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ABSTRACT

Batched simulators for autonomous driving have recently enabled the training of
reinforcement learning agents on a massive scale, encompassing thousands of traf-
fic scenarios and billions of interactions within a matter of days. Although such
high-throughput feeds reinforcement learning algorithms faster than ever, their
sample efficiency has not kept pace: As the standard training scheme, domain
randomization uniformly samples scenarios and thus consumes a vast number of
interactions on cases that contribute little to learning. Curriculum learning of-
fers a remedy by adaptively prioritizing scenarios that matter most for policy im-
provement. We present CL4AD, the first integration of curriculum learning into
batched autonomous driving simulators by framing scenario selection as an unsu-
pervised environment design problem. We introduce utility functions that shape
curricula based on success rates and the realism of the agent’s behavior, in addition
to existing regret-estimation functions. Large-scale experiments on GPUDRIVE
demonstrate that curriculum learning can achieve 99% success rate a billion steps
earlier than domain randomization, reducing wall clock time by 77%. An ab-
lation study with a computational budget further shows that curriculum learning
improves sample efficiency by 67% to reach the same success rate. To support
future research, we release an implementation of CL4AD in GPUDRIVE!.

1 INTRODUCTION

Batched simulators for autonomous driving (AD) have recently empowered sample-inefficient but
effective reinforcement learning (RL) algorithms by enabling training for billions of interactions
within a few days (Cusumano-Towner et al., 2025} [Kazemkhani et al. [2025). These simulators
achieve such scale by training RL agents on hundreds to thousands of scenarios in parallel through
self-play (Silver et al.| 2017)), where a single policy controls all vehicles, taking millions of actions
per second. For example, agents trained on GPUDRIVE (Kazemkhani et al.,[2025)) using the Waymo
Open Motion Dataset (WOMD) (Ettinger et al., [2021)) reliably generalize to unseen test cases in
less than a day. GIGAFLOW (Cusumano-Towner et al.| 2025)), further scales self-play to 1.6 billion
kilometers of simulated driving within 10 days, producing generalist driving policies that outperform
benchmark-specific agents on CARLA (Dosovitskiy & Koltun, |2016), nuPlan (Caesar et al.,|2021)),
and Waymax (Gulino et al., 2023) without any training on these benchmarks.

Despite advances in high simulation throughput, training RL agents in batched driving simulators re-
mains sample-inefficient due to a standard training strategy: uniform scenario sampling, i.e., domain
randomization (DR). This approach wastes a massive number of interactions on scenarios that are
either too easy to provide a sufficient learning signal or too difficult for the current policy to make
progress on. Curriculum learning (CL) offers a remedy by adaptively prioritizing scenarios that
contribute the most to policy improvement (Narvekar et al.l |2020). In particular, curriculum learn-
ing has successfully fulfilled that promise in multiple large-scale RL domains. For example, Bauer
et al.| (2023) demonstrate that scaling meta-RL with automated curricula yields agents capable of
human-timescale adaptation across thousands of procedurally generated environments. [Zhang et al.
(2024) introduce curricula for open-ended environments, where there are infinitely many possible
tasks, showing that curriculum learning enables faster and broader skill acquisition.
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Figure 1: CL4AD integrates UED methods into a batched AD simulator to adaptively prioritize
traffic scenarios based on three types of utility functions: regret, success, and realism.
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* We present CL4AD, the first integration of curriculum learning methods from unsuper-
vised environment design to the scale of GPU-accelerated, self-play simulators for AD,
and provide an implementation in an open-source batched AD simulator, GPUDRIVE.

* We propose novel utility functions based on the success and realism of agent behavior.

* We conduct a large-scale empirical study 1) showing that CL accelerates RL training by
up to a billion interactions, improving the sample-efficiency to reach 99% success rate by
77% compared to DR; 2) illustrating the effects of different utility functions on learning;
and 3) analyzing the effectiveness of CL under limited compute resources.

2 RELATED WORKS

Autonomous driving simulators have enabled RL to train self-driving agents in multiple ways:
Simulators such as Waymax (Gulino et al., 2023) and Nocturne (Vinitsky et al.l 2022)) use traffic
scenarios from open-source driving datasets such as WOMD (Ettinger et al.,2021)), whereas CARLA
(Dosovitskiy et al.,|2017) is not data-driven, and Metadrive enables procedural scenario generation
as well as integration of real driving data. Attempts to scale RL for AD have resulted in batched
simulators such as Waymax, GPUDRIVE (Kazemkhani et al., [2025), and GIGAFLOW (Cusumano-
Towner et al.,[2025)), which significantly increased the data throughput to feed RL algorithms. These
simulators so far have utilized random scenario generation/sampling to train AD agents.

