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ABSTRACT

Batched simulators for autonomous driving have recently enabled the training of
reinforcement learning agents on a massive scale, encompassing thousands of traf-
fic scenarios and billions of interactions within a matter of days. Although such
high-throughput feeds reinforcement learning algorithms faster than ever, their
sample efficiency has not kept pace: As the standard training scheme, domain
randomization uniformly samples scenarios and thus consumes a vast number of
interactions on cases that contribute little to learning. Curriculum learning of-
fers a remedy by adaptively prioritizing scenarios that matter most for policy im-
provement. We present CL4AD, the first integration of curriculum learning into
batched autonomous driving simulators by framing scenario selection as an unsu-
pervised environment design problem. We introduce utility functions that shape
curricula based on success rates and the realism of the agent’s behavior, in addition
to existing regret-estimation functions. Large-scale experiments on GPUDRIVE
demonstrate that curriculum learning can achieve 99% success rate a billion steps
earlier than domain randomization, reducing wall clock time by 77%, and by 40%
compared to traffic density-based heuristic curricula. An ablation study with a
computational budget further shows that curriculum learning improves sample ef-
ficiency by 67% to reach the same success rate. To support future research, we
release an implementation of CL4AD in GPUDRIVE.

1 INTRODUCTION

Batched simulators for autonomous driving (AD) have recently empowered sample-inefficient but
effective reinforcement learning (RL) algorithms by enabling training for billions of interactions
within a few days (Cusumano-Towner et al., 2025} [Kazemkhani et al. [2025). These simulators
achieve such scale by training RL agents on hundreds to thousands of scenarios in parallel through
self-play (Silver et al.| 2017)), where a single policy controls all vehicles, taking millions of actions
per second. For example, agents trained on GPUDRIVE (Kazemkhani et al.,2025)) using the Waymo
Open Motion Dataset (WOMD) (Ettinger et al., [2021)) reliably generalize to unseen test cases in
less than a day. GIGAFLOW (Cusumano-Towner et al.| 2025)), further scales self-play to 1.6 billion
kilometers of simulated driving within 10 days, producing generalist driving policies that outperform
benchmark-specific agents on CARLA (Dosovitskiy & Koltun, |2016), nuPlan (Caesar et al.,|[2021)),
and Waymax (Gulino et al., 2023) without any training on these benchmarks.

Despite advances in high simulation throughput, training RL agents in batched driving simulators re-
mains sample-inefficient due to a standard training strategy: uniform scenario sampling, i.e., domain
randomization (DR). This approach wastes a massive number of interactions on scenarios that are
either too easy to provide a sufficient learning signal or too difficult for the current policy to make
progress on. Curriculum learning (CL) offers a remedy by adaptively prioritizing scenarios that
contribute the most to policy improvement (Narvekar et al., [2020). In particular, curriculum learn-
ing has successfully fulfilled that promise in multiple large-scale RL domains. For example, Bauer
et al.| (2023) demonstrate that scaling meta-RL with automated curricula yields agents capable of
human-timescale adaptation across thousands of procedurally generated environments. [Zhang et al.
(2024) introduce curricula for open-ended environments, where there are infinitely many possible
tasks, showing that curriculum learning enables faster and broader skill acquisition.
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Figure 1: CL4AD integrates UED methods into a batched AD simulator to adaptively prioritize
traffic scenarios based on three types of utility functions: regret, success, and realism.
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Inspired by the success of CL in large-scale RL, == sireactise Heuristc-Sparse PLR+LeamHard  m PLR+AMGAE
we introduce CL4AD (see Fig.[T), the first integra- = nammc = wvcesoe
tion of automated curricula into batched AD simu- el 12

lators. We frame scenario selection as an unsuper-
vised environment design problem (UED), and equip
prioritized level replay (PLR) (Jiang et all, [2021b)
with utility functions that adaptively shape training.
Therefore, curricula prioritize scenarios at the fron-
tier of the agent’s capabilities, rather than relying ) ) ) ] ]

on uniform sampling. Across large-scale experi- PP e :
ments, we show that CL accelerates RL training by ~Figure 2: PLR achieve 99% success rate in
hundreds of millions of steps compared to DR and °1€ billion steps before D,R' For acronyms of
heuristic curricula. Our key contributions are below: Utility functions, see Sections[3.3and i}

* We present CL4AD, the first integration of curriculum learning methods from unsupervised en-
vironment design to the scale of GPU-accelerated, self-play simulators for AD, and provide an
implementation in an open-source batched AD simulator, GPUDRIVE.

