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Abstract

Modeling the evolution of high-dimensional sys-
tems from limited snapshot observations at irreg-
ular time points poses a significant challenge in
quantitative biology and related fields. Traditional
approaches often rely on dimensionality reduction
techniques, which can oversimplify the dynam-
ics and fail to capture critical transient behaviors
in non-equilibrium systems. We present Multi-
Marginal Stochastic Flow Matching (MMSFM), a
novel extension of simulation-free score and flow
matching methods to the multi-marginal setting,
enabling the alignment of high-dimensional data
measured at non-equidistant time points without
reducing dimensionality. The use of measure-
valued splines enhances robustness to irregular
snapshot timing, and score matching prevents
overfitting in high-dimensional spaces. We val-
idate our framework on several synthetic and
benchmark datasets, including gene expression
data collected at uneven time points and an im-
age progression task, demonstrating the method’s
versatility.1

1. Introduction
Understanding cellular responses to perturbations is a fun-
damental challenge in quantitative biology, with significant
implications for fields such as developmental biology, can-
cer research, and drug discovery (Altschuler & Wu, 2010;
Saeys et al., 2016). Modeling these responses requires cap-
turing complex stochastic dynamics in high-dimensional
cellular states that evolve over time under the influence of

1School of Data Science, University of Virginia, Charlottesville
VA, USA. 2James Madison University, Harrisonburg VA, USA.
Correspondence to: Justin Lee <jgh2xh@virginia.edu>, Heman
Shakeri <hs9hd@virginia.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Code available at https://github.com/
Shakeri-Lab/MMSFM

both deterministic and random factors. Developing gener-
ative models that accurately represent these dynamics is
crucial for simulating cellular behavior and predicting re-
sponses in unseen cells under non-steady state dynamics
imposed by perturbation agents such as drug stimuli.

A common approach to modeling such systems is through
stochastic differential equations (SDEs), particularly the
Langevin equation as an Itô SDE (Gardiner, 1985; Risken &
Risken, 1996); the evolution of the cellular state X(t) ∈ Rd

can be described by

dX(t) = ut(X(t)) dt+ g(t) dW (t), (1)

where ut(x) is the drift term representing deterministic dy-
namics, g(t) is the diffusion coefficient capturing stochas-
tic fluctuations, and W (t) is a Wiener process modeling
random noise. At the population level, the corresponding
probability density function p(x, t) evolves according to the
Fokker-Planck equation (Risken & Risken, 1996):

∂pt(x)

∂t
= −∇ · (pt(x)ut(x)) +

g2(t)

2
∆pt(x), (2)

where pt(x) is shorthand for p(x, t), ∇· denotes the diver-
gence operator, and ∆ is the Laplacian operator.

In practice we only observe the system through snapshot
measurements at discrete, possibly irregular time points
t0 < t1 < · · · < tM , providing samples from the marginal
distributions ρi = pti(x) (Schofield et al., 2023). Therefore,
we lack trajectory data that would reveal how individual
states evolve between these snapshots due to the destructive
nature of single-cell measurements. This raises a fundamen-
tal question: among the infinitely many stochastic processes
that could connect these observed marginals (Weinreb et al.,
2018), which one is the most likely?

1.1. Least Action Principle

To address this problem, we turn to the theory of Optimal
Transport (OT) (Villani, 2009) which seeks the most ef-
ficient way to transform one probability distribution into
another. In the simplest case of two marginals ρ0 and ρ1,
OT aims to find a transport map T that minimizes the cost
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functional:

min
T

∫
∥x− T (x)∥2 dρ0(x) subject to T#ρ0 = ρ1, (3)

where T#ρ0 denotes the pushforward of ρ0 under T . Kan-
torovich’s generalized formulation of (3) is a linear program-
ming problem over the set of joint probability distributions,
leading to the definition of the Wasserstein-2 distance:

W 2
2 (ρ0, ρ1) = min

π∈Π(ρ0,ρ1)

∫
∥x− y∥2 dπ(x, y), (4)

where Π(ρ0, ρ1) is the set of joint distributions with
marginals ρ0 and ρ1. While OT provides a deterministic
model based on the principle of least action—finding the
shortest path or geodesic in the space of probability distribu-
tions—it does not account for the inherent stochasticity of
biological systems (Horowitz & Gingrich, 2020). Cells are
subject to both extrinsic noise, such as variations in initial
conditions and environmental inputs (Hilfinger & Paulsson,
2011), and intrinsic noise arising from the thermodynamic
uncertainty in biochemical reactions (Mitchell & Hoffmann,
2018).

To incorporate stochasticity and identify the most likely
stochastic process connecting the observed marginals, we
consider the entropic-regularized optimal transport prob-
lem, a particular case of the Schrödinger Bridge Prob-
lem (SBP) (Schrödinger, 1931; Léonard, 2014). The SBP
seeks the stochastic process that minimally deviates from a
prior—typically a Brownian motion—while matching the
observed marginals. It can be considered a general statistical
inference and model improvement methodology in which
one updates the probability of a hypothesis based on the
most recent observations while making the fewest possible
assumptions beyond the available information (Pavon et al.,
2021). This approach aligns with Occam’s razor principle
and aims to find the simplest stochastic process that explains
the data with minimal adjustment to our prior belief.

Extension to Multiple Marginals: Multi-Marginal Opti-
mal Transport (MMOT) is a natural extension of OT aiming
to find a joint distribution π ∈ Π(ρ0, ρ1, . . . , ρM ), where Π
is the set of all joint distributions with marginals {ρi}Mi=0,
minimizing W 2

2 (ρi, ρj) for all i ̸= j (Pass, 2015). Of these
π, we are interested in the special case where there exists
a total order on the time labels ti associated with each ρi.
We henceforth use MMOT to refer to this ordered MMOT
case. Instances referring to the fully joint MMOT will be
explicitly referred to as such.

Extending our least action principle to the MMOT case
with arbitrary time points t0, t1, . . . , tM , we pose the same
question: among all possible stochastic processes that could
connect the observed marginal distributions {ρi}Mi=0, which
one is the most probable given our prior knowledge? This

leads us to formulate the problem as finding the drift ut(x)
that minimizes the cumulative transport cost and provides
the smoothest and most efficient flow connecting the ob-
served distributions over time, while ensuring robustness
against overfitting. In summary, we require:

• Scalability in High Dimensions: While directly solving
high-dimensional transport problems is computation-
ally challenging (Benamou & Brenier, 2000; Peyré &
Cuturi, 2019), our approach efficiently approximates
the solution. By leveraging advances in simulation-free
score and flow matching methods, we model the high-
dimensional stochastic process directly in the ambient
space, avoiding dimensionality reduction strategies that
could obscure important dynamical features.

• Robustness Against Overfitting: By minimizing the
total transport cost across all time intervals, we intro-
duce only essential adjustments to match the observed
marginals, preventing the model from overfitting to
limited observations and ensuring that the inferred dy-
namics generalize well beyond the training data.

• Insensitivity to the Timing of Snapshots: The formu-
lation inherently accommodates arbitrary and irregu-
lar time points ti, making it robust to the choice of
measurement times. By focusing on the minimal ac-
tion path that passes through the observed marginals,
we capture the system’s evolution without being con-
strained by the timing of data collection.

1.2. Literature Review

Direct learning of the high-dimensional partial differential
equation (2) is computationally prohibitive due to the com-
plexity of integration and divergence computations in high-
dimensional spaces (Benamou & Brenier, 2000; Peyré &
Cuturi, 2019). Hence, current approaches typically consider
reduced-dimensional data representations with gradient-
based drifts originating from developmental biology (Wein-
reb et al., 2018; Schiebinger et al., 2019) where the focus
is primarily on slow time scales and the assumption of low-
dimensional manifold dynamics is often useful. In this con-
text, dimensionality reduction tools such as t-SNE (Van der
Maaten & Hinton, 2008), UMAP (McInnes et al., 2018),
and PHATE (Moon et al., 2019) are extensively used to sim-
plify the modeling. However, these techniques can obscure
critical faster-scale dynamical information, introduce arti-
facts (Kiselev et al., 2019), and result in the loss of important
biological information in the reduced, folded space.

