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Abstract
Large Language Models (LLMs) exhibit strong
potential in mathematical reasoning, yet their
effectiveness is often limited by a shortage
of high-quality queries. This limitation ne-
cessitates scaling up computational responses
through self-generated data, yet current methods
struggle due to spurious correlated data caused
by ineffective exploration across all reasoning
stages. To address such challenge, we intro-
duce MARGE: Improving Math Reasoning with
Guided Exploration, a novel method to address
this issue and enhance mathematical reasoning
through hit-guided exploration. MARGE sys-
tematically explores intermediate reasoning states
derived from self-generated solutions, enabling
adequate exploration and improved credit assign-
ment throughout the reasoning process. Through
extensive experiments across multiple backbone
models and benchmarks, we demonstrate that
MARGE significantly improves reasoning capa-
bilities without requiring external annotations
or training additional value models. Notably,
MARGE improves both single-shot accuracy and
exploration diversity, mitigating a common trade-
off in alignment methods. These results demon-
strate MARGE’s effectiveness in enhancing math-
ematical reasoning capabilities and unlocking the
potential of scaling self-generated training data.

1. Introduction
Large Language Models (LLMs) have demonstrated remark-
able capabilities in text generation and instruction following
through post-training techniques such as Reinforcement
Learning (RL) (Stiennon et al., 2022; Ouyang et al., 2022).
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Figure 1. The y-axis represents the accuracy on MATH500, and the
x-axis represents the number of self-generated responses for train-
ing Qwen2-7B-Instruct. The dots and the star show when models
start to converge, and the dashed line exhibits their scaling trends
as the generation amount for training increases. The top-right
zone is preferred, as we can easily scale generation and achieve
better performance when queries are limited. By improving the
exploration process, MARGE enables the scaling of self-generated
responses for training and improves reasoning ability. We discuss
more about the scaling trend in Appx. D.

Despite these advances, improving LLM performance in
long-horizon reasoning tasks, particularly mathematical
problem solving, remains challenging due to two funda-
mental challenges: the scarcity of high-quality training data
and the inherent difficulty of exploring the vast space of
possible reasoning paths.

While Self-training approaches (Zelikman et al., 2022) par-
tially address data scarcity by self-generating abundant train-
ing examples, they struggle to scale computation during
training to improve reasoning. This limitation is evident
in our observations: model performance initially improves
during self-training but quickly plateaus or even declines
as training data increases. These trends, consistent with
Setlur et al. (2024), indicate spurious correlations between
reasoning steps in self-generated datasets.

As explained below, we argue that insufficient exploration
causes spurious correlated datasets. Our primary research
question now becomes: How can we enhance exploration
across all reasoning stages to generate higher-quality
training data, improve credit assignments, and enable
scaling of self-generated training pipelines?

Fig. 3 exhibits a challenge in mathematical reasoning and
helps explain why insufficient exploration causes spurious
correlations: even when a model correctly executes all pre-
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vious steps, it still might fail the final steps on average. This
highlights the need for reasoning data that accurately as-
signs credits to later stages without introducing spurious
correlations. As the number of reasoning steps increases,
the whole search space grows exponentially. This grow-
ing search space makes it exponentially complex to find
this kind of data as the steps get progressively further back
(e.g., for DPO, we will need data that only diverges at the
particular step but remains the same at previous steps).

To address these limitations, we introduce MARGE (Math
Reasoning with Guided Exploration), a framework that
systematically improves mathematical reasoning through
guided exploration. MARGE leverages existing solutions
as guidance, completing intermediate reasoning steps to
generate diverse, high-quality training datasets. This ap-
proach decomposes the exponentially complex exploration
problem into manageable sub-problems while efficiently
utilizing computational resources. By constructing datasets
with common solution prefixes and strategically selecting
guidance (correct solutions for complex problems, incor-
rect ones for simpler cases), MARGE achieves comprehen-
sive coverage across reasoning stages and improves credit
assignment–particularly for later steps where traditional ap-
proaches often fail.

Our investigation reveals two fundamental insights about
guided exploration in mathematical reasoning. First, itera-
tively running MARGE demonstrates that strategic guidance
improves exploration during self-generation. It enables scal-
able improvements across diverse tasks, surpassing the per-
formance plateaus encountered by prior methods. Second,
and more interestingly, unlike traditional post-training meth-
ods that trade-off generation diversity (pass@k) for single-
shot accuracy (pass@1) (Wang et al., 2024a), MARGE mit-
igates the issue and even might enhance both abilities si-
multaneously. This improvement arises from MARGE’s
systematic coverage of diverse reasoning strategies across
all stages, effectively expanding the model’s solution reper-
toire while reinforcing successful reasoning patterns.

Several recent works that try to enhance the reasoning abili-
ties of LLMs, though not explicitly focused on exploration
across reasoning stages, share our insights into enforcing
exploration at different stages. Setlur et al. (2024); Xie
et al. (2024); Lai et al. (2024); Lu et al. (2024b) explored
step-level supervision, attempting to identify and correct er-
roneous steps in reasoning. However, these approaches usu-
ally depend on external supervision or heuristics, which may
fail to capture the diversity at all reasoning stages compared
to MARGE, limiting their scalability. Monte Carlo Tree
Search (MCTS)-based methods (Chen et al., 2024; Zhang
et al., 2024; Feng et al., 2023; Xie et al., 2024) generate
high-quality datasets by rigorously searching and exploring
reasoning strategies. While they focus on finding optimal

solutions, MARGE explicitly aims to understand both suc-
cessful and unsuccessful reasoning patterns and provide a
better exploration strategy for LLM reasoning. Additionally,
MARGE operates efficiently by only inferring from the base
LLM, eliminating the need for additional value models or
searching computation required by MCTS.

We conduct extensive experiments across various base
models to demonstrate the effectiveness of MARGE.
When applied to Qwen2-7B-Instruct, it achieves signif-
icant performance gains across benchmarks like MATH
(+7.90%), GSM8k (+3.03%), CollegeMath (+13.64%),
and OlympiadBench (+5.23%), using pure chain-of-
thought reasoning. Furthermore, MARGE improves in-
trinsic exploration, as evidenced by the higher performance
gaps on pass@64.

In summary, our contributions are as follows:

• We introduce MARGE, a novel framework for guided
exploration in LLM mathematical reasoning, laying the
foundation for scaling the self-training pipeline;

• Leveraging solution-guided exploration, we make it pos-
sible to find more high-quality data, resulting in better
exploration and credit assignment for complex multi-step
mathematic problems;

• We demonstrate MARGE’s efficacy in improving rea-
soning accuracy and generation diversity across multiple
base models and benchmarks.

2. Related Works
2.1. LLM for Mathematical Reasoning

Previous works have proposed various methods to enhance
the long-horizon reasoning capabilities of LLMs, particu-
larly in mathematical problems. One line of research(Wei
et al., 2023; Chen et al., 2023) focuses on eliciting the rea-
soning potential of LLMs with carefully designed prompts
without updating the model. On the other hand, some ap-
proaches involve training LLMs with additional data. Lu
et al. (2024a); Gou et al. (2024); Yu et al. (2024); Liu et al.
(2024a) synthesize new problem-solution pairs to fine-tune
a base model. Furthermore, employing process-level super-
vision during RL or Best-of-N sampling has been explored
(Wang et al., 2023; Jiao et al., 2024; Lightman et al., 2023;
Wang et al., 2024b; Luo et al., 2024), which, while effec-
tive, often necessitates extensive generation and verification
efforts. Our approach leverages only the policy model to
generate datasets, thus simplifying the acquisition process.

Some recent reasoning models like o1 (Jaech et al.,
2024), QwQ-32B-preview (Qwen, 2024), and deepseek-
r1 (DeepSeek, 2024) greatly improve LLM’s reasoning ca-
pacity through test-time scaling. Some other methods (Yao
et al., 2023; Qi et al., 2024; Xiang et al., 2025) also discuss
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how to achieve such test-time scaling through system-2 plan-
ning or carefully designed reasoning pipelines, which ac-
complish similar improvements with smaller general models.
Our method is perpendicular to these works as we address
exploration issues and help scale self-generated responses
during training. We also believe that they can be combined
with our method in the future to enhance LLM’s reasoning
ability further.

2.2. Reinforcement Learning for LLM Reasoning

Reinforcement Learning (RL) has effectively been applied
to align LLMs with human preferences across various tasks,
including instruction-following and summarization (Ouyang
et al., 2022; Stiennon et al., 2022). Recent works (Yang et al.,
2024a;b; Jiao et al., 2024) apply these methods to mathe-
matical reasoning tasks. Xi et al. (2024) introduces reverse
curriculum learning into math reasoning.Setlur et al. (2024);
Lai et al. (2024); Lu et al. (2024b) generate pairwise prefer-
ence datasets from intermediate states and employ DPO to
train the model. Chen et al. (2024); Feng et al. (2023); Xie
et al. (2024); Zhang et al. (2024) either learn a step-level
value function or directly fine-tune LLM through sampling
with Monte Carlo Tree Search. Our method proposes a more
efficient and natural exploration process for LLM reasoning,
yielding a simple yet effective training pipeline that does
not need external supervision or extra models.