Curriculum learning for RL accelerates learning optimal policies by sequencing different config-
urations of the environment with respect to the capabilities of the trained agent (Narvekar et al.,
2020). Automated curriculum generation studies goal-conditioned domains (Baranes & Oudeyer,
2010; [Florensa et al., [2018}; [Tzannetos et al., 2023)), contextual settings (Klink et al.} [2022; Koprulu
et al.l 2023} |Sayar et al.,2024), and more popularly UED (Dennis et al.,[2020). UED models envi-
ronments with free parameters, calling an instance a level. UED methods generate levels via trained
teacher agents, e.g., PAIRED (Dennis et al., [2020) and RE-PAIRED (Jiang et al.| 2021a), or by
randomly sampling free parameters, e.g., in PLR (Jiang et al., 2021b) and ACCEL (Parker-Holder
et al., 2022). PLR, as one of the earlier UED approaches, has shown evidence of scalability in
settings such as meta RL (Bauer et al.| [2023) and open-ended environments (Zhang et al., 2024).
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Curriculum learning for AD aims to speed up training self-driving policies via RL, e.g.,|Q1ao et al.
(2018)) develops an automated curriculum generation method for urban intersections. Similarly, An-
zalone et al.| (20215 2022) propose a multi-stage curriculum learning method for CARLA, where
the number of agents, their initial positions, or weather conditions incrementally become more diffi-
cult as the training progresses. Recently, Brunnbauer et al.|(2024)) and|Abouelazm et al.|(2025) have
demonstrated that UED methods, specifically RE-PAIRED and ACCEL, respectively, effectively ac-
celerate training AD agents in CARLA. However, there has not been any investigation into whether
CL can scale with the high throughput and scenario diversity enabled by batched simulators such as
GPUDRIVE, which trains self-driving RL agents in scenarios from real driving datasets.

3 BACKGROUND

We model a traffic scenario as a partially observable stochastic game (POSG), similar toBrunnbauer,
et al.| (2024), to accommodate the multi-agent nature of driving. Upon defining this model, we
explain how batched AD simulators GIGAFLOW and GPUDRIVE train self-driving agents via a
multi-agent RL scheme called self-play in traffic scenarios. Then, we frame curriculum learning for
autonomous driving as unsupervised environment design, and describe how to measure the utility of
traffic scenarios to improve sample-efficiency. Lastly, we illustrate a popular UED method called
prioritized level replay (PLR), the backbone of the curriculum learning algorithm in our work.

3.1 TRAFFIC SCENARIOS AS PARTIALLY OBSERVABLE STOCHASTIC GAMES

Definition 3.1. A POSG is a tuple G = (N, S, A,0,T,Z,R,1,~), where N' = [N] is the set of
agents with N € 7, S is the state space, A = A; X Ay x - - x Ay and O = O1 x Oy x - - - x Oy
are the joint action and observation spaces. T : S x A — A(S) represents the stochastic dynamics
of a POSG, i.e, the probability of transitioning from state s € S to state s' € S given joint action
ac A Z:8 x A— A(Z) determines the probability of observing o = (01,02, -+ ,0on) € O in
state s taking joint action a. The reward function R : S x A — RY determines rewards, namely,
R(s,a) = (Ry(s,a), Ra(s,a), - , Ry(s,a)) where R;(s,a) € R is the reward for agent i € N.
I € A(S) represents the initial state distribution. Finally, v € [0, 1] is the discount factor.

A policy m; : O; — A(A;) describes the behavior of agent ¢ in POSG G. The value function
for m; is the expected cumulative discounted rewards over a horizon of H steps, i.e., V(m;) =

Erz Z?;Ol Y Ri(St,a¢)|so ~ I,a; = (a;1)jen Where aj; ~ Wj(Oj’t):|. Agent i aims to find an
optimal policy 7, which maximizes its value V (7r;) in POSG G.

In a traffic scenario modeled as G, consider 7; as a policy that controls vehicle 7. The road layout,
traffic rules, and collision dynamics in a scenario specify the dynamics 7'. Initial state sg ~ [
consists of the initial positions of all vehicles, pedestrians, cyclists, etc. Observation o; ; of vehicle ¢
attime ¢ € [H] is what the controller perceives about the surroundings based on its sensors as well as
specific attributes, e.g., the type of vehicle, its velocity, acceleration, etc. The reward r; = R;(s¢, a;)
can incentivize the policy to reach a goal location, stay within lanes, and avoid collisions.

To model multiple traffic scenarios, following Brunnbauer et al.[(2024), we formalize a set of traffic
scenarios as an underspecified POSG (UPOSG), which captures a set of traffic scenarios.
Definition 3.2. An underspecified POSG G® = (O, N©,S, A®,0° . T® 7Z° R® I° v) models
a set of POSGs through parameters 0 € © that determine the set of agents N, and all attributes of
a POSG 0 € © depending on its agents, such as the dynamics T® : S x A® x © — A(S).

Consider scenarios © = {0, };mepv) in WOMD (Ettinger et al., 2021), where M ~ 100,000. A
scenario 6, may correspond to an urban intersection, a parking lot, or a highway. Therefore, each
traffic scenario can have different speed limits, number of vehicles, types of vehicles, and rewards
for agents to act accordingly. A UPOSG enables modeling such variety in a multi-agent setting.