Neural Ordinary Differential Equations (Neural ODEs)
have emerged as a powerful tool for modeling continuous-
time dynamics and connecting probability measures over
time (Chen et al., 2018a). This approach offers an alternative
method by parameterizing the time derivative of the hidden
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state with a neural network, which is trained to approximate
the drift term in the Fokker-Planck equation (2). While this
method has been successfully applied (Tong et al., 2020;
Huguet et al., 2022) for modeling cellular dynamics and
trajectory inference, it still operates primarily in reduced-
dimensional spaces.

Recent multi-marginal approaches have attempted to han-
dle multiple time points simultaneously. Chen et al. (2024)
developed a deep multi-marginal momentum Schrödinger
bridge approach that, while capable of working in high di-
mensions, requires expensive flow integration and memory-
intensive caching of trajectories during training. Similarly,
Albergo et al. (2024) proposed stochastic interpolants for
multi-marginal modeling but still relies on ODE/SDE in-
tegration and marginal distributions as supervision signals,
which becomes computationally challenging in high dimen-
sions. These approaches share common limitations: they
either require dimension reduction to handle computational
complexity, or they depend on expensive numerical integra-
tion and trajectory generation during training.

Alternative approaches using generative models attempt to
transform a simple distribution to an arbitrary target distri-
bution. Variational Autoencoders (VAEs) (Kingma et al.,
2013) learn an encoder-decoder pair, q(z | x) and p(x | z),
such that the decoder can generate x ∼ ρ1 given samples
z ∼ ρ0. Generative Adversarial Networks (GANs) (Good-
fellow et al., 2014) employ a generator-discriminator frame-
work, where the generator G(z) produces x = G(z) with
x ∼ ρ1 for z ∼ ρ0. While successful, these methods are
limited by the simplicity of the source distribution ρ0, often
chosen to be uniform or normal for analytical convenience.
Moreover, these models represent static transformations
with no notion of time and cannot generate intermediate
states at arbitrary time points, making them unsuitable for
modeling dynamic processes where temporal evolution is
crucial.

Although diffusion models (Ho et al., 2020; Song & Er-
mon, 2019) incorporate a time component by learning a
denoising Markovian reverse process, their notion of “time”
corresponds to a noise schedule rather than physical time.
This limitation prevents them from capturing actual tempo-
ral dynamics or generating data at arbitrary time points not
specified during training.

Our Approach We introduce Multi-Marginal Stochas-
tic Flow Matching (MMSFM) to address these limitations
by adapting recent developments in simulation-free ap-
proaches (Lipman et al., 2023; Tong et al., 2024b) to our
setting. These methods learn pt directly in the ambient
space without dimensionality reduction or explicit simula-
tion. However, their direct application to our multi-marginal
setting requires careful adaptation to principles described in

Section 1.1 to ensure robust learning and prevent overfitting.

Our key innovation lies in learning continuous spline
measures through overlapping windows of consecutive
marginals during training. Specifically, we process over-
lapping triplets (ρi, ρi+1, ρi+2) in a rolling fashion, where
we demonstrate in Section 2.3 that a window size of two
strikes an optimal balance between enforcing smoothness
constraints and computational efficiency. This approach
enables us to capture local dynamics across uneven time in-
tervals, maintain consistency between overlapping windows,
and generate intermediate states between observed snap-
shots, effectively creating a “motion picture” of the system’s
evolution. The overlapping nature of these learned flows
ensures robustness against the specific choice of measure-
ment times while preserving the high-dimensional structure
of the data.

Although we were unaware during the development of our
method, an important concurrent work by Rohbeck et al.
(2025) also considers a very similar approach to ours. We
include a more in-depth discussion regarding similarities
and differences between our approaches in Section 2.3.3.

2. Problem Formulation and Methodology
Formally, let 0 = t0 < t1 < · · · < tM = 1 denote a
sequence of normalized time points in [0, 1], and let ρi be
the continuous probability distribution of the system state at
time ti in Euclidean space Rd. Our data consists of snapshot
samples Xti = {x(j) : x ∼ ρi}Ni

j=1, at these time points.
The goal is to learn a continuous probability path pt(x)
for t ∈ [0, 1] satisfying pti = ρi for all i, describing the
evolution of the system over time.

2.1. Dynamic formulation of the Wasserstein distance
and Wasserstein Splines

Benamou & Brenier (2000) introduced a dynamic formula-
tion of the Wasserstein distance, connecting OT with fluid
dynamics:

W 2
2 (µ, ν) = inf

pt,ut
∂pt
∂t +∇·(ptut)=0
p0=µ, p1=ν

∫ 1

0

∫
Rd

∥ut(x)∥2 pt(x) dx dt

While the fully joint MMOT extends this framework to mul-
tiple distributions, computing the MMOT plans becomes
computationally challenging in high dimensions. Prior
work (Chen et al., 2018b; Benamou et al., 2019) examined
the formulation

inf
Xt

∫ 1

0

E
[∥∥∥Ẍt

∥∥∥2] dt, (5)

termed P-splines by Chewi et al. (2021). Unfortunately, this
does not fit our needs because Xt here is considered to be
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a stochastic process whereas we need a deterministic flow.
Moreover, these formulations are still quite computationally
expensive given that we need to solve this problem within
the training loop. Instead, Chewi et al. (2021) proposed
transport splines as a method to efficiently obtain deter-
ministic maps that smoothly interpolate between multiple
distributions. The key idea is to sample points from the dis-
tributions ρi and apply a Euclidean interpolation algorithm
between these points. The specific spline algorithm is left
as a design choice for the user. Options include the natural
cubic spline interpolation which minimizes the integral of
the squared acceleration

inf
γt

∫ 1

0

E
[
∥γ̈t∥2

]
dt, (6)

where γt denotes a curve in space, and the cubic Hermite
spline (Hermite & Borchardt, 1878) which represents each
interval (xi, xi+1) as the third-degree polynomial

X(t) =(2t3 − 3t2 + 1)xi + (t3 − 2t2 + t)x′
i

+ (−2t3 + 3t2)xi+1 + (t3 − t2)x′
i+1

(7)

where x0, x1 are the boundary constraints, and x′
0, x′

1 are
the derivatives w.r.t. time at those points.

In practice, we adopt transport splines using compositions
of probabilistic OT plans in place of deterministic OT
maps. Let the joint distribution π be the MMOT plan over
(xt0 , xt1 , . . . , xtM ). Although the true MMOT plan involves
all pairs of marginals, we are interested in the case where
there is a temporal ordering. This structure allows us to
take advantage of a first-order Markov approximation and
decompose π into conditional plans

π(xt0 , . . . , xtM ) ≈ π(xt0 , xt1)

M∏
i=2

π(xti | xti−1), (8)

where π(xti | xti−1) specifies how to transport a point
xti−1 ∼ ρi−1 to the distribution ρi. We obtain the con-
ditional plan as π(x | y) = π(x, y)/p(y) where p(y) =∫
π(x, y)dx is the marginal distribution of y. By apply-

ing the transport spline procedure to batches of vectors
(Xti)

M
i=0, the conditional plans act as alignment operators,

allowing us to construct Euclidean splines through optimally
coupled points (X⋆

ti)
M
i=0.