3. Methods
This section introduces our method. We first present our
problem formulation in Sec. 3.1, followed by the three main
components of our proposed method in Sec. 3.2, Sec. 3.3,
and Sec. 3.4. The general pipeline of our method is illus-
trated in Fig. 2 and Algo. 1. We enable the policy to cover
the solution space better, persistently improving its reason-
ing ability as the generated responses scale when running
MARGE iteratively. We provide additional theoretical anal-
ysis on how MARGE works in Appendix C, examples in
Appendix F, and failure analysis in Appendix G.

3.1. Problem formulation

Reinforcement Learning for LLMs Reinforcement
Learning (RL) in the field of LLMs mainly involves two
stages: training a reward model and optimizing this model
using RL algorithms such as PPO (Schulman et al., 2017)
and REINFORCE (Sutton et al., 1999). An alternative ap-
proach, Direct Preference Optimization (DPO) (Rafailov
et al., 2024), simplifies this process by learning directly
from a preference dataset. Given a dataset that consists of a
chosen and a rejected response for all prompts, DPO directly
updates the policy π with a loss analogous to RLHF.

State-level mathematical reasoning Let a⊕ b represent
the concatenation of strings a and b. We conceptualize the
reasoning process as a Markov Decision Process (MDP)
⟨S,A, P, r⟩, where states s ∈ S and actions a ∈ A sam-
pled from policy πθ, and transition dynamics formulated as
st+1 = st ⊕ at. Each response y can be decomposed into
multiple reasoning steps y = m1 ⊕ · · · ⊕mn, delineated
by specific delimiters or simply splitting the response. An
intermediate reasoning state si, also a prefix of y, can then
be formulated as si = m1 ⊕ · · · ⊕mi, including the first
state s0 which is an empty string. The terminal state sn = y
encompasses the final answer and, therefore not considered
an intermediate state. The reward function r(x, y) = 1 if
the full response y correctly answers the question x. Corre-
spondingly, the value of state si, which equals the Q value
of (si−1, ai−1), can be computed as

Qπ(si−1, ai−1) = V π(si) = Eτ∼π(x⊕si)r(x, si⊕τ). (1)

3.2. Output Reward MC as Value Estimation

To estimate the value of an intermediate state s, we use the
Monte Carlo (MC) simulation to calculate V π(si) in Eq. 1.
Starting from state si, we generate n completions from the
current policy π, which we denote as τ = mi+1 ⊕ · · · ⊕
mn ∼ π(x⊕ si). The correctness of these completions is
assessed to estimate the true value V π as

V̂ π(si) =
1

n

n∑
j=1

r(x, si ⊕ τj). (2)

This MC estimation method has several advantages over
training a separate value model, such as a Process Reward
Model. First, employing MC simulation avoids the need
for additional model training and simplifies implementa-
tion(Wang et al., 2023; Jiao et al., 2024). Besides, MC
estimation provides an on-policy estimation, allowing re-
sponses to be used in later policy improvement.

3.3. Hit-guided Exploration

In this subsection, we discuss how utilizing the intermediate
states of a self-generated hit can improve the exploration
strategy of LLMs. Previous works (Salimans & Chen, 2018;
Florensa et al., 2017; Xi et al., 2024) on RL and LLM
reasoning show that starting from a demonstration state that
is close to the terminal can reduce the difficulty of acquiring
reward signals. Inspired by these findings, we propose to
sample responses by continuing from all intermediate states
of a selected response, which we call hit-guided exploration.
This enables better exploration over the entire reasoning
horizon.
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Figure 2. Overview of our method MARGE, which includes four stages. (a): Generate multiple responses from the current policy π(i) as
candidates for guidance and judge their correctness. Starting from the second iteration, we can directly leverage sampled responses from
stage (c). (b): Among all candidate solutions, we select one for each query as guidance according to Sec. 3.3. (c): Perform a continuation
of all states in the guide solution to complete the exploration (Sec.3.3) and value estimation (Sec.3.2). The collected data is utilized in
stage (d) for training and stage (a) in the next iteration as well. (d): Having fully explored the state space in (c), we first form the rollout
buffer, then optimize the current policy, and finally acquire the policy π(i+1) for the next iteration as described in Sec. 3.4.
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Figure 3. Average accuracies when starting from different interme-
diate states of correct solutions (blue) and incorrect ones (red) with
Qwen2-7B-Instruct. A larger state index indicates being closer to
the end. On average, completing from a correct (incorrect) state
increases the portion of correct (incorrect) answers, which boosts
the exploration of more training data.

Hit-Guided Exploration We assume a guide solution
is available for each question, which can be acquired by
sampling from the policy. Continuing from the solution’s
intermediate reasoning states, our explored responses natu-
rally share common prefixes. This pattern implicitly helps
assign credits to generated parts since the first steps are
shared between completions. The key differences in correct-
ness can, therefore, be identified in the later steps. In the
meantime, as the first few steps are fixed, the search space

is greatly reduced, making exploration much easier.

Furthermore, hit-guided exploration can potentially increase
the amount of valid training data. As illustrated in Fig. 3,
the precision of completing an intermediate state increases
on average as the state gets closer to the end of a correct
response. This result, also proven in Prop. C.1, indicates
that hit-guided exploration with a correct response increases
the ratio of correct responses among all generations. The
opposite also holds for incorrect ones. This shows that we
can improve the number of desired responses if appropriate
solutions are leveraged as guidance.

Hit Selection and Update When aligning LLMs, in par-
ticular reasoning, datasets that contain both positive and
negative responses are preferred. Such datasets provide
rich contrastive information regarding possible reasoning
failure and corrections, thereby greatly improving data ef-
ficiency (Setlur et al., 2024). Therefore, the guiding hit
must be carefully selected to find more paired responses. To
accomplish this, we design a simple yet effective heuristic
for selecting the guiding solution. We refer to queries with
an estimated value greater than 0.5 as easy queries and the
others as hard queries. We then randomly select a correct
solution for each hard query and an incorrect one for each
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easy question. This solution is based on the simple intuition
of increasing the likelihood of finding the right answer to a
difficult question and possible failure cases to an easy one.
Although this is a rather simple strategy, we demonstrate
with experiments in Sec. 4.3.1 and theoretical analysis in Ap-
pendix C to show that, in most cases in reasoning, applying
it helps increase the number of positive-negative pairs.

Another key factor is the on-policyness of generated data.
Self-generated responses that are on-policy improve LLMs
better as there is no distributional shift between responses
and the optimized policy (Lai et al., 2024). Therefore, in
each iteration from the first iteration, we update the guidance
hit with the latest generation to ensure it is on-policy and
that the explored data are equivalent to directly sampled
from the latest policy.

3.4. Iterative Improvement

Dataset Composition As the exploration process is done
on all intermediate states of a response, all explored rollouts
can be written as D = {(xi, sij , yijk, rijk)}, where yijk
means the k-th response generated from the j-th intermedi-
ate state sij of query xi, whose reward is rijk. We directly
utilize D with all rollouts for RL training. While for DPO
training, one correct response y+ and one incorrect response
y− are sampled for each intermediate state to construct a
preference dataset D = {(xi, sij , y

+
ij , y

−
ij)} for DPO. We

filter states with estimated values that are either too high or
too low to reduce noise and stabilize DPO training.

Policy training Having collected the dataset, we update
the current policy π

(i)
θ and use it as the reference with RL

or DPO. For DPO, we use the correct response as ywin and
the incorrect one as ylose to calculate the DPO loss, which
can be formulated as:

L = − 1

|D|
∑

(x,s,y+,y−)∈D

[ log σ(β log
πθ(y

+|x⊕ s)

πref(y+|x⊕ s)

−β log
πθ(y

−|x⊕ s)

πref(y−|x⊕ s)
)],

(3)

where σ is the sigmoid function, and β is a parameter con-
trolling the discrepancy of πθ.

For RL, we set the reward for the correct responses as 1
and 0 for incorrect ones. In addition to the vanilla RE-
INFORCE loss, we add several modifications to improve
training quality. We first replace the reward for the responses
with their group relative advantages, which are calculated as
in GRPO (Shao et al., 2024). We also add KL Divergence
penalty to stabilize training, resulting in a loss function as

L =
1

|D|
∑

(x,s,y,r)∈D

[−r̂ log πθ(y|x⊕ s)] + βKL(πθ||πref),

(4)

where r̂ = r−mean(ri)
std(ri)

is calculated using ri of the responses
gathered from the same intermediate state, and β is a coeffi-
cient that balances policy gradient and the KL penalty.

4. Experiments
We design experiments to investigate three key research
questions:

1. Does MARGE improve over baselines, and in which
aspects, when controlling data and model parameters?
(Sec. 4.2)

2. What are the benefits brought by introducing the hit-
guided exploration strategy? (Sec. 4.3.1)

3. How do design choices affect the overall results of
MARGE? (Sec. 4.3.2)

4.1. Experiment settings

Models We utilize Qwen2-7B-Instruct, Qwen2.5-
7B-Instruct (Yang et al., 2024a), LLaMa3.1-8B-
Instruct (AI@Meta, 2024), and MetaMath-Mistral-
7B (Jiang et al., 2023; Yu et al., 2023) as our backbone
models to conduct experiments due to their widespread
popularity and strong baseline performances. Additionally,
we include Qwen2.5-Math-7B-Instruct (Yang et al., 2024b),
a strong math-specific model. They cover models of
different types and math reasoning capacities, which we
believe help demonstrate the effectiveness of our method.

