
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

REDUCING COGNITIVE OVERHEAD IN TOOL USE VIA
MULTI-SMALL-AGENT REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent progress in multi-agent systems highlights the promise of specialized
agents that collaborate through a division of labor. In contrast, most tool-
augmented reasoning systems still adopt a single-agent paradigm, where one
large model must interleave high-level reasoning with fine-grained tool opera-
tions—a process that often leads to cognitive-load interference and unstable out-
puts. We propose MSARL (Multi-Small-Agent Reinforcement Learning), a novel
framework that explicitly decouples reasoning from tool execution and inter-
pretation. In MSARL, a dedicated reasoning agent focuses on strategic prob-
lem decomposition and planning, while a specialized tool agent processes long
and complex tool outputs, acting as an adaptive condenser to bridge informa-
tion gaps. This role-specific separation not only reduces cognitive interference
but also accelerates the information flow. To enable effective collaboration, we
introduce a hierarchical reinforcement learning approach that uses role-specific
and collaboration-based rewards, providing granular feedback to the tool agent
and a holistic, trajectory-level signal to the reasoning agent. On mathematical
problem-solving with code execution, MSARL achieves more stable reasoning and
higher final-answer accuracy than strong single-agent baselines. Our findings in-
dicate that this dual-agent architecture significantly mitigates hallucinations and
boosts tool invocation tendencies, thereby improving overall robustness. Our
method provides a scalable blueprint for building specialized multi-agent system
that can tackle complex reasoning tasks. The code for our method is available at:
https://anonymous.4open.science/r/msarl-D50D/.

1 INTRODUCTION

The emerging trend in agent-based AI systems is the specialization and collaboration of smaller,
role-focused agents(Yang et al., 2023).In tool-integrated reasoning, such division of labor promises
gains in efficiency, interpretability, and scalability. Nevertheless, most existing systems still employ
a single-agent paradigm, in which one large model sequentially performs high-level reasoning, gen-
erates executable tool calls (e.g., code), and interprets results(Xie et al., 2023; Gou et al., 2023; Jin
et al., 2025; Qian et al., 2025; Yao et al., 2023). While this integrated design simplifies coordination,
it also introduces cognitive load interference: the same model must juggle long-horizon reasoning
with precise, low-level tool operations.

We empirically examine this limitation by comparing a single, integrated agent to a decomposed one
using identical model architectures and testing data. Despite having access to computational tools,
the integrated agent produces fewer correct reasoning paths. This finding suggests that coupling
high-level reasoning with tool execution in a single model can degrade the quality of intermediate
logical steps.

Motivated by these observations, we present MSARL (Multi-Small-Agent Reinforcement Learn-
ing), a framework that decouples reasoning from tool use via explicit cognitive-role separation. In
MSARL, a dedicated reasoning agent decomposes problems into stepwise plans and decides when to
invoke tools, while other tool agents each specialize in a specific tool (e.g., code execution, retrieval
API, calculator) to process lengthy and complex tool invocation information and results, compress
the processed information, and pass it to the reasoning agent, thereby reducing the contextual com-
plexity for the reasoning agent.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To enhance the collaboration capability among agents in handling specialized tasks, the agents are
trained jointly through multi-agent reinforcement learning. In our multi-agent reinforcement learn-
ing framework, we introduce an innovative collaboration-oriented reward mechanism. Specifically,
the reward received by one agent is determined by the quality of the output produced by another
agent after processing the information it received from the former. The better the subsequent output
of the collaborating agent, the higher the reward for the initiating agent at that step. This design
grants agents substantial freedom to explore and discover optimal collaboration patterns for special-
ized tasks.

We first demonstrate MSARL on mathematical problem (MAA, 2025; Lei et al., 2024; MAA, 2023;
Hendrycks et al., 2021; He et al., 2024),solving via code execution, where it achieves higher reason-
ing stability and final-answer accuracy than single-agent baselines(Qwen Team, 2024; Zeng et al.,
2025). Beyond mathematics, the architecture naturally generalizes to multi-tool scenarios, offering
a scalable blueprint for specialized-agent AI capable of tackling complex reasoning and decision-
making tasks.

Our contributions can be summarized as follows:

• We conduct an in-depth empirical analysis of the limitations inherent in single-agent, tool-
integrated reasoning systems, showing that coupling high-level reasoning and low-level
tool execution within one model can degrade intermediate reasoning quality.

• We propose MSARL (Multi-Small-Agent Reinforcement Learning), a novel framework that
decouples cognitive roles via a dedicated Reasoning Agent and multiple specialized Tool
Agents, equipped with a collaboration-oriented reward mechanism to optimize cooperation
and information flow.

• We validate the efficacy of MSARL through extensive experiments on mathematical problem
solving and multi-tool reasoning tasks, demonstrating superior reasoning stability, final-
answer accuracy, and scalability compared to single-agent baselines.

2 RELATED WORK

Tool-Integrated Reasoning. Tool-integrated reasoning (TIR) has emerged as a promising ap-
proach to enhance the capabilities of large language models (LLMs). By integrating external tools
such as code interpreter (Wang et al., 2023; Gou et al., 2023), search engine (Jin et al., 2025) or
LLM-based agents (Wu et al., 2025), TIR serves as an extension to a single executor, allowing mod-
els to perform more complex tasks. Despite its great potential, existing TIR approaches exhibit
critical limitations. Previous studies distill trajectories from stronger models and perform Super-
vised Fine-Tuning (SFT), limiting their ability to explore and adapt to optimal reasoning strategies.
More recent research show the effectiveness of large-scale reinforcement learning (RL) for TIR with
merely outcome rewards (Jaech et al., 2024; DeepSeek-AI, 2025; Qwen Team, 2025). Building on
these advances, we focus on mathematical reasoning, a canonical domain for evaluating complex
reasoning tasks, and generalize the notion of tool beyond traditional code interpreters to include any
auxiliary agent that can support the reasoning process.