2.2. Simulation-Free Score and Flow Matching

We aim to model the stochastic process bridging the multi-
ple distributions ρi by learning the underlying dynamics of
the system in Equation (1) and the associated Fokker-Planck
equation (2). Tong et al. (2024b) introduced a reparameteri-
zation of the drift ut(x) as

ut(x) = u◦
t (x) +

g2(t)

2
∇ log pt(x), (9)

where u◦
t (x) is the deterministic component, and

∇ log pt(x) is the score function of the density pt(x). This
observation allows us to decouple the learning of the de-
terministic drift u◦

t (x) and the score function ∇ log pt(x).
Therefore, specifying u◦

t (x) and ∇ log pt(x) is sufficient to
define the SDE drift ut(x). Tong et al. (2024b) proposed
the unconditional score and flow matching objective:

L(θ) =Et∼U(0,1),x∼pt(x)

[
∥vt(x; θ)− u◦

t (x)∥
2
+

λ(t)2 ∥st(x; θ)−∇ log pt(x)∥2
]
,

(10)

where vt(x; θ) and st(x; θ) are neural networks approximat-
ing the drift and score functions, respectively, and λ(t) is a
weighting function. However, pt(x) is unknown and thus di-
rectly computing u◦

t (x) and ∇ log pt(x) is challenging. To
overcome this, Tong et al. (2024b) proposed a conditional
formulation of the loss function:

L(θ) =Et∼U(0,1),z∼q(z),x∼pt(x|z)

[
∥vt(x; θ)− u◦

t (x|z)∥
2

+λ(t)2 ∥st(x; θ)−∇ log pt(x|z)∥2
]
,

(11)

where z represents conditioning variables, and x ∼ pt(x|z).
In this conditional framework, u◦

t (x|z) and ∇ log pt(x|z)
can be computed analytically or estimated empirically based
on the conditional distribution pt(x|z). We can reconstruct
the learned SDE drift using:

ut(x; θ) = vt(x; θ) +
g2(t)

2
st(x; θ), (12)

and integrate it with given initial conditions x0 to infer the
trajectories that develop from those initial conditions.

2.3. Learning Overlapping Mini-Flows for
Multi-Marginal Data

We aim to train an ODE drift network vt(x; θ) and a score
network st(x; θ) to learn an overall flow based on the mini-
flows on overlapping (k+1)-tuples (ρi, ρi+1, . . . , ρi+k) for
i = 0, 1, . . . ,M − k in a rolling window fashion. Because
transport splines are ultimately just approximations for the
true MMOT, the rolling windows provide a variation of
perturbations in the approximated error from any single
geodesic spline segment estimate. See Figure 1 for a visual
representation of the variation of paths in an interval.

Theorem 2.1. The gradient of the loss for a single interval
(ti, ti+1) with k overlapping mini-flows is given by

∇θLti:ti+1 =∇θE

∥∥∥∥∥vt(x; θ)−
k−1∑
j=0

ut(x | zti−j :ti−j+k )

∥∥∥∥∥
2

+ (k − 1)∥vt(x; θ)∥2
]
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where the expectation is taken over q(zti−k+1:ti+k
),

U(ti, ti+1), and p̃(x | zti−k+1:ti+k
) = 1

k

∑k−1
j=0 pt(x |

zti−j :ti−j+k
).

Geometrically, the neural network learns the direction of
the overall movement given by the sum of the ut vectors.
The magnitude of this movement is scaled down by the
competing objective (k − 1)∥vt(x; θ)∥2.

Corollary 2.2. If all the mini-flow regression signals
ut(x | zti−j :ti−j+k

) are equal, then the single interval loss
recovers the CFM loss (Theorem 2.1 of Lipman et al. (2023))
up to a scalar factor.

We provide proofs in Appendix A.

Our method handles overlapping trajectories where
u◦
ti(x) ̸= u◦

tj (x) for fixed x and ti ̸= tj , accommodat-
ing the possibility that trajectories may cross over a point at
different times in multi-marginal settings. In practice, we
train using mini-batches of size b.

By incorporating stochasticity through score matching,
we improve robustness and avoid overfitting in high-
dimensional spaces. The score ∇x log pt(x|z) allows the
model to capture the inherent uncertainty and variabil-
ity in the data. Using the identity ∇x log pt(x|z) =
∇xpt(x|z)/pt(x|z), we see that the score nudges predic-
tions towards more likely regions, thereby implicitly ex-
ploring the region around the local per-sample flow. This
efficiency allows us to remain in the ambient dimension d
and sidestep dimensionality reduction strategies which of-
ten introduce information loss and additional complexities
into the flow dynamics. Moreover, re-projecting the trajec-
tories back into the ambient space introduces undesirable
reconstruction artifacts.

2.3.1. TRANSPORT SPLINES SAMPLING OF z AND
STRATIFIED SAMPLING OF t

We sample z from a MMOT plan π using transport
splines by first drawing samples Xti , Xti+1

, . . . , Xti+k
∼

ρi, ρi+1, . . . , ρi+k, where each Xti is a batch of i.i.d. sam-
ples from ρi. Then, we compute the MMOT plan given by
the first-order Markov approximation (8):

π(xti , . . . , xti+k
) ≈ π(xti , xti+1

)

i+k∏
j=i+2

π(xtj | xtj−1
).

The initial plan π(xti , xti+1
) is a standard OT plan w.r.t.

the squared Euclidean distance ∥xti − xti+1
∥2 as the

cost function. Next, we compute the conditional map
π(xtj | xtj−1

) using

π(xtj | xtj−1
) =

π(xtj−1 , xtj )

π(xtj−1
)

=
π(xtj−1 , xtj )∫

π(xtj−1 , xtj ) dxtj

.

We refer the reader to Appendix C.1 for implementation
details.

In the original source-target distribution pair setting, we sam-
ple t ∼ U(0, 1). To accommodate our mini-flow method,
we could sample t ∼ U(ti, ti+k) for the ith mini-flow. How-
ever, this approach is ineffective for training uneven time in-
tervals—for example ti+1−ti ≪ ti+2−ti+1—leading to in-
sufficient sampling from the smaller interval. To handle this,
we adopt a stratified sampling strategy, sampling an equal
number of time points from U(ti, ti+1), U(ti+1, ti+2), and
so on to ensure balanced training across intervals. Specifi-
cally, for a total batch size of b, we sample b/k time points
from each interval.

2.3.2. MINI-FLOW ODE AND SCORE REGRESSION
TARGETS

Theorem 3 of Lipman et al. (2023) and Theorem 2.1 of Tong
et al. (2024a) derive the ODE flow regression target for a
conditional Gaussian probability path pt(x | z) = N (x |
µt, σ

2
t ) as

u◦
t (x | z) =

σ′
t

σt
(x− µt) + µ′

t (13)

where µt and σt are respectively the time-varying mean and
standard deviation of the flow conditioned on z. The prime
notation (′) denotes differentiation w.r.t. time t. We set µt =
µi:i+k(t) for a transport spline µi:i+k(t) : [ti, ti+k]→ Rd,
constructed through the points in z via Euclidean spline
interpolation.

For σt we consider the case of Brownian bridges with con-
stant diffusion g(t) = σ and set σt = σ

√
t(1− t) along

the global time t ∈ [0, 1]. Alternatively, we can set σt

based on the Brownian bridge of the mini-flow from a = ti
to b = ti+k, reparameterizing as σt = σ

√
r(t)(1− r(t)),

where r(t) = t−a
b−a . In this case, the derivative σ′

t must take
into account the reparameterization, yielding σ′

t = dσt

dr ·
dr
dt = dσt

dr ·
1

b−a . Because µt, σt, µ
′
t, σ

′
t can be expressed an-

alytically, we can directly compute these quantities and effi-
ciently compute the regression target u◦

t using Equation (13).
Given our Gaussian probability path, we can easily derive
the score regression target as ∇ log pt(x | z) = µt−x

σ2
t

, or
alternatively − ϵ

σt
for ϵ ∼ N (0, I).

We summarize our method in Algorithm 1. Once we have
the trained networks vt(x; θ), st(x; θ), we can construct the
SDE drift ut(x; θ) using (12), and generate trajectories from
given initial conditions x0 by an SDE integration with drift
ut(x; θ) and diffusion σ.

