. (8)

Combining (4),(7) and (8), we complete the proof.

12
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Appendix D. Lemma 3 and its proof

Lemma 3 Define z = (λ, η) ∈ M, where M = {(λ, η) : λ ∈ [λ0, λ̄], η ∈ [−η̄, B]}. Then
∀x ∈ Rd, z ∈ M, the objective function F (x; z) is convex and Lz-smooth in z, where Lz =

1
λ0

+ 2(B+η̄)
λ2
0

+ (B+η̄)2

2λ3
0

if k∗ = 2 and Lz =
(k−1)k∗

k k∗(k∗ − 1)

(
(B+η̄)k∗

λk∗+1
0

+ (B+η̄)k∗−2

λk∗−1
0

)
if k∗ > 2.

Moreover, the objective function F (x; z) is Lx-smooth in x, where Lx = (k−1)k∗

k k∗λ
1−k∗
0 (B +

η̄)k∗−2((k∗ − 1)G2 + (B + η̄)L).

Proof From (4) we only need to prove ϕ(x; z) = ES∼P0

[
(ℓ(x;S)− η)k∗+ λ1−k∗

]
is convex and

smooth in z and smooth in x.
Firstly, we have

∇λϕ(x; z) = (1− k∗)ES∼P0

[
(ℓ(x;S)− η)k∗+ λ−k∗

]
and

∇ηϕ(x; z) = −k∗ES∼P0

[
(ℓ(x;S)− η)k∗−1

+ λ1−k∗
]
.

If k∗ = 2, the problem becomes a χ2-DRP problem and ∇ηϕ(z) is not differentiable when ℓ(x;S)−
η = 0. For any z1 = (λ1; η1), z2 = (λ2; η2) where λ1, λ2 ∈ [λ0, λ̄], we have that for any fixed
s ∈ S and a ∈ [0, 1]

2λ1λ2(ℓ(x; s)− η1)+(ℓ(x; s)− η2)+

≤ λ2
1(ℓ(x; s)− η2)

2
+ + λ2

2(ℓ(x; s)− η1)
2
+.

Thus, we have

λ1λ2

(
a2(ℓ(x; s)− η1)

2
+ + (1− a)2(ℓ(x; s)− η2)

2
+

+ 2a(1− a)(ℓ(x; s)− η1)+(ℓ(x; s)− η2)+
)

≤(a(1− a)λ2
1 + (1− a)2λ1λ2)(ℓ(x; s)− η2)

2
+

+ (a(1− a)λ2
2 + a2λ1λ2)(ℓ(x; s)− η1)

2
+. (9)

In addition, we have

(ℓ(x; s)− aη1 + (1− a)η2)
2
+

≤a2(ℓ(x; s)− η1)
2
+ + (1− a)2(ℓ(x; s)− η2)

2
+

+ 2a(1− a)(ℓ(x; s)− η1)+(ℓ(x; s)− η2)+. (10)

Combine (9) and (10), we can get

1

aλ1 + (1− a)λ2
(ℓ(x; s)− aη1 − (1− a)η2)

2
+

≤
(

a

λ1
(ℓ(x; s)− η1)

2
+ +

1− a

λ2
(ℓ(x; s)− η2)

2
+

)
. (11)

13
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Take expectations for both sides, we have

ϕ (x; az1 + (1− a)z2) ≤ aϕ(x, z1) + (1− a)ϕ(x, z2),

which demonstrates both ϕ(x; z) and F (x; z) is convex in z. We then show F is smooth in z. We
have that

∥∇zϕ(x; z1)−∇zϕ(x; z2))∥

=

∣∣∣∣2Es∼P0

[
(ℓ(x; s)− η1)+

λ1
− (ℓ(x; s)− η2)+

λ2

]∣∣∣∣
+

∣∣∣∣Es∼P0

[
(ℓ(x; s)− η1)

2
+

λ2
1

−
(ℓ(x; s)− η2)