Baselines We first compare our method with algorithms
applying vanilla exploration. We include SFT and DPO as
our baselines on all models. Standard RL methods are also
included to compare our method with other baselines. In
particular, we compare our method with PPO (Schulman
et al., 2017) and REINFORCE++ (Hu et al., 2024). We also
include an updated version of REINFORCE that applies all
the settings in our RL training, but with vanilla exploration.
We describe it as GRPO in the following sections, as this
objective is equivalent to GRPO (Shao et al., 2024) when
the GRPO epoch is 1.

We also consider other potential exploration methods, in-
cluding recent works incorporating step-level supervision or
MCTS. We contrast our method with StepDPO (Lai et al.,
2024) on Qwen2-7B-Instruct, which shares a similar idea
of finding step-level supervision but through GPT-4 super-
vision. On MetaMath-Mistral-7B, we reproduce an MCTS-
based exploration method, MCTS-DPO (Xie et al., 2024),
as a baseline to showcase the efficacy of our exploration
strategy over different types of related methods.

Besides controlled experiments above, we include several
concurrent works (Cui et al., 2025; Liu et al., 2024b) that
promote LLM reasoning through different perspectives, like
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Table 1. Performance (pass@1 and pass@64 accuracy %) of different algorithms. The best result of each dataset is in bold, the second
best one is underscored, and our model is marked in blue . We greedily sample the responses for each query and run them three times to
report the average. Evaluation prompts are listed in Appendix E. Our method outperforms baseline methods on almost all datasets. More
interestingly, our method improves pass@64 accuracy by a larger margin, indicating improvement of models’ exploration abilities.

Accuracy %
MATH MATH500 GSM8k College Math OlympiadBench

pass@1 pass@64 pass@1 pass@1 pass@64 pass@1 pass@64

Qwen2-7B-Instruct 53.18 59.92 85.67 22.13 25.13 20.65 24.98
SFT 55.98 61.04 84.76 24.74 26.86 21.03 25.38

DPO 57.24 63.44 85.90 31.64 35.72 20.88 25.83
PPO 58.70 61.98 88.47 35.72 38.44 21.82 24.54

REINFORCE++ 59.81 63.58 88.19 35.58 38.28 24.49 25.62
GRPO 59.89 62.92 88.07 35.02 37.09 23.85 25.72

StepDPO-HF 57.78 63.54 87.90 30.92 32.36 22.91 24.19
MARGE-DPO 59.92 66.84 88.60 34.68 36.58 21.48 24.69
MARGE-RL 61.08 68.20 88.70 35.77 40.10 25.88 27.31

MetaMath-Mistral 28.68 34.66 75.28 17.56 21.67 7.10 12.09
SFT 28.60 38.28 75.94 17.31 21.72 6.67 14.07

DPO 26.70 38.68 74.50 14.84 20.94 5.43 15.10
PPO 27.78 32.54 78.11 17.81 20.90 7.06 10.56

REINFORCE++ 30.33 34.38 78.19 18.32 20.98 7.85 9.87
GRPO 30.76 37.08 79.27 18.38 22.39 6.67 11.55

MCTS-DPO 29.92 37.44 77.53 17.85 20.84 6.57 11.68
MARGE-RL 32.13 41.34 81.81 19.76 24.28 8.14 14.32

Llama3.1-8B-Instruct 49.96 70.33 85.97 28.11 37.34 16.34 34.47
SFT 50.72 64.96 86.37 30.03 39.10 16.89 34.41

DPO 50.36 71.54 86.68 27.39 36.77 15.75 36.29
PPO 50.50 65.18 85.06 26.38 34.22 15.75 28.39

REINFORCE++ 52.27 67.14 86.93 28.72 35.84 18.37 35.11
GRPO 51.22 71.00 86.58 28.04 37.82 15.41 34.37

MARGE-RL 54.23 72.36 88.36 28.94 38.19 17.33 38.61

Qwen2.5-7B-Instruct 75.30 79.62 91.89 40.41 44.48 36.00 41.77
SFT 75.17 80.33 92.27 41.09 44.39 38.12 41.23

DPO 75.03 76.97 92.06 40.57 44.78 38.23 42.76
GRPO 76.24 81.14 92.34 40.72 43.68 38.07 40.64

MARGE-RL 76.74 85.16 93.02 41.12 44.18 39.70 43.21

a revised multi-stage SFT process. MARGE enhances the
underlying exploration process in RL to enable the scaling
of self-generated responses for training. Therefore, they
can potentially be combined, not as counterparts, for future
enhancement in LLM reasoning.

Datasets For training, we start with the same subsets of
MetaMathQA (Yu et al., 2024) and AQuA (Ling et al.,
2017) as in StepDPO. Considering Qwen2.5-7B-Instruct
and Qwen2.5-Math-7B-Instruct’s already high performance
in these tasks, we respectively randomly sample a subset of
Omni-Math (Gao et al., 2024) and Big-Math(Albalak et al.,
2025)’s training set.

To find a guide solution to each training query in our method,
we generate 32 responses for each query in the training set
at the beginning and select one as described in Sec. 3.3.

We filter the queries for which no suitable response was
found, resulting in a curated dataset of approximately 8,500
questions paired with model-generated solutions. In the fol-
lowing rounds, the guidance solutions are selected similarly
but directly from those generated in the previous round with-
out additional sampling. If no appropriate solution exists
for guidance, the guidance solutions for these queries are
not updated.

For evaluation, we test our method on two widely
adopted benchmarks: MATH (Hendrycks et al., 2021) and
GSM8k (Cobbe et al., 2021), which include questions from
grade school level to challenging competition problems. We
also incorporate two more challenging datasets, Olympiad-
Bench (He et al., 2024) and CollegeMath (Tang et al.,
2024), to further test our model’s generalizability on out-of-
distribution challenging problems.
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Table 2. Performance (average of 3 runs) of MARGE and concurrent works based on Qwen2.5-Math-7B models. The best result is
in bold, and MARGE is marked in blue . MARGE significantly improves both the pass@1 accuracy and exploration ability over
Qwen2.5-Math-7B-Instruct. It also showcases better or comparable performances to the most advanced works at 7B level.

Accuracy %
MATH MATH500 College MATH OlympiadBench

pass@1 pass@1 pass@64 pass@1 pass@64 pass@1 pass@64

Qwen2.5-Math-7B-Instruct 83.48 83.33 86.40 40.80 48.64 46.95 48.62
PPO 83.37 83.26 86.12 40.75 47.14 47.05 48.63

MARGE-RL 84.46 85.04 89.92 41.58 49.49 47.40 49.02

ACEMath-7B (Liu et al., 2024b) 83.13 83.42 85.72 42.76 50.32 48.68 50.45
PRIME-EURUS-7B (Cui et al., 2025) 80.08 80.70 88.58 40.99 58.96 48.22 51.97

Implementation Our experiments are done on 8 A100-
80GB GPUs. When generating responses during training,
we set the temperature at 0.8 and the top p at 0.95 to generate
diverse responses, which are used to create training data sets
or find self-generated solutions. Specifically, we use the
vLLM (Kwon et al., 2023) engine to infer the policy model.

For DPO training and baselines, we set β = 0.4 and a global
batch size of 256. For RL training and baselines, we set the
coefficient for KL loss as 0.01 and sample 8 responses per
state (or query for RL baselines). For both our methods and
baselines, we run for 10 episodes and apply early-stopping.
More hyperparameters and implementation details are in
Appendix B.

4.2. Results

Metrics We evaluate models using two key metrics.
First, we test single-shot Chain-of-Thought (CoT) accuracy
(pass@1) across all datasets. Second, we assess multishot
accuracy (pass@k) to measure a model’s exploration ability.
Pass@k represents the model’s precision when given multi-
ple attempts to solve questions, indicating its ability to ex-
plore diverse reasoning paths. We visualize the exploration
ability by comparing pass@k improvement over pass@1
in Fig. 4. Due to computational constraints, we conduct
pass@k testing on MATH500 (Lightman et al., 2023), which
found effectively represent the complete MATH test set. We
also evaluate pass@k on CollegeMath and OlympiadBench,
excluding GSM8k due to its relative simplicity.

Main Results Our main results1 in Tab. 1 and Tab. 2
demonstrate consistent performance gains across model ar-
chitectures and benchmarks. MARGE also generalizes ef-
fectively to more difficult out-of-distribution test sets. It
outperforms its vanilla, externally supervised, and MCTS-
based exploration strategy counterparts by a large margin.
As Tab. 1 shows, MARGE’s improvements are relatively
more significant on complex tasks like MATH, indicating

1For baseline methods, if an open-source model is available,
we evaluate it as our model. Otherwise, we reproduce their method
on our models with our training queries.

the necessity of adequately exploring challenging problems
that require longer reasoning horizons.

Most notably in Tab. 1, Tab. 2 and Fig. 4, when MARGE
improves both pass@1 and pass@k, the performance gap
widens as k increases, indicating enhanced exploration ca-
pabilities. This finding is further validated through con-
tinued training experiments. Running REINFORCE++ on
the MARGE-trained Qwen2 model improves MATH accu-
racy to 62.34%, surpassing the 59.81% ceiling achieved
when starting from the base Instruct model. This sug-
gests MARGE training enhances both reasoning capabilities
and solution diversity, allowing access to previously unex-
plorable response possibilities. This improvement suggests
that during the MARGE training process, the model not
only gains better reasoning capabilities but also develops
additional diversity in its solution strategies, accessing pre-
viously unexplorable response types for the original model.