2.3.3. WINDOW SIZE k AND SPLINE ALGORITHM

We choose our window size k = 2 based on the properties
of our chosen Euclidean spline algorithm and considerations
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Figure 1. Comparison of Euclidean splines on overlapping windows of size k = 2, demonstrating the potential for overlapping windows
to capture variations of paths though the same intervals. From left to right: 1) The 7 points to interpolate with time labels t0, . . . , t6. 2)
Natural cubic splines on equidistant time intervals. 3) Monotonic cubic Hermite splines on equidistant time intervals. 4) Natural cubic
splines on arbitrary time intervals T = (0, 0.05, 0.2, 0.27, 0.86, 0.95, 1). Note the overshooting required to satisfy the continuity of S′′

at t3 and t4. 5) Monotonic cubic Hermite splines on arbitrary time intervals.

Algorithm 1 MMSFM Training
Input: Training data, k, σ
Initialize networks vt(x; θ), st(x; θ)
Set g(t)← σ
Set σt ← σ

√
t(1− t) or σ

√
r(t)(1− r(t))

Set λ(t)← 2σt

g(t)2

while training do
for i = 0 to M − k do

Sample mini-batches:
Xti , . . . , Xti+k

∼ ρi, . . . , ρi+k

Compute OT plans:
π(Xti , Xti+1), π(Xti+2 | Xti+1), . . .
Generate z ← (X⋆

ti , . . . , X
⋆
ti+k

) using π
Compute µt ← µi:i+k(t)
Set pt(x | z)← N (x | µt, σ

2
t )

Sample times t from [ti, ti+k]
Sample x ∼ pt(x | z)

Compute u◦
t (x | z)←

σ′
t

σt
(x− µt) + µ′

t

Compute ∇ log pt(x | z)←
µt − x

σ2
t

Compute L(θ) from (11)
Update θ using L(θ)

end for
end while
Output: Trained networks vt(x; θ), st(x; θ)

to the running time. We opt to use monotonic cubic Hermite
splines instead of natural cubic splines for four main reasons.
First, the guaranteed monotonicity of each piecewise cubic
polynomial ensures no overshoot within each dimension,
thus removing overshooting when computing the ODE flow
regression target (13). Second, monotonic cubic Hermite
splines by construction do not necessarily have a contin-
uous second derivative. While this is a desired property
for smoother curves (and in fact enforced for natural cubic
splines), this condition can restrict the curve from taking a

more direct path such as from a linear piecewise interpola-
tion. Third, while using a larger window can potentially fit a
spline closer to the linear piecewise interpolation, allowing
for smaller windows can better capture a wider variation of
paths, increasing the robustness of the learned flow. More-
over, 3 control points are sufficient to learn a curvature at
the interior control point. Fourth, the specific coefficients
describing each piecewise cubic polynomial are efficient to
compute, scaling linearly in O(k) with the k + 1 points to
interpolate. For a window size k and M time points, the
overlapping window routine computes (M − k)k splines
resulting in a total complexity of O((M − k)k). This is
“maximized” when k = M/2 for a complexity of O(M2),
and “minimized” when k = 1 or k = M − 1 for a com-
plexity of O(M). As an added bonus, monotonic cubic
Hermite splines are highly insensitive to control points that
are not immediate neighbors. Thus, choosing a larger win-
dow size k > 2 does not meaningfully increase the amount
of information captured by the spline.

Rohbeck et al. (2025) considers a similar approach arriving
at the same ordered MMOT plan approximation, detailed
in their Appendix B. Moreover, Rohbeck et al. also use
splines as the interpolation method allowing for irregular
time points, but differ in their selection of natural cubic
splines over all the time points (k = M − 1). This contrasts
with our choice to use monotonic cubic Hermite splines
on rolling windows over k = 2. Although natural cubic
splines may be more analytically tractable, we reiterate that
the monotonic cubic Hermite spline nonetheless provides
a monotonicity guarantee within each dimension and thus
avoids overshoot. This property is especially relevant when
exploring the sensitivity of our method to highly irregular
time points. We attribute the overshooting behavior in nat-
ural cubic splines to the presence of neighboring intervals
with vastly different lengths. For example, consider the time
point sequence 0.2 → 0.27 → 0.86 in Figure 1. The two
corresponding intervals have length 0.07 and 0.59, nearly a
9-fold difference. For the natural cubic spline, any change in

6



Multi-Marginal Stochastic Flow Matching for High-Dimensional Snapshot Data at Irregular Time Points

velocity and acceleration along the short interval can happen
relatively quickly, but the corresponding change for the long
interval must be drawn out. In particular, the continuity of
the acceleration constraint does not help in this regard as it
prevents the spline from instantaneously re-adjusting veloci-
ties as necessary. We include a more in-depth discussion of
splines in Appendix B.1.

3. Results
We briefly describe our data and setup below, and also in-
clude a more detailed experimental setup description in
Appendix D. We summarize our results in Tables 1 and 2.

3.1. Experimental Setup

We applied our rolling window framework to three synthetic
datasets, two RNA gene expression datasets, and an im-
age classification dataset. From our framework we use the
k = 1 (Pairwise, equivalent to SF2M (Tong et al., 2024b))
and k = 2 (Triplet) mini-flow settings. We approximate
the MMOT plan with transport splines computed on mini-
batch OT given the smaller computation cost and asymp-
totic convergence properties (Fatras et al., 2020; 2021). We
additionally use MIOFlow (Huguet et al., 2022) on the syn-
thetic datasets to examine the difference in performance for
ambient-space and latent-space models. The initial condi-
tions for the generated trajectories are from a held-out set
of samples from the source distribution ρ0. Evaluations on
all synthetic and RNA gene expression datasets are com-
puted by leaving out a time point marginal during training
and calculating the Wasserstein metrics W1 and W 2

2 (us-
ing Euclidean distance as the cost function), the maximum
mean discrepancy with a mixture kernel (MMD(M)), and
the maximum mean discrepancy using a Gaussian kernel
(MMD(G)) at the left-out time point. For the image dataset,
we train using all time point marginals and examine the
training stability and loss over epochs.

Synthetic Data: Our three synthetic datasets are the S-
shaped Gaussians, the α-shaped Gaussians, and a syn-
thetic scRNA dataset generated by the DynGen simula-
tor (Cannoodt et al., 2021) which we repurpose from Huguet
et al. (2022). The S and α-shaped Gaussians both con-
sist of 7 marginal distributions in R2. We select these
three datasets because S-shaped Gaussians involve learn-
ing a flow with changing curvature, the α-shaped Gaus-
sians have a cross-over point for some x where the flow
uti(x) ̸= utj (x) and i ̸= j, and the DynGen dataset intro-
duces a bifurcation. We evaluate both Gaussian datasets
on three different time point labels: equidistant time points
T1 = (0, 0.17, 0.33, 0.5, 0.67, 0.83, 1), a first set of arbi-
trary time points T2 = (0, 0.08, 0.38, 0.42, 0.54, 0.85, 1),
and a second set of arbitrary time points T3 =

Table 1. Comparison of the inferred distributions generated by
MIOFlow and our method using Pairwise and Triplet mini-flows at
the held-out time point. For the equidistant time points T1, we hold
out t5 = 0.83 and t4 = 0.67 respectively for the S-shaped and
α-shaped data. We do the same for the arbitrary time points T2,
holding out t5 = 0.85 and t4 = 0.54. We also examine distance
metrics averaged across all time points for T3. From DynGen, we
hold out t1 = 0.25.