2
+

λ2
2

]∣∣∣∣
≤
∣∣∣∣2Es∼P0

[
(ℓ(x; s)− η1)+

λ1
− (ℓ(x; s)− η2)+

λ1

]∣∣∣∣
+

∣∣∣∣2Es∼P0

[
(ℓ(x; s)− η2)+

λ1
− (ℓ(x; s)− η2)+

λ2

]∣∣∣∣
+

∣∣∣∣Es∼P0

[
(ℓ(x; s)− η1)

2
+

λ2
1

−
(ℓ(x; s)− η2)

2
+

λ2
1

]∣∣∣∣
+

∣∣∣∣Es∼P0

[
(ℓ(x; s)− η2)

2
+

λ2
1

−
(ℓ(x; s)− η2)

2
+

λ2
2

]∣∣∣∣
≤2|η1 − η2|

λ0
+

2(B + η̄)

λ2
0

|λ1 − λ2|+
2(B + η̄)

λ2
0

|η1 − η2|

+
(B + η̄)2

λ3
0

|λ1 − λ2|

≤
(

2

λ0
+

4(B + η̄)

λ2
0

+
(B + η̄)2

λ3
0

)
|z1 − z2|.

Therefore, ϕ(x; z) is 2
λ0

+ 4(B+η̄)
λ2
0

+ (B+η̄)2

λ3
0

-smooth and F (x, z) is 1
λ0

+ 2(B+η̄)
λ2
0

+ (B+η̄)2

2λ3
0

-smooth
in z.
If k∗ > 2, ∇ηϕ(z) is differentiable. We can get the Hessian matrix of ϕ with respect to z as:

H =


k∗(k∗ − 1)ES∼P0

[
(ℓ(x;S)− η)k∗+ λ−k∗−1

]
,

k∗(k∗ − 1)ES∼P0

[
(ℓ(x;S)− η)k∗−1

+ λ−k∗
]
;

k∗(k∗ − 1)ES∼P0

[
(ℓ(x;S)− η)k∗−1

+ λ−k∗
]
,

k∗(k∗ − 1)ES∼P0

[
(ℓ(x;S)− η)k∗−2

+ λ1−k∗
]

 .

Suppose a1, a2 are the eigenvalues of H . We have

a1 + a2 = tr(H) = k∗(k∗ − 1)ES∼P0

[
(ℓ(x;S)− η)k∗+ λ−k∗−1 + (ℓ(x;S)− η)k∗−2

+ λ1−k∗
]

≥ 0

14
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and

a1a2 = det(H) = k2∗(k∗ − 1)2λ−2k∗

×
(
ES∼P0(ℓ(x;S)− η)k∗+ ES∼P0(ℓ(x;S)− η)k∗−2

+

−
(
ES∼P0(ℓ(x;S)− η)k∗−1

+

)2 )
≥ 0.

Thus H is semi-positive definite which demonstrates ϕ is convex in z. Moreover, the smooth con-
stant should be the largest eigenvalue. Therefore we get

Lz =
(k − 1)k∗

k
k∗(k∗ − 1)

(
(B + η̄)k∗

λk∗+1
0

+
(B + η̄)k∗−2

λk∗−1
0

)

Now we prove the objective is Lx-smooth in x. Firstly, we have

∇xϕ(x; z) = k∗λ
1−k∗ES∼P0

[
(ℓ(x;S)− η)k∗−1

+ ∇xℓ
]
.

For any x1, x2 we have that

∥∇xϕ(x1; z)−∇xϕ(x2; z))∥
≤k∗λ

1−k∗
∥∥ES∼P0

[
(ℓ(x1;S)− η)k∗−1

+ ∇xℓ(x1;S)

− (ℓ(x2;S)− η)k∗−1
+ ∇xℓ(x1;S)

]∥∥
+ k∗λ

1−k∗
∥∥ES∼P0

[
(ℓ(x2;S)− η)k∗−1

+

× (∇xℓ(x2;S)−∇xℓ(x1;S))
]∥∥.