3.2 SELF-PLAY RL IN BATCHED AUTONOMOUS DRIVING SIMULATORS

Self-play RL is an RL scheme for multi-agent settings where each agent samples their actions from
a shared, decentralized policy. More formally, this scheme samples the action a; ; ~ m4(0;,;) of
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agent i € N'© via a policy Ty parameterized by ¢, e.g., a neural network with learnable parame-
ters ¢, given the observation o;; of said agent at time ¢. Batched AD simulators GIGAFLOW and
GPUDRIVE use self-play RL as the strategy to train a single policy that controls all vehicles in a
scenario in parallel. Their batched structure empowers parallelization further by concurrently sim-
ulating hundreds to thousands of traffic scenarios to accelerate experience collection. Both works
employ an on-policy RL algorithm, proximal policy optimization (PPO) (Schulman et al.| |2017),
where policy updates occur once the simultaneous data collection fills an experience buffer. As a
result, batched simulation accelerates experience collection via parallelized scenarios, while self-
play RL saves compute time and memory by training a single policy. We implement CL4AD on
GPUDRIVE, which samples hundreds of traffic scenarios every couple of million interactions, with
initial positions and goals from logged traffic data in WOMD. The default scenario sampling is uni-
formly random, i.e., via domain randomization, where every traffic scenario has equal likelihood.

3.3 UNSUPERVISED ENVIRONMENT DESIGN

UED (Dennis et al.,[2020) aims to generate a sequence of levels, i.e., traffic scenarios § € O in the
case of AD, to accelerate learning a policy that generalizes across all levelsﬂ One solution to UED
is a level generator A : TI — A(©) that produces a distribution over the set of all levels © given
a policy 7 € II. A level generator A maximizes some utility function U (7, #) that measures the
contribution of a level 6 to sample efficiently improve 7. Without loss of generality, in this section,
we assume that there is only one agent in a level 0, i.e., N © — [1], to ease the use of notation.

Domain randomization, i.e., uniformly sampling levels throughout the training, is the default way
of training an RL agent where the utility is constant for each level, namely, U(7,0) = C, § € ©
and C € R. UED methods primarily differ in their utility functions of choice, as it is not possible
to accurately calculate the contribution of all levels to policy improvement. There are two common
categories of utility functions: regret and success-based. Regret, i.e., the difference between the
expected discounted return of the current policy and the optimal one, is a convenient objective as a
level generator that maximizes regret will prioritize the easiest levels that the agent cannot currently
solve (Dennis et al., 2020). More formally, a regret-based utility is UR™ (7 §) = V9(7r§) —
V(r), where 7 is an optimal policy in level 6, i.e., a policy collecting the maximum expected
discounted return V¢ (7). However, as the optimal expected discounted return or the optimal policy
for each level is rarely available, UED methods estimate regret in various ways. Jiang et al.[(2021b))
propose learning potential, i.e., average magnitude of the generalized advantage estimate (AMGAE)
(Schulman et al.|[2015)) as a utility function that estimates regret over a single episode,

UAMGAE 71' 0 Z

t=0

Z YA L5

k=t

; (D

where 83 = r+vV ™ (0441)—V?7 (o) is the temporal difference error at timestep k, V%™ (o,) =

Ere zo [ ? kk "tk RO(sy, &y, 0)|ay ~ ’/T(Ot)} is the expected discounted return of 7 in s on

level 6, and ) is the discount factor for GAE. Alternatively, Jiang et al.| (2021a) and |Parker-Holder
et al.[(2022) employ positive value loss (PVL) i.e.,

H-1
UNVE (e Z max {Z 'y)\)k_lék,O} ) 2)
k=t

As PVL uses the bootstrapped value target to compute the temporal difference error, Jiang et al.
(2021a) also propose maximum Monte Carlo (MaxMC), which instead utilizes the highest return
obtained by 7 on level 8 to mitigate potential bias issues,

1 H-1
UMaXMC(’/T79) = ﬁ Z ( max Ve ﬂ-( )) 9 (3)

t=0

where R

ax 18 the maximum discounted return achieved in level 6 so far during training.

Success-based utility functions address settings where a level 6 is considered solved when a policy 7
reaches a goal state s € Sgoal C 8. Such utility functions use the success rate p?™, i.e., the fraction

'As level is the common term in the UED literature to describe 6, we use it interchangeably with scenario.



Under review as a conference paper at ICLR 2026

of times policy 7 solves alevel 6, p”™ =P (3t € [H] : s, € S&, |7, 0) . Inspired by Tzannetos et al.
(2023)), Rutherford et al.| (2024} propose learnability

Ut (w, ) = p?m - (1 —p»7), 4)

a utility function that can be interpreted as the variance of a Bernoulli distribution with parameter
p?™, namely, how inconsistent policy  is at solving 6. Rutherford et al.| (2024)’s analysis reveals
that in sparse reward settings, where only non-zero rewards occur when a policy reaches the goal,
regret-based utility functions have low correlation with the success rate. They argue that regret-based
utility functions become noisy in such settings, causing inaccurate identification of the learning
frontier. Therefore, learnability is useful, especially for autonomous driving, where reward functions
commonly reward and punish sparse events such as goal completion and collisions, respectively.