Multi-Agent System. Leveraging multi-agent system (MAS) collaboration to complete complex
tasks that are difficult to solve by single inference becomes increasingly popular (Han et al., 2024;
Tran et al., 2025). In mathematical reasoning, for example, Yuan & Xie (2025) propose an actor-
critic architecture in which the critic generates multiple candidate answers and feedback to enable
better self-reflection by the actor; Zhang & Xiong (2025) introduce a debating paradigm with diverse
agent roles to facilitate fine-grained reasoning through structured disagreement and adjudication.
While predefined role interactions are widely adopted in MAS (Lei et al., 2024; Wang et al., 2024;
Motwani et al., 2025), some efforts have explored dynamic agent typology and interaction patterns,
enabling more flexible and adaptive collaboration (Zhuge et al., 2024; Zhang et al., 2025a; Zhou
et al., 2025). However, compared to the success on the single LLM, existing MAS frameworks
often lack reliable, fine-grained reward signals for MAS collaboration, relying instead on outputs or
self-generated reward mechanisms. Falling into the paradigm of predefined agent collaboration, our
work aims to enable the agents to learn how to interact with each other meanwhile fine-tune their
weights through feedback from cooperation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Supervision Signals in RL. Existing verification methods in RL can be categorized into three
paradigms: outcome-based, process-based, and hybrid supervision. Outcome-based supervi-
sion evaluates final outcomes, as seen in the Outcome Reward Model (ORM) (Ouyang et al.,
2022). While simple, ORM lacks granularity for intermediate steps, resulting in reward sparsity.
Process-based supervision addresses this by providing step-by-step or milestone feedback. Process-
supervision Reward Models (PRMs) (Lightman et al., 2023b; Qian et al., 2025) evaluates each rea-
soning step, enabling precise error correction. However, PRMs rely on costly human-annotated data,
which might limit their scalability. Hybrid supervision integrates PRM’s step-level quality control
with auxiliary rewards (e.g., Instruction Reward Model (IRM) (Luo et al., 2024), which supervises
quality of generated instruction) that supervise data quality from orthogonal angles (e.g., instruction
quality). Although this complementary approach mitigates single-source limitations, it introduces
optimization conflicts requiring careful calibration. These reward signals motivate diverse policy op-
timization methods such as PPO (Schulman et al., 2017), DPO (Rafailov et al., 2023), GRPO (Shao
et al., 2024). Among them, GRPO’s flexible reward function enables adaptation to diverse objec-
tives, such as assigning weights to subtasks (Yu et al., 2024) or constraining tool use frequency (Li
et al., 2025). In this work, we extend GRPO to enhance multi-agent collaboration in mathematical
problem solving through a simple yet effective reward design.

3 METHODOLOGY

In this section, we start from a pilot investigation to see whether augmenting a single agent with code
execution improves mathematical reasoning, or instead may introduce additional cognitive burden.
Then we present the detailed design for training models by our proposal, i.e., MSARL, covering (1)
rollout framework; (2) reward design; (3) training strategy.

3.1 COGNITIVE OVERHEAD IN SINGLE-AGENT REASONING

Setup. We conduct experiments on the non-reasoning model Qwen2.5-3B-Instruct (Qwen Team,
2024), the reasoning model Qwen3-4B (Qwen Team, 2025) and a mathmatical models Qwen2.5-
Math-1.5B-Instruct (Yang et al., 2024) for mathmatical reasoning tasks. Specifically, two prompting
regimes are considered with the same backbone model: (i) reasoning-only (r only), in which the
model is instructed to solve problems exclusively through step-by-step natural language reasoning;
(ii) reasoning with code (r code), in which the model is encouraged to interleave Python code
blocks with natural language reasoning, thereby allowing intermediate computations to be executed.
Experiments are conducted on the MATH-500 test split (Lightman et al., 2023a), a benchmark whose
problems are naturally amenable to solution verification through executable code. For each problem,
we draw N = 5 independent samples per regime using nucleus sampling (p = 0.95, temperature
= 0.7). To assess solution validity, we employ DeepSeek-R1 (DeepSeek-AI, 2025) as the judge to
evaluate whether a reasoning trajectory, disregarding minor arithmetic slips, constitutes a logically
coherent path that would yield the correct answer under flawless execution. The complete prompts
for two prompting strategies and model judge can be found in Appendix A.

Results. To analyze performance across different reasoning difficulty levels, we categorize
MATH-500 problems into four groups based on their inherent difficulty levels (ranging from 1 to
5) and their respective proportions in the dataset1: Hard (Level 5, 26.8%), Medium-Hard (Level
4, 25.6%), Medium-Easy (Level 3, 21%), and Easy (Levels 1–2, 26.6%). As shown in Figure 1,
the r code regime generally underperforms the r only regime, exhibiting accuracy gaps of 0.02
to 0.18 across all difficulty levels. The exception is Qwen3-4B, which demonstrates superior average
performance on mathematical tasks, as expected given its strong reasoning capabilities in thinking
mode (Qwen Team, 2025). The degradation is most pronounced on problems of medium-difficulty
(Medium-Hard: −0.08, Medium-Easy: −0.18), while the performance gap is smaller on the
more complex Hard problems. This pattern suggests that the additional cognitive load induced
by generating, executing, and integrating code fragments is particularly disruptive when problems
require a moderate level of reasoning complexity, where code execution might interfere with the
initial problem formulation. To further illustrate this phenomenon, we provide qualitative analysis
of a medium-difficulty example in Appendix B, contrasting model outputs under the two prompt-

1https://huggingface.co/datasets/HuggingFaceH4/MATH-500

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

ing regimes. These findings indicate that a single agent can struggle to effectively balance internal
reasoning with external tool-use, suggesting a fundamental limitation in its ability to manage the
cognitive load of both tasks simultaneously.

(a) Qwen2.5-3B-Instruct (b) Qwen2.5-Math-1.5B-Instruct (c) Qwen3-4B

Figure 1: Model performance on Math-500 under two prompting regimes.

3.2 DUAL-AGENT FRAMEWORK FOR DECOUPLED REASONING AND TOOL USE

q

q

Rollout Module

Code
Sandbox

Policy
Model

Responses

O1

O2

Om

...

Reward System

Reference
Model

Rewards

R1

R2

Rm

...

Group
Compute

Advantages

A1

A2

Am

...

Policy Update

GRPO (single-agent)

GRPO (dual-agent)

Reasoner

Helper

r1 t o r ...

Reasoning

r1

o

Tool

Output
Condensed
information

Reward System
(Rule-based)

i r

i r

...

O1
(1)

rm

O1
(n)

Subgroup rewards

Subgroup
Compute

Local Advantages

...

Trainable

Frozen

Group
Compute

Policy Update (inner loop)

Policy Update (outer loop)

Code
Sandbox Avg

Prompt

KL

r

i

t

...

...

Advantages

A1

...

A1(1)

A1(n)

...

R1(1)

R1(n)

...

