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Abstract
We present a generative optimization approach for
learning game-playing agents, where policies are
represented as Python programs and refined us-
ing large language models (LLMs). Our method
treats decision-making policies as self-evolving
code, with current observation as input and an
in-game action as output, enabling agents to self-
improve through execution traces and natural lan-
guage feedback with minimal human intervention.
Applied to Atari games, our game-playing Python
program achieves performance competitive with
deep reinforcement learning (RL) baselines while
using significantly less training time and much
fewer environment interactions. This work high-
lights the promise of programmatic policy repre-
sentations for building efficient, adaptable agents
capable of complex, long-horizon reasoning.

1. Introduction
A core challenge in AI is developing agents that learn com-
plex tasks efficiently and in ways that are interpretable to
humans. While traditional reinforcement learning (RL) has
achieved impressive results across domains including video
games (Mnih et al., 2013; Schulman et al., 2017), robotics
(Xu et al., 2023), embodied intelligence (Gupta et al., 2021),
and autonomous vehicles (Kiran et al., 2021), these methods
often require millions of interactions and produce opaque
policies that are hard to verify–especially problematic in
safety-critical applications. Atari games, for example, re-
main a longstanding benchmark where standard algorithms
like PPO (Schulman et al., 2017) demand heavy sampling to
perform well. These challenges have spurred growing inter-
est in alternate approaches that improve sample efficiency
and transparency.

Programmatic policies–explicit code that defines agent
behavior–offer interpretability, modularity, and formal veri-
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fiability. If such policies could be optimized as efficiently
as neural networks, they would enable agents whose deci-
sions can be inspected, tested, and reused–supporting safety
and generlization across tasks. Demonstrating this in Atari
would provide strong evidence that code is a viable repre-
sentation for sequential decision-making.

However, optimizing programs is fundamentally different
from tuning neural weights. Code is non-differentiable, mak-
ing gradient-based methods inapplicable, while brute-force
search (Abdollahi et al., 2023) or evolutionary methods (Cui
et al., 2021) struggle with combinatorial search. Conven-
tional RL methods (Mnih et al., 2013; Schulman et al., 2017)
provide limited feedback on which parts of the agent logic
caused failure. Naı̈ve LLM prompting often yields brittle,
one-shot scripts with poor execution grounding.

While recent work has explored using LLMs for code gen-
eration and optimization in various domains (Skreta et al.,
2023; Xia et al., 2023; Huang et al., 2024; Ishida et al.,
2024), their application to agent policy optimization–guided
by structural execution feedback–remains underexplored.
Our approach departs from prior work by: (i) treating the
policy code itself as the object of optimization, (ii) extract-
ing rich execution traces to localize failure points, and (iii)
prompting an LLM iteratively with graph-based backtracing
to propose meaningful code updates.

Our approach treats Atari gameplay as a programmatic con-
trol problem, where policies are written as modular Python
programs and refined through LLM-guided updates. Us-
ing the Trace framework (Cheng et al., 2024), we execute
policy rollouts in the environment and optimize policies
based on structured feedback from gameplay outcomes. A
key difference from prior work is the complexity of our
domain: while Trace focuses on short-horizon tasks (e.g.
Meta-World environments with at most 10 decision steps),
Atari games require hundreds and thousands of steps per
episode with sparse rewards, introducing longer temporal
dependencies and credit assignment challenges. Despite
this, our method enables interpretable and efficient learning,
with agents reaching competitive performance while remain-
ing human-readable by design. Our main contributions can
be summarized as follows:

• We present the first application of Python code-based
policy optimization on Atari games using generative
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LLM updates.

• We demonstrate that this method can learn long-horizon,
sparse-reward policies through natural language feed-
back and computational graph trace reasoning, achiev-
ing competitive performances with deep RL baselines
while using significantly less training time (-98% to
-52%) and fewer environment interactions.

2. Related Work
Reinforcement Learning for Atari Games. Model-free
RL algorithms dominate Atari gameplaying benchmarks,
such as DQN (Mnih et al., 2013), PPO (Schulman et al.,
2017), and distributional variants such as IQN (Dabney et al.,
2018) and C51 (Bellemare et al., 2017). To curb sample in-
efficiency, model-based agents combine world models with
planning, including SimPLe (Kaiser et al., 2019), Dream-
erV2 (Hafner et al., 2020), and MuZero (Schrittwieser et al.,
2020). Transformer-based approaches (Chen et al., 2021a;
Lee et al., 2022) and object-centric approach (Delfosse et al.,
2024) have also been explored. We use generative opti-
mization to overcome high sample complexity common in
traditional methods.

LLMs for Gameplaying. The application of LLM to
gameplaying has gained significant attention recently. LLM
exhibits solid ability to understand logic across a wide vari-
ety of games, such as Slay the Spire (Bateni & Whitehead,
2024), Minecraft (Wang et al., 2023), Pokémon (Karten
et al., 2025), StarCraft II (Ma et al., 2024), NetHack (Jeuris-
sen et al., 2024), simplified Maze (Sanchez Llado, 2024),
Rock Paper Scissors (Vidler & Walsh, 2025), and Negotia-
tion games (Hua et al., 2024). While previous approaches
focus on showcasing LLM’s ability to zero-shot these games,
our study examines LLM’s capacity of iteratively refining
game policy based on fine-grained environmental feedback.