3.4 PRIORITIZED LEVEL REPLAY

Prioritized Level Replay(Jiang et al.,[2021b) is one of the first UED methods that lays the foundation
for approaches such as Robust PLR (Jiang et al., 2021a), REPAIRED (Jiang et al., [2021a)), and
ACCEL (Parker-Holder et al., |2022). PLR consists of two steps: uniformly sampling levels from
a set of training levels ©"" and replaying levels from a rolling buffer B. At the beginning of the
training, PLR evaluates the agent on randomly sampled levels, and scores these levels using regret-
estimating utility function UAMGAE Eq, . Then, PLR adds levels with the highest scores to its
buffer. Subsequently, PLR makes a random decision with probability d to sample unseen levels in
O"" or seen levels from the buffer via a distribution based on their scores and staleness, namely,

Prepiay (058, UMMOAE 1) = (1 = p) - Pusiiey (03] B, UNF) + - Puteness (0518, 1), (5)

where Pyiiey (0;|8, U AMGAE) is based on the ranking of seen levels with respect to their scores, i.e.,
rank(6;|B)~1/#

5= e Tank (65]B) 177
with a temperature parameter 3 tuning the impact of ranking. The staleness distribution assigns a
higher likelihood for levels that has not been sampled for a higher number of episodes, namely,
Ll — (7)
ZjeBscenaria [ - lGj
where [ is the total number of levels sampled so far, and Iy, is the episode count at which level 6; was

last sampled. This distribution aims to prevent the scores of seen levels from becoming off-policy
measures, as they may remain in the buffer without being sampled for a while during training.

Puiity (0B, UAMOAE) =

(6)

Pstaleness (01 ‘Ba l) =

4 CURRICULUM LEARNING FOR AUTONOMOUS DRIVING AT SCALE

Curriculum learning for autonomous driving, CL4AD, integrates variants of an existing UED
method, PLR, into a batched AD simulator by scaling them up in terms of four aspects:

(1) Concurrent simulation of hundreds of traffic scenarios,
(2) Tracking tens of agents in a single scenario,

(3) Training in tens of thousands of scenarios, and

(4) Training for billions of steps.

To adapt a UED method to a batched simulator, CL4AD tracks the behavior of all self-play agents
in all concurrent scenarios. For example, in GPUDRIVE, where we implement CL4AD, simulated
scenarios come from real-world datasets, and each scenario has a specific horizon H due to the nature
of the logged data. CL4AD treats each scenario as a separate §; € O to enable measurement and
tracking of their utility. Between scenario sampling steps, CL4 AD monitors each simulated scenario
and computes its utility once an episode terminates, which occurs when all agents reach their goals,
collide, or the time exceeds the horizon. In essence, the utility of a traffic scenario corresponds
to the expected performance of a self-play policy that controls all agents in the scenario, thereby
capturing the expected collective behavior. To address the multi-agent aspect, we make a change in
the definition of utility functions in Section 3.3 e.g., we formally define UM&MC a4

MaxMC 1 - 1 “ 0,n 0,
U (m,6) =Enp |5 > N, > (REE = VP (0n4)) ] (8)
t=0 n=1
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Algorithm 1 Curriculum Learning for Autonomous Driving (CL4AD)

Input: Set of training scenarios @
Parameters: Replay rate d, Staleness coefficient p, temperature (3, utility function U, total number
of iterations T"™" scenario sampling interval T*°°, policy update interval TP, number of worlds W
Output: Final policy 7y
1: Initialize policy 7y
2: B+ (), D <« () t < 0,0 < 0 > Reset scenario and experience buffers, as well as training iteration
3: while t < T"™" do

4:  if0 =t mod T* then
5: Il 1+1 . > Increment sampling iteration
6: (0)¥_1, B < SAMPLEFROMCURRICULUM(B, ©"" ) > Sample scenarios for worlds
7: D: = {{0n,w, an,w, oﬁl,w, Trw, en’w}ne[NQw] Fwew] > Record experiences over a single step
8: B <+ UPDATECURRICULUM(D,, U, B) > Update curriculum with the scores of terminated scenarios
9: D+ DuUD; > Update experience buffer with new interactions
10:  if0=t¢ mod T* then
11: 7w, D+ ®(D) > Update self-play policy via RL algorithm ®, and reset the experience buffer D
120t t+|Dy > Update training iteration

where Rfm;ﬁ is the maximum return that agent n € [Ny] collected in scenario 6 so far. In contrast
to Eq. (3), Eq. (8) accounts for the expected behavior of 7, as batched simulators enable the col-
lection of multiple episodes in a scenario before sampling new scenarios. As an approximation,
CL4AD computes the average of K-many episodes it observes between sampling steps. In addition
to regret-based U AMGAE 7PVL [yMaxMC "o d success-based U™ CL4AD introduces three novel
utility functions: learnability-hard UY*™M  ooql-conditioned average distance error (GC-ADE)

USCADE "and action mean absolute error (Act-MAE) UA"MAE | which we define as

Ng
. P 1 mT,n ™,n
grem i, 6) = 3= 3 Phind - (1= P ™) ©
n=1
No _
UGCADE( ) _ 71-9 Zﬁ Z ‘Xnt loggeng ’ (10)
No H-1
At MAE(ﬂ, 9) Z - Z |a _ alogged” (11)
) - H n,t 1 -
n—l t=0

pleam-hard g 5 success-based utility function that, in contrast to U™, utilizes the rate of agent

n reaching its goal without colliding or going off-road in scenario 6 via self-play policy 7. Such
difficult-to-satisfy success rates appear in AD works, as they capture both robustness and safety
(Cusumano-Towner et all 2025). UCGCADE 359 UAMAE g6 realism-based utility functions that
compute the distance between the positions and actions of RL agents and the logged trajectories,
respectively. Since the fundamental objective in training AD policies is to deploy them in the real
world, their realism becomes crucial for harmonious behavior. Realism-based metrics often serve
as a way to evaluate behavior plausibility (Caesar et al., 2021 |Gulino et al.| 2023} (Cornelisse &
Vinitskyl 2024). In contrast, CL4AD uses them to determine which scenarios to prioritize.