Avg

A2

r2

Am

Average

Figure 2: Overview of our method

Preliminaries and Notations. Motivated by the observations in Section 3.1, we propose MSARL,
a dual-agent framework designed to mitigate cognitive interference by explicitly decoupling the
responsibilities of reasoning and tool-use. Figure 2 illustrates the framework of MSARL. In the
proposed dual-agent system, one serves as a reasoning agent Reasoner and the other as a tool agent
Helper. In the context of LLM policy optimization, let πreason be the reasoning LLM, πtool be the tool-
assisting LLM. For each question q in a given set Q, the Reasoner generates one or more independent
reasoning trajectories. Each reasoning trajectory consists of a sequence of steps < r, t, o >. At step
k, the Reasoner may produce either a natural language reasoning segment rk or a tool call tk. When
a tool call is executed, it returns the tool output ok. A key step in our framework is the interaction
with the Helper. The pair < tk, ok > is processed by the Helper model πtool to generate a condensed,
structured interpretation, denoted as ik. This interpretation ik is then passed back to the Reasoner,
which uses the full context, including rk and ik, to generate the subsequent reasoning step rk+1.
This iterative process continues until the Reasoner produces a final answer, denoted as O.

Rollout Framework. To enable the model to autonomously generate reasoning traces and tool
calls, we utilize the prompts as shown in Figure 3. Following Li et al. (2025), when a code termi-
nation identifier (‘‘‘output) is detected, the Reasoner pauses generation; the latest code block

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

is extracted for code execution in the code sandbox; both the code Code and the structured exe-
cution result Output are wrapped by training prompt for tool agent, resulting in Helper’s output
inserted into the <answer> field. The Reasoner’s final answer is indicated within a box (e.g.,
final answer). We observed the agent-to-agent communication during the rollout process intro-

duces significant GPU idle time. To maximize the training efficiency, we introduced a hyperparam-
eter, C, which is the maximum number of tool calls the model can make during a single response
generation. Once this threshold is exceeded, the system ignores further code execution requests,
forcing the model to switch to pure-text reasoning mode. To better illustrate the training dynamics,
we provide a full rollout example in Appendix C.

Training Prompt for Reasoning Agent

Please integrate natural language reasoning with programs to solve the problem above, and put your
final answer within boxed {}. Problem: Question

Training Prompt for Tool Agent

Describe in one sentence what this code does, and in one sentence explain the meaning of its output.
Wrap your answer in <answer></answer>
Python code: Code
Output: Output

Figure 3: Training prompt templates for MSARL

Reward Design. A critical challenge in optimizing multi-step reasoning agents is the sparsity of
terminal reward signals, which often fail to provide sufficient guidance for intermediate reasoning
steps. To address this issue, our reward design strategically applies the outcome-based reward at
the most decisive juncture, that is, the tool-use interpretation stage as identified in Section 3.1.
Specifically, the binary success reward (Eq. 1) is granted based on the output of the Helper agent
(πtool). It checks whether the Reasoner model output is both calculated and formatted correctly, as
specified by the ground truth. This approach reframes the final outcome evaluation as a dense and
immediate milestone reward for effective tool utilization. Crucially, during joint optimization, this
reward signal propagates back to the Reasoner policy (πreason). This process operates as an implicit
regularization mechanism, incentivizing the Reasoner to generate logically sound reasoning traces
that culminate in correct and executable tool invocations.

R =

1, if the answer is correct and boxed

0, otherwise
(1)

Reasoner-Helper Framework. Our methodology is built upon a hierarchical reinforcement learn-
ing framework designed to jointly optimize both the reasoning policy (πreason) and the tool policy
(πtool). To tune the model with structured rewards, we employ GRPO (Shao et al., 2024) that intro-
duces advantage normalization within grouped samples. For brevity, assume that πreason parallelly
generates m reasoning trajectories up to the point of its final tool invocation from the question
q. For such a specific clipped reasoning trajectory τk containing tool execution results. At this
juncture, the Helper policy πtool generates a set of n diverse interpretations of the tool’s output,
denoted as {i(1)k , i

(2)
k , . . . , i

(n)
k }. Each of these interpretations is then passed back to the Reasoner.

The Reasoner acts as a proxy to complete the reasoning process, generating a final conclusive seg-
ment for each interpretation. This branching process results in a set of n distinct final answers,
{O(1)

k , O
(2)
k , . . . , O

(n)
k }. Next, the reward system in Eq. 1 scores each output O(j)

k based on its
correctness relative to the ground truth (GT), yielding a reward value R

(j)
k . Although the reward

is computed on the final answer O(j)
k , it acts as a direct performance signal for the corresponding

interpretation i
(j)
k that produced it. These outputs and their corresponding reward values form an

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

evaluation subgroup Gk:

Gk = {(O(1)
k , R

(1)
k), (O

(2)
k , R

(2)
k), . . . , (O

(n)
k , R

(n)
k)}

We then calculate the normalized advantage A
(j)
k for each output relative to the mean µk and stan-

dard deviation σk of rewards within the subgroup Gk. A small constant η is added for numerical
stability. The normalized advantage for each output is then defined as:

A
(j)
k =

R
(j)
k − µk

σk + η
(2)

µk =
1

n

n∑
j=1

R
(j)
k , σk =

√√√√ 1

n

n∑
j=1

(R
(j)
k − µk)2 (3)

Since the ultimate goal is to optimize the generation of the entire reasoning trajectory, we perform
average pooling on the advantage values computed in the clipped reasoning trajectory τk to obtain
an aggregated advantage value Āk that represents the overall quality of the entire trajectory:

Āk =
1

n

n∑
j=1

A
(j)
k (4)

The training objectives, adapted from GRPO, are designed to separately update the parameters of
the tool policy (θtool) and the reasoning policy (θreason). First, we optimize the tool policy πtool. The
goal is to encourage the Helper agent to generate interpretations that lead to correct final answers.
The normalized advantage A

(j)
k is applied at the token level to the corresponding interpretation i

(j)
k

that leads to the final outcome O
(j)
k . The learning objective of πtool is formulated as:

J (θtool) = Eτk, i(j)k  1

n

n∑
j=1

1

|i(j)k |

|i(j)k |∑
t=1

min
(
r
(j)
t (θtool)A

(j)
k , clip(r(j)t (θtool), 1− ϵ, 1 + ϵ)A

(j)
k

)
(5)

where r
(j)
t (θtool) =

πtool,θ(i
(j)
k,t|τk,i

(i)
k,<t)

πtool,old(i
(j)
k,t|τk,i

(j)
k,<t)

is the probability ratio for the t-th token of the j-th interpre-

tation, and the expectation is over the distribution of trajectories and interpretations.