* We propose novel utility functions based on the success and realism of agent behavior.

* We conduct a large-scale empirical study 1) showing that CL accelerates RL training by up to a
billion interactions, improving the sample-efficiency to reach 99% success rate by 77% compared
to DR and by 40% compared to traffic density-based heuristic curricula (see Fig. 2); 2) illustrating
the effects of utility functions on learning; 3) investigating the effectiveness of CL under limited
resources; and 4) analyzing the correlation between utility functions and performance metrics.
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2 RELATED WORKS

Autonomous driving simulators have enabled RL to train self-driving agents in multiple ways:
Simulators such as Waymax (Gulino et al., [2023) and Nocturne (Vinitsky et all, [2022) use traffic
scenarios from open-source driving datasets such as WOMD (Ettinger et al.,[2021)), whereas CARLA
(Dosovitskiy et al.l 2017) is not data-driven, and Metadrive enables procedural scenario generation
as well as integration of real driving data. Attempts to scale RL for AD have resulted in batched
simulators such as Waymax, GPUDRIVE (Kazemkhani et al.,[2025), and GIGAFLOW
Towner et al.}[2025)), which significantly increased the data throughput to feed RL algorithms. These
simulators so far have utilized random scenario generation/sampling to train AD agents.

Curriculum learning for RL accelerates learning optimal policies by sequencing different config-
urations of the environment with respect to the capabilities of the trained agent (Narvekar et al.
2020). Automated curriculum generation studies goal-conditioned domains (Baranes & Oudeyer
2010; [Florensa et al.} 2018}, [Tzannetos et al.,2023)), contextual settings (Klink et al.,|2022; [Koprulu|
et al.l 2023} |Sayar et al.,2024), and more popularly UED (Dennis et al.,[2020). UED models envi-
ronments with free parameters, calling an instance a level. UED methods generate levels via trained
teacher agents, e.g., PAIRED (Dennis et al, 2020) and RE-PAIRED (Jiang et al), [2021a)), or by
randomly sampling free parameters, e.g., in PLR and ACCEL (Parker-Holder et al.,|2022). PLR, as
one of the earlier UED approaches, has shown evidence of scalability in settings such as meta RL
(Bauer et al.,2023))(Jackson et al.| 2023)), and open-ended environments (Zhang et al.,[2024).
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Curriculum learning for AD aims to speed up training self-driving policies via RL, e.g., Scenari-
oNet (L1 et al.| 2023)), which unifies heterogenous data for traffic simulation, showcases benefits of
heuristic-based curricula. Similarly, Anzalone et al.| (2021} |2022) propose a multi-stage curriculum
learning method for CARLA, incrementally making the number of agents, their initial positions, or
weather conditions incrementally more difficult. In contrast to manual curricula, |Q1ao et al.[(2018)
develops an automated method for urban intersections. Recently, |Brunnbauer et al. (2024) and
Abouelazm et al.| (2025) have demonstrated that UED methods, RE-PAIRED and ACCEL, respec-
tively, accelerate training AD agents in CARLA. However, there has not been any investigation into
whether CL can scale with the high throughput and scenario diversity enabled by batched simulators
such as GPUDRIVE, which trains self-driving RL agents in scenarios from real driving datasets.