Algorithm([T]is a pseudocode illustrating the integration of PLR into a batched simulator via CL4AD.
At the beginning of the training, we initialize the parameters ¢ of the self-play policy 7y (Line 1),
and reset scenario and experience buffers 5 and D, as well as the training and scenario sampling
iterations, ¢ and I, respectively (Line 2). Until training iteration reaches T™", CL4AD first checks
if it is time to sample new scenarios via PLR based on its replay buffer B (Line 4-6). If so, CL4AD
samples new scenarios, and sets them to concurrently simulated worlds. Then, the self-play policy
7y takes a step in all scenarios, and D; records these experiences (Line 7). CL4AD updates the
curriculum buffer using the utility of terminated scenarios (Line 8). Note that each utility function
requires different signals. For example, realism-based functions compare observations or actions of
agents against logged data. Success-based ones check whether the agents reach their goals. Regret-
based functions require rewards, and sometimes values to compute temporal difference error, e.g.
UAMGAE and UPVL, Finally, an RL algorithm updates the policy using the experience buffer D (Line
9-11) every TP steps. We refer the reader to Appendix |D|for more details.
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Figure 3: Case 1: Performance progression during training with 1000 scenarios: We evaluate in
(top) training partition, and (bottom) 150 test scenarios. Bold markers indicate the mean, whereas
the shaded area covers one standard deviation around it across three independent training runs.

5 EXPERIMENTAL RESULTS

We implement CL4AD in GPUDRIVE (Kazemkhani et al., [2025) and conduct experiments using
traffic scenarios from WOMD (Ettinger et al.,[2021)) to investigate the following questions:

[3.1) Can curriculum learning accelerate learning performant AD policies?

[5.2) How does curriculum learning guide scenario selection?

[5.3) Is curriculum learning effective under limited compute resources?

[5.4) Can curriculum learning scale up with the number of scenarios?
For quantitative questions, we consider 1) expected discounted return, 2) success, i.e., goal-com-
pletion, rate, 3) collision rate, 4) off-road rate, and 5) goal-conditioned average displacement error
(GC-ADE) (Cornelisse & Vinitsky},2024) to assess performance, safety, and realism of trained poli-
cies. For qualitative questions, we visualize the evolution of replay distributions, exemplify scenar-
ios with the highest probability, and show the progression of expected utility in training scenarios.

We train RL agents in GPUDRIVE using self-play PPO, following [Kazemkhani et al.| (2025)); |Cor-
nelisse et al.[(2025)). The observation of an agent is its bird-eye-view (BEV) within a fixed radius,
while its action consists of speed and steering inputs. Agents receive rewards for goal completion,
and penalties for collisions and going off-road. Note that an episode does not terminate if a crash or
off-road event occurs. We report results from CL4AD trained with PufferLib (Suarez, 2024). We
compare DR, the default sampling approach, against 7 curriculum learning methods, which are
combinations of PLR with utility functions described in Sections [3.3]and 4} Regret-based [7AMGAE,
UPVL and UMaMC: gycecess-based UM2™ and Uheam-hard. realism-based UCCAPE and UACCMAE DR
and PLR sample scenarios every couple of million interactions for parallel worlds on GPUDRIVE.
We refer the reader to Appendix [E|for more details.

5.1 CAN CURRICULUM LEARNING ACCELERATE LEARNING PERFORMANT AD POLICIES?

To evaluate the benefits of curriculum learning in GPUDRIVE, we Goal-Cond. Ave. Distance Err. 4
first train RL agents using a mini version of WOMD with 1,000 tel

traffic scenarios and evaluate on the test partition with unseen 150  ©
scenarios. Fig. [3] shows the progression of trained policies when
evaluated on the training (top) and test (bottom) partitions. PLR,
when combined with all utility functions except U*MOAE achieves
higher discounted return and success rates in both partitions, signif- 0700404548779050 B'D‘l“—'z
icantly faster than DR. Fig. [2] further evidences that PLR achieves Number of policy updares -
99% success rate a billion steps earlier, reducing wall clock time by
77%. Note that PLR combined with UAMSAE outperforms DR with
a small margin in terms of return. PLR also yields realistic policies faster than DR (see Fig. [)),
showcasing that curriculum learning is not only sample-efficient but also obtains plausible behavior.

Figure 4: Case 1: Realism
progression in test partition.
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Figure 5: Case 1: Prplay progression of PLR combined with UMaMC in mini WOMD: We illustrate
(top) the evolution of P14y, Where darker line segments indicate scenarios with higher replay like-
lihood, (middle) a version of replay distribution under categorization with respect to the number of
controlled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.