4.3. Ablation Study

To validate the effectiveness of MARGE, we conduct an
extensive ablation study to justify key design decisions of
our method. Ablation studies are conducted on the Qwen2-
7B-Instruct model with the same training query set.

4.3.1. BENEFITS OF HIT-GUIDED EXPLORATION

It enables more training data First, we show that our
exploration method helps find more effective training data
than vanilla exploration. We measure the number of valid
pairs with the entropy of training data. Higher entropy
indicates a larger ratio of possible correct-incorrect pairs
among all data, which is beneficial to improve LLM as
discussed in Sec. 3.3. We show how the entropy changes
as the sampled responses grow in Fig. 5a. We compare
vanilla exploration and hit-guided exploration with different
hit selection strategies, including:

1. Ours: Selecting guidance with the heuristic discussed in
Sec. 3.3, where we randomly select correct responses
for hard questions and incorrect responses for easy ones.

2. Random: Randomly select a response.
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Figure 4. Pass@1 (solid) and pass@64 (shaded) of different methods on the MATH500 test set. Pass@64 indicates the ability to explore
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Figure 5. (a): The change of training dataset entropy with number
of responses sampled. Our method continues to find new useful
pairs when generating more responses. As completing intermediate
states does not yield full responses, we convert them based on the
number of tokens. (b): Hit-guided explored data improves average
state value at every reasoning step compared to vanilla exploration,
in particular later ones. The values are estimated over 32 Monte
Carlo simulations.

3. Succ: Randomly select a correct response.

The results demonstrate that hit-guided exploration con-
tinues to uncover more pairs than vanilla exploration as
more responses are generated. Besides, comparing different
guidance selection strategies highlights the importance of
selecting appropriate guidance for exploration. If not, the
exploration performance might drop to the vanilla level.

It helps improve on all reasoning steps To further
demonstrate the benefits of hit-guided exploration, we aim
to validate that it improves over baselines at all reasoning
steps, particularly the final ones. We test this hypothesis
with two DPO experiments. The only difference is the
way training sets are collected: one uses hit-guided explo-
ration, while the other uses vanilla collection. We estimate
the policy state value V π(s) of all intermediate steps from
MATH500 collected by Qwen2-7B-Instruct. Aggregating
over queries, we plot the estimated value of different steps
in Fig. 5b and note that, while both versions of DPO sig-
nificantly improve the state value on all steps, DPO with
hit guidance data exhibit advantages starting from the third

reasoning step. When applying the same amount of data,
our method covers all reasoning horizons and explores more
effective data for optimizing LLM, particularly as the steps
go backwards.

4.3.2. ABLATION STUDIES

Generation Amount Our method enables the discovery
of more useful training data on the same set of queries, thus
paving the way for successfully scaling self-generation for
training. Therefore, to better control variables, we test how
increasing the number of self-generated data for training
influences the results of different algorithms. For SFT and
DPO, we increase the number of responses (pairs) for each
query; for RL baseline, we increase the number of rollouts
per query. This is done so that the total generated tokens
roughly match those in the MARGE training.

Table 3. Ablation study on the amount of training data. We in-
clude their best performance and the performance when they use
the same amount of data as MARGE in Tab.1. We annotate the
fraction of data used to achieve the best performance after best:.
Results showcase the importance of exploration when scaling self-
generated data.

MATH GSM8k College
Math

Olympiad
Bench

SFT
best:1/4 57.66 86.65 24.94 22.22

same data 57.36 86.02 24.12 20.74

DPO
best:1/16 57.24 85.90 31.64 20.88
same data 51.38 83.77 33.01 18.66

REINFORCE
best:2/5 59.81 88.32 35.58 24.49

same data 59.79 87.94 33.43 24.15

The results in Tab. 3 demonstrate that adding more data
to the baseline methods does not constantly improve the
reasoning ability. In contrast, it might even deteriorate
as spurious correlations occur. This further underscores
the importance of efficient exploration and better credit
assignment and the effectiveness of our method in achieving
these goals.
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Table 4. Ablation study on different guidance selection strategies.
The results are single-shot accuracy (%). The results indicate
that a better hit selection strategy achieves better exploration and
improves the final result, and on-policy solutions play a crucial
role in obtaining better exploration.

Strategies MATH GSM8k College
Math

Olympiad
Bench

Ours 61.08 88.70 35.77 25.88
Random 60.21 88.6 35.06 24.96

Succ 59.91 87.59 35.06 23.51
No Update 59.54 88.09 35.54 24.36

Hit Selection As demonstrated above, correctly selecting
the guidance trajectory helps improve exploration efficiency
by finding more valid preference pairs. Here, we further
validate its effects on final performances and compare dif-
ferent hit-selection strategies. We include another No Up-
date off-policy baseline, where we fix the guidance solution
once selected the same way as ours in the first round. We
train MARGE with RL and calculate the accuracies of the
four datasets as in Tab. 4. As we can infer from the table,
our designed strategy performs better than other selection
strategies. It can also be inferred that updating guidance
helps improve performance, indicating the essentiality of
on-policy solutions for exploration and policy improvement.

5. Computation Cost
Compared to vanilla exploration methods, MARGE natu-
rally introduces more generations when other parameters
are controlled (like number of samples per prompt, training
set size, etc.). It changes the coefficient of time complex-
ity, but not its asymptotic behaviour. Once the number of
intermediate states n is fixed, MARGE incorporates around
(n + 1)/2 times more generation and training amount, as
completing intermediate states generally requires fewer to-
kens. Statistics show it is approximately 3.3 on Qwen2,
Llama3.1, and MetaMath, with around 5 states per query,
and 4.9 on Qwen2.5, with around 8 states per query.

Table 5. The results of MARGE and some baselines are shown
when MARGE uses less computation, such that the training time
is roughly the same.

MATH GSM8k College
Math

Olympiad
Bench

PPO 58.70 88.47 35.72 21.82
REINFORCE 59.81 88.32 35.58 24.49

MARGE 60.67 88.10 35.81 25.28

Tab. 5 presents the results of MARGE and some baselines on
Qwen2 when MARGE uses less computation, such that the
training time is roughly the same. MARGE exhibits certain
advantages over baselines. However, as shown in Tab. 3,
with more generations, baseline methods’ performances
saturate or even deteriorate, while MARGE’s improved ex-

ploration ability allows it to continue improving.

While our method utilizes more generation computation, it
is our goal and contribution to scale up the computation to
make the most of the current query set. High-quality prob-
lems are getting harder to acquire. Therefore, we develop
MARGE with a stronger exploration ability to find more
high-quality training samples on the same query set. Possi-
ble ways to reduce the computation cost of MARGE exist,
like removing unnecessary states from the Monte Carlo
estimation.

6. Conclusion and Future Work
In this work, we identify and tackle the challenges of enhanc-
ing LLM reasoning through self-training. Our investigation
identified ineffective exploration as a critical bottleneck
in generating high-quality reasoning data, particularly for
complex, multi-step tasks. To address this, we introduced
MARGE, a novel method that systematically leverages self-
generated solutions to improve data exploration and credit
assignment across reasoning stages. Extensive experiments
and ablations demonstrate that MARGE achieves substantial
performance gains. Moreover, our method surpasses exist-
ing baselines by enhancing exploration diversity as well,
exhibiting larger gains in pass@k than pass@1. These re-
sults underscore the effectiveness of MARGE in improving
exploration and scaling self-training pipelines for LLM rea-
soning. We discuss the explicit scaling effects of MARGE
detailedly in Appendix D.

While MARGE demonstrates significant improvements,
it still has several points for future improvements. First,
MARGE’s performance gains converge after adequate it-
erations (though more than baselines), which is likely due
to the deterioration of generation quality during optimiza-
tion. Addressing this issue without compromising reasoning
gains is an interesting topic for future research. Second,
though validated to be effective for mathematical reasoning,
MARGE’s exploration strategy is relatively simple and has
not been tested in other domains. Extending it to diverse
application tasks could further enhance its impact.

Impact Statement
This paper presents work that aims to advance the fields of
large language models (LLMs) and Reinforcement Learn-
ing (RL), in particular LLM reasoning. In particular, the
developed algorithm makes it easier to explore the large
state space and refine credit assignment during LLM reason-
ing. However, if our method is misused for inappropriate
scenarios, it might cause LLMs to behave and respond un-
expectedly.
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A. Algorithm

Algorithm 1 MARGE

Input: Policy language model πθ; training query set DP ; number of episodes M ; query batch size B; KL loss coefficient
β; Monte Carlo simulation number n; initial responses generation number n1; output reward function r.

1: D ←generate policy(DP , πθ, n1) ▷ Generating n1 hit candidates for all queries
2: for j = 1 . . .M do
3: select guidance solution(D) ▷ Sec 3.3: select a guiding solution for each question
4: for query batch Di from D of size B do
5: S ← get states(Di) ▷ get states of the guidance solutions in Di

6: A ← generate policy(S, πθ, n) ▷ Sec 3.3: generate n completions for all states in S with policy πθ

7: V ← estimate state values(S,A) ▷ Sec 3.2: estimate state values
8: π′

θ ← train(πθ, D, V ) ▷ Sec 3.4: train policy with objective Eq. 3 for DPO or Eq. 4 for RL
9: D ← update hits(A) ▷ Sec 3.3: update guidance candidates with latest responses

10: πθ ← π′
θ ▷ Use the updated policy

11: end for
12: end for
Output: Trained policy πθ

B. More Implementation details
B.1. Our method

Our implementation is based on TRL (von Werra et al., 2020) and DeepSpeed (Rasley et al., 2020) framework. We utilize
the vLLM (Kwon et al., 2023) engine to do inference.