Next, we optimize the reasoning policy πreason. The objective is to guide the Reasoner to generate
trajectories that are more likely to result in high-reward outcomes after tool interpretation. The
aggregated advantage Āk, representing the average quality of a reasoning path τk, is applied to
every token within that path. The objective is thus defined as:

J (θreason) = Eτk

 1

m

m∑
k=1

1

|τk|

|τk|∑
t=1

min
(
r
(k)
t (θreason)Āk, clip(r(k)t (θreason), 1− ϵ, 1 + ϵ)Āk

)
(6)

where rt(k)(θreason) =
πreason,θ(τk,t|q,τk,<t)
πreason,old(τk,t|q,τk,<t)

is the probability ratio for the t-th token of the k-th rea-
soning trajectory.

Recent work (Qian et al., 2025; Zhang et al., 2025b) suggest that the omission of KL penalty term
against a reference model can encourage the model to more freely adapt its behavior to our custom
response format and structured reward signals. Following their implementation, we remove the term
to simplify the training pipeline while gain comparable performance in practice. We summarize the
process for advantage estimation and policy update in Appendix D.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Datasets and Metrics. The training utilizes approximately 1.2w queries from all difficulty levels
of the MATH training dataset (Hendrycks et al., 2021). We evaluate the proposed method on widely
used mathmatical benchmarks, including AIME 2024 (Li et al., 2024), AIME25 (MAA, 2025)2,
MATH-500 (Hendrycks et al., 2021), OlympiadBench (He et al., 2024), AMC23 (MAA, 2023). We
report Pass@1 as in (Cui et al., 2025). In addition, to measure stability and consistency of model
generated responses, we include Pass@8 and Maj@8 on all benchmarks, following prior work (Yang
et al., 2024; Zhang et al., 2025c).

Models and Baselines. We choose Qwen2.5-Math-Instruct (Yang et al., 2024) series models as
backbones for their superior mathmatical capabilities. Specifically, we use Qwen2.5-Math-1.5B-
Instruct as the backbone of the reasoning agent, and Qwen2.5-1.5B-Instruct as the backbone of the
tool agent. We compare our method mainly against reinforcement learning-based approaches, most
of which are single-agent architecture.

Training and Evaluation Details. We use Sandbox Fusion as the code interpreter during training
and evaluation. Due to the dual-agent framework, the global batch size is set to 1 by default. The
Reasoner generates 3 samples per question and the Helper uses a rollout size of 3. To maximize
training efficiency, the default maximum number of tool calls C is set to 1. All models are RL-tuned
with a cold start. For evaluation, we use greedy decoding (temperature = 0) across all models. For a
fair comparison, we set the maximum number of tool calls to 1 during inference.

4.2 MAIN RESULTS

▷ MSARL-1.5B achieves the highest average pass@1 accuracy of 55.9% across all five datasets, as
shown in Table 1. This represents a substantial improvement of 5.9% over the strongest baseline,
Qwen2.5-Math-1.5B-Instruct-TIR (50.0%). MSARL-1.5B also surpasses other methods on challeng-
ing MATH500 (77.6%) and Olympiad (49.0%) datasets. This clear advantage confirms the effec-
tiveness of introducing agents joint learning into a multi-agent system. Furthermore, our method
show remarkable parameter efficiency. Our 1.5B models surpasses most competing 7B models by a
considerable margin. For instance, it outperforms SimpleRL-Zero and Qwen2.5-Math-7B-Instruct
by 14.2, 16.1 in pass@1 accuracy. This result implies that our MSARL approach provides a more
effective and efficient path to enhancing mathematical reasoning in language models than simply
scaling up model size or applying standard fine-tuning techniques.

Table 1: Comparison of different models testing accuracy on mathematical benchmarks with
Pass@1. The best two performance are bold and underlined.

Model AIME24 AIME25 MATH500 Olympiad AMC23 Avg

Models based on Qwen2.5-Math-1.5B-Base
Qwen2.5-Math-1.5B-Instruct 10.0 10.0 66.0 31.0 62.5 35.9
Qwen2.5-Math-1.5B-Instruct-TIR 23.3 20.0 75.6 48.5 62.5 50.0

Models based on Qwen2.5-Math-7B-Base
Qwen2.5-Math-7B-Instruct 10.0 16.7 74.8 32.4 65.0 39.8
Qwen2.5-Math-7B-Instruct-TIR 20.0 6.7 70.4 45.0 50.0 34.2
SimpleRL-Zero 30.0 20.0 66.8 29.0 62.5 41.7
Eurus-2-7B-PRIME 10.0 13.3 62.8 42.1 50.0 35.6
MSARL-1.5B (Untrained) 23.3 20.0 74.4 47.0 62.5 52.6
MSARL-1.5B (Ours) 16.7 16.7 77.6 49.0 57.5 55.9+5.9

▷Our method generally shows strong performance, securing either the best or second-best results in
a majority of the pass@8 and maj@ metrics as summarized in Table 2. Specifically, it achieves the
best maj@8 score on MATH500 and the top scores for both pass@8 and maj@8 on the Olympiad
dataset. It also ties for the best pass@8 on AMC23 and has the highest maj@8 score on that same

2https://modelscope.cn/datasets/TIGER-Lab/AIME25

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

dataset. As the maj@8 metric is a more robust indicator of a model’s consistency and confidence,
MSARL strong performance on maj@8 across most datasets suggests that its dual-agent approach
leads to more reliable and stable outputs.

Table 2: Comparison of different models on mathematical benchmarks with Pass@8 and Maj@8.
The best two performance are bold and underlined.