5.2 HOW DOES CURRICULUM LEARNING GUIDE SCENARIO SELECTION?

Fig.[5|shows how replay distributions Prepiay (Eq. (3)) of ethod

PLR combined with UM®MC eyolve across independent - mrwoc — macicamsos - prowor o
training runs. We observe that certain scenarios are con- te-1 Leamability-Hard le-1  Leamabily
sistently assigned a high likelihood (dark red) in all runs ~ ** m iz %

across multiple stages of training, such as those illus- *° sy . e
trated in the bottom row. Note that scenarios with ID 58 ~ °* 00 -
and 264 involve at least 15 controlled agents (blue), and RN A ARt
highly congested cases are rare (see the middle row). Figure 6: Case 1: Learnability.

Fig. |§| illustrates the progression of U/leamhard and {yleam i training scenarios. Approaches that
converge early (see Fig.[3), obtain high learnability early on, showing improved learning speed, and
due to the same reason, achieve the lowest learnability the fastest in the end.

5.3 IS CURRICULUM LEARNING EFFECTIVE UNDER LIMITED COMPUTE RESOURCES?

To investigate curriculum learning under computational constraints, we ran an ablation study using
a GPU with significantly smaller memory, which only allows one-eighth of the number of worlds
W and one-fourth the size of the experience buffer D, in contrast to the GPU we used in other cases
(see Appendix [F] for more details). Although a smaller buffer results in a higher frequency of policy
updates, this setup causes training to take about four times longer in wall-clock time while limiting
the diversity of scenarios used for updates. Figs. [7a] and [7b] show that, although DR needs fewer
interactions than the regular set-up, PLR is faster at reaching 99% success rate by 67% than DR.
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5.4 CAN CURRICULUM LEARNING SCALE UP WITH THE NUMBER OF SCENARIOS?

To evaluate the scalability of curriculum learning for AD in terms of training dataset size, we train
self-play agents in (case 2) 10,000 and (case 3) 80,000 scenarios from WOMD. Figs. [7c| and [7d]
demonstrate that, PLR reduces the number of interactions needed to reach 99% success rate by over
55%, when combined with UM*MC and JAMAE in cage 2. Similarly, Figs. (7e] and [7f] show that
PLR improves sample-efficiency by 72% when combined with U*™ in case 3.

6 CONCLUSION

In this work, we introduce CL4 AD, the first integration of CL into batched AD simulators. CL4AD
frames scenario selection as a UED problem, enabling adaptive prioritization of traffic scenarios via
a well-known method, PLR (Jiang et al.l [2021b)), combined with utility functions that measure the
regret, success, and realism of the trained agent’s behavior. We conduct extensive large-scale experi-
ments by integrating CL4AD into GPUDRIVE, an open-source batched AD simulator. Empirically,
curriculum learning achieves 99% goal-completion in test scenarios up to 77% faster than domain
randomization, i.e., the default scenario sampling technique, when trained with datasets ranging
from 1,000 to 80,000 traffic scenarios. CL4AD further demonstrates that, CL reduces wall-clock
time to reach the same success rate by 67% under limited compute resources, as well.

Limitations and future work. CL4AD evidences that CL scales up to the high-throughput of
batched AD simulators. However, CL4AD is currently limited to an implementation of PLR and re-
quires access to a real self-driving dataset as a source of traffic scenarios for sampling, e.g., WOMD,
since GPUDRIVE operates on pre-defined scenarios. To address these limitations, future work will
explore UED methods such as ACCEL (Parker-Holder et al.,2022), which randomly mutates priori-
tized scenarios, hence increasing scenario diversity for training robust policies. In addition, synthetic
scenario generation tools, e.g., Scenario Dreamer (Rowe et al.l 2025)), can enable CL4AD to further
accelerate training and improve the robustness and generalization capabilities of trained agents by
creating safety-critical or out-of-distribution scenarios that the agent struggles with.
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C NOMENCLATURE
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Ttrain , Tsee , Tpol

POSG

Set of agents, number of agents (|| = N) in POSG
State, action and observation spaces in POSG

State, action, observation, and reward in POSG
Transition, observation, and reward functions in POSG
Initial state distribution in POSG

Discount factor and horizon in POSG

Set of scenarios and scenarios, i.e., § € O, in UPOSG
UPOSG

Set of agents, number of agents (|A"®| = N) in UPOSG
State, action and observation spaces in UPOSG

State, action, observation, and reward in UPOSG
Transition, observation, and reward functions in UPOSG
Initial state distribution in UPOSG

Discount factor and horizon in UPOSG

Position of an agent in a scenario in UPOSG

Number of scenarios in a UPOSG, i.e., |©| =M
Goal states in a UPOSG

Level generator for UED

Policy space in UED

Distribution over levels in UED

Utility function in UED, constant utility in UED
Replay buffer and distribution in PLR

Score and staleness distribution in PLR

Scenario sampling iteration in PLR

Staleness coefficient, score temperature, replay rate
Policy, value function

GAE discount factor, TD error

Maximum return of an agent

Success rate

Trainable policy parameter

Number of interactions for training, sampling scenarios,
and updating policy

Number of concurrent worlds
Experience buffer

RL algorithm of choice to update policy
End of episode flag

Rollout
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Algorithm 2 SAMPLEFROMCURRICULUM()

Input: Replay buffer 13, set of training scenarios ©"", sampling iteration [

Parameters: Replay rate d, staleness coefficient p, score temperature 3, number of worlds W