We apply two ways to obtain the intermediate states of a guidance hit. The first way is to divide the response with special
delimiters within the response the models generate, like Step i:. We leverage special prompts to generate such a pattern,
as further discussed in Appendix E. In Qwen2-7B-Instruct, this way results in an average of 4.42 states per question.
In Qwen2.5-7B-Instruct, more difficult problems are incorporated for training, resulting in an average of 9.08 states per
question. Another way is to split the response directly based on the number of tokens. We evenly split 5 states from the
guidance responses for other models. This is chosen based on the final performance of the models.

When collecting rollouts with hit-guided exploration, we set the following sampling parameters: temperature as 0.8, top p
as 0.95, top k as −1. For each state, 8 responses are collected. During RL training, we set the learning rate as 1× 10−6 and
batch size as 1024 to stabilize training. We set the coefficient for KL divergence as 0.01 and train the model with a context
length of 2048. We train on the collected dataset for 2 epochs within each iteration. During DPO training, we set β to 0.4.
We set the learning rate as 5× 10−7 with a batch size of 256. Within each iteration, we train on the collected dataset for 4
epochs, with a maximum length of 2048.

B.2. RL baselines

We train PPO and REINFORCE++ baselines with OpenRLHF (Hu et al., 2024). Some key parameters are listed in Tab. 6.
Some parameters are different from our method as we tuned them for better performance. For example, the sampling
parameters are different as PPO and REINFORCE++ with OpenRLHF fail to converge when the same ones are applied. We
implement GRPO with TRL (von Werra et al., 2020) similar to our method, only differing in the way collecting rollouts.
The parameters of GRPO are the same as our method.

B.3. DPO

The training data for DPO are collected in the same way as in our method. We form preference pairs by randomly selecting
correct and incorrect responses collected. We train DPO baseline with TRL (von Werra et al., 2020). We set β = 0.4 and a
global batch size of 256. The learning rate is 5× 10−7.
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Table 6. Some key parameters for RL baselines PPO and REINFORCE++.

value

KL penalty coefficient 0.01
Samples per prompt 8
Actor learning rate 5× 10−7

Critic learning rate 9× 10−6

Discount Factor 1
Training batch size 512
Rollout batch size 64(PPO)/128(REINFORCE)

Clip ratio 0.2
Maximum length 2048

Sampling temperature 1.0
Sampling top p 1.0

B.4. SFT

The training data for SFT are collected in the same way as in our method. A randomly selected correct response for each
query is used to run SFT. We set the learning rate to 5× 10−6, batch size to 128.

B.5. Other baselines

StepDPO (Lai et al., 2024) We directly utilize the open-source model provided2.

MCTS-DPO (Xie et al., 2024) We reproduce MCTS-DPO using its official repository3 on the same training set as ours.
We reproduce it on MetaMath-Mistral-7B as in their paper, with their default parameters. We did not include it in the Qwen
models as we failed to run it successfully after many times of trials.

C. Theoretical Analysis
In this section, we aim to provide a theoretical analysis of the foundation and effectiveness of MARGE.

In Proposition C.1, we first demonstrate that using a correct (or incorrect) solution as guidance increases the expectation
of acquiring correct (or incorrect) responses, which lays the foundation for the motivation of hit-guided exploration. This
intuitive phenomenon is empirically demonstrated in both previous works in RL (Florensa et al., 2017; Salimans & Chen,
2018) and in Figure 3. Here, we view such empirical conclusions from the viewpoint of theory.

Proposition C.1. Suppose S1 ⊕ · · · ⊕ Sn is a generated response. R(q, S1 ⊕ · · · ⊕ Sn) is the reward function that gives 1
if and only if S1 ⊕ · · · ⊕ Sn is a correct solution to q; otherwise R = 0. Under the condition that it is a randomly sampled
correct response, we have:

E[R] ≤ E[R|S1 is from a correct response] ≤ · · · ≤ E[R|S1, . . . , Sn are from a correct response].

If it is an incorrect response, then:

E[R] ≥ E[R|S1 is from an incorrect response] ≥ · · · ≥ E[R|S1, . . . , Sn are from an incorrect response].

Proof. Let’s start with E[R] ≤ E[R|S1] for correct responses. As in language generation, the process is of a discrete setting.
What’s more, as S1 ⊕ · · · ⊕ Sn is randomly sampled from all correct responses, with a little bit of notation abusing for
abbreviation, we can denote E[R|S1 is from a correct response] as E[R|S0] =

∑
S1

P (R = 1|S1)P (S1|R = 1). Consider

2https://huggingface.co/xinlai/Qwen2-7B-Instruct-Step-DPO
3https://github.com/YuxiXie/MCTS-DPO
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E[R|S1]− E[R], by Bayes’ theorem, we have:

E[R|S1]− E[R]

=
∑
S1

P (R = 1|S1)P (S1|R = 1)−
∑
S1

P (R = 1|S1)P (S1)

=
∑
S1

P (R = 1|S1)
P (R = 1|S1)P (S1)

P (R = 1)
−

∑
S1

P (R = 1|S1)P (S1)

=

∑
S1

P (R = 1|S1)
2P (S1)−

(∑
S1

P (R = 1|S1)P (S1)
)2

P (R = 1)

=
Var(P (R = 1|S1))

P (R = 1)
≥ 0,

(5)

so E[R|S1] ≥ E[R]. Similarly, we have E[R|S1, . . . , Sj ] ≥ E[R|S1, . . . , Sj−1]. Therefore, for a correct response,

E[R] ≤ E[R|S1] ≤ · · · ≤ E[R|S1, . . . , Sn]. (6)

We denote a new reward function R′ for incorrect ones, such that R′ = 1 − R on all queries and responses. Therefore,
similar to the deduction above, we have:

E[R′|S1] ≥ E[R′].

Subsituting back R = 1−R′, we will have E[R|S1] ≤ E[R]. Iterating such a process, we will have

E[R] ≥ E[R|S1] ≥ · · · ≥ E[R|S1, . . . , Sn] (7)

for incorrect guidance solutions.

In the following part, we aim to showcase the effectiveness in exploring more data of the hit-selection strategy in Section 3.3.
First, under the hypothesis that the change of E[R|S1, . . . , Si] in Proposition C.1 is linear to i, we show a sufficient condition
for exploring more correct and incorrect pairs within the same number of responses in Proposition C.2. This linearity
hypothesis is generally reasonable, shown by the empirical results in Figure 3 and Xi et al. (2024). The statistics in Figure 3
show general compliance with the conditions in Proposition C.2. The results in Figure 5a that directly reflect the dataset’s
pairs further validate the reasonableness of the hypothesis and the effectiveness of our method.

Proposition C.2. Suppose S1 ⊕ · · · ⊕ Sn is the generated response sampled for hit-guided exploration, and k is an
intermediate state. Suppose ∆ = |E[R|S1, . . . , Sj ] − E[R|S1, . . . , Sj−1]| is constant as j changes. Let ♯Hit-Guided be
the number of valid correct-incorrect pairs introduced by hit-guided exploration, and ♯Vanilla be the number of valid
correct-incorrect pairs introduced by vanilla exploration. Then

2k(k + 1) ≥ n(n+ 1), k = ⌊ |1− 2E[R]|
2∆

⌋,

is a sufficient condition that hit-guided exploration introduces more valid pairs than vanilla exploration, i.e.

♯Hit-Guided ≥ ♯Vanilla. (8)

Proof. Suppose we sample m responses in each state. As we only consider responses that share the same prefix, then the
total number of valid pairs is

♯Hit-Guided = min(E[R], 1− E[R])m+

n∑
i=1

min(E[R|S1, . . . , Si], 1− E[R|S1, . . . , Si])m.

For vanilla exploration, within m(n+ 1) responses, the number of valid pairs is

♯Vanilla = (n+ 1)min(E[R], 1− E[R])m.

Let’s first consider the E[R] ≤ 1
2 case, where ♯Vanilla = (n+ 1)mE[R].

15



MARGE: Improving Math Reasoning with Guided Exploration

When S1 ⊕ · · · ⊕ Sn is an incorrect response, as in Proposition C.1, E[R|S1, . . . , Si] ≤ E[R],

n∑
i=1

min(E[R|S1, . . . , Si], 1− E[R|S1, . . . , Si])m =

n∑
i=1

E[R|S1, . . . , Si]m ≤ nE[R]m.

Therefore, using an incorrect response for hard queries with an estimated value smaller than 0.5 cannot improve exploration.

On the other hand, let’s consider the case when S1 ⊕ · · · ⊕ Sn is a correct response. Since ∆ is the slope for linear
improvement in our hypothesis, by Proposition C.1, for arbitrary i, we have

pi = E[R|S1, . . . , Si] = E[R] + i∆. (9)

In addition, we denote p0 = E[R] for clearity. Consider k = ⌊ |1−2E[R]|
2∆ ⌋. Then for all i ≤ k, E[R|S1, . . . , Si] ≤ 1

2 , and for
all i > k, E[R|S1, . . . , Si] ≥ 1

2 , and

♯Hit-Guided = m

k∑
i=0

pi +m

n∑
i=k

(1− pi).