Methods of Code and Policy Optimization. Prior pre-
LLM works have attempted to improve policy generalization
and verifiability by synthesizing structured policies, such as
LEAPS (Trivedi et al., 2021), VIPER (Bastani et al., 2018),
and learning programmatic state machine policies (Inala
et al., 2020). Building on this, general-purpose LLMs have
demonstrated substantial reasoning ability for code control
flow (Chen et al., 2021b; Ouyang et al., 2022; Roziere et al.,
2023). Furthermore, various studies substantiated LLM’s
potential for code-optimization, such as LLM-based iter-
ative optimizers including LangProp (Ishida et al., 2024),
EffiLearner (Huang et al., 2024), CLARIFY (Skreta et al.,
2023), and AutoPatch (Acharya et al., 2025). LLM-based
generative optimization is able to iteratively refine solutions
based on various forms of feedback, yet its potential for opti-
mizing agent policy for gaming remains underexplored. Our

work is the first to use generative optimization to improve
agent policy performance in Atari games.

3. Approach
We propose an LLM-based generative optimization ap-
proach for developing Atari game-playing agents, where
policies are represented as modular Python programs and
optimized within the Trace (Cheng et al., 2024) framework.
Unlike traditional RL algorithms that train neural network-
based policies, our method treats policy components such as
action selection as trainable functions written in code. Trace
captures detailed records of the agent’s interactions with the
environment (called ”execution traces”), allowing a large
language model to iteratively refine the policy based on this
structured interaction data and natural language feedback.
This allows interpretable and efficient policy learning in
complex, long-horizon environments.

class Policy(trace.Module):
def __call__(self, obs):

pred = self.predict_pos(obs)
action = self.act(pred, obs)
return action

@trace.bundle(trainable=True)
def predict_pos(self, obs):

"""
Estimate ball trajectory

from observation
"""

@trace.bundle(trainable=True)
def act(self, pred, obs):

"""
Move paddle towards

prediction
"""

(a) Trainable policy with predic-
tion and action functions.

policy = Policy()
params = policy.parameters()
optimizer =

trace.Optimizer(params)
env = TracedEnv()

for i in range(iters):
# Forward pass
traj = rollout(env, policy)
perf = evaluate(env, policy)
feedback =

compute_feedback(perf)
target = traj[’obs’][-1]

# Backward pass
optimizer.zero_feedback()
optimizer.backward(target,

feedback)
optimizer.step()

(b) Optimization loop using
Trace.

Figure 1. Policy Learning with Trace. The agent’s behavior is
defined by (a) trainable, modular functions, and (b) refined through
rollout-based optimization using structured feedback.

3.1. Object-Centric Atari Representations

We use Object-Centric Atari environments (OCAtari)
(Delfosse et al., 2024) to convert pixel-based observation
from Arcade Learning Environment (ALE) (Bellemare et al.,
2013) to object-level representations. OCAtari extracts key
information for each game object, including coordinates
(x, y), size (width, height), and velocity (dx, dy), rewards,
and game termination status (e.g., “lives”) (see Figure 2).
We generate this data on-the-fly during training and do not
apply additional transformations.

3.2. Generative Optimization

Agent Design. We represent the agent’s policy as a
modular Python program, structured around a high-
level plan-act interface. Each policy consists of
decision-making functions–such as planning trajecto-
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Figure 2. Visual Comparison of the Original Atari Game
Screen (Left) and Object-Centric Representation (Right) in
Breakout. The object-centric view provides a compact and inter-
pretable state abstraction. This representation allows our agents to
reason over gameplay dynamics efficiently.

ries or selecting actions–which are annotated with
@trace.bundle(trainable=True) to mark them as op-
timizable by the Trace framework. While the core interface
remains consistent across games, for each game, we in-
stantiate custom planning and acting components to reflect
specific mechanics and decision-making process.

For both Pong and Breakout, the policy includes
a predict_ball_trajectory function that estimates
the ball’s future position. This prediction informs a
select_action function that determines how the paddle
should move. For Breakout, we introduce an additional
generate_paddle_target component to prioritize tar-
geting high-value bricks and forming tunnel strategies,
adding a layer of strategic planning as a heuristic to guide
the generative optimization. In Space Invaders, the policy is
decomposed into decide_shoot and decide_movement

functions, allowing the agent to independently control when
to fire and how to move the player avatar.

Learning Design. We train agents in an episodic rein-
forcement learning setup, where each iteration consists of
a single rollout. During a rollout, the agent observes the
environment, selects actions, and receives rewards. This
rollout trajectory is traced end-to-end and is provided as
execution traces to an LLM-based optimizer along with nat-
ural language feedback derived from a full-length evaluation
episode (e.g. ∼4000 steps).

We use OptoPrime (Cheng et al., 2024), a generative op-
timizer that updates the agent’s policy by modifying its
trainable code components. The number of steps per rollout
is limited by the LLM’s context window, which must accom-
modate the trajectory, observations, and function definitions.
To fit within this token budget, we cap rollouts at 400 steps
for Pong, 300 for Breakout, and 15 for Space Invaders.

Our design requires minimal human intervention: the user
defines the high-level function interfaces, writes docstrings
and starter code, and configures automatic feedback. All
policy improvements thereafter are generated autonomously
by the LLM through iterative optimizations.

Staged Feedback Design. We observe that using only
reward-based feedback from training rollouts often leads
to performance plateaus–especially in games with evolving
dynamics. For instance, in Breakout, bricks in the upper
rows deflect the ball at higher speeds, creating a distribution
shift between the training context (primarily lower bricks)
and the evaluation context (including higher bricks). This
observation inspires two feedback design choices: 1) we
evaluate the performance of the agent with longer evaluation
rollouts and use that reward as feedback to the generative
optimizer; 2) we provide staged feedback to instruct the
model to pay attention to different game mechanisms or
share high-level winning strategies. To implement staged
feedback, we design natural language responses for different
levels of agent performance (Table 1).

Table 1. Staged Feedback for the Pong Agent at Different Per-
formance Levels.

Performance Level Feedback

High
(Reward ≥ 19)

”Good job! You’re close to winning the game! You’re scoring 20 points
against the opponent, only 1 points short of winning.”

Medium
(0 < Reward < 19)

”Keep it up! You’re scoring 12 points against the opponent but you are
still 9 points from winning the game. Try improving paddle positioning
to prevent opponent scoring.”