3 BACKGROUND

We model a traffic scenario as a partially observable stochastic game (POSG), similar to Brunnbauer,
et al.[ (2024), to accommodate the multi-agent nature of driving. Upon defining this model, we
explain how batched AD simulators GIGAFLOW and GPUDRIVE train self-driving agents via a
multi-agent RL scheme called self-play in traffic scenarios. Then, we frame curriculum learning for
autonomous driving as unsupervised environment design, and describe how to measure the utility of
traffic scenarios to improve sample-efficiency. Lastly, we illustrate a popular UED method called
prioritized level replay (PLR), the backbone of the curriculum learning algorithm in our work.

3.1 TRAFFIC SCENARIOS AS PARTIALLY OBSERVABLE STOCHASTIC GAMES

Definition 3.1. A POSG is a tuple G = (N, S, A, O, T, Z, R, I,~), where N' = [N] is the set of
agents with N € 7, S is the state space, A = Ay x Ay X -+ - x Ay and O = Oy x Oy x --- x Oy
are the joint action and observation spaces. T : S x A — A(S) represents the stochastic dynamics
of a POSG, i.e, the probability of transitioning from state s € S to state s' € S given joint action
ac A Z:8 x A— A(Z) determines the probability of observing o = (01,02, -+ ,0n) € O in
state s taking joint action a. The reward function R : S x A — RY determines rewards, namely,
R(s,a) = (Ry(s,a), Ra(s,a), - , Ry(s,a)) where R;(s,a) € R is the reward for agent i € N.
I € A(S) represents the initial state distribution. Finally, v € [0, 1] is the discount factor.

A policy m; : O; — A(A;) describes the behavior of agent i in POSG G. The value function
for 7; is the expected cumulative discounted rewards over a horizon of H steps, i.e., V(m;) =

Erz Z?;Ol YR (st ar)|so ~ I, a; = (a;4)jen Where aj, ~ 71']'(0]"15)] Agent 7 aims to find an
optimal policy 7, which maximizes its value V (7;) in POSG G.

In a traffic scenario modeled as G, consider 7; as a policy that controls vehicle i. The road layout,
traffic rules, and collision dynamics in a scenario specify the dynamics 7'. Initial state sg ~ [
consists of the initial positions of all vehicles, pedestrians, cyclists, etc. Observation o; ; of vehicle ¢
at time ¢ € [H] is what the controller perceives about the surroundings based on its sensors as well as
specific attributes, e.g., the type of vehicle, its velocity, acceleration, etc. The reward r; = R;(s¢, a;)
can incentivize the policy to reach a goal location, stay within lanes, and avoid collisions.

To model multiple traffic scenarios, following [Brunnbauer et al.|(2024), we formalize a set of traffic
scenarios as an underspecified POSG (UPOSG), which captures a set of traffic scenarios.
Definition 3.2. An underspecified POSG G® = (O, N©,S, A%, 0°,T° 79 R® I° v) models
a set of POSGs through parameters 0 € © that determine the set of agents N'©, and all attributes of
a POSG 0 € © depending on its agents, such as the dynamics T® : S x A® x © — A(S).

Consider scenarios © = {0, };mepv) in WOMD (Ettinger et al., 2021), where M ~ 100,000. A
scenario #,,, may correspond to an urban intersection, a parking lot, or a highway, with varying speed
limits, number of vehicles, etc. In practice, 0,,, is merely an identification number, i.e., 6,,, € [M],
hence it does not reveal such properties of the scenario, which makes it underspecified.

3.2 SELF-PLAY RL IN BATCHED AUTONOMOUS DRIVING SIMULATORS

Self-play RL is an RL scheme for multi-agent settings where each agent samples their actions from
a shared, decentralized policy. More formally, this scheme samples the action a; ; ~ m4(0;,) of
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agent i € N'© via a policy Ty parameterized by ¢, e.g., a neural network with learnable parame-
ters ¢, given the observation o;; of said agent at time ¢. Batched AD simulators GIGAFLOW and
GPUDRIVE use self-play RL as the strategy to train a single policy that controls all vehicles in a
scenario in parallel. Their batched structure empowers parallelization further by concurrently sim-
ulating hundreds to thousands of traffic scenarios to accelerate experience collection. Both works
employ an on-policy RL algorithm, proximal policy optimization (PPO) (Schulman et al.| |2017),
where policy updates occur once the simultaneous data collection fills an experience buffer. As a
result, batched simulation accelerates experience collection via parallelized scenarios, while self-
play RL saves compute time and memory by training a single policy. We implement CL4AD on
GPUDRIVE, which samples hundreds of traffic scenarios every couple of million interactions, with
initial positions and goals from logged traffic data in WOMD. The default scenario sampling is uni-
formly random, i.e., via domain randomization, where every traffic scenario has equal likelihood.