S-SHAPE (HOLD t5 ) α-SHAPE (HOLD t4 )
MIOFLOW PAIR TRIP MIOFLOW PAIR TRIP

T1

W1 8.16 2.36 1.83 21.54 3.78 4.54
W2

2 66.91 5.87 3.86 464.36 14.56 21.06
MMD(G) 7.26 2.29 1.47 7.65 3.96 4.26
MMD(M) 66.19 5.24 3.11 463.66 13.92 20.01

T2

W1 9.42 2.12 1.62 5.04 8.08 3.79
W2

2 89.07 4.56 2.73 25.85 76.82 14.73
MMD(G) 7.37 2.36 1.53 6.46 4.01 3.77
MMD(M) 88.37 4.12 2.22 25.35 64.81 14.07

S-SHAPE (ALL) α-SHAPE (ALL)

T3

W1 — 12.06 3.71 — 33.95 186.68
W2

2 — 257.86 35.01 — 2400.15 2.51E6
MMD(G) — 4.12 2.12 — 4.62 1.35
MMD(M) — 241.01 7.87 — 2168.01 7.76E5

DYNGEN (HOLD t1 ) —

W1 0.85 0.74 0.83
W2

2 0.98 0.63 0.82
MMD(G) 0.53 0.38 0.22
MMD(M) 0.51 0.19 0.10

(0, 0.2, 0.27, 0.3, 0.88, 0.98, 1) with neighboring small and
large intervals. We introduce T3 as a highly irregular
time point set with a very small interval of 0.03 followed
by a disproportionately large interval of 0.58 in 0.27 →
0.3 → 0.88. Also included is a second miniscule gap of
0.02 in the last interval 0.98 → 1. The DynGen dataset
has 5 marginal distributions on equidistant time points
T = (0, 0.25, 0.5, 0.75, 1).

Real Data: We consider gene expression data from the
Multiome and CITEseq datasets published as part of a
NeurIPS competition (Burkhardt et al., 2022). Measure-
ments are taken at T = (2, 3, 4, 7) days, which again nor-
malize to T = (0, 0.2, 0.4, 1). We follow the procedure
in (Tong et al., 2024b) and preprocess the data into the first
50 and 100 principal components, along with the top 1000
highly variable genes (Satija et al., 2015; Stuart et al., 2019;
Zheng et al., 2017).

Finally, we consider a generative perspective and look at the
performance of our model on image progression through var-
ious classes from the Imagenette dataset (Jeremy Howard),
a subset of 10 easily classified classes from the ImageNet
dataset (Deng et al., 2009). Specifically, we look at the
progression: gas pump to golf ball to parachute. For the
Pairwise model we set T = (0, 0.25, 1), and for the Triplet
model we set T = (0, 0.5, 1).
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Figure 2. Example trajectories for a 32× 32 pixel image progression through the Imagenette classes (gas pump → golf ball → parachute).
Results are generated using our Triplet model with an equidistant time scheme.

Table 2. Comparison of the Pairwise and Triplet methods on the
CITEseq and Multiome gene expression datasets. We hold out
t2 = 0.4 for both datasets.

PCA 50 PCA 100 HI-VAR 1000
PAIR TRIP PAIR TRIP PAIR TRIP

CITESEQ

W1 54.18 53.98 62.85 62.08 50.64 50.71
W2

2 3027.28 3019.89 4036.41 3942.08 2579.84 2585.98
MMD(G) 0.16 0.16 0.16 0.15 0.05 0.05
MMD(M) 339.20 344.89 345.09 331.72 48.53 49.83

MULTI

W1 61.79 60.92 70.72 70.39 56.15 56.10
W2

2 3918.50 3806.89 5077.07 5029.56 3166.01 3160.84
MMD(G) 0.30 0.27 0.25 0.23 0.04 0.04
MMD(M) 793.34 705.21 656.86 621.32 40.71 40.29

3.2. Discussion

Learned flows are visualized in Appendix F. Our method
consistently outperformed MIOFlow on the interpolation at
the held-out time point for the synthetic data. Interestingly,
the Pairwise model slightly outperformed the Triplet model
for the α-shaped Gaussians on T1. We believe that in this
specific instance, the masked time point corresponded to
an interval where the momentum from the prior interval
was enough for the Pairwise model to infer the held-out
marginal. In contrast, the α-shaped Gaussians on T2 show
the Triplet model outperformed the Pairwise model by a
significant margin; even MIOFlow generally outperformed
the Pairwise model in this instance. This suggests that the
Triplet method is more effective for non-equidistant time
snapshots especially when capturing complex temporal dy-
namics because the variation of flows provided by splines in
overlapping windows helps learn the held-out marginal. The
success of our methods on T2 demonstrates the robustness
and stability of our approach even when handling arbitrary
time points. Looking at the trajectory plots, we can also con-
firm that our method is able to handle datasets with varying
flow curvatures and flow cross-overs.

The bifurcating flow of DynGen posed a challenge for our
models: while they outperformed MIOFlow on the metrics,
but struggled to handle the bifurcating trajectories. We
suspect this behavior to stem from mini-batch OT because
it does not enforce a consistency constraint on the sampling
process, resulting in cases where particles are able to jump

between separate branches of the bifurcated flow. We did
not explore methods to mitigate this problem and believe
this to be an avenue for future work.

Remaining in the high-dimensional ambient space without
aggressive dimensionality reduction preserves important bi-
ological information, leading to more biologically plausible
trajectories. The ability to generate samples at arbitrary time
points allows us to explore the system’s behavior beyond
the observed data, potentially identifying critical time win-
dows where intervention might be most effective. This has
implications for understanding drug resistance mechanisms
and designing more effective therapeutic strategies.

In all instances, MIOFlow generated idiosyncratic trajec-
tories which matched the marginals at the specified time
points but performed poorly between those time points. We
believe this to be the case because MIOFlow operates in the
embedding space generated by a GAE. This structure works
very well for trajectories in the embedding space but poses
a problem when reconstructing the trajectories in the ambi-
ent space. The GAE is only trained on the data marginals
{ρi}Mi=0 at times {ti}Mi=0, which means that data points not
specified in the data are effectively out-of-distribution w.r.t.
the GAE. These out-of-distribution points arise naturally
from generating trajectories which spend time traveling be-
tween the data distributions. In addition, we notice that all
the reconstructed points exhibit high bias and low variance,
tending to be bunched very close to each other. This quality
perhaps captures the first moment well but not any higher
moments.

We validate our Triplet model’s ability to learn flows on
high dimensional, noisy data, taken at irregular time points
by comparing results from the Pairwise and Triplet models
on the CITEseq and Multiome datasets. These two datasets
contain high dimensional samples with noise inherent to bio-
logical measurements and measurements from non-uniform
time intervals. We see the Triplet model successfully out-
perform the Pairwise model on inferring the distribution at
the held out time point even in these conditions.

On Imagenette, we examine our Triplet model’s perfor-
mance against that of the Pairwise model both by the train-
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Figure 3. Loss plots for the Triplet and Pairwise models on the
Imagenette dataset. The x-axis represents the epoch (1000 gradient
steps), and the y-axis represents the mean loss value for that epoch.
Left) Flow loss. Right) Score loss.

ing loss curves and visually. In both cases, we used the
model state after training for 160k gradient steps. The
Triplet model performed better than the Pairwise model
with respect to the flow loss and fairly even on the score
matching loss. Both models were able to generate image
trajectories which pass through the golf ball distribution,
but the Pairwise model exhibited more difficulty than the
Triplet model in going to the parachute distribution. This
suggests the Triplet model exhibited more stable training,
further validating our approach.

Finally, we examine performance of the Pairwise and Triplet
models on the S and α-shaped datasets using the highly
unbalanced time points T3. Here, we find that the Triplet
model greatly outperforms the Pairwise model on the overall
learned flow for the S-shaped dataset, but seemingly vastly
underperforms for the α-shaped dataset. By taking a closer
look at the visualizations of the learned flow, we can see
that in both cases, the short-long-short interval pattern poses
a significant difficulty, suggesting that arbitrary time points
do indeed increase the difficulty of the learning task. In
the S-shaped case, the Pairwise model completely fails to
learn this trajectory, whereas the Triplet model does better,
learning to speed up and then slow down between t2 = 0.27
to t3 = 0.3, and t3 = 0.3 to t4 = 0.88. Unfortunately,
neither model was able to converge in the α-shaped case.