Low
(Reward ≤ 0)

”Your score is −5 points. Try to improve paddle positioning to prevent
opponent scoring.”

4. Evaluation
4.1. Results

We evaluate our approach in three classic Atari environ-
ments: Pong, Breakout, Space Invaders. The training config-
uration is reported in Table A.1 and the environment setup
is reported in Table 3. We compare the performance of
our approach with open-source implementations of deep
RL baselines, including DQN (Mnih et al., 2013) and PPO
(Schulman et al., 2017), as well as human-level performance
benchmarks. We demonstrate that our approach can match
some existing deep RL baselines while requiring signifi-
cantly less training time and fewer environment interactions
(Table 2).

4.2. Emergent Gameplay Understanding

OptoPrime (Cheng et al., 2024) shows a surprising ability
to infer underlying game dynamics and constraints from
sparse trajectory data. While we provide high-level guid-
ance through docstrings, we experiment with deliberately
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Table 2. Comparison of Atari Performance and Training Time.
Due to high variations in reported results across papers, we com-
pare against standardized baselines from open-source RL imple-
mentations (Huang et al., 2022b;a). RL algorithms are trained
with 8 parallel environment instances, while our agent uses only
1. For reference, highly optimized deep RL with 32 environment
instances can reach a Breakout score of ∼450 in 33m, see Ap-
pendix E.

Game Learned Agent DQN (Time) PPO (Time) Human

Pong 21 (43m) 20 (10h 6m) 19 (2h 24m) 14.59
Breakout 353 (1h 31m) 302 (26h 54m) 443 (3h 8m) 30.47
Space Invaders 1200 (36m) 1383 (26h 52m) 939 (5h 39m) 1668.67

Table 3. Atari Game-Specific Experiment Configurations.

Parameter Breakout Pong Space Invaders

Rollout horizon 300 steps 400 steps 15 steps
Action space LEFT/RIGHT/NOOP UP/DOWN/NOOP LEFT/RIGHT/FIRE/NOOP
Env special mechanics Auto-fire on life loss None Fire cooldown

omitting specific implementation details such as boundary
positions and collision physics. OptoPrime is able to cor-
rectly recover the missing information by analyzing traced
trajectory data. For example, Figure A.4 illustrates how
OptoPrime identifies the exact position of the right wall
(x = 152) by observing ball position and velocity changes
across multiple steps. It also learns accurate ball physics
such as bounce mechanics without explicitly being told
these details. This highlights LLM’s ability for causal rea-
soning over long, sparse sequence.

4.3. Code Complexity Analysis

To analyze how agent evolves, we track code complexity
over optimization steps. As shown in Table 4, the policies
grow significantly in length and structual complexity across
iterations, measured by lines of code (LOC), cyclomatic
complexity (Comp.), and the maximum nested if depth (N.
Ifs). Cyclomatic complexity (McCabe, 1976) quantifies the
number of independent execution paths through the code.
Final policies are consistently more complex than initial
scaffold, reflecting progressive refinement. Notably, com-
plexity often plateaus or slightly decreases in later iterations,
suggesting the model reorganizes logic for efficiency rather
than continues to expand it indefinitely.

4.4. Ablation Study of Staged Feedback

To evaluate the impact of the staged feedback design and
full-game evaluation, we perform an ablation study on the
game Pong, comparing two conditions: (1) using only
reward-based feedback from short training rollouts, (2) in-
corporating full-game evaluation reward as feedback. Since
training rollouts are short (e.g. 400 steps) and limited by

Table 4. Code Metrics for Selected Policy Stages. “It.” denotes
the iteration number corresponding to the policy stage.

Game Policy Stage LOC Comp. N. Ifs

Space Invaders
Initial (It. 0) 117 20 3
Intermediate (It. 9) 146 28 3
Best (It. 10) 146 28 3

Pong
Initial (It. 0) 49 2 1
Intermediate (It. 6) 94 9 1
Best (It. 11) 131 16 2

Breakout
Initial (It. 0) 95 5 1
Intermediate (It. 11) 134 24 3
Best (It. 20) 125 24 3

the context window of the LLM, they often capture only
fragments of a full game. Pong is a relatively simple environ-
ment compared to Breakout or Space Invaders. However, as
Table 5 shows, feedback derived solely from traced rollouts
leads to performance plateaus, even in this simpler setting.

Table 5. Impact of Full-Game Staged Feedback on Perfor-
mance in Pong. Despite Pong’s relatively simplicity, using only
traced rollout reward feedback leads to performance plateaus. This
demonstrates the importance of providing long-horizon feedback
in overcoming context limitations of the LLM for successful policy
optimization.

Feedback Type Max Performance

Rollout-Only Feedback 7
Rollout + Full-Game Staged Feedback 21

5. Discussions and Limitations
We demonstrate that generative code optimization can pro-
duce game-playing agents that achieve performance compet-
itive with deep RL methods using significantly less training
time and environmental interaction. By refining modular
Python policies through execution traces and structured feed-
back, our approach demonstrates interpretable and sample-
efficient learning in long-horizon, sparse-reward tasks.

However, our approach has limitations: LLMs can introduce
occasional unstable edits and the performance depends on
carefully crafted prompts due to the context window con-
straint of current models. Nonetheless, this work introduces
a novel framework for agent learning that combines pro-
grammatic reasoning and language-based optimization in
sparse-reward setting.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Atari Game Setup
Pong In Pong, the player controls a paddle on the right side of the screen to deflect the ball into the enemy’s goal. The
player scores a point if the enemy misses the ball. The game ends when one side scores 21 points.