Since we have

∥(ℓ(x1;S)− η)k∗−1
+ − (ℓ(x2;S)− η)k∗−1

+ ∥
≤(B + η̄)k∗−2∥ℓ(x1;S)− ℓ(x2;S)∥
≤(k∗ − 1)(B + η̄)k∗−2G∥x1 − x2∥,

where the first inequality is because both ℓ(x;S) and η are bounded. And the second inequality is
due to the fact that ℓ is smooth. Thus we have that

∥(ℓ(x1;S)− η)k∗−1
+ − (ℓ(x2;S)− η)k∗−1

+ ∥
≤k∗λ

1−k∗(B + η̄)k∗−2(k∗ − 1)G2∥x1 − x2∥
+ k∗λ

1−k∗(B + η̄)k∗−1L∥x1 − x2∥.

Therefore, ϕ(x; z) is k∗λ1−k∗(B+η̄)k∗−2((k∗−1)G2+(B+η̄)L)-smooth and F (x, z) is (k−1)k∗

k k∗λ
1−k∗(B+

η̄)k∗−2((k∗ − 1)G2 + (B + η̄)L)-smooth in x.
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Appendix E. Proof of Theorem 2

Proof For the update of x, we have that

xt+1 = xt − α∇xfx(xt; zt).

Since F (x, z) is Lx-smooth in x, we have

F (xt+1; zt)

≤F (xt; zt) + ⟨∇xF (xt; zt), xt+1 − xt⟩

+
Lx

2
∥xt+1 − xt∥2

=F (xt; zt)− α∇xfx(xt; zt)⊤∇xF (xt; zt)

+
α2Lx

2
∥∇xfx(xt; zt)∥2

=F (xt; zt)− α∇xfx(xt; zt)⊤∇xF (xt; zt)

+
α2Lx

2
∥∇xfx(xt; zt)−∇xFx(xt; zt) +∇xFx(xt; zt)∥2

≤F (xt; zt)− α∇xfx(xt; zt)⊤∇xF (xt; zt)

+ α2Lx∥∇xfx(xt; zt)−∇xFx(xt; zt)∥2

+ α2Lx∥∇xFx(xt; zt)∥2. (12)

Given xt and zt, take the expectation for both sides of (24), we have that

E[F (xt+1; zt)|xt, zt]
≤F (xt; zt)− α∥∇xFx(xt; zt)∥2

+ α2LxE[∥∇xfx(xt; zt)−∇xFx(xt; zt)∥2|xt, zt]
+ α2Lx∥∇xFx(xt; zt)∥2. (13)

If α ≤ 1
2Lx

we have that α2Lx ≤ α
2 and

α

2
∥∇xFx(xt; zt)∥2 ≤F (xt; zt)− E[F (xt+1; zt)|xt, zt]

+ α2Lx
σ2

nx
,

where the inequality is because ∇xf(x; z; s) ≤ (k−1)k∗

k k∗(B + η̄)k∗−1Gλ1−k∗
0 = σ is bounded.

After that, we take expectations for both sides and we have

α

2
E
[
∥∇xFx(xt; zt)∥2

]
≤E[F (xt; zt)]− E[F (xt+1; zt)]

+ α2Lx
σ2

nx
. (14)
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For the update of z and ∀γ ∈ [0, 1], we get an affine invariant version of the standard descent Lemma
((1.2.5) in [27])

fz(xt+1; zt+1)

≤fz(xt+1; zt) + γ⟨∇zfz(xt+1; zt), dt⟩+
γ2

2
C,

where C ≥ DLz . In our algorithm we have γt = min
{gt
C , 1

}
and

gt
C

≤ D∥∇zfz(xt+1; zt)∥
DLz

≤
(ρ+ 1

k(k−1)) +
(k−1)k∗ (k∗−1)

k λ−k∗
0

Lz
.