3.3 UNSUPERVISED ENVIRONMENT DESIGN

UED (Dennis et al.,[2020) aims to generate a sequence of levels, i.e., traffic scenarios § € O in the
case of AD, to accelerate learning a policy that generalizes across all levelsﬂ One solution to UED
is a level generator A : TI — A(©) that produces a distribution over the set of all levels © given
a policy 7 € II. A level generator A maximizes some utility function U (7, #) that measures the
contribution of a level 6 to sample efficiently improve 7. Without loss of generality, in this section,
we assume that there is only one agent in a level 0, i.e., N © — [1], to ease the use of notation.

Domain randomization, i.e., uniformly sampling levels throughout the training, is the default way
of training an RL agent where the utility is constant for each level, namely, U(7,0) = C, § € ©
and C € R. UED methods primarily differ in their utility functions of choice, as it is not possible
to accurately calculate the contribution of all levels to policy improvement. There are two common
categories of utility functions: regret and success-based. Regret, i.e., the difference between the
expected discounted return of the current policy and the optimal one, is a convenient objective as a
level generator that maximizes regret will prioritize the easiest levels that the agent cannot currently
solve (Dennis et al., 2020). More formally, a regret-based utility is UR™ (7 §) = V9(7r§) —
V(r), where 7 is an optimal policy in level 6, i.e., a policy collecting the maximum expected
discounted return V¢ (7). However, as the optimal expected discounted return or the optimal policy
for each level is rarely available, UED methods estimate regret in various ways. Jiang et al.[(2021b))
propose learning potential, i.e., average magnitude of the generalized advantage estimate (AMGAE)
(Schulman et al.|[2015)) as a utility function that estimates regret over a single episode,

UAMGAE 71' 0 Z

t=0

Z YA L5

k=t

; (D

where 83 = r+vV ™ (0441)—V?7 (o) is the temporal difference error at timestep k, V%™ (o,) =

Ere zo [ ? kk "tk RO(sy, &y, 0)|ay ~ ’/T(Ot)} is the expected discounted return of 7 in s on

level 6, and ) is the discount factor for GAE. Alternatively, Jiang et al.| (2021a) and |Parker-Holder
et al.[(2022) employ positive value loss (PVL) i.e.,

H-1
UNVE (e Z max {Z 'y)\)k_lék,O} ) 2)
k=t

As PVL uses the bootstrapped value target to compute the temporal difference error, Jiang et al.
(2021a) also propose maximum Monte Carlo (MaxMC), which instead utilizes the highest return
obtained by 7 on level 8 to mitigate potential bias issues,

1 H-1
UMaXMC(’/T79) = ﬁ Z ( max Ve ﬂ-( )) 9 (3)

t=0

where R

ax 18 the maximum discounted return achieved in level 6 so far during training.

Success-based utility functions address settings where a level 6 is considered solved when a policy 7
reaches a goal state s € Sgoal C 8. Such utility functions use the success rate p?™, i.e., the fraction

'As level is the common term in the UED literature to describe 6, we use it interchangeably with scenario.
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of times policy 7 solves alevel 6, p”™ =P (3t € [H] : s, € S&, |7, 0) . Inspired by Tzannetos et al.
(2023)), Rutherford et al.| (2024)) propose Sampling for Learnability (SFL) along with learnability
ULearn(ﬂ_’G) _ pé‘,rr A (1 _ pe,w)7 4)
a utility function that can be interpreted as the variance of a Bernoulli distribution with parameter
p?™, namely, how inconsistent policy  is at solving 6. Rutherford et al.| (2024)’s analysis reveals
that in sparse reward settings, where only non-zero rewards occur when a policy reaches the goal,
regret-based utility functions have low correlation with the success rate. They argue that regret-based
utility functions become noisy in such settings, causing inaccurate identification of the learning
frontier. Therefore, learnability is useful, especially for autonomous driving, where reward functions
commonly reward and punish sparse events such as goal completion and collisions, respectively.