4. Conclusion
We present a novel framework for modeling the dynamics
of high-dimensional systems from snapshot data in a multi-
marginal setting with non-equidistant time points, while
remaining in the high-dimensional space and avoiding the
pitfalls of dimensionality reduction. By expanding the liter-
ature of Conditional Flow Matching, we have developed a
method that learns flows for overlapping triplets, enhancing
robustness and stability in multi-marginal settings. We vali-
date our method’s scalability and ability to learn in high di-

mensional spaces using the CITEseq and Multiome datasets.
Our application to the Imagenette dataset further demon-
strates the method’s generalizability to varied datasets as
well as generative capabilities for sampling from a time
point marginal.

The incorporation of stochasticity through score matching
improves robustness and avoids overfitting, enabling the
model to generalize to new conditions. This work opens
new avenues for both generative algorithms and modeling
cellular responses to arbitrary, user-defined perturbations,
providing a computationally efficient and biologically ac-
curate framework capable of handling the complexities of
high-dimensional, stochastic biological systems.
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A. Proofs
Proof of Theorem 2.1. The gradient of the loss for a single interval (ti, ti+1) with k overlapping mini-flows is given by

∇θLti:ti+1
= ∇θE


∥∥∥∥∥∥vt(x; θ)−

k−1∑
j=0

ut(x | zti−j :ti−j+k
)

∥∥∥∥∥∥
2

+ (k − 1)∥vt(x; θ)∥2


where the expectation is taken over q(zti−k+1:ti+k

), U(ti, ti+1), and p̃(x | zti−k+1:ti+k
) = 1

k

∑k−1
j=0 pt(x | zti−j :ti−j+k

).

We begin by considering the individual losses with respect to the mini-flows

Lti:ti+1 =

k−1∑
j=0

E
[
∥vt(x; θ)− ut(x | zti−j :ti−j+k

)∥2
]

(14)

where the expectation is taken over q(zti−j :ti−j+k
), U(ti, ti+1), and pt(x | zti−j :ti−j+k

). We combine this into a single
expectation by expanding q to cover zti−k+1:ti+k

), noting that the expanded window does not affect each individual
expectation. Next, we combine all the mini-flow probability paths into p̃(x | zti−k+1:ti+k

) = 1
k

∑k−1
j=0 pt(x | zti−j :ti−j+k

)
because we are functionally only sampling from a single “active” probability path at a time. The resulting combined
expectation is

Lti:ti+1
= E

k−1∑
j=0

∥vt(x; θ)− ut(x | zti−j :ti−j+k
)∥2

 (15)

taken over q(zti−k+1:ti+k
), U(ti, ti+1), and p̃(x | zti−k+1:ti+k

). We derive the rest by considering the inside of the expectation
as follows:

k−1∑
j=0

∥vt(x; θ)− ut(x | zti−j :ti−j+k
)∥2 =

k−1∑
j=0

∥vt(x; θ)∥2 − 2⟨vt(x; θ), ut(x | zti−j :ti−j+k
)⟩+ ∥ut(x | zti−j :ti−j+k

)∥2

= ∥vt(x; θ)∥2 − 2

〈
vt(x; θ),

k−1∑
j=0

ut(x | zti−j :ti−j+k
)

〉

+

k−1∑
j=0

∥ut(x | zti−j :ti−j+k
)∥2 + (k − 1)∥vt(x; θ)∥2

= ∥vt(x; θ)∥2 − 2

〈
vt(x; θ),

k−1∑
j=0

ut(x | zti−j :ti−j+k
)

〉

+

∥∥∥∥∥∥
k−1∑
j=0

ut(x | zti−j :ti−j+k
)

∥∥∥∥∥∥
2

+ (k − 1)∥vt(x; θ)∥2 − U

=

∥∥∥∥∥∥vt(x; θ)−
k−1∑
j=0

ut(x | zti−j :ti−j+k
)

∥∥∥∥∥∥
2

+ (k − 1)∥vt(x; θ)∥2 − U

where U is some constant term of inner products and sums of ut(x | zti−j :ti−j+k
) such that ∥

∑k−1
j=0 ut(x | zti−j :ti−j+k

)∥2 =∑k−1
j=0 ∥ut(x | zti−j :ti−j+k

)∥2 + U . We utilize the well-known fact that ∥x± y∥2 = ∥x∥2 ± 2⟨x, y⟩+ ∥y∥2 for first, third,
and fourth equalities. Crucially, in the third equality we introduce U in order to “complete the square” of the sum of
ut(x | zti−j :ti−j+k

). We use the bilinearity of the inner product in the second equality. This results in the interval loss of

Lti:ti+1
= E


∥∥∥∥∥∥vt(x; θ)−

k−1∑
j=0

ut(x | zti−j :ti−j+k
)

∥∥∥∥∥∥
2

+ (k − 1)∥vt(x; θ)∥2 − U

 (16)
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Finally, by taking the gradient w.r.t. θ, we arrive at Theorem 2.1, noting that U does not depend on θ and therefore
∇θU = 0.

Proof of Corollary 2.2. If all the mini-flow regression signals ut(x | zti−j :ti−j+k
) are equal, then the single inter-

val loss recovers the CFM loss (Theorem 2.1 of Lipman et al. (2023)) up to a scalar factor.
Consider the inside of the expectation in (16) where all the ut(x | zti−j :ti−j+k

) are equal (denoted simply as ut(x | z)):∥∥∥∥∥∥vt(x; θ)−
k∑

j=1

ut(x | z)

∥∥∥∥∥∥
2

+ (k − 1)∥vt(x; θ)∥2 − U = ∥vt(x; θ)∥2 − 2

〈
vt(x; θ),

k∑
j=1

ut(x | z)

〉

+

∥∥∥∥∥∥
k∑

j=1

ut(x | z)

∥∥∥∥∥∥
2

+ (k − 1)∥vt(x; θ)∥2 − U

= k∥vt(x; θ)∥2 − 2

〈
vt(x; θ),

k∑
j=1

ut(x | z)

〉

+

∥∥∥∥∥∥
k∑

j=1

ut(x | z)

∥∥∥∥∥∥
2

− U

= k∥vt(x; θ)∥2 − 2

〈
vt(x; θ),

k∑
j=1

ut(x | z)

〉

+

k∑
j=1

∥ut(x | z)∥2

= k∥vt(x; θ)∥2 − 2k⟨vt(x; θ)⟩) + k∥ut(x | z)∥2

= k∥vt(x; θ)− ut(x | z)∥2.

We “complete the square” for the first and last equality, group like terms in the second and fourth equality, and use the
definition of U in the third equality. Once we reintroduce the expectation, we see that this is proportional to Theorem 2.1
of Lipman et al. (2023):

Lti:ti+1 = E[k∥vt(x; θ)− ut(x | z)∥2] = kE[∥vt(x; θ)− ut(x | z)∥2] (17)

B. Cubic Splines
Cubic splines are a class of piecewise functions interpolating between control points (t0, x0), . . . , (tn, xn), taking the form

S(t) =


S0(t) t0 ≤ t < t1
...
Sn−1(t) tn−1 ≤ t ≤ tn

where Si is the cubic polynomial Si(t) = ai(t − ti)
3 + bi(t − ti)

2 + ci(t − ti) + di for i in 0, . . . , n − 1. There are 4
coefficients to solve for per equation which results in n equations and 4n unknowns.

B.1. Natural Cubic Splines

Natural cubic splines solve for the above coefficients ai, bi, ci, di by applying four conditions. The first requires the spline
to interpolate the data points (ti, xi) such that S(ti) = xi resulting in n + 1 constraints. The second requires S to be
continuous at the interior points such that Si(ti) = Si+1(ti), resulting in n− 1 constraints. The third and fourth conditions
respectively require S′ and S′′ to be continuous for a total of 2n − 2 constraints. Finally two boundary conditions are
added such that S′′(t0) = S′′(tn) = 0. In total, we have constructed a system of equations with 4n unknowns and 4n
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Figure 4. Euclidean splines on overlapping windows of size k = 2, using the means of each Gaussian in the S-shaped dataset as the
control points. From left to right: 1) The 7 points to interpolate with time labels t0, . . . , t6. 2) Natural cubic splines on equidistant
time intervals. 3) Monotonic cubic Hermite splines on equidistant time intervals. 4) Natural cubic splines on arbitrary time intervals
T2 = (0, 0.08, 0.38, 0.42, 0.54, 0.85, 1). 5) Monotonic cubic Hermite splines on T2.