To make ♯Hit-Guided ≥ ♯Vanilla, we need to ensure that

♯Hit-Guided − ♯Vanilla = m

k∑
i=0

pi +m

n∑
i=k

(1− pi)− (n+ 1)mp0 ≥ 0. (10)

Substitute Equation (9) into Equation (10), we have

♯Hit-Guided − ♯Vanilla = m

k∑
i=1

i∆+m

n∑
i=k

(1− 2p0 − i∆). (11)

Therefore, we need to ensure that

k∑
i=1

i∆+

n∑
i=k+1

(1− 2p0 − i∆)

=
k(k + 1)

2
∆− (k + 1 + n)(n− k)

2
∆ + (n− k)(1− 2p0) ≥ 0.

(12)

As p0 ≤ 1
2 , k ≤ n simplifying Equation (12):

k(k + 1)

2
∆− (k + 1 + n)(n− k)

2
∆ + (n− k)(1− 2p0)

=(k2 + k − n2 + n

2
)∆ + (n− k)(1− 2p0)

≥(k2 + k − n2 + n

2
)∆

Therefore, a sufficient condition for the exploration to be effective is

(k2 + k − n2 + n

2
)∆ ≥ 0

n(n+ 1) ≤ 2k(k + 1).

(13)

In the E[R] > 1
2 case, the same result can be obtained similarly. When S1 ⊕ · · · ⊕ Sn is an correct response, we have

pn ≥ · · · ≥ p1 ≥ p0 ≥ 1
2 . Then ♯Hit-Guided = m

∑n
i=0(1− pi) ≤ m(n+1)(1− p0) = ♯Vanilla, indicating that the hit-guided

strategy is worse than the vanilla strategy when using a correct guidance.
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When S1 ⊕ · · · ⊕ Sn is an incorrect response, under the linear hypothesis, we have pi = p0 − i∆. Considering the same k,
we have for i ≤ k, pi ≥ 1

2 , and for i > k, pi < 1
2 . To make ♯Hit-Guided ≥ ♯Vanilla, we need to ensure that

♯Hit-Guided − ♯Vanilla

=m

k∑
i=0

(1− pi) +m

n∑
i=k

pi − (n+ 1)m(1− p0)

=m

k∑
i=0

i∆+m

n∑
i=k

(2p0 − 1− i∆) ≥ 0.

(14)

Equation (14) is anologous to Equation (12), only differing in the sign of 1− 2p0. Therefore, the condition in Equation (13)
is also sufficient in the case where p0 > 1

2 . Therefore, it is a sufficient condition for the hit-selection strategy in Section 3.3
to find more valid pairs.

In the last part, we view the benefits of MARGE’s exploration strategy from the viewpoint of policy optimization. We aim to
show in Proposition C.3 that, when using sampled self-generated solutions as guidance, the variance of the policy gradient
estimation decreases in expectation, resulting in improved policy optimization. Our analysis is based on REINFORCE for
simplicity, but similar results may also be found with other optimization algorithms.

Proposition C.3. Suppose Y0 = s1 ⊕ s2 ⊕ · · · ⊕ sM are self-generated guidance solutions for all queries q ∈ Q. Let ĝ[θ]
denote the MARGE policy gradient estimator from the objective in Equation (4), conditioned on guidance solution Y0; Let
g̃[θ] denote the policy gradient estimator of vanilla exploration. When the number of rollouts τ is the same, the variance of
the MARGE gradient estimation is lower in expectation, i.e.

EY0
Varτ |Y0

[ĝ|Y0] ≤ Varτ [g̃]. (15)

Proof. For the objective in Eq 4, the vanilla policy estimator g̃[θ] can be written as

g̃[θ] =
1

|Q|N
∑
q∈Q

∑
i=1,...,N

(r(q, yi)− log πref(yi|q) + log πθ(yi|q))∇θ log πθ(yi|q),

where yi are randomly sampled responses from the policy, and q is a query in the query set Q. Suppose yi can be
written as the concatenation of random variables at different steps yi = S1 ⊕ · · · ⊕ SM ′ . In the following part, we let
r̂(q, yi) = r(q, yi)− log πref(yi|q) + log πθ(yi|q) for simplicity.

The policy gradient estimator ĝ[θ] obtained with our method with guidance Y0 can be written as

ĝ[θ|Y0] =
1

|Q|MN

∑
q∈Q

∑
i=1,...,N

∑
j=0,...,M−1

r̂(q, s0 ⊕ · · · ⊕ sj ⊕ yij)∇θ log πθ(yij |q ⊕ s0 ⊕ · · · ⊕ sj).

Here, we define s0 as the empty string, and yij represents a response sampled to complete from step j.

We define a random variable that conditions on Y0 as follows:

G(i)|Y0
=

1

|Q|
∑
q∈Q

r̂(q, s0 ⊕ · · · ⊕ si ⊕ y)∇θ log πθ(y|q ⊕ s0 ⊕ · · · ⊕ si).

G(i)|Y0
represents the gradient when given query q and the first i steps of its corresponding guidance Y0 (i.e. s0 ⊕ · · · ⊕ si).

In this case, we can represent ĝ[θ|Y0] and g̃[θ] with G(i) as:

ĝ[θ|Y0] =
1

MN

∑
i=1,...,N

∑
j=0,...,M−1

G(j)i |Y0
,

g̃[θ] =
1

MN

MN∑
i=1

G(0)i .

(16)
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We modify the number of Monte Carlo samples N to MN of g̃[θ] to match the number of samples of ĝ[θ|Y0]. Since samples
are collected independently, the variance of the policy gradient estimator can be written as:

Varτ |Y0
ĝ[θ|Y0] =

1

M2N

∑
j=0,...,M−1

Var[G(j)|Y0],

Varτ g̃[θ] =
1

M2N
MVar[G(0)].

Now we want to show that EY0
Var[G(j)|Y0] ≤ Var[G(0)] for j ≥ 0. Let’s consider the relation between G(j)|Y0

and
G(j+1)|Y0

:

G(j+1)|Y0
= G(j)|Y0,Sj+1=sj+1

.

By the law of total variance, we have

Var[G(j)|Y0] = Var[ESj+1 [G(j)|Y0, Sj+1 = sj+1]] + ESj+1 [Var[G(j)|Y0, Sj+1 = sj+1]].

As variance is non-negative, we have:

Var[G(j)|Y0] ≥ ESj+1Var[G(j+1)|Y0].

Since the guidance solution Y0 is randomly sampled from the policy’s generation, its transition probability is the same as the
one during Monte Carlo samples. This means completing an intermediate state from the guidance is equivalent to directly
sampling from the start. Thus, we have:

Var[G(j)|Y0] ≥ ES0Var[G(1)|Y0] ≥ ES0,S1Var[G(2)|Y0] ≥ · · ·ES0,S1,...,SM−1
Var[G(M)|Y0],

Var[G(0)] ≥ EY0
Var[G(j)|Y0],∀j = 0, 1, . . . ,M.

Therefore,

EY0
Varτ |Y0

[ĝ|Y0] ≤ Varτ [g̃].

Remark C.4. Based on the proof in Proposition C.3 (Equation (16)), we may even conclude that, if the guidance solution Y0

is sampled from the policy, then the MARGE gradient estimation is unbiased in expectation over Y0. However, as we only
select one solution for each query, in our case, the bias of the MARGE estimator is not zero. Nevertheless, this issue can be
mitigated by using multiple guidance solutions for each query when more computation is available.

D. Scaling Trends of Self-Training
Based on our results of training different algorithms on Qwen2-Instruct, we find that, before performance saturation, the
logarithm function y = c1 + c2 lnx best describes the scaling trend between consumed self-training samples and the
resulting performance before performance saturation. When using the accuracy on MATH500 as an indicator, we have the
fitted trends shown in Tab. 7 and Fig. 6. The metrics above clearly showcase the effectiveness of MARGE in improving
scaling training data. The other algorithms are excluded as they saturate too fast to gain enough datapoints for regression.

Table 7. The fitted coefficients for different methods

c1 c2

MARGE 53.05 2.287
GRPO 52.92 1.302

SFT(RFT) 54.89 0.99
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Figure 6. The fitted line and datapoints for different methods

E. Prompts
For evaluation, we adopt their default chat template for Qwen2-7B-Instruct, Qwen2.5-7B-Instruct, and Llama3.1-8B-Instruct.
The prompt is adopted as follows.

Prompt for Evaluation

{Question}
Please reason step by step, and put your final answer within \boxed{}.

For MetaMath-Mistral-7B, we use the same Alpaca format as their official repo4.

Prompt for Evaluating MetaMath-Mistral-7B model

Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:{Question}
Please reason step by step, and put your final answer within \boxed{}.

### Response: Let’s think step by step.

During training, we divide a guidance solution into multiple reasoning steps by identifying special tokens or counting token
number. In the case of identifying special delimiters like "Step i:", we need to ensure the model outputs in a structured
way. Here, we add a CoT prefix "Let’s think step by step.\n Step 1:" to the model’s output. It ensures
the output follows the format and contains the delimiters required. We apply this technique to the Qwen2-7B-Instruct and
Qwen2.5-7B-Instruct models.

F. Case Study
In this section, we provide an illustrative example of how MARGE works with Qwen2-7B-Instruct in Figure 7 and with
Llama3.1-8B-Instruct in Figure 8.