Model AIME24 AIME25 MATH500 Olympiad AMC23
pass@8 maj@8 pass@8 maj@8 pass@8 maj@8 pass@8 maj@8 pass@8 maj@8

Qwen2.5-Math-1.5B-Instruct-TIR 40.0 20.0 40.0 30.0 93.4 81.6 66.5 54.3 87.5 60
Qwen2.5-Math-7B-Instruct-TIR 46.7 26.7 26.7 13.3 88.8 78.4 63.9 48.1 80 67.5
SimpleRL-Zero 50.0 30.0 26.7 20.0 90.2 82.0 - - 85.0 67.5
Eurus-2-7B-PRIME 46.7 20.0 36.7 16.7 90.2 73.4 60.4 40.2 85.0 57.5
MSARL-1.5B (Ours) 40.0 23.3 36.7 20.0 92 82.6 77.3 54.7 87.5 72.5

4.3 ABLATION STUDY AND EXTRA INVESTIGATION

Contribution of Joint Training. To verify that the superior performance of our method originates
from the proposed joint optimization strategy, rather than merely from the inherent structure of a
dual-agent workflow, we replace our two trained agents with their respective untrained models and
evaluate this configuration. A performance degradation −3.6 in the untrained setup is observed in
the penultimate row in Table 1, which confirms the effectiveness of our joint optimization frame-
work. Interestingly, we observe that even the dual-agent architecture with untrained models sur-
passes the strongest single LLM baseline in a zero-shot setting. This validates the effectiveness of
the decoupling strategy on complex reasoning problems in its own right.

Figure 4: The model’s performance (Average
Pass@1) at different training checkpoints. Perfor-
mance saturates after 2k steps.

Evaluation across Different Training Steps.
To analyze the training dynamics and conver-
gence of our framework, we evaluated its per-
formance at various training checkpoints. Fig-
ure 4 plots the average Pass@1 accuracy on
our validation benchmarks as a function of the
number of training steps. Figure 4 reveals
a rapid performance improvement during the
early stages of training, which is followed by
a steady but diminishing rate of gain as train-
ing progresses. The frameworks’s performance
begins to saturate around the 2k training step
mark, indicating stable convergence without
signs of overfitting on the test data. This analy-
sis shows the robustness of our training process
and justifies our selection of the final model checkpoint for the main evaluation.

Figure 5: Average reward score during training.
The consistent upward trend demonstrates suc-
cessful and stable learning, with the policy con-
verging in the later stages.

Reward Dynamics During Training. To
provide insight into the learning process of our
framework, we analyze the reward dynamics
during training. Figure 5 plots the average re-
ward score obtained by the agents as a function
of training steps. The curve, smoothed with a
moving average for clarity, first shows a stable
increase indicating that our agent consistently
improves its policy to maximize rewards. The
absence of significant volatility or collapses in
the reward curve confirms the robustness of our
training configuration and hyperparameter set-
tings. The reward begins to plateau in the later
stages, suggesting that the agent is converging
to an effective and stable policy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 CONCLUSION

In this paper, we first identify a key challenge: the cognitive load interference inherent in the single-
agent paradigm for tool-integrated reasoning. We then propose MSARL, a novel dual-agent frame-
work that explicitly decouples high-level reasoning from low-level tool interpretation. This division
of labor, powered by two specialized agents, significantly enhances the efficiency of information
flow and addresses the identified interference. Specifically, MSARL leverages a reasoning agent for
macro-level problem planning and a tool agent for micro-level, adaptive tool output interpretation.
To optimize these agents jointly, we introduce a hierarchical reinforcement learning approach based
on GRPO. This method uses normalized advantages to provide a granular, high-fidelity training
signal to the tool agent and aggregated advantages to provide a consistent, trajectory-level signal
to the reasoning agent. Extensive experiments on mathematical problem-solving tasks demonstrate
that MSARL consistently achieves superior performance and higher reasoning stability compared to
single-agent baselines. Furthermore, the modular nature of MSARL naturally generalizes to multi-
tool scenarios, offering a scalable blueprint for future agent-based systems. Future work could
explore extending MSARL to scenarios with more diverse and complex tool sets and information
sources.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards, 2025. URL https://arxiv.org/
abs/2502.01456.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and
Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving. arXiv
preprint arXiv:2309.17452, 2023. URL https://arxiv.org/abs/2309.17452.

Shanshan Han, Qifan Zhang, Yuhang Yao, Weizhao Jin, Zhaozhuo Xu, and Chaoyang He. LLM
multi-agent systems: Challenges and open problems. arXiv preprint arXiv:2402.03578, 2024.
URL https://arxiv.org/abs/2402.03578.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Zhen Hu, Shengding andThai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
OlympiadBench: A challenging benchmark for promoting AGI with olympiad-level bilingual
multimodal scientific problems. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Pro-
ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 3828–3850, Bangkok, Thailand, August 2024. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2024.acl-long.211. URL https://aclanthology.
org/2024.acl-long.211/.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Carney, Alex Beutel, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024. URL https://arxiv.org/abs/2412.16720.

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforcement
learning, 2025. URL https://arxiv.org/abs/2503.09516.

Bin Lei, Yi Zhang, Shan Zuo, Ali Payani, and Caiwen Ding. MACM: Utilizing a multi-
agent system for condition mining in solving complex mathematical problems. arXiv preprint
arXiv:2404.04735, 2024. URL https://arxiv.org/abs/2404.04735.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. Torl: Scaling tool-integrated rl, 2025. URL https:
//arxiv.org/abs/2503.23383.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023a.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step, 2023b. URL
https://arxiv.org/abs/2305.20050.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-Guang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, Yansong Tang, and Dongmei Zhang. WizardMath: Empower-
ing mathematical reasoning for large language models via reinforced evol-instruct. In The
Twelfth International Conference on Learning Representations (ICLR), 2024. URL https:
//openreview.net/forum?id=mMPMHWOdOy.

10

https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2309.17452
https://arxiv.org/abs/2402.03578
https://aclanthology.org/2024.acl-long.211/
https://aclanthology.org/2024.acl-long.211/
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2503.09516
https://arxiv.org/abs/2404.04735
https://arxiv.org/abs/2503.23383
https://arxiv.org/abs/2503.23383
https://arxiv.org/abs/2305.20050
https://openreview.net/forum?id=mMPMHWOdOy
https://openreview.net/forum?id=mMPMHWOdOy

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

MAA. American mathematics competitions, 2023. URL https://www.maa.org/
math-competitions. Accessed: 2025-09-17.

MAA. 2025 AIME i problems, 2025. URL https://artofproblemsolving.com/wiki/
index.php/2025_AIME_I?srsltid=AfmBOoof5gaaqlt3-l6LH7Tt6qmJZtl_
2PQEDYlLFlMqhq9dLL8FMCRR. Accessed: 2025-09-17.