Since Lz ∼ O(λ−k∗−1
0 ) thus for small λ0 we have gt

C ≤ 1. Consequently, we can assume γ = gt
C

and we have

fz(xt+1; zt+1)

≤fz(xt+1; zt)−
gt
C
gt +

(gtC )2

2
C. (15)

Since fz(x; z) is convex in z, we have that gt ≥ fz(xt+1; zt)−minz∈M fz(xt+1; z). Take expecta-
tions for both sides of (15), we have that

E

[
g2t
2C

]
≤ E[F (xt+1; zt)]− E[F (xt+1; zt+1)]. (16)

By recursively adding (14) and (16), we have that

1

T

T∑
t=1

α

2
E
[
∥∇xFx(xt; zt)∥2

]
+ E

[
g2t
2C

]
≤ F (x1; z1)− E[F (xT+1; zT+1)]

T
+ α2Lx

σ2

nx
.

Since DLz ∼ O(λ−k∗−1
0 ) and Lx ∼ O(λ−k∗+1

0 ), we can find λ0 small enough such that C ≥
DLz ≥ 2Lx. Set α = 1

C , we then have that

1

T

T∑
t=1

E
[
∥∇xFx(xt; zt)∥2

]
+ E

[
g2t
]
≤ 2C∆

T
+

Lxσ
2

nxC
.

From Jensen’s inequality, we have that

1

T

T∑
t=1

E [∥∇xFx(xt; zt)∥]2 + E [gt]
2 ≤ 2C∆

T
+

Lxσ
2

nxC
.
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When we set T = 16C∆ϵ−2 ∼ O(λ−k∗−1
0 ϵ−2), nx = 8Lxσ2

Cϵ2
, for some t ∈ [1, T ] we have

E [∥∇xFx(xt; zt)∥] ≤
ϵ

2
and

E[gt] ≤
ϵ

2
Since F (x; z) is Lx-smooth in x, we have that

∥∇xFx(xt+1; zt)−∇xFx(xt; zt)∥ ≤ Lx∥xt+1 − xt∥
≤ Lxα∥∇xfx(xt; zt)∥.

In addition,

E[∥∇xfx(xt; zt)∥2]
≤2E[∥∇xfx(xt; zt)−∇xFx(xt; zt)∥2|xt, zt]

+ 2E[∥∇xFx(xt; zt)∥2]

≤ϵ2

2
+

Cϵ2

4Lx

Thus

E [Lxα∥∇xfx(xt; zt)∥] ≤
Lx

C

√
ϵ2

2
+

Cϵ2

4Lx
≤ ϵ

2

since C ≥ 2Lx. Therefore, we have

E[∥∇xFx(xt+1; zt)∥] ≤ ϵ.

In addition, we have

gt ≥ fz(xt+1; zt)− min
z∈M

fz(xt+1; z).

Given xt+1 and zt, take expectations for both sides and we have

E[gt|xt+1, zt] ≥ F (xt+1; zt)− E

[
min
z∈M

fz(xt+1; z)

]
.

By Lemma 4 we can get a nz ∼ O(ϵ−k∗) such that 3B
√
1 + k(k − 1)ρ

√
4+log(nz)

4nz
< ϵ

4 if k∗ = 2

or 3B(1 + k(k − 1)ρ)
1
k

(
1
nz

+ 1
2k∗−1(k∗−2)nz

) 1
k∗ < ϵ

4 if k∗ > 2, we have∣∣∣∣ infz∈M
[F (xt+1; z)]− E

[
inf
z∈M

fz(xt+1; z)

]∣∣∣∣ ≤ ϵ

4
.

By Lemma 1, when λ0 =
ϵ
8ρ , we have∣∣∣∣ inf

λ∈[λ0,λ̄],η∈[−η̄,B]
F (x;λ; η)− inf

λ≥0,η∈R
F (x;λ; η)

∣∣∣∣ ≤ ϵ

4
.

Thus we have

F (xt+1; zt)− inf
λ≥0,η∈R

F (x;λ; η) ≤ ϵ. (17)

which completes the proof.
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Appendix F. Lemma 4 and its proof

Lemma 4 For any bounded loss ℓ, |infz∈M [F (xt+1; z)]− E [infz∈M fz(xt+1; z)]| ≤ O(nz
− 1

k∗ ).