G. Failure Analysis
Based on our theoretical analysis and empirical results above, MARGE is capable of improving the exploration process and
finally the reasoning ability of LLM. However, there are still outlier cases when the model fails to accomplish such goals.
Here, we focus on two typical types of failure, from the experiments on Qwen2-7B-Instruct:

4https://huggingface.co/meta-math/MetaMath-Mistral-7B
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State 4: state value v = 1.0
Example rollout: correct:

Step 6: Calculate the total arrangements. The total number 

of arrangements is the product of the arrangements of 

black and white pieces, since each arrangement of black 

pieces can pair with each arrangement of white pieces. 

\[ \text{Total arrangements} = 4! \times 5! = 24 \times 

120 = 2880. \] Therefore, the number of ways 4 black and 

5 white chess pieces can be arranged in a row such that 

they occupy alternate places is \(\boxed{2880}\). The 

answer is: $\boxed{2880}$

State 5: state value v = 1.0
Example rollout: correct:

Step 6: Calculate the total arrangements. The total number 

of arrangements is the product of the arrangements of 

black and white pieces, since each arrangement of black 

pieces can pair with each arrangement of white pieces. 

\[ \text{Total arrangements} = 4! \times 5! = 24 \times 

120 = 2880. \] Therefore, the number of ways 4 black and 

5 white chess pieces can be arranged in a row such that 

they occupy alternate places is \(\boxed{2880}\). The 

answer is: $\boxed{2880}$

State 1: state value v = 0.375
Example rollout: correct:

Step 4: Calculate the number of ways to arrange the 

black pieces. There are 4 black pieces, and they can be 

arranged in \(4!\) ways since each piece is distinct. Step 

5: Calculate the number of ways to arrange the white 

pieces. There are 5 white pieces, and they can be 

arranged in \(5!\) ways since each piece is distinct. Step 

6: Calculate the total number of ways to arrange both 

black and white pieces. Since the arrangement of black 

pieces and white pieces are independent, we multiply 

the number of ways to arrange each set. \[ \text{Total 

ways} = \text{Ways to arrange black pieces} \times 

\text{Ways to arrange white pieces} \] \[ \text{Total 

ways} = 4! \times 5! \]Step 7: Compute the factorials. 

\[ 4! = 4 \times 3 \times 2 \times 1 = 24 \] \[ 5! = 5 

\times 4 \times 3 \times 2 \times 1 = 120 \] Step 8: 

Calculate the total number of arrangements. 

\[ \text{Total ways} = 24 \times 120 = 2880 \] 

Therefore, the answer is \(\boxed{2880}\).

State 2: state value v = 0.125
Example rollout: correct:

Step 4: Calculate the number of ways to arrange the 

black pieces. There are 4 black pieces, and they can be 

arranged in \(4!\) ways since each piece is distinct. Step 

5: Calculate the number of ways to arrange the white 

pieces. There are 5 white pieces, and they can be 

arranged in \(5!\) ways since each piece is distinct. Step 

6: Calculate the total number of ways to arrange both 

black and white pieces. Since the arrangement of black 

pieces and white pieces are independent, we multiply 

the number of ways to arrange each set. \[ \text{Total 

ways} = \text{Ways to arrange black pieces} \times 

\text{Ways to arrange white pieces} \] \[ \text{Total 

ways} = 4! \times 5! \]Step 7: Compute the factorials. 

\[ 4! = 4 \times 3 \times 2 \times 1 = 24 \] \[ 5! = 5 

\times 4 \times 3 \times 2 \times 1 = 120 \] Step 8: 

Calculate the total number of arrangements. 

\[ \text{Total ways} = 24 \times 120 = 2880 \] 

Therefore, the answer is \(\boxed{2880}\).

Let's think step by step.

Step 1: Understand the arrangement.

We have 4 black pieces and 5 white pieces, 

and they must be arranged in an alternating 
fashion. Since there are more white pieces, we 

start with a white piece and then alternate.

Step 2: Calculate the total spots for pieces.

We have a total of 9 spots for the pieces to be 
placed in (4 for black and 5 for white). 

Step 3: Calculate the ways to arrange the 

black and white pieces.

The black pieces will occupy the even spots 
and the white pieces will occupy the odd spots. 

Step 4: Calculate the arrangements for black 

pieces.

There are 4 black pieces, and they need to be 
placed in the even spots out of 9. The number 

of ways to choose 4 spots out of 9 for these 
pieces is \(C(9, 4)\). However, since each 

black piece is distinct, we should calculate the 

arrangement as \(4!\) ways instead of \(C(9, 
4)\), given there are 4 black pieces and they 

are distinct. So, for the black pieces, there are 
\(4!\) arrangements. 

Step 5: Calculate the arrangements for white 
pieces.

Similarly, there are 5 white pieces, which need 
to be placed in the odd spots out of 9. The 

number of ways to arrange these 5 distinct 

pieces is \(5!\). 

Step 6: Combine the arrangements.\nSince the 
arrangement of black pieces and white pieces 

are independent events, we multiply the 

number of ways to arrange each set of pieces 
to find the total number of 

arrangements.\n\nThus, the total number of 
ways the pieces can be arranged in an 

alternating fashion is:\n\\[4! \\times 5! = 24 

\\times 120 = 2880.\\]\n\nSo, the answer is 
\\( \\boxed{2880}\\).

Query: In how many ways can 4 black and 5 white 

chess pieces be arranged in a row such that they occupy 

alternate places? Assume that the pieces are distinct.

State 0:state value v = 0
Example rollout: wrong:

Step 1: Establish the pattern for placement Given the 

requirement that pieces must occupy alternate places, if we 

place a black piece first, the sequence must follow B-W-B-

W-B-W……due to the fixed positions and distinct nature of 

the white pieces, does not contribute additional permutations 

for the white pieces (since they are fixed in their 'odd' 

positions). So, the total number of arrangements is the sum 

of the arrangements for each scenario: \[24 + 120 = 144\] 

The final answer is \(\boxed{144}\).

State 3: state value v = 0.625
Example rollout: correct:

Step 4: Calculate the number of ways to arrange the 

black pieces. There are 4 black pieces, and they can be 

arranged in \(4!\) ways since each piece is distinct. Step 

5: Calculate the number of ways to arrange the white 

pieces. There are 5 white pieces, and they can be 

arranged in \(5!\) ways since each piece is distinct. Step 

6: Calculate the total number of ways to arrange both 

black and white pieces. Since the arrangement of black 

pieces and white pieces are independent, we multiply 

the number of ways to arrange each set. \[ \text{Total 

ways} = \text{Ways to arrange black pieces} \times 

\text{Ways to arrange white pieces} \] \[ \text{Total 

ways} = 4! \times 5! \]Step 7: Compute the factorials. 

\[ 4! = 4 \times 3 \times 2 \times 1 = 24 \] \[ 5! = 5 

\times 4 \times 3 \times 2 \times 1 = 120 \] Step 8: 

Calculate the total number of arrangements. 

\[ \text{Total ways} = 24 \times 120 = 2880 \] 

Therefore, the answer is \(\boxed{2880}\).

Guidance: Rollouts:

Figure 7. An illustrative example of how MARGE works with Qwen2-7B-Instruct. In this example, we use the delimiter "Step i:" to
divide the guidance solution into 6 reasoning steps. In particular, to make sure the generated responses comply with the delimiter format,
we add the CoT prefix for generation on all states. The arrows connect intermediate states with the exploration process from that state,
including generated responses that complete the prefixes and corresponding value estimation. Of the 6 intermediate states in the guidance
hit, we visualize 3 states in detail, showcasing a randomly selected rollout at this state. On each state, we sample 8 responses to complete
it and estimate the state value. We display its estimated value and a randomly selected rollout as an example. The example in state 0 is
partially omitted for a better visualization.
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## Step 1: First, we need to calculate the value 
of a. To find the value of a, we simply 

substitute the given expression into the 

equation. $a = 2^5$. So, $a = 32$.
 ## Step 2: Next, let's simplify the value of b. 

Looking at the expression for b, we can see 
that there are many fractions multiplied 

together. The first set of fractions can be 

simplified as follows: $(\frac12

\cdot\frac41\cdot\frac18\cdot\frac{16}{1} 
\dotsm \frac{1}{512}\cdot\frac{1024}{1})$. 

This is a pattern where every other fraction 

cancels out, leaving us with $\frac{4}{1}$ 
after multiplication.

 ## Step 3: Now we continue simplifying the 
value of b by evaluating the remaining 

multiplication in its expression. Next, we have 

$(\frac{3}{6c}\dot

\frac{18}{9}\cdot\frac{1}{2})$. Simplifying 
this, we get $\frac{1}{2}$. 

## Step 4: Now we multiply the two 

simplified parts of b together. We multiply 
$\frac{4}{1}$ by $\frac{1}{2}$ which equals 

2. 
## Step 5: Calculate the value of b. Since $b = 

2^3 \cdot 2$, we can rewrite b as $2

^{3+1} = 2^4$. So, $b = 16$.

 ## Step 6: Calculate the value of c. $c = 7$, 
so we don't need to do anything here. 

## Step 7: Substitute the values of a, b, and c 

into the original equation $a^2 + b \cdot c + 
c^2$. Now we plug in our calculated values: 

$32^2 + 16 \cdot 7

+ 7^2$. 

## Step 8: Evaluate each part of the equation. 
First, we calculate $32^2 = 1024$. Then we c

alculate $16 \cdot 7 = 112$. Finally, we calcul
ate $7^2 = 49$. 