Output: Sampled scenarios (6,,)"_,, and buffer B with updated staleness

1: if |B| = 0 or (Bernoulli(d) = 0 and |@'» — Bscenario| ~ ()) then

2 Pample < Uniform(@'rain — pscenario) > Uniformly randomly sample scenarios
3: else

4 ]Psample — ]Preplay > Replay scenarios based on Pepiqy
5: (9“,)321 — Sample(Psample, W) > Sample W-many scenarios based on Psampie
6: Breenaro o geeenario (g VW, > Update scenarios in the replay buffer
7: lo, < I,Yw € [W] > Update sampling iteration for staleness distribution
8: 7o,  (),YVw € [W] > Reset the rollout

Algorithm 3 UPDATECURRICULUM()

Input: Interaction set Dy, utility function U, replay buffer B
Output: Updated replay buffer B

1: for w € [W] do

2:  if ey is True Vn € [Ny, ] then

3 scoreg, ¢+ < U (10,,) > Compute utility score for terminated episode
4: scoreg,, < MovingAverage(scoreg,, , SCOreg,, .+ ) > Update the score in the buffer
5 Toy < () > Reset the rollout
6 else

7 To, < T, Y {On,w, An,w, Ong, Tnw, en,w}nE[New] > Update the rollout with new interactions

D DETAILS OF CL4AD

In this section, we provide a more detailed look into how CL4AD works to support the material in
Section[d] Algorithm [2]is a pseudocode for how CL4AD samples new scenarios during training via
PLR. First, CL4AD determines whether to sample traffic scenarios from the replay buffer. If the
replay buffer is empty, or the random replay decision is False, conditioned on the fact that there are
still unseen scenarios, then CL4 AD uniformly randomly samples unseen scenarios from the training
dataset. Otherwise, it uses the replay distribution Pypiay to sample from the replay bufter B (lines
1-5). Then, CL4AD updates the scenarios in the buffer with the newly sampled ones and sets their
corresponding last sampling iteration to the current one for staleness computation later on (lines
6-8). Algorithm[3]is a pseudocode for how CL4AD updates the buffer. CL4AD goes through every
world and checks whether an episode has terminated. If so, it computes the utility of that episode
based on the rollout that CL4AD has kept track of. Then, this score is used to update the score in
the buffer via moving average, and finally, the rollout is reset for a new episode to save memory. If
the episode continues, then CL4AD updates the rollouts with the latest interactions it receives.

E EXPERIMENTAL DETAILS

In this section, we describe the process of hyperparameter selection for our experiments.

E.1 SIMULATION SET-UP

Our integration of CL4AD into GPUDRIVE follows the simulation set-up in [Kazemkhani et al.
(2025), where the simulator ignores collisions and going off-road, i.e., they do not lead to episode
termination; the observation of a vehicle is its bird-eye-view of a radius of 50m; non-vehicle objects
are omitted; a goal is considered to be achieved if an agent is in its proximity by 2m; the action
consists of two discrete random variables for steering and acceleration inputs, divided into evenly
spaced grids, 13 and 7, respectively; maximum number of controlled agents in a scenario is 64;
the agents only observe the current time step; and the episode takes 90 timesteps, amounting to 9
seconds, at most. For more details, we refer the reader to the default PufferLib configuration (see
environment section) in the repository published by |Kazemkhani et al.|(2025).
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Table 1: Self-play PPO Hyperparameters

Parameter Case 1,2,3 Ablation
total_timesteps T™" 2,000, 000,000 1,000,000,000
num_worlds W 800 100
batch_size TP 524,288 131,072
minibatch_size 16, 384 8,192
learning._rate 0.0003 0.0003
anneal_lr false false
gamma 7y 0.99 0.99
gae_gamma \ 0.95 0.95
update_epochs 2 4
norm-adv true true
clip_coef 0.2 0.2
clip-vloss false false
vi_clip_coef 0.2 0.2
ent_coef 0.0001 0.0001
vf_coef 0.5 0.3
max_-grad-norm 0.5 0.5
target_k1l null null
collision_weight —0.75 —0.75
off_road-weight —0.75 —0.75
goal_achieved.weight 1.0 1.0

E.2 SELF-PLAY PPO TRAINING

Table I]lists the hyperparameters for self-play PPO training in cases 1, 2, and 3, as well as the abla-
tion study. As the ablation study investigates limited compute resources, i.e., the use of fewer worlds
and lower batch sizes, we essentially set them according to the hyperparameters in Kazemkhani et al.
(2025)), where the number of worlds W = 50. In comparison, cases 1, 2, and 3 studies a larger scale
in terms of throughput, hence utilize significantly more concurrent worlds and a larger experience
buffer. As a result, their hyperparameters come from [Cornelisse et al.| (2025)), which focuses on a
similar scale. The weights for collision/off-road penalties and goal completion rewards also come
from |Cornelisse et al.| (2025). For cases 1 and 2, as well as the ablation study, the experiments
are over three independent runs, utilizing seeds 42, 12, and 67. Case 3 uses seeds 42 and 12. The
network architecture also follows the settings in (Cornelisse et al.| (2025).