Breakout In Breakout, the player moves a bottom paddle horizontally to deflect a ball that scores against brick walls upon
contact. The brick wall consists of six rows of different colored bricks, with higher bricks worth more points. Hitting higher
bricks would deflect the ball faster, increasing the difficulty in catching the ball. The player wins after scoring 864 points.
The player loses one life when failing to catch the ball and the ball moves out of range. The player has five lives in total.

Space Invaders In Space Invaders, the player controls a turret to shoot down aliens and alien ship that float around the
screen, while dodging the aliens’ attacks. There are three shields that can absorb both the player and the aliens’ attacks.
There can only be 1 player bullet on the field at a time, and the player has three lives.

The training configuration is reported in Table A.1.

Table A.1. Environment and Training Configurations.

Parameter Value

Environment Name {env}-*NoFrameskip-v4
Action Repeat (Frameskip) 4
Sticky Action Probability 0.0

Optimization Iterations 20
Rollout Length 15/300/400 steps
Memory Size (Optimizer Context) 5
Evaluation Episode Length ∼4000 steps
LLM Optimizer OptoPrime
LLM Backend Claude-3-5-sonnet-20241022-v2:0
Access Date Feb-May 2025

B. Agent Design Details
A.3 is a graphical visualization of the high-level design of the Pong, Breakout, and Space Invaders agents.

C. Feedback Design Details
We provide game-specific feedback instructions when the agent reaches different reward regions. Although the maximum
achievable score in games like Breakout (864) and Space Invader (typically several thousands) is significantly higher, we
deliberately define the “High” performance threshold at a lower reward level (e.g. ≥ 300 for Breakout). This choice
reflects the relatively short training horizon during each optimization iteration (15/300/400 steps), which is constrained by
the context window size of the LLM. Setting a lower threshold allows the feedback to remain meaningful and actionable
within the context of short-term learning progress, while still guiding the agent toward longer-term strategies over multiple
iterations. Staged feedback for the Breakout agent and Space Invaders agent are shown in Table A.2, A.3.

D. Emergent Gameplay Understanding of LLM Optimizer
Figure A.4 illustrates that LLM Optimizer can infer underlying game dynamics and constraints from sparse trajectory data,
without being explicitly told these details.
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Figure A.1. Visualization of Pong Atari Game Screen (Left) and Object-Centric Representation (Right).

Figure A.2. Visualization of Space Invaders Atari Game Screen (Left) and Object-Centric Representation (Right).
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Table A.2. Staged Feedback for the Breakout Agent at Different Performance Levels.

Performance Level Feedback

High
(Reward ≥ 300)

”Good job! You’re close to winning
the game! You’re scoring 320 points
against the opponent, try ensuring
you return the ball, only 30 points
short of winning.”

Medium
(0 < Reward < 300)

”Keep it up! You’re scoring 50
points against the opponent but you
are still 300 points from winning the
game. Try improving paddle posi-
tioning to return the ball and avoid
losing lives.”

Low
(Reward ≤ 0)

”Your score is 0 points. Try to im-
prove paddle positioning to return
the ball and avoid losing lives.”

Table A.3. Staged Feedback for the Space Invaders Agent at Different Performance Levels.

Performance Level Example Feedback

High
(Reward ≥ 1000)

”Great job! You’re performing well
with an average score of 1005. Try
to score more even more points”

Medium
(500 < Reward < 1000)

”Good progress! Your average score
is 570. Focus on better timing for
shooting and avoiding enemy projec-
tiles.”

Low
(Reward ≤ 500)

”Your average score is 270. Try to
improve your strategy for shooting
aliens and dodging projectiles.”

9
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(a) Pong Agent

(b) Breakout Agent

(c) Space Invaders Agent

Figure A.3. Agent Design to Play Atari Games.

E. Deep RL Results
Atari results vary widely across papers, and many state-of-the-art deep RL models are not open-source. To ensure consistency,
the numbers reported in Table 2 are from CleanRL (Huang et al., 2022b), the published ICLR blog post (Huang et al.,
2022a), and the public experiment log1. Runtime is computed from the Weights & Biases log. For Breakout and Space
Invaders, we reported the full training duration; for Pong, the RL policy plateaued before the experiment finished, so we
reported the time from the launch of the experiment to peak performance timestep.

Baseline results in Table 2 use 8 parallel environments. Faster implementations exist—e.g., Apex-DQN (Horgan et al.,
2018) and EnvPool—with 32–64 environments, A2C can solve Breakout in 33 minutes2. Our approach uses only a single
environment and no specialized speed optimizations.

F. Atari Agents Code
Figures A.5, A.8, A.9, A.10, A.13, and A.14 show the initial code for Pong, Breakout, and Space Invaders. Figures A.6, A.7,
A.11, A.12, A.15, and A.16 show the best learned code for Pong, Breakout, and Space Invaders.

1https://wandb.ai/cleanrl/cleanrl.benchmark/reports/Atari--VmlldzoxMTExNTI
2See Appendix E.
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class BreakoutPolicy(tace.Module):
def predict_ball_trajectory(self, obs):
"""
Game setup:
- Screen dimensions:

- Left wall: x=9
- Right wall:

[Additional docstring sections omitted]
"""
# Code omitted

(a) The user provides a partially specified docstring in the policy; the
right wall is unspecified.

class BreakoutPolicy(trace.Module):
def predict_ball_trajectory(self, obs):
"""
Game setup:
- Screen dimensions:

- Left wall: x=9
- Right wall: x=152

[Additional docstring sections omitted]
"""
# Code omitted

(b) OptoPrime infers the missing right wall location (x = 152) from
the observed ball trajectory, and updates the docstring accordingly.
Additional function logic (not shown) is also completed to implement
calculations based on bouncing logic.

Step Ball x Ball dx

t 152 +6

t+ 1 146 −6

(c) Trajectory reveals a bounce at x = 152, indicating the
presence of a wall.