The (20) of [23] provides an inverse-cdf formulation of the DRO problem. By implementing the
inverse-cdf formulation, the (42) and remark 1 of [23] show that∣∣∣∣min

z∈M
[F (x; z)]− E

[
min
z∈M

fz(x; z)

]∣∣∣∣
≤
∫ 1

0
(r(β)− r(1))(β · h(β))′dβ

≤ ∥r∥k∥(β · h(β))′∥k∗ , (18)

where r ∈ R := {r : [0, 1] → R+|
∫ 1
0 r(β)dβ = 1 and

∫ 1
0 φk(r(β))dβ ≤ ρ}, h = 3Bmin

{√
1

βnz
, 1
}

and the second inequality is due to the Hölder’s inequality. Note this inequality holds for any fixed
x, no matter whether the loss function is convex or not.
Since

∫ 1
0 φk(r(β))dβ ≤ ρ, we have that

∥r∥kk ≤ 1 + k(k − 1)ρ. (19)

Moreover, we have that

∥(β · h(β))′∥k∗k∗

=

∫ 1
nz

0
(3B)k∗dβ +

∫ 1

1
nz

(
3B

2
)k∗

√
1

(βnz)k∗
dβ. (20)

For k∗ = 2, we have

∥(β · h(β))′∥22 = (3B)2
4 + log(nz)

4nz
(21)

and if k∗ > 2, we have that

∥(β · h(β))′∥k∗k∗ ≤ (3B)k∗
(

1

nz
+

1

2k∗
2

k∗ − 2

n0.5k∗−1 − 1

n0.5k∗

)
≤ (3B)k∗

(
1 +

1

2k∗−1(k∗ − 2)

)
1

nz
. (22)

Combine (18),(19),(21) and (22), we can get the lemma and complete the proof.

Appendix G. Proof of smoothed CVaR

The divergence function of smoothed CVaR is

φs(t) =

{
t log(t) + 1−µt

µ log(1−µt
1−µ ), t ∈ [0, 1

µ);

+∞, otherwise.
(23)
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The corresponding conjugate function is

φ∗
s(t) =

1

µ
log(1− µ+ µ exp(t)). (24)

The objective function is then written as

inf
x

inf
λ≥0,η∈R

Fs(x;λ; η)

=ES∼P0

[
λφ∗

s(
ℓ(x;S)− η

λ
) + λρ+ η

]
. (25)

We will show that there exist upper bounds for the optimal values λ∗ and η∗ later. There exists a
λ̄ > 0 only depends on µ,B and ρ such that λ∗ ∈ [0, λ̄] and η∗ ∈ [0, B].

This objective function is non-smooth when λ → 0. Therefore, we take a similar approach
as the one in Section 3.1 to approximate the original problem with λ ∈ [λ0, λ̄]. We bound the
difference in the following lemma.

Lemma 5 ∀x ∈ Rd, λ0 ≥ 0,∣∣∣∣ inf
λ∈[λ0,λ̄],η∈[0,B]

Fs(x;λ; η)− inf
λ≥0,η∈R

Fs(x;λ; η)

∣∣∣∣ ≤ 2λ0ρ.

The proof is similar to Lemma 1 thus is omitted here.
In addition, we will show that Fs(x; z) is L′

z-smooth and convex in z, where L′
z ∼ O(λ−3

0 ) if
λ ∈ [λ0, λ̄]. Also it is easy to get Fs(x; z) is L′

x-smooth in x, where L′
x ∼ O(λ−2

0 ). Similar to eq.
(42) and Remark 1 in [23], we can prove that

∣∣min
z∈M

[Fs(xt+1; z)]− E

[
min
z∈M

fs(xt+1; z)

] ∣∣ ∼ O(n−0.5
s ). (26)

We then use Algorithm 1 directly and the complexity to get the ϵ-stationary point is O(ϵ−7).
Proof Bounded parameters: We have

∇tφ
∗
s(t) =

1

µ

µ exp(t)

1− µ+ µ exp(t)
≤ 1

µ

and

∇2
tφ

∗
s(t) =

1

µ

µ(1− µ) exp(t)

(1− µ+ µ exp(t))2
≤ 1

4µ

∇ηFs(x;λ; η) = 1− ES∼P0φ
∗
s
′(
ℓ(x;S)− η

λ
).