E.3 SCENARIO SAMPLING DETAILS

Table 2] demonstrates the hyperparameters used for the experiments we report in cases 1, 2, 3, and
the ablation study. The search space for PLR hyperparameters is as follows: staleness coefficient
p € {0.1,0.2} and score temperature 8 € {2,4}, based mainly on Jiang et al.| (2021b). We first
conduct a grid search in Case 1, where we train agents using all score functions on three independent
runs for one billion interactions. Then we select the pair that yields the highest success rate, the
fastest at test-time. [Jiang et al.| (2021a) suggests a lower temperature; however, our experiments
indicate that a higher temperature, especially considering the size of the training dataset, is more
performant in large-scale training. Case 3 and the ablation study also utilize these hyperparameters.
In case 2, we find that a higher temperature yields better results. We set the replay buffer size to the
size of the training dataset, and sample scenarios every 2, 000, 000 interactions.

F COMPUTATIONAL RESOURCES

We run our experiments in cases 1, 2, and 3 on an NVIDIA H200, which has 141 GB of GPU
memory. One training run, which amounts to 2 billion steps and approximately 3,800 policy updates,
takes around 60 hours. For the ablation study, we train agents on NVIDIA RTX A5000, which has
a GPU memory of 24GB, for a billion interactions, which takes over 110 hours.
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Table 2: Case 1: PLR Hyperparameters

Utility Function d (8 p
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G DETAILED RESULTS

G.1 QUANTITATIVE RESULTS

Figures 8] [0} [10] and [IT] demonstrate the progression of trained agents in cases 1, 2, and 3, as well
as the ablation study, respectively. These figures provide details on the progression of performance,
regret, realism, and learnability when agents are evaluated in the training and test partitions of their
respective experiments. Regret, learnability, and realism in the training partition highlight how au-
tomated curricula impact training. In most cases, we observe that PLR variants are significantly
faster than DR at achieving low utility scores in these metrics, indicating that they obtain more per-
formant and realistic policies more quickly. The performance progression, when evaluated on the
training partition, leads to a similar observation as well. Progression in test scenarios demonstrates
the generalization capabilities of these trained agents, as these scenarios were not encountered dur-
ing training. Overall, we observe that PLR variants are again quickly becoming more capable at
generalization or becoming robust and reliable faster than agents trained via DR.

G.2 QUALITATIVE RESULTS

Figures and [17] illustrate the Preplay progression of PLR in case 1. Here we
omit UM™MC "ag we provide its illustration in the main document. The utility functions with a high
score temperature, i.e., 5 = 4, as opposed to § = 2, lead to a more uniform replay distribution
(see Figures for UAMGAE | [JGC-ADE "prleam “and UPVL, respectively). As the score
temperature decreases, the impact of the ranking on the replay distribution also decreases. Further-
more, we observe that certain utility functions result in significant changes in the replay distribution
throughout training, specifically when visualized with respect to the number of controlled agents in
scenarios (see Figures|12|and|15|for UAMAE apd {yleam-hard 'respectively). The reason behind such
changes may be the use of a lower score temperature, which allows the ranking to impact the replay
distribution more drastically.
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Figure 8: Case 1: Regret (UAMGAE [JPVL  [MaxMCy " realism (USC-ADPE), and learnability (U-2™,
yleam-hard) Hrooression during training with 1000 scenarios from WOMD: We evaluate in (a) train-

ing partition, and (b) 150 test scenarios. Bold markers indicate the mean, whereas the shaded area
covers one standard deviation around it across three independent training runs.
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Figure 9: Case 2: Performance, Regret (UAMGAE  [JPVL [JMaxMCy " realism (USC-APE), and learn-
ability (Uleam, yyleam-hardy “nrooression during training with 10,000 scenarios from WOMD: We
evaluate in (a) training partition, and (b) 10,000 test scenarios. Bold markers indicate the mean,
whereas the shaded area covers one standard deviation around it across three training runs.
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Figure 12: Preplay progression of PLR combined with U Ac-MAE i1y mini WOMD: We illustrate (top)
the evolution of Prepay, Where darker line segments indicate scenarios with higher replay likelihood,
(middle) a version of replay distribution under categorization with respect to the number of con-
trolled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.
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Figure 13: Pyeplay progression of PLR combined with UAMSAE in mini WOMD: We illustrate (top)
the evolution of Prepi.y, Where darker line segments indicate scenarios with higher replay likelihood,
(middle) a version of replay distribution under categorization with respect to the number of con-
trolled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.
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Figure 14: Pyeplay progression of PLR combined with US“APE in mini WOMD: We illustrate (top)
the evolution of Prepi.y, Where darker line segments indicate scenarios with higher replay likelihood,
(middle) a version of replay distribution under categorization with respect to the number of con-
trolled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.
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Figure 15: Pyeplay progression of PLR combined with UM ™hard ip mini WOMD: We illustrate (top)
the evolution of Prepay, Where darker line segments indicate scenarios with higher replay likelihood,
(middle) a version of replay distribution under categorization with respect to the number of con-
trolled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.
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Figure 16: Prepiay progression of PLR combined with U Learn i mini WOMD: We illustrate (top)
the evolution of Prep.y, Where darker line segments indicate scenarios with higher replay likelihood,
(middle) a version of replay distribution under categorization with respect to the number of con-
trolled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.
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Figure 17: Preplay progression of PLR combined with U PVL in mini WOMD: We illustrate (top) the
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(middle) a version of replay distribution under categorization with respect to the number of con-
trolled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.
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