Figure A.4. LLM-Guided Code Refinement. Given a partially specified policy (top left), the LLM optimizer (OptoPrime) uses trajectory
data (right) to infer missing environment constants and complete both the docstring and function logic to enable accurate trajectory
prediction.

11



Learning Game-Playing Agents with Generative Code Optimization

1 @trace.model
2 class Policy(Module):
3 def __call__(self, obs):
4 predicted_ball_y = self.predict_ball_trajectory(obs)
5 action = self.select_action(predicted_ball_y, obs)
6 return action
7
8 @trace.bundle(trainable=True)
9 def predict_ball_trajectory(self, obs):

10 """
11 Predict the y-coordinate where the ball will intersect with the player’s paddle by

calculating its trajectory,
12 using ball’s (x, y) and (dx, dy) and accounting for bounces off the top and bottom walls.
13
14 Game Setup:
15 - Screen dimensions: The game screen has boundaries where the ball bounces
16 - Top boundary: y=30
17 - Bottom boundary: y=190
18 - Paddle positions:
19 - Player paddle: right side of screen (x = 140)
20 - Enemy paddle: left side of screen (x = 16)
21
22 Args:
23 obs (dict): Dictionary containing object states for "Player", "Ball", and "Enemy".
24 Each object has position (x,y), size (w,h), and velocity (dx,dy).
25
26 Returns:
27 float: Predicted y-coordinate where the ball will intersect the player’s paddle plane.
28 Returns None if ball position cannot be determined.
29
30 """
31 if ’Ball’ in obs:
32 return obs[’Ball’].get("y", None)
33 return None
34
35 @trace.bundle(trainable=True)
36 def select_action(self, predicted_ball_y, obs):
37 """
38 Select the optimal action to move player paddle by comparing current player position and

predicted_ball_y.
39
40 IMPORTANT Movement Logic:
41 - If the player paddle’s y position is GREATER than predicted_ball_y: Move DOWN (action 2)
42 (because the paddle needs to move downward to meet the ball)
43 - If the player paddle’s y position is LESS than predicted_ball_y: Move UP (action 3)
44 (because the paddle needs to move upward to meet the ball)
45 - If the player paddle is already aligned with predicted_ball_y: NOOP (action 0)
46 (to stabilize the paddle when it’s in position)
47 Ensure stable movement to avoid missing the ball when close by.
48
49 Args:
50 predicted_ball_y (float): predicted y coordinate of the ball or None
51 obs(dict): Dictionary of current game state, mapping keys ("Player", "Ball", "Enemy")

to values (dictionary of keys (’x’, ’y’, ’w’, ’h’, ’dx’, ’dy’) to integer values)
52 Returns:
53 int: 0 for NOOP, 2 for DOWN, 3 for UP
54 """
55
56 if predicted_ball_y is not None and ’Player’ in obs:
57 return random.choice([2, 3])
58 return 0

Figure A.5. Initial Policy for Pong.
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1 @trace.model
2 class Policy(Module):
3 def __call__(self, obs):
4 predicted_ball_y = self.predict_ball_trajectory(obs)
5 action = self.select_action(predicted_ball_y, obs)
6 return action
7
8 @trace.bundle(trainable=True)
9 def predict_ball_trajectory(self, obs):

10 """(same as above)"""
11 if "Ball" not in obs:
12 return None
13
14 ball = obs["Ball"]
15 ball_x = float(ball.get("x", 0))
16 ball_y = float(ball.get("y", 0))
17 ball_dx = float(ball.get("dx", 0))
18 ball_dy = float(ball.get("dy", 0))
19
20 if ball_dx == 0:
21 # Special handling for vertical movement
22 if ball_dy > 0:
23 # Ball moving down
24 return min(190.0, ball_y + 4.0)
25 elif ball_dy < 0:
26 # Ball moving up
27 return max(30.0, ball_y - 4.0)
28 return ball_y
29
30 # Calculate time to reach paddle
31 paddle_x = 140.0
32 time_to_paddle = (paddle_x - ball_x) / ball_dx
33
34 # Calculate predicted y without bounces
35 predicted_y = ball_y + ball_dy * time_to_paddle
36
37 # Handle bounces with improved precision
38 while predicted_y < 30 or predicted_y > 190:
39 if predicted_y < 30:
40 predicted_y = 60.0 - predicted_y # Reflect off top
41 elif predicted_y > 190:
42 predicted_y = 380.0 - predicted_y # Reflect off bottom
43
44 # Adjust prediction near boundaries
45 if predicted_y < 40:
46 predicted_y = 40.0
47 elif predicted_y > 180:
48 predicted_y = 180.0
49
50 return predicted_y

Figure A.6. Best Learned Policy for Pong (Part 1).
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1
2 # continued from above...
3
4 @trace.bundle(trainable=True)
5 def select_action(self, predicted_ball_y, obs):
6 """(same as above)"""
7 if predicted_ball_y is None or "Player" not in obs or "Ball" not in obs:
8 return 0
9

10 paddle_y = float(obs["Player"].get("y", 0))
11 paddle_h = float(obs["Player"].get("h", 15)) # Default paddle height
12
13 # Calculate center of paddle with improved precision
14 paddle_center = paddle_y + paddle_h / 2.0
15
16 ball = obs["Ball"]
17 ball_x = float(ball.get("x", 0))
18 ball_dx = float(ball.get("dx", 0))
19 ball_dy = float(ball.get("dy", 0))
20
21 # Base tolerance increased for faster response
22 base_tolerance = 4.0
23
24 # Distance-based momentum - be more aggressive when ball is close
25 distance = abs(140.0 - ball_x)
26 distance_factor = max(0.5, min(2.0, distance / 70.0)) # Scale with distance
27
28 # Velocity-based momentum
29 speed_momentum = min(abs(ball_dy) / 2.0, 3.0)
30
31 # Combined adaptive tolerance
32 tolerance = base_tolerance * distance_factor + speed_momentum
33
34 # Early movement when ball is far and moving slowly
35 if distance > 100 and abs(ball_dy) < 2:
36 tolerance *= 0.5
37
38 # Special handling for straight ball movement
39 if ball_dx == 0:
40 if abs(ball_dy) > 0:
41 # Move towards predicted intersection more aggressively
42 tolerance *= 0.5
43
44 # Tighter tolerance near paddle edges
45 if paddle_y < 40 or paddle_y > 180:
46 tolerance *= 0.7
47
48 # Decision making with improved positioning
49 diff = paddle_center - predicted_ball_y
50 if abs(diff) < tolerance:
51 return 0 # Stay in position
52 elif diff > 0:
53 return 2 # Move down
54 else:
55 return 3 # Move up