Figure 5. Euclidean splines on overlapping windows of size k = 2, using the means of each Gaussian in the α-shaped dataset as the
control points. From left to right: 1) The 7 points to interpolate with time labels t0, . . . , t6. 2) Natural cubic splines on equidistant
time intervals. 3) Monotonic cubic Hermite splines on equidistant time intervals. 4) Natural cubic splines on arbitrary time intervals
T2 = (0, 0.08, 0.38, 0.42, 0.54, 0.85, 1). 5) Monotonic cubic Hermite splines on T2.

constraints. Ultimately, this setup constructs a tridiagonal system of equations which is efficiently solvable in O(n) time
using a single forward and backward pass. Perhaps reasonably, natural cubic splines are quite local as the influence of
neighboring intervals greatly decreases the further away the neighbor is.

B.2. Monotonic Cubic Hermite Splines

Cubic Hermite splines approach the problem differently. Consider a single time interval [0, 1] and corresponding points
x0, x1. Let the position of x at time t be given by the following cubic polynomial:

xt = at3 + bt2 + ct+ d.

Likewise, let mt be the velocity of xt at time t, given by

mt = 3at2 + 2bt+ c.

At t = 0 and t = 1, we can solve for x0, x1,m0,m1 in terms of a, b, c, d to get the following system of equations:

x0 = d

x1 = a+ b+ c+ d

m0 = c

m1 = 3a+ 2b+ c.

Solving this system of equations, we get

x(t) = (2t3 − 3t2 + 1)x0 + (t3 − 2t2 + t)m0 + (−2t3 + 3t2)x1 + (t3 − t2)m1

as the polynomial interpolating (0, x0) to (1, x1). All that remains is to specify values for m0 and m1. In other words, cubic
Hermite spline algorithms are defined by how the velocities mi are selected.
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Monotonic cubic Hermite splines set mi using the following strategy. Define hk = tk+1 − tk and dk = xk+1−xk

hk
. If the

signs of dk and dk−1 do not match or either is 0, then set mk = 0. Otherwise, mk is given by

w1 + w2

mk
=

w1

dk−1
+

w2

dk

where w1 = 2hk + hk−1 and w2 = hk + 2hk−1. We direct the reader to (Fritsch & Carlson, 1980) for an exact derivation
and proof of monotonicity. This formula is also solvable in O(n) time, but differs from the natural cubic spline in that it is
very local. In fact, only the immediate neighboring data points (ti−1, xi−1) and (ti+1, xi+1) influence the curve.

C. Implementation Details
Our implementation uses NumPy (Harris et al., 2020), SciPy (Virtanen et al., 2020), and PyTorch (Paszke et al., 2017) for
the mathematical operations. Plots were generated using Matplotlib (Hunter, 2007). We extended the base CFM framework
provided by Tong et al. (2024a;b)

C.1. Optimal Transport Plans

We use the Python Optimal Transport (POT) library (Flamary et al., 2021) to compute all OT plans with ot.emd() and the
squared Euclidean distance. This method operates on two batches of samples and returns a matrix π where the i, j-th entry
πi,j indicates the probability of sampling (x

(i)
tℓ
, x

(j)
tℓ+1

) ∼ π(xtℓ , xtℓ+1
). The superscript (i) denotes the i-th index into a

batch of samples. We implement the conditional OT plan π(xtℓ+1
| xtℓ) by first constructing the marginalization column

vector q̂ representing
∫
π(xtℓ , xtℓ+1

)dxtℓ+1
= q(xtℓ), where the i-th entry q̂i :=

∑
j πi,j . Finally, we construct the matrix

π̂ representing the conditional plan π(xtℓ+1
| xtℓ) by element-wise dividing each column of π by q̂. Thus, the i-th row of π̂

contains the probabilities of selecting x
(j)
tℓ+1

given x
(i)
tℓ

. Because the procedure operates by coupling the indexes of samples
from the data, we can consider this as an alignment operation on the initial mini-batch. Our full sampling procedure for
a single mini-flow is as follows. We set the initial time index to be 0 without loss of generality with respect to any given
mini-flow. All samplers sample with replacement.

Algorithm 2 MMOT Sampling
Set batch size b
Sample batches Xt0 , . . . , Xtk ∼ q(xt0), . . . , q(xtk) where Xtℓ = {x

(i)
tℓ
}bi=1

Sample (X⋆
t0 , X

⋆
t1) ∼ π(Xt0 , Xt1)

for ℓ ∈ 2..k do
Compute the conditional OT plan π̂(Xtℓ | X⋆

tℓ−1
)← π(X⋆

tℓ−1
, Xtℓ)/q̂(X

⋆
tℓ−1

)
Sample X⋆

tℓ
∼ π̂(Xtℓ | X⋆

tℓ−1
)

end for
Output: Aligned batches X⋆

t0 , . . . , X
⋆
tk

C.2. Neural ODE and SDE Solvers

We use the same setup as Tong et al. (2024b) and use the SDE solver from torchsde (Li et al., 2020; Kidger et al.,
2021). We did not adjust any of the default hyperparameters for the solver. For the SDE model, we set the drift to
ft(x)← vt(x; θ) +

g2(t)
2 st(x; θ) from (12) where vt and st are respectively the flow and score networks. The diffusion is

set to a constant gt(x)← σ = 0.15.

D. Experimental Setup
D.1. Training Setup

For all experiments except for image generation, we used a MLP with an input layer, two hidden layers of width 64, an
output layer, along with SELU activation functions. We optimize these networks using AdamW. We set σ = 0.15 for our
method and likewise as the noise scale in MIOFlow.
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For the S-shaped, α-shaped, and DynGen datasets, we trained for 2500 gradient steps and a learning rate of 1e-4. For the
CITEseq and Multiome datasets, we trained for 1000 gradient steps and a learning rate of 1e-5.

MIOFlow is a method to infer “optimal” trajectories on manifolds which correspond to geodesics. As we do not have access
to the underlying manifold itself, the authors propose learning it from data using a GAE such that the encoder ϕ is a mapping
from the ambient space to the manifold. More specifically, the encoder learns an embedding such that the Euclidean distance
of two embedded points ∥ϕ(x)− ϕ(y)∥ matches some geodesic distance G(x, y) based on a diffusion affinity matrix.

Additionally, MIOFlow requires training a GAE to embed high-dimensional data into a lower-dimensional space and to then
reconstruct trajectories learned in the embedded space. We define the encoder as a MLP with three hidden layers of sizes
128, 64, and 32. This encoder outputs an embedding into R2. The decoder has the same architecture but in reverse. We use
ReLU as the activation function. The GAE is trained for 1000 gradient steps using the AdamW optimizer.

For Imagenette, we used the same setup as in Lipman et al. (2023) and use the U-Net architecture from Dhariwal & Nichol
(2021) as well as the Adam optimizer. We resize all images to 32× 32 and normalize across all RGB channels with µ = 0.5
and σ = 0.5. No other preprocessing is done. We match hyperparameters where we can but opt for a smaller experiment in
terms of the number of GPUs and the effective batch size per window. Note that for the Triplet model there is only one
window but for the Pairwise model there are two. We reproduce the hyperparameters below.

Imagenette-32

Channels 256
Depth 3
Channels Multiple 1, 2, 2, 2
Head 4
Heads Channels 64
Attention Resolution 16, 8
Dropout 0.0
Effective Batch Size per Window 192
GPUs 1
Epochs 250
Iterations 250k
Learning Rate 1e-4
Learning Rate Scheduler Polynomial Decay
Warmup Steps 20k

Table 3. Imagenette experiment hyperparameters. We use the same model architecture and learning rate hyperparameters as Lipman et al.
(2023). However, we use 250 epochs instead of 200 as we arbitrarily set an epoch to 1000 gradient steps. This matches the 250k iterations.
Moreover, we have a smaller effective batch size per window of 192 and only use one GPU.