Sumeet Ramesh Motwani, Chandler Smith, Rocktim Jyoti Das, Rafael Rafailov, Ivan Laptev, Philip
Torr, Fabio Pizzati, Ronald Clark, and Christian Schroeder de Witt. Malt: Improving reasoning
with multi-agent LLM training. In International Conference on Learning Representations (ICLR),
2025. URL https://openreview.net/forum?id=jXP9bgFack.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Paul Mishkin, et al.
Training language models to follow instructions with human feedback. Advances in Neural In-
formation Processing Systems, 35:27730–27744, 2022.

Cheng Qian, Emre Can Acikgoz, Qi He, Hongru Wang, Xiusi Chen, Dilek Hakkani-Tür, Gokhan
Tur, and Heng Ji. Toolrl: Reward is all tool learning needs, 2025. URL https://arxiv.
org/abs/2504.13958.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Qwen Team. Qwen3 technical report, 2025. URL https://arxiv.org/abs/2505.09388.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36:53728–53741, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D. Nguyen. Multi-agent collaboration mechanisms: A survey of LLMs. arXiv preprint
arXiv:2501.06322, 2025. URL https://arxiv.org/abs/2501.06322.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities. arXiv preprint arXiv:2406.04692, 2024. URL https://
arxiv.org/abs/2406.04692.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi
Song, Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in LLMs for
enhanced mathematical reasoning. arXiv preprint arXiv:2310.03731, 2023. URL https://
arxiv.org/abs/2310.03731.

Junde Wu, Jiayuan Zhu, Yuyuan Liu, Min Xu, and Yueming Jin. Agentic reasoning: A stream-
lined framework for enhancing LLM reasoning with agentic tools. In Proceedings of the 63rd
Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, July 2025.
Association for Computational Linguistics. URL https://aclanthology.org/2025.
acl-long.1383.

Tianbao Xie, Fan Zhou, Zhoujun Cheng, Peng Shi, Luoxuan Weng, Yitao Liu, Toh Jing Hua, Jun-
ning Zhao, Qian Liu, Che Liu, et al. Openagents: An open platform for language agents in the
wild. arXiv preprint arXiv:2310.10634, 2023.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024.

11

https://www.maa.org/math-competitions
https://www.maa.org/math-competitions
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I?srsltid=AfmBOoof5gaaqlt3-l6LH7Tt6qmJZtl_2PQEDYlLFlMqhq9dLL8FMCRR
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I?srsltid=AfmBOoof5gaaqlt3-l6LH7Tt6qmJZtl_2PQEDYlLFlMqhq9dLL8FMCRR
https://artofproblemsolving.com/wiki/index.php/2025_AIME_I?srsltid=AfmBOoof5gaaqlt3-l6LH7Tt6qmJZtl_2PQEDYlLFlMqhq9dLL8FMCRR
https://openreview.net/forum?id=jXP9bgFack
https://arxiv.org/abs/2504.13958
https://arxiv.org/abs/2504.13958
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2501.06322
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2310.03731
https://arxiv.org/abs/2310.03731
https://aclanthology.org/2025.acl-long.1383
https://aclanthology.org/2025.acl-long.1383

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions. arXiv preprint arXiv:2306.02224, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In International Conference on
Learning Representations (ICLR), 2023.

Yuanqing Yu, Zhefan Wang, Weizhi Ma, Zhicheng Guo, Jingtao Zhan, Shuai Wang, Chuhan Wu,
Zhiqiang Guo, and Min Zhang. Steptool: A step-grained reinforcement learning framework for
tool learning in llms. arXiv preprint arXiv:2410.07745, 2024.

Yurun Yuan and Tengyang Xie. Reinforce llm reasoning through multi-agent reflection. In Interna-
tional Conference on Machine Learning (ICML), 2025. URL https://openreview.net/
forum?id=6k3oFS3Lbl.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun
Wang, Tianlong Chen, and Dawei Cheng. G-Designer: Architecting multi-agent communi-
cation topologies via graph neural networks. arXiv preprint arXiv:2410.11782, 2025a. URL
https://arxiv.org/abs/2410.11782.

Shaowei Zhang and Deyi Xiong. Debate4MATH: Multi-agent debate for fine-grained reasoning
in math. In Proceedings of the 63rd Annual Meeting of the Association for Computational
Linguistics (Volume 5: Findings of ACL), pp. 14524–14537, Vancouver, Canada, July 2025.
Association for Computational Linguistics. URL https://aclanthology.org/2025.
findings-acl.862.

Xiaoying Zhang, Hao Sun, Yipeng Zhang, Kaituo Feng, Chaochao Lu, Chao Yang, and Helen Meng.
Critique-grpo: Advancing llm reasoning with natural language and numerical feedback, 2025b.
URL https://arxiv.org/abs/2506.03106.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen Zhang, Runji Lin, Bowen Yu, Dayiheng Liu,
Jingren Zhou, and Junyang Lin. The lessons of developing process reward models in mathematical
reasoning, 2025c. URL https://arxiv.org/abs/2501.07301.

Hongyi Zhou, Haoran Geng, Xingcheng Xue, Lei Kang, Yuhang Qin, Zihan Wang, et al. Reso: A
reward-driven self-organizing llm-based multi-agent system for reasoning tasks. arXiv preprint
arXiv:2503.02390, 2025. URL https://arxiv.org/abs/2503.02390.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Language agents as optimizable graphs. arXiv preprint arXiv:2402.16823, 2024.
URL https://arxiv.org/abs/2402.16823.

12

https://openreview.net/forum?id=6k3oFS3Lbl
https://openreview.net/forum?id=6k3oFS3Lbl
https://arxiv.org/abs/2410.11782
https://aclanthology.org/2025.findings-acl.862
https://aclanthology.org/2025.findings-acl.862
https://arxiv.org/abs/2506.03106
https://arxiv.org/abs/2501.07301
https://arxiv.org/abs/2503.02390
https://arxiv.org/abs/2402.16823

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A MOTIVATION PROMPTS

Reasoning-Only Prompt. The following prompt is used during all reasoning-only inference ex-
periments:

Reasoning-Only Prompt

System: You are an IMO medalist mathematician.
User:
Question: <Question Content>
Instructions:
1. Think step-by-step in natural language to derive a complete solution.
2. Provide ONLY the final mathematical answer in the last line, formatted as:
ANSWER: <Your Answer>
3. Do NOT write or reference any code. Stop after giving the answer.