Figure A.7. Best Learned Policy for Pong (Part 2).
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1 @trace.model
2 class Policy(Module):
3 def __call__(self, obs):
4 pre_ball_x = self.predict_ball_trajectory(obs)
5 target_paddle_pos = self.generate_paddle_target(pre_ball_x, obs)
6 action = self.select_paddle_action(target_paddle_pos, obs)
7 return action
8
9 @trace.bundle(trainable=True)

10 def generate_paddle_target(self, pre_ball_x, obs):
11 """
12 Calculate the optimal x coordinate to move the paddle to catch the ball (at

predicted_ball_x)
13 and deflect the ball to hit bricks with higher scores in the brick wall.
14
15 Logic:
16 - Prioritize returning the ball when the ball is coming down (positive dy)
17 - The brick wall consists of 6 vertically stacked rows from top to bottom:
18 - Row 1 (top): Red bricks (7 pts)
19 - Row 2: Orange (7 pts)
20 - Row 3: Yellow (4 pts)
21 - Row 4: Green (4 pts)
22 - Row 5: Aqua (1 pt)
23 - Row 6 (bottom): Blue (1 pt)
24 - Strategic considerations:
25 - Breaking lower bricks can create paths to reach higher-value bricks above
26 - Creating vertical tunnels through the brick wall is valuable as it allows
27 the ball to reach and bounce between high-scoring bricks at the top
28 - Balance between safely returning the ball and creating/utilizing tunnels
29 to access high-value bricks
30 - Ball speed increases when hitting higher bricks, making it harder to catch
31
32 Args:
33 pre_ball_x (float): predicted x coordinate of the ball intersecting with the paddle or

None
34 obs (dict): Dictionary containing object states for "Player", "Ball", and blocks

"{color}B" (color in [R/O/Y/G/A/B]).
35 Each object has position (x,y), size (w,h), and velocity (dx,dy).
36 Returns:
37 float: Predicted x-coordinate to move the paddle to.
38 Returns None if ball position cannot be determined.
39 """
40 if pre_ball_x is None or ’Ball’ not in obs:
41 return None
42
43 return None

Figure A.8. Initial Policy for Breakout (Part 1).
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1 # continued from above...
2
3 @trace.bundle(trainable=True)
4 def predict_ball_trajectory(self, obs):
5 """
6 Predict the x-coordinate where the ball will intersect with the player’s paddle by

calculating its trajectory,
7 using ball’s (x, y) and (dx, dy) and accounting for bounces off the right and left walls.
8
9 Game setup:

10 - Screen dimensions: The game screen has left and right walls and brick wall where the ball
bounces

11 - Left wall: x=9
12 - Right wall: x=152
13 - Paddle positions:
14 - Player paddle: bottom of screen (y=189)
15 - Ball speed:
16 - Ball deflects from higher-scoring bricks would have a higher speed and is harder to

catch.
17 - The paddle would deflect the ball at different angles depending on where the ball lands

on the paddle
18
19 Args:
20 obs (dict): Dictionary containing object states for "Player", "Ball", and blocks

"{color}B" (color in [R/O/Y/G/A/B]).
21 Each object has position (x,y), size (w,h), and velocity (dx,dy).
22 Returns:
23 float: Predicted x-coordinate where the ball will intersect the player’s paddle plane.
24 Returns None if ball position cannot be determined.
25 """
26 if ’Ball’ not in obs:
27 return None

Figure A.9. Initial Policy for Breakout (Part 2).
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1 # continued from above...
2
3 @trace.bundle(trainable=True)
4 def select_paddle_action(self, target_paddle_pos, obs):
5 """
6 Select the optimal action to move player paddle by comparing current player position and

target_paddle_pos.
7
8 Movement Logic:
9 - If the player paddle’s center position is GREATER than target_paddle_pos: Move LEFT

(action 3)
10 - If the player paddle’s center position is LESS than target_paddle_pos: Move RIGHT (action

2)
11 - If the player paddle is already aligned with target_paddle_pos: NOOP (action 0)
12 (to stabilize the paddle when it’s in position)
13 Ensure stable movement to avoid missing the ball when close by.
14
15 Args:
16 target_paddle_pos (float): predicted x coordinate of the position to best position the

paddle to catch the ball,
17 and hit the ball to break brick wall.
18 obs (dict): Dictionary containing object states for "Player", "Ball", and blocks

"{color}B" (color in [R/O/Y/G/A/B]).
19 Each object has position (x,y), size (w,h), and velocity (dx,dy).
20 Returns:
21 int: 0 for NOOP, 2 for RIGHT, 3 for LEFT
22 """
23 if target_paddle_pos is None or ’Player’ not in obs:
24 return 0
25
26 paddle = obs[’Player’]
27 paddle_x = paddle[’x’]
28 paddle_w = paddle[’w’]
29 paddle_center = paddle_x + (paddle_w / 2)
30
31 # Add deadzone to avoid oscillation
32 deadzone = 2
33 if abs(paddle_center - target_paddle_pos) < deadzone:
34 return 0 # NOOP if close enough
35 elif paddle_center > target_paddle_pos:
36 return 3 # LEFT
37 else:
38 return 2 # RIGHT