D.1.1. SCORE MATCHING IMPLEMENTATION

As noted in Section 2.3.2, we have ∇ log pt(x | z) = − ϵ
σt

for ϵ ∼ N (0, I). However, this direct formulation does not
protect against numerical instability when σt is small. We follow the approach used by Tong et al. (2024b) and take advantage
of the user-defined weighting schedule λ(t) to cancel out the division and learn the scaled target g(t)2

2 ∇ log pt(x | z) based
on the Fokker-Planck Equation (2). By rewriting the inside of the expectation of the scaled score loss as

λ(t)2
∥∥∥∥ŝt(x; θ)− g(t)2

2
∇ log pt(x|z)

∥∥∥∥2 =

∥∥∥∥λ(t)ŝt(x; θ) + λ(t)
g(t)2ϵ

2σt

∥∥∥∥2 ,
we can see that when setting λ(t) = 2σt

g(t)2 , the score loss becomes

∥λ(t)ŝt(x; θ) + ϵ∥2 ϵ ∼ N (0, I).

This approach allows us to reconstruct the mini-flow SDE drift as the sum of the mini-flow ODE drift and the scaled score
network output:

ut(x; θ) = vt(x; θ) + ŝt(x; θ). (18)
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D.2. DynGen

We repurpose the DynGen data used in MIOFlow (Huguet et al., 2022) for our experiments. Notably, the data itself is not
the raw simulated reads; it is preprocessed into 5 dimensions using PHATE (Moon et al., 2019).

PHATE operates as a dimensionality reduction scheme aiming to preserve both local and global dependency structures.
Local structure is learned first by imposing Pairwise affinities under a Gaussian kernel. Global structure is inferred by
propagating the local affinities via diffusion, effectively learning a statistical manifold based on the information geometry.
Finally, metric MDS is used as the dimensionality reduction strategy.

We believe that the GAE used in MIOFlow learns the data manifold for the (PHATE-transformed) DynGen dataset especially
well given that, by construction, the DynGen dataset does indeed reside on a manifold equipped with a diffusion-based
metric. This matches the prior belief in MIOFlow that diffusion-based affinities can accurately capture the data manifold.

D.3. CITEseq and Multiome

These datasets were published as part of a NeurIPS competition for multimodal single-cell integration (Burkhardt et al.,
2022). We present a brief overview, and refer the reader to the competition itself for more in-depth descriptions 2. The data
is collected from peripheral CD34+ hematopoietic stem and progenitor cells from healthy human donors. The CITEseq data
is measured using 10x Genomics Single Cell Gene Expression with Feature Barcoding technology. The Multiome data is
measured using 10x Chromium Single Cell Multiome ATAC + Gene Expression technology.

Technically, both the CITEseq and Multiome datasets are labeled, with the former about predicting protein levels given gene
expressions, and the latter about predicting gene expressions given ATAC-seq peak counts. We are only interested in the
gene expression data, so we only use the CITEseq input data and the Multiome target data. Following Tong et al. (Tong
et al., 2024b), we only select cells from the respective datasets from a single donor id 13176. The gene expression data is
already library-size normalized and log1p transformed, so we compute the PCA and top highly variable genes without any
further preprocessing step.

D.4. Imagenette

This dataset a subset of the well-known ImageNet dataset (Deng et al., 2009) containing a curated collection of 10 easily
classifiable classes. The classes present are: tench, English springer, cassette player, chain saw, church, French horn, garbage
truck, gas pump, golf ball, and parachute. More details and variants of the dataset can be found at the GitHub page 3.

E. Ablation Studies
We report in Table 4 ablation experiments on held-out time points for the S-shaped and α-shaped Gaussians on the
Pairwise (k = 1), Triplet (k = 2), and “All” (k = M − 1) models. We test both T1 = (0, 0.17, 0.33, 0.5, 0.67, 0.83, 1)
and T2 = (0, 0.08, 0.38, 0.42, 0.54, 0.85, 1). We evaluate the W1 metric on the held-out marginal for these experiments.
In general, the Pairwise model performed worst, whereas the Triplet and All models were relatively even, providing
experimental validation for minimal performance boosts when k > 2.

F. Flow Visualizations
We visualize our experiments here. Viewing in color is recommended.

2https://www.kaggle.com/competitions/open-problems-multimodal/overview
3https://github.com/fastai/imagenette
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S-shaped α-shaped
Held-out index Pairwise Triplet All Pairwise Triplet All

T1

1 2.43† 2.13 2.08 3.38 4.95 5.13†

2 2.59† 1.96 2.14 4.38 4.37 4.84†

3 1.44† 1.28 1.13 2.72 2.94 2.97†

4 2.12† 1.95 1.74 3.78⋆ 4.54⋆† 4.53
5 2.36⋆† 1.83⋆ 2.04 4.17 5.04† 4.71

T2

1 2.35† 1.71 1.48 2.78 3.94 3.94
2 2.65 3.27 3.64† 5.74† 4.94 4.68
3 2.65† 1.90 1.76 3.37 3.24 3.91†

4 0.86 1.09 2.11† 8.08⋆† 3.79⋆ 2.42
5 2.12⋆† 1.62⋆ 1.59 5.06 5.12† 4.54

Table 4. W1 metrics on ablation experiments varying the held-out time point. Entries with a ⋆ indicate values reported in Table 1. Entries
with a † indicate the worst performance out of the Pairwise, Triplet, and All models.

Figure 6. Trajectories for S-shaped Gaussians using arbitrary time points T2 = (0, 0.08, 0.38, 0.42, 0.54, 0.85, 1) and holding out time
point t5 = 0.85. Trajectories start from the leftmost point and follow the curve to reach the rightmost point. From left to right: MIOFlow,
Pairwise, Triplet.

Figure 7. Trajectories for α-shaped Gaussians using arbitrary time points T2 = (0, 0.08, 0.38, 0.42, 0.54, 0.85, 1) and holding out time
point t4 = 0.54. Trajectories start from the upper right and loop around to the bottom right. From left to right: MIOFlow, Pairwise,
Triplet.
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Figure 8. DynGen simulated trajectories. Trajectories start from the leftmost point and quickly bifurcate into the upper and lower right.
The trajectories are in R5, but only the first and second dimensions are shown here. We hold out t1 = 0.25. From left to right: MIOFlow,
Pairwise, Triplet.

Figure 9. Trajectories for S and α-shaped Gaussians predicted by the Pairwise and Triplet models using all time points from T3 =
(0, 0.2, 0.27, 0.3, 0.88, 0.98, 1). From left to right: 1) Pairwise on S-shaped. 2) Triplet on S-shaped. 3) Pairwise on α-shaped. 4) Triplet
on α-shaped.

Figure 10. Trajectories for S-shaped Gaussians predicted by the Pairwise and Triplet models using all time points from T3 =
(0, 0.2, 0.27, 0.3, 0.88, 0.98, 1). Top row) Pairwise. Bottom row) Triplet.
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Figure 11. Trajectories for α-shaped Gaussians predicted by the Pairwise and Triplet models using all time points from T3 =
(0, 0.2, 0.27, 0.3, 0.88, 0.98, 1). Top row) Pairwise. Bottom row) Triplet.

21



Multi-Marginal Stochastic Flow Matching for High-Dimensional Snapshot Data at Irregular Time Points

Figure 12. Pairwise model on Imagenette-32 for the class progression: gas pump to golf ball to parachute. Time points are from
T = (0, 0.25, 1). Images are generated from a checkpointed model at 160k gradient steps.
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Figure 13. Triplet model on Imagenette-32 for the class progression: gas pump to golf ball to parachute. Time points are from
T = (0, 0.5, 1). Images are generated from a checkpointed model at 160k gradient steps.
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