∇2
ηFs(x;λ; η) =

1

λ
ES∼P0φ

∗
s
′′(
ℓ(x;S)− η

λ
).

If η > B, then ∇ηFs(x;λ; η) < 0. If η < 0, then ∇ηFs(x;λ; η) > 0. Thus η∗ ∈ [0, B].
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∇λFs(x;λ; η) =ρ+ ES∼P0

[
φ∗
s(
ℓ(x;S)− η

λ
)

− φ∗
s
′(
ℓ(x;S)− η

λ
)
ℓ(x;S)− η

λ

]
.

∇2
λFs(x;λ; η) =

1

λ3
ES∼P0

[
φ∗
s
′′(
ℓ(x;S)− η

λ
)(ℓ(x;S)− η)2

]
.

The second-order demonstrates that the Fs(x;λ; η) is convex in λ. We then show that λ∗ has an
upper bound. If ∇λFs(x;λ; η) ≥ 0 when λ → 0, then λ∗ = 0. If ∇λFs(x;λ; η) < 0 when λ → 0,
since both φ∗

s(t), φ
∗
s
′(t) are increaing with t, we have that

∇λFs(x;λ; η) > ρ+ φ∗
s(
−B

λ
)− B

µλ
. (27)

Since we know g(λ) = ρ + φ∗
s(

−B
λ ) − B

µλ is increasing with λ and g(λ) < 0 when λ → 0,
g(λ) = ρ > 0 when λ → ∞. Thus we can find λ̄ > 0 that g(λ̄) = 0. Moreover, the value of λ̄ only
depends on µ,B and ρ.
Smoothness: fix x, the Hessian matrix of Fs(x; z) with respect to z as:

Hs =


1
λES∼P0φ

∗
s
′′( ℓ(x;S)−η

λ ),
1
λ2ES∼P0

[
φ∗
s
′′( ℓ(x;S)−η

λ )(ℓ(x;S)− η)
]
;

1
λ2ES∼P0

[
φ∗
s
′′( ℓ(x;S)−η

λ )(ℓ(x;S)− η)
]
,

1
λ3ES∼P0

[
φ∗
s
′′( ℓ(x;S)−η

λ )(ℓ(x;S)− η)2
]

 .

Suppose a3, a4 are the eigenvalues of Hs. We have a3 + a4 > 0 and a3a4 ≥ 0. And the function is
L′
z-smooth and convex in z, where L′

z ∼ O(λ−3
0 ) if λ ∈ [λ0, λ̄]. Also it is easy to get Fs(x;λ; η) is

L′
x-smooth in x, where L′

x ∼ O(λ−2
0 ).

Bounded gap: denote fs(x, z) =
∑ns

i=1
f(x;z;s)

ns
, in order to use algorithm 1 directly, we need to

estimate minF (x; z) via Emin fz(x; z) and bound the gap. From the (42) and remark 1 of [23], we
have that ∣∣∣∣min

z∈M
[Fs(xt+1; z)]− E

[
min
z∈M

fs(xt+1; z)

]∣∣∣∣
≤
∫ 1

0
(r(β)− r(1))(β · h(β))′dβ (28)

where r ∈ R := {r : [0, 1] → R+|
∫ 1
0 r(β)dβ = 1 and

∫ 1
0 φs(r(β))dβ ≤ ρ}, h = 3Bmin

{√
1

βns
, 1
}

Since
∫ 1
0 φs(r(β))dβ ≤ ρ}, we have that r(β) ≤ 1

µ for any Moreover, we have that∫ 1

0
(β · h(β))′dβ =

∫ 1
ns

0
3Bdβ + 3B

∫ 1

1
ns

√
1

βns
dβ

=
3B

ns
+ 6B(

√
1

ns
− 1

ns
)
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Thus the gap
∣∣minz∈M [Fs(xt+1; z)] − E [minz∈M fs(xt+1; z)]

∣∣ ∼ O(n−0.5
s ). We then can use

algorithm 1 directly and the complexity to get the ϵ-stationary point is O(ϵ−7).