Figure A.10. Initial Policy for Breakout (Part 3).
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1 @trace.model
2 class Policy(Module):
3 def __call__(self, obs):
4 pre_ball_x = self.predict_ball_trajectory(obs)
5 target_paddle_pos = self.generate_paddle_target(pre_ball_x, obs)
6 action = self.select_paddle_action(target_paddle_pos, obs)
7 return action
8
9 @trace.bundle(trainable=True)

10 def generate_paddle_target(self, pre_ball_x, obs):
11 """(same as above)"""
12 if pre_ball_x is None or "Ball" not in obs:
13 return None
14
15 paddle = obs["Player"]
16 paddle_w = paddle["w"]
17 ball = obs["Ball"]
18 ball_dx = ball["dx"]
19 ball_y = ball["y"]
20
21 # Find gaps in brick rows to aim for
22 gaps = []
23 for y in [87, 81, 75, 69, 63, 57]: # Bottom to top rows
24 row_blocks = [
25 b
26 for b in obs.get(
27 f’{"B" if y == 87 else "A" if y == 81 else "G" if y == 75 else "Y" if y == 69

else "O" if y == 63 else "R"}B’,
28 [],
29 )
30 ]
31 if not row_blocks:
32 continue
33 for i in range(len(row_blocks)):
34 if i > 0:
35 gap_start = row_blocks[i - 1]["x"] + row_blocks[i - 1]["w"]
36 gap_end = row_blocks[i]["x"]
37 if gap_end - gap_start > 6: # Min gap width
38 gaps.append((gap_start + gap_end) / 2)
39
40 # Base offset that ensures reliable ball return
41 base_offset = -3 if ball_dx > 0 else 3
42
43 # Adjust offset based on ball height and gaps
44 if ball_y < 90: # Ball near brick wall
45 if gaps: # Aim for closest gap
46 closest_gap = min(gaps, key=lambda x: abs(x - pre_ball_x))
47 if abs(closest_gap - pre_ball_x) < 30: # Gap within reach
48 return closest_gap
49
50 # When ball is low or no good gaps available, focus on safe return
51 return pre_ball_x + base_offset

Figure A.11. Best Learned Policy for Breakout (Part 1).
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1 # continued from above...
2
3 @trace.bundle(trainable=True)
4 def predict_ball_trajectory(self, obs):
5 """(same as above)"""
6 if "Ball" not in obs:
7 return None
8
9 ball = obs["Ball"]

10 ball_x = ball["x"]
11 ball_y = ball["y"]
12 ball_dx = ball["dx"]
13 ball_dy = ball["dy"]
14
15 # If ball is not moving or moving up, can’t predict
16 if ball_dy <= 0:
17 return None
18
19 # Calculate time to reach paddle
20 paddle_y = 189
21 time_to_paddle = (paddle_y - ball_y) / ball_dy
22
23 # Calculate x position considering wall bounces
24 num_bounces = 0
25 pred_x = ball_x + (ball_dx * time_to_paddle)
26
27 while pred_x < 9 or pred_x > 152:
28 if pred_x < 9:
29 pred_x = 9 + (9 - pred_x)
30 num_bounces += 1
31 elif pred_x > 152:
32 pred_x = 152 - (pred_x - 152)
33 num_bounces += 1
34 if num_bounces > 10: # Avoid infinite bounces
35 return None
36
37 return pred_x
38
39 @trace.bundle(trainable=True)
40 def select_paddle_action(self, target_paddle_pos, obs):
41 """(same as above)"""
42 if target_paddle_pos is None or "Player" not in obs:
43 return 0
44
45 paddle = obs["Player"]
46 paddle_x = paddle["x"]
47 paddle_w = paddle["w"]
48 paddle_center = paddle_x + (paddle_w / 2)
49 ball = obs.get("Ball", {})
50
51 # Adaptive deadzone based on ball position and speed
52 base_deadzone = 3
53 ball_y = ball.get("y", 189)
54 ball_dy = abs(ball.get("dy", 0))
55
56 # Larger deadzone for faster balls and higher positions
57 height_factor = (189 - ball_y) / 189
58 speed_factor = ball_dy / 4
59 deadzone = base_deadzone * (1 + height_factor + speed_factor)
60
61 if abs(paddle_center - target_paddle_pos) < deadzone:
62 return 0 # NOOP if close enough
63 elif paddle_center > target_paddle_pos:
64 return 3 # LEFT
65 else:
66 return 2 # RIGHT

Figure A.12. Best Learned Policy for Breakout (Part 2).
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1 @trace.model
2 class Policy(Module):
3 def __call__(self, obs):
4 shoot_decision = self.decide_shoot(obs)
5 move_decision = self.decide_movement(obs)
6 return self.combine_actions(shoot_decision, move_decision)
7
8 @trace.bundle(trainable=True)
9 def combine_actions(self, shoot, movement):

10 ’’’
11 Combine shooting and movement decisions into final action.
12
13 Args:
14 shoot (bool): Whether to shoot
15 movement (int): Movement direction
16
17 Action mapping:
18 - 0: NOOP (no operation)
19 - 1: FIRE (shoot without moving)
20 - 2: RIGHT (move right without shooting)
21 - 3: LEFT (move left without shooting)
22 - 4: RIGHT+FIRE (move right while shooting)
23 - 5: LEFT+FIRE (move left while shooting)
24
25 Returns:
26 int: Final action (0: NOOP, 1: FIRE, 2: RIGHT, 3: LEFT, 4: RIGHT+FIRE, 5: LEFT+FIRE)
27 ’’’
28
29 if shoot and movement > 0:
30 return 4 # RIGHT+FIRE
31 elif shoot and movement < 0:
32 return 5 # LEFT+FIRE
33 elif shoot:
34 return 1 # FIRE
35 elif movement > 0:
36 return 2 # RIGHT
37 elif movement < 0:
38 return 3 # LEFT
39 return 0 # NOOP