Reasoning with Code Prompt. The following prompt is used during all reasoning with code
inference experiments:

Reasoning with Code Prompt

System: You are an IMO medalist mathematician who can also run Python (with sympy,
itertools, math, random).
User:
Question: <Question Content>
Instructions:
1. Think step-by-step in natural language.
2. Whenever useful, place Python code inside “‘python ...“‘ cells. The code will be executed;
you can refer to its output.
3. After you finish reasoning, output your final answer on a separate line: ANSWER: <Your
Answer>

Prompt for Reasoning Path Critique. We adopt a prompt to enable DeepSeek-R1 to evaluate the
correctness of generated responses using the above two prompting regimes:

Prompt for Reasoning Path Critique

System: You are an experienced automatic grading assistant. Only output the result for the
question in the specified format.
User:
I have a question: <Question Content>
Below are 5 different answers to this question, all from the same small model.
For each answer, please judge whether the answer contains a correct approach (i.e., Is the
line of thinking or analysis correct? It doesn’t need to be a fully correct final answer, just
whether the reasoning process is on the right track).
Count how many out of the 5 responses have a correct approach, and ONLY output the
number of correct reasoning answers in the format: #number# (for example, #3# means 3
out of 5 answers are correct in reasoning).
Do not provide any explanations, just output the result in the requested format.
Here are the answers:
<Answer List>

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B MOTIVATION QUALITATIVE EXAMPLE

This example demonstrates a comparison between two different prompting methods used to solve a
medium-hard (level 4) math problem with the Qwen2.5-Math-1.5B-Instruct model:

Question
Given

A =

(
3 7
−1 −2

)
,

compute A27 +A31 +A40.

Solution (Ground Truth)
Note that

A2 =

(
2 7
−1 −3

)
and

A3 = AA2 =

(
−1 0
0 −1

)
= −I.

Then

A27 +A31 +A40 = (A3)9 + (A3)10A+ (A3)13A

= (−I)9 + (−I)10A+ (−I)13A
= −I+A−A

= −I =
(
−1 0
0 −1

)
.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Solution 1: Incorrect Response (Reasoning with Code)

To solve the problem, we need to compute A27 +A31 +A40 where A =

(
3 7
−1 −2

)
.

The steps are as follows:

1. Find the eigenvalues and eigenvectors of A.

2. Diagonalize the matrix A if possible, i.e., express A as PDP−1, where D is a diagonal
matrix of eigenvalues and P is a matrix of corresponding eigenvectors.

3. Compute A27, A31, and A40 using the diagonalized form.
4. Sum the resulting matrices.

Let’s implement this in Python using sympy.
‘‘‘python

import sympy as sp

Define the matrix A
A = sp.Matrix([[3, 7], [-1, -2]])

Find the eigenvalues and eigenvectors
Note: diagonalize() returns (P, D) where A = P * D * P.inv()
P, D = A.diagonalize()

Compute Aˆ27, Aˆ31, and Aˆ40 using the diagonalized form
A_27 = P * D**27 * P.inv()
A_31 = P * D**31 * P.inv()
A_40 = P * D**40 * P.inv()

Compute the final result
result = A_27 + A_31 + A_40

Print the final result
print(result)

‘‘‘
‘‘‘output

sympy.matrices.common.MatrixError: Matrix is not diagonalizable

‘‘‘
The error indicates that the matrix A is not diagonalizable. This means that we cannot directly
diagonalize A and use the diagonalization method to compute A27, A31, and A40.
Instead, we can use the Cayley-Hamilton theorem, which states that a matrix satisfies its own
characteristic equation. The characteristic polynomial of A is given by:

det(A− λI) =

∣∣∣∣3− λ 7
−1 −2− λ

∣∣∣∣ = (3− λ)(−2− λ) + 7 = λ2 − λ+ 2.

According to the Cayley-Hamilton theorem, A2 −A+ I = 0, which implies:

A2 = A− I.

Using this relation, we can express higher powers of A in terms of A and I.
Let’s use this relation to compute A27, A31, and A40.

1. Compute A27:
A27 = A27 mod 2 = A1 = A.

2. Compute A31:
A31 = A31 mod 2 = A1 = A.

3. Compute A40:
A40 = A40 mod 2 = A0 = I.

Thus, A27 +A31 +A40 = A+A ...(truncated)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Solution 2: Correct Response (Reasoning Only)
To solve the problem of computing A27 +A31 +A40, we need to first understand the behavior
of the matrix A under exponentiation. We will use the characteristic polynomial of the matrix
A to find its eigenvalues and then use these eigenvalues to find a pattern in the powers of A.
The characteristic polynomial of A is given by:

det(A− λI) =

∣∣∣∣3− λ 7
−1 −2− λ

∣∣∣∣ = (3− λ)(−2− λ) + 7 = λ2 − λ+ 1.

The eigenvalues λ1 and λ2 are the roots of the characteristic polynomial λ2−λ+1 = 0. Solving
this quadratic equation, we get:

λ =
1±
√
1− 4

2
=

1±
√
−3

2
=

1± i
√
3

2
.

Let λ1 = 1+i
√
3

2 and λ2 = 1−i
√
3

2 .
Since A is a 2x2 matrix with eigenvalues λ1 and λ2, we can express A in the form A =
PDP−1, where D is the diagonal matrix of eigenvalues and P is the matrix of eigenvectors.
However, instead of explicitly finding P and P−1, we can use the fact that An = PDnP−1 for
any integer n.
Since D is diagonal, Dn is simply the diagonal matrix with λn

1 and λn
2 on the diagonal.

Observe that λ1 = eiπ/3 and λ2 = e−iπ/3 are primitive 6th roots of unity. Therefore:

λ3
1 = eiπ = −1, λ3

2 = e−iπ = −1.

Since A3 has eigenvalues λ3
1 = −1, λ3

2 = −1, and since A3 is diagonalizable, it must be:

A3 = −I.

More precisely:

An =


(−1)kI, n = 3k,

(−1)kA, n = 3k + 1,

(−1)kA2, n = 3k + 2.