## Step 9: Plug these values back into the equ

ation and solve. $1024 + 112 + 49 = 1185$. 
The final answer is: $\boxed{1185}$"

Query: If $a = 2^5$, $b = 2^3 \cdot 

(\frac12\cdot\frac41\cdot\frac18\cdot\frac{16}{1} \dotsm 

\frac{1}{512}\cdot\frac{1024}{1})\times(\frac{3}{6}\cdot\frac{18}{9}\cdot\frac{1

}{2})$, and $c = 7$, calculate the value of $a^2 + b \cdot c + c^2$.

State 0:state value v = 0.125
Example rollout: wrong:

## Step 1: Calculate the value of a $a = 2^5$, so $a = 2 

\times 2 \times 2 \times 2 \times 2 = 32$. ## Step 2: ... 

Step 7: Calculate the value of $b \cdot c$ $b \cdot c = 

1679616 * 7 = 11770352$. ## Step 8: Calculate the value 

of $c^2$ $c^2 = (7)^2 = 49$. ## Step 9: Calculate the 

final result The value of $a^2 + b \cdot c + c^2$ equals 

$(1024) + (11770352) + (49)$. ## Step 10: Perform the 

addition to find the final result. $1024 + 11770352 = 

11780476$ then add 49, $11780476 + 49 = 11780525$. 

The final answer is: $\boxed{11780525}$

State 1: state value v = 0.125
Example rollout: correct:

\frac{18}{9}\cdot\frac{1}{2})$. Simplify this sequence 

of fractions, which becomes $\frac{1}{2}$. ## Step 4: 

Combine the results from the previous steps to simplify 

the value of b further. We now combine the results of 

the two sets of fractions in the expression for b: $2^3 * 

(4/1) * (1/2)$. We can rewrite this as $8 * 4 * 0.5$ 

which equals 16. ## Step 5: Evaluate the value of c. $c 

= 7$. ## Step 6: Plug the values of a, b, and c into the 

equation $a^2 + b \cdot c + c^2$. We plug the 

calculated values into the given equation: $32^2 + 16 * 

7 + 7^2$. ## Step 7: Perform exponentiation and 

multiplication. Calculate the exponentiation: $32^2 = 

1024$ and $7^2 = 49$. ## Step 8: Continue with the 

arithmetic operations. Calculate the product of 16 and 7: 

$16 * 7 = 112$. ## Step 9: Add and subtract the 

calculated values according to the order of operations. 

Add the numbers in the equation $1024 + 112 + 49$. ## 

Step 10: Compute the addition. $1024 + 112 + 49$ is 

equal to 1185. The final answer is: $\boxed{1185}$

State 3: state value v = 1.0
Example rollout: correct:

+ 7^2$. ## Step 8: Perform the arithmetic in the 

expression $a^2 + b \cdot c + c^2$. Calculate each term 

separately: $32^2 = 1024$, $16 \cdot 7 = 112$, and $7^2 

= 49$. Then add these terms together. ## Step 9: Combine 

the results from the previous step to find the solution. 

$1024 + 112 + 49 = 1185$. The final answer is: 

$\boxed{1185}$

Guidance:
Rollouts:

State 2: state value v = 0.625
Example rollout: correct:

\frac{18}{9}\cdot\frac{1}{2})$. Simplify this sequence 

of fractions, which becomes $\frac{1}{2}$. ## Step 4: 

Combine the results from the previous steps to simplify 

the value of b further. We now combine the results of 

the two sets of fractions in the expression for b: $2^3 * 

(4/1) * (1/2)$. We can rewrite this as $8 * 4 * 0.5$ 

which equals 16. ## Step 5: Evaluate the value of c. $c 

= 7$. ## Step 6: Plug the values of a, b, and c into the 

equation $a^2 + b \cdot c + c^2$. We plug the 

calculated values into the given equation: $32^2 + 16 * 

7 + 7^2$. ## Step 7: Perform exponentiation and 

multiplication. Calculate the exponentiation: $32^2 = 

1024$ and $7^2 = 49$. ## Step 8: Continue with the 

arithmetic operations. Calculate the product of 16 and 7: 

$16 * 7 = 112$. ## Step 9: Add and subtract the 

calculated values according to the order of operations. 

Add the numbers in the equation $1024 + 112 + 49$. ## 

Step 10: Compute the addition. $1024 + 112 + 49$ is 

equal to 1185. The final answer is: $\boxed{1185}$

State 4: state value v = 1.0
Example rollout: correct:

+ 7^2$. ## Step 8: Perform the arithmetic in the 

expression $a^2 + b \cdot c + c^2$. Calculate each term 

separately: $32^2 = 1024$, $16 \cdot 7 = 112$, and $7^2 

= 49$. Then add these terms together. ## Step 9: Combine 

the results from the previous step to find the solution. 

$1024 + 112 + 49 = 1185$. The final answer is: 

$\boxed{1185}$

Figure 8. An illustrative example of how MARGE works with Llama3.1-8B-Instruct. In this example, we split the guidance based on the
total token number. We derive the intermediate states such that the token number in each intermediate state forms an arithmetic sequence.
The arrows connect intermediate states with the exploration process from that state, including generated responses that complete the
prefixes and corresponding value estimation. Of the 5 intermediate states in the guidance hit, we visualize 3 states in detail, showcasing a
randomly selected rollout at this state. On each state, we sample 8 responses to complete it and estimate the state value. We display its
estimated value and a randomly selected rollout as an example. The example in state 0 is partially omitted for a better visualization.

21



MARGE: Improving Math Reasoning with Guided Exploration

1. queries that our trained model failed to answer;

2. cases where our model failed to find more preference pairs.

Wrong Solutions We select a sample from the MATH test set, which the trained Qwen2-7B-Instruct checkpoint failed to
solve. We mark wrong reasoning with red.

A Failed Case from MATH

Question: Joe was in charge of lights for a dance. The red light blinks every two seconds, the yellow light every
three seconds, and the blue light every five seconds. If we include the very beginning and very end of the dance,
how many times during a seven minute dance will all the lights come on at the same time? (Assume that all three
lights blink simultaneously at the very beginning of the dance.)

Correct Solution: The three lights blink simultaneously t seconds after the start of the dance if and only
if t is a common multiple of 2, 3, and 5. Recall the common multiples of a set of integers are precisely the multiples
of the least common multiple. Since 2, 3, and 5 are relatively prime, their least common multiple is 2 · 3 · 5 = 30.
Thus the light blinks t seconds after the beginning of the song for t = 0, 1, 2, . . . , 14, and after 14 thirty-second
periods, the song ends. Thus the lights blink in unison a total of 15 times.

Model Output: To find out how many times all three lights (red, yellow, and blue) come on at the same
time during a seven-minute dance, we need to determine the least common multiple (LCM) of the blinking intervals
of the three lights: 2 seconds, 3 seconds, and 5 seconds. This LCM will give us the interval at which all three lights
blink simultaneously.
1. Prime Factorization:
- 2 = 2
- 3 = 3
- 5 = 5
2. Calculate LCM: The LCM of a set of numbers is found by taking the highest power of all prime numbers
appearing in the factorization of these numbers.
- The prime numbers involved are 2, 3, and 5.
- The highest power of each prime number in the factorizations is 21, 31, and 51.
Therefore, the LCM is 21 × 31 × 51 = 2× 3× 5 = 30.
This means all three lights blink simultaneously every 30 seconds.
3. Convert Dance Duration to Seconds: A seven-minute dance lasts 7× 60 = 420 seconds.
4. Calculate Number of Simultaneous Blinks: To find out how many times all three lights blink simultaneously
during the 420 seconds, divide the total time by the interval:

420

30
= 14

Thus, all three lights come on at the same time 14 times during the seven-minute dance.
The final answer is 14 .

Invalid Guided Exploration As discussed in Appendix C, MARGE may not discover more valid training data when
scaling generation unless the requirements are satisfied, especially when the intermediate state values increase (or decrease)
too fast. Here, we showcase a query, along with its intermediate states, that fails to gain the exploration bonus because of
this. As demonstrated, this is caused by the fact that many later states have state values of 1 (or 0). Designing mechanisms
to filter out ineffective guidance or unnecessary states can potentially improve this framework.

Question: In a zoo there are 30 penguins, 22 zebras, and 8 tigers with some zookeepers. If the total number of heads
are 132 less than the number of feet, the number of zookeepers is
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State 0: (state value:0.125) Let’s think step by step.
Step 1:
State 1: (state value:0.375) Understanding the information given:
- There are 30 penguins. Penguins have 2 feet each.
- There are 22 zebras. Zebras have 4 feet each.
- There are 8 tigers. Tigers have 4 feet each.
- There are some zookeepers, but we don’t know how many yet. Let’s denote the number of zookeepers as Z.
Step 2:
State 2: (state value: 1) Calculating the total number of feet:
Each animal and each zookeeper has 2 feet each. So, the total number of feet is:

Total feet = (30× 2) + (22× 4) + (8× 4) + (Z × 2)

Total feet = 60 + 88 + 32 + 2Z

Total feet = 180 + 2Z

Step 3:
State 3: (state value: 1) Calculating the total number of heads:
Each animal and each zookeeper has 1 head. So, the total number of heads is:

Total heads = 30 + 22 + 8 + Z

Total heads = 60 + Z

Step 4:
State 4: (state value: 1) Using the given information:
We’re told that the total number of heads is 132 less than the number of feet. This gives us the equation:

Total heads + 132 = Total feet

60 + Z + 132 = 180 + 2Z

Step 5:
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