Figure A.13. Initial Policy for Space Invaders (Part 1).
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1 # continued from above...
2
3 @trace.bundle(trainable=True)
4 def decide_movement(self, obs):
5 ’’’
6 Decide movement direction based on enemy positions and projectiles.
7
8 Args:
9 obs (dict): Game state observation containing object states for "Player", "Shield0",

"Shield1", "Alien0", "Alien1", etc.
10 Each object has position (x,y), size (w,h), and velocity (dx,dy).
11 Player bullets have negative dy velocity and alien bullets have positive dy velocity
12
13 Strategy tips:
14 - Move to dodge enemy projectiles
15 - Position yourself under aliens to shoot them
16 - Stay away from the edges of the screen
17 - Consider moving toward areas with more aliens to increase score
18
19 Returns:
20 int: -1 for left, 1 for right, 0 for no movement
21 ’’’
22
23 player = obs[’Player’]
24
25 return random.choice([-1, 0, 1])
26
27 @trace.bundle(trainable=True)
28 def decide_shoot(self, obs):
29 ’’’
30 Decide whether to shoot based on enemy positions and existing projectiles.
31
32 Args:
33 obs (dict): Game state observation containing object states for "Player", "Shield0",

"Shield1", "Alien0", "Alien1", etc.
34 Each object has position (x,y), size (w,h), and velocity (dx,dy).
35 Player bullets have negative dy velocity and alien bullets have positive dy velocity
36
37 Strategy tips:
38 - You can only have one missile at a time
39 - Try to shoot when aliens are aligned with your ship
40 - Prioritize shooting at lower aliens as they’re closer to you
41 - Consider the movement of aliens when deciding to shoot
42
43 Returns:
44 bool: True if should shoot, False otherwise
45 ’’’
46
47 # There can only be one player bullet on the field at a time
48 # Check for player bullets (which have negative dy velocity)
49 for key, obj in obs.items():
50 if key.startswith(’Bullet’) and obj.get(’dy’, 0) < 0:
51 return False
52
53 player = obs[’Player’]
54 for key, obj in obs.items():
55 if key.startswith(’Alien’):
56 # Check if alien is aligned with player (within 5 pixels)
57 if abs(obj[’x’] - player[’x’]) < 5:
58 # Prioritize lower aliens (higher y value)
59 if obj[’y’] > 60: # Adjust this threshold as needed
60 return True
61 return False

Figure A.14. Initial Policy for Space Invaders (Part 2).
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1 @trace.model
2 class Policy(Module):
3 def __call__(self, obs):
4 shoot_decision = self.decide_shoot(obs)
5 move_decision = self.decide_movement(obs)
6 return self.combine_actions(shoot_decision, move_decision)
7
8 @trace.bundle(trainable=True)
9 def combine_actions(self, shoot, movement):

10 # same as above
11
12 @trace.bundle(trainable=True)
13 def decide_movement(self, obs):
14 """(same as above)"""
15
16 import random
17
18 player = obs["Player"]
19 move = 0
20 threat_left = 0
21 threat_right = 0
22 aliens_left = 0
23 aliens_right = 0
24 screen_width = 160 # Assuming standard Space Invaders screen width
25
26 for key, obj in obs.items():
27 if key.startswith("Alien"):
28 if obj["x"] < player["x"]:
29 aliens_left += 1
30 else:
31 aliens_right += 1
32 elif key.startswith("Bullet") and obj["dy"] > 0: # Enemy bullet
33 if obj["x"] < player["x"]:
34 threat_left += 1
35 else:
36 threat_right += 1
37 # Consider vertical position of bullets
38 if abs(obj["x"] - player["x"]) < 10 and obj["y"] > player["y"] - 30:
39 move = 1 if obj["x"] < player["x"] else -1
40
41 # Move away from threats if no immediate vertical threat
42 if move == 0:
43 if threat_left > threat_right:
44 move = 1
45 elif threat_right > threat_left:
46 move = -1
47 # If no immediate threat, move towards more aliens
48 elif aliens_left > aliens_right:
49 move = -1
50 elif aliens_right > aliens_left:
51 move = 1
52
53 # Stay away from screen edges
54 if player["x"] < 10 and move == -1:
55 move = 1
56 elif player["x"] > screen_width - 10 and move == 1:
57 move = -1
58
59 # Add small random movement
60 if random.random() < 0.1:
61 move = random.choice([-1, 0, 1])
62
63 return move

Figure A.15. Best Learned Policy for Space Invaders (Part 1).
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1 # continued from above...
2
3 @trace.bundle(trainable=True)
4 def decide_shoot(self, obs):
5 """(same as above)"""
6
7 # There can only be one player bullet on the field at a time
8 # Check for player bullets (which have negative dy velocity)
9 for key, obj in obs.items():

10 if key.startswith("Bullet") and obj.get("dy", 0) < 0:
11 return False
12
13 player = obs["Player"]
14 closest_alien_distance = float("inf")
15 closest_alien = None
16
17 for key, obj in obs.items():
18 if key.startswith("Alien"):
19 distance = abs(obj["x"] - player["x"])
20 if distance < closest_alien_distance:
21 closest_alien_distance = distance
22 closest_alien = obj
23
24 if closest_alien:
25 # Check if alien is aligned with player (within 15 pixels)
26 if abs(closest_alien["x"] - player["x"]) < 15:
27 # Prioritize lower aliens (higher y value)
28 if (
29 closest_alien["y"] > 30
30 ): # Lowered threshold for more aggressive shooting
31 return True
32 return False

Figure A.16. Best Learned Policy for Space Invaders (Part 2).
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