(truncated)

Analysis. The initial implementation of Solution 1 follows a mathematically sound strategy: attempt
to diagonalize the matrix A and use the decomposition A = PDP−1 to compute high powers
efficiently via An = PDnP−1. The Python code using sympy is syntactically correct and logically
coherent. This approach would succeed if A were diagonalizable over the real numbers. However,
the code raises the exception: ”sympy.matrices.common.MatrixError: Matrix is not diagonalizable”
This error disrupts the solution path and triggers a cascade of flawed reasoning. Although the matrix

A =

(
3 7
−1 −2

)
has distinct eigenvalues λ = 1±i

√
3

2 (roots of λ2 − λ+ 1 = 0), it is diagonalizable over the complex
numbers. The error arises because diagonalize() may fail to find a real eigenvector matrix,
not because diagonalization is impossible in principle. Instead of handling this gracefully—such
as by manually computing eigenvectors over C or switching to an alternative method—the solution
incorrectly interprets the error as a complete dead end. This leads to a series of hallucinated steps:

• The characteristic polynomial is incorrectly stated as λ2 − λ + 2, though the subsequent
derivation A2 = A− I implies the correct polynomial λ2 − λ+ 1 was intended.

• Most critically, the solution fabricates a false periodicity, claiming:

A27 = A27 mod 2 = A, A40 = I, etc.

This “mod 2 reduction” has no mathematical basis and is a hallucination induced by the
earlier computational failure.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In contrast, Solution 2 presents a sophisticated and mathematically sound approach to computing
the problem, even without code invocation and execution. It avoids brute-force computation by
leveraging the algebraic structure of the matrix through eigenvalues and periodicity. The solution is
truncated (due to the limit on generation max tokens), but the framework is complete.

In summary, while the initial code logic is correct, the Solution 1 lacks mathematical robustness in
handling the exception. The interruption caused by the diagonalization error derails the reasoning,
resulting in hallucinated algebraic rules and a fundamentally incorrect final answer.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

C SUCCESSFUL ROLLOUT EXAMPLE

Question
If f(x) = 3x−2

x−2 , what is the value of f(−2)+f(−1)+f(0)? Express your answer as a common
fraction.

Solution

f(−2)+ f(−1)+ f(0) = 3(−2)−2
−2−2 + 3(−1)−2

−1−2 + 3(0)−2
0−2 = −8

−4 +
−5
−3 +

−2
−2 = 2+ 5

3 +1 =
14

3

Rollout Example
Please integrate natural language reasoning with programs to solve the problem above, and put
your final answer within boxed Problem: If f(x) = 3x−2

x−2 , what is the value of f(−2)+f(−1)+
f(0)? Express your answer as a common fraction. To solve the problem, we need to evaluate
the function f(x) = 3x−2

x−2 at x = −2, x = −1, and x = 0, and then sum the results. Let’s break
it down step-by-step: 1. Evaluate f(−2):

f(−2) = 3(−2)− 2

−2− 2
=
−6− 2

−4
=
−8
−4

= 2

2. Evaluate f(−1):

f(−1) = 3(−1)− 2

−1− 2
=
−3− 2

−3
=
−5
−3

=
5

3

3. Evaluate f(0):

f(0) =
3(0)− 2

0− 2
=
−2
−2

= 1

4. Sum the results:

f(−2) + f(−1) + f(0) = 2 +
5

3
+ 1 = 3 +

5

3
=

9

3
+

5

3
=

14

3

Now, let’s confirm this with Python code. “‘python This Python script defines a function ‘f‘ that
calculates the value of (3x − 2)/(x − 2). It then evaluates this function at x = −2, x = −1,
and x = 0 to find their respective values. The sum of these three values is printed as the final
result. “‘ “‘output 4.666666666666667 “‘ The output from the code is approximately 4.6667,

which corresponds to the fraction 14
3 . Thus, the value of f(−2) + f(−1) + f(0) is

14

3
.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D MSARL DUAL-AGENT OPTIMIZATION

Algorithm 1 MSARL: Dual-Agent Optimization via Grouped Rollouts

1: Input: the reasoning agent πreason, the tool agent πtool, the given question set Q, the ground truth
GT , a reward systemR

2: Initialize: reasoning policy parameters θreason, tool policy parameters θtool.
3: Hyperparameters: learning rates of reasoning and tool policies αreason, αtool; number of rea-

soning trajectories per question m, number of tool interpretations per trajectory n, maximum
tool calls C, PPO clip value ϵ.

4: for each training iteration do
5: Sample {qj} ⊂ Q.
6: the reasoning and tool datasets:
7: Dreason ← ∅, Dtool ← ∅.

// — Phase 1: Data Generation —
8: for each q ∈ {qj} do
9: Sample {τk}mk=1 ∼ πreason(·|q).

10: for each τk do
11: Let (t, o)last ∈ τk.
12: Sample {i(j)k }nj=1 ∼ πtool(·|(t, o)last).

13: For each i
(j)
k ,

14: generate O
(j)
k ← πreason(τk, i

(j)
k).

15: Store (τk, {(i(j)k , O
(j)
k)}nj=1).

16: end for
17: end for

// — Phase 2: Advantage Estimation —
18: for each (τk, {(i(j)k , O

(j)
k)}nj=1) do

19: R
(j)
k ← R(O

(j)
k , GT).

20: µk ← 1
n

∑
j R

(j)
k ; σk ←

√
1
n

∑
j(R

(j)
k − µk)2.

21: for j = 1 to n do
22: A

(j)
k ← (R

(j)
k − µk)/(σk + η).

23: Dtool ← Dtool ∪ {(i(j)k , A
(j)
k)}.

24: end for
25: Āk ← 1

n

∑
j A

(j)
k .

26: Dreason ← Dreason ∪ {(τk, Āk)}.
27: end for

// — Phase 3: Policy Update —
28: θtool ← θtool + αtool∇θtoolJ (θtool|Dtool).
29: θreason ← θreason + αreason∇θreasonJ (θreason|Dreason).
30: end for

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

E STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this paper, we utilized a Large Language Model (LLM) as a writing assistant
to help with language polishing, grammar checking, and text optimization. The use of the LLM was
strictly limited to improving the paper’s readability and clarity of expression, and was not used to
generate any research content, core arguments, or data.

We hereby declare that all research originality, core ideas, experimental methods, results, and con-
clusions in this paper were developed and finalized by the authors independently. The authors take
full responsibility for all aspects of the submission and guarantee its truthfulness and accuracy.

20

	Introduction
	Related Work
	Methodology
	Cognitive Overhead in Single-Agent Reasoning
	Dual-Agent Framework for Decoupled Reasoning and Tool Use

	Experiments
	IMPLEMENTATION DETAILS
	Main Results
	ABLATION STUDY AND EXTRA INVESTIGATION

	Conclusion
	motivation prompts
	Motivation qualitative example
	Successful Rollout Example
	MSARL Dual-Agent Optimization
	Statement on the Use of Large Language Models (LLMs)