Appendix H. Experiments

In this section, we provide the details of our experiments.
Tasks. We conduct experiments on the imbalanced CIFAR-10 dataset, following the experi-

mental setting in [4, 20]. The original CIFAR-10 test dataset consists of 10 classes, where each of
the classes has 5000 images. We randomly select training samples from the original set for each
class with the following sampling ratio: {0.804, 0.543, 0.997, 0.593, 0.390, 0.285, 0.959, 0.806,
0.967, 0.660}. We keep the test dataset unchanged.

Models. We learn the standard Alexnet model in [21] with the standard cross-entropy (CE)
loss. For the comparison of convergence rate, we optimize the same dual objective with the PGD
algorithm in [12]. To compare robustness, we optimize the ERM via vanilla SGD. In addition, we
propose an algorithm PAN-DRO, which fixes λ and only optimizes η and the neural network. Thus
it gets the solution for the penalized DRO problem.

Training details. We set λ1 = 1, η1 = 0, λ0 = 0.1,−η̄ = −10, and the upper bounds
λ̄ = 10, B = 10. To achieve a faster optimization rate, we set the learning rate α = 0.01 before the
first 40 epochs and α = 0.001 after. The mini-batch size is chosen to be 128. All of the results are
moving averaged by a window with size 5. The simulations are repeated by 4 times.

Appendix I. Complexity of PGD

I.1. Cressie-Read family

In the PGD algorithm [12], y = (x;λ; η) is optimized as a whole. From Lemma 3, we know
F (y) = F (x; z) is Lz-smooth in z and Lx-smooth in x. Moreover, it is not hard to show that
∇xF (x; z) is Lxz-Lipschitz in z and ∇zF (x; z) is Lxz-Lipschitz in x, where Lzx, Lxz ∼ O(λ−k∗

0 ).
Therefore, we have

∥∇yF (y1)−∇yF (y2)∥ =∥∇xF (x1; z1)−∇xF (x2; z2)∥+ ∥∇zF (x1; z1)−∇zF (x2; z2)∥
≤∥∇xF (x1; z1)−∇xF (x1; z2)∥+ ∥∇zF (x1; z1)−∇zF (x1; z2)∥
+ ∥∇xF (x1; z2)−∇xF (x2; z2)∥+ ∥∇zF (x1; z2)−∇zF (x2; z2)∥

≤Lxz∥z1 − z2∥+ Lz∥z1 − z2∥+ Lzx∥x1 − x2∥+ Lx∥x1 − x2∥
≤(Lx + Lz + Lxz + Lzx)∥y1 − y2∥.

Thus, F (y) is Ly-smooth in y, where Ly = Lx + Lz + Lxz + Lzx ∼ O(λ−k∗−1
0 ). According to

Corollary 3 in [12] and λ0 ∼ O(ϵ), we can get the ϵ- stationary point with the number of iterations
T ∼ O(λ−k∗−1

0 ϵ−2) and batch size np ∼ O(λ−2k∗ϵ−2). Thus, the total complexity is O(ϵ−3k∗−5).

I.2. Smoothed CVaR

Similar to Cressie-Read family, we can show that Fs(y) is L′
y-smooth in y, where L′

y ∼ O(λ−3
0 ).

According to Corollary 3 in [12], we can get the ϵ- stationary point with the number of iterations
T ∼ O(λ−3

0 ϵ−2) and batch size np ∼ O(λ−2ϵ−2). Thus, the total complexity is O(ϵ−9).
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