3.4 PRIORITIZED LEVEL REPLAY

Prioritized Level Replay(Jiang et al.,2021b) is one of the first UED methods that lays the foundation
for approaches such as Robust PLR (Jiang et al., 2021a), REPAIRED, ACCEL, and SFL. PLR
consists of two steps: uniformly sampling levels from a set of training levels ©"", and replaying
levels from a rolling buffer 5. At the beginning of the training, PLR evaluates the agent on randomly
sampled levels, and scores these levels using regret-estimating utility function UAMSGAE Eq, .
Then, PLR adds levels with the highest scores to its buffer. Subsequently, PLR makes a random
decision with probability d to sample unseen levels in ©™" or seen levels from the buffer via a
distribution based on their scores and staleness, namely,

Prepiay (05| B, UMM 1) = (1 = p) - Pugtty (058, UM™NF) + p - Piteness (03] B, 1), (5)

where Py (0;|B, UAMOAE) is based on the ranking of seen levels with respect to their scores, i.e.,
rank (6;|B) /7

5 2 k([ B) 177

with a temperature parameter 3 tuning the impact of ranking. The staleness distribution assigns a
higher likelihood for levels that has not been sampled for a higher number of episodes, namely,

l—1lp,

—1, 7

ZjeBscenario l— lGj ( )
where [ is the total number of levels sampled so far, and lp, is the episode count at which level 6; was
last sampled. This distribution aims to prevent the scores of seen levels from becoming off-policy, as
they may remain in the buffer for a while without being sampled during training. Note that Robust
PLR and SFL have similar buffer and sampling mechanisms with PLR, except that Robust PLR
does not update the policy using rollouts from unseen levels and SFL has a filtering mechanism that
requires additional rollouts to assess whether a level has high learnability.

Puitiy (0;|8, UAMOAE) = (6)

IP>slaleness ('91 ‘B, l) =

4 CURRICULUM LEARNING FOR AUTONOMOUS DRIVING AT SCALE

Curriculum learning for autonomous driving, CL4AD, integrates variants of an existing UED
method, PLR, into a batched AD simulator by scaling them up in terms of four aspects: (1) Con-
current simulation of hundreds of traffic scenarios, (2) Tracking tens of agents in a single scenario,
(3) Training in tens of thousands of scenarios, and (4) Training for billions of steps. To adapt a UED
method to a batched simulator, CL4AD tracks the behavior of all self-play agents in all concurrent
scenarios. For example, in GPUDRIVE, where we implement CL4AD, simulated scenarios come
from real-world datasets, and each scenario has a specific horizon H due to the nature of the logged
data. CL4AD treats each scenario as a separate 6; € © to enable measurement and tracking of their
utility. Between scenario sampling steps, CL4 AD monitors each simulated scenario and computes
its utility once an episode terminates, which occurs when all agents reach their goals, collide, or the
time exceeds the horizon. In essence, the utility of a traffic scenario corresponds to the expected
performance of a self-play policy that controls all agents in the scenario, thereby capturing the ex-
pected collective behavior. To address the multi-agent aspect, we make a change in the definition of
utility functions in Section 3.3} e.g., we formally define UM&MC a5

MaxMC 1 - 1 “ 0,n 0,
U (7'('7 9) = E‘ﬂ'ﬂ ﬁ E 7N0 E (Rmax - VY (On,t)) s (8)
t=0 n=1
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Algorithm 1 Curriculum Learning for Autonomous Driving (CL4AD)

Input: Set of training scenarios @
Parameters: Replay rate d, Staleness coefficient p, temperature (3, utility function U, max buffer
size B™*, total number of iterations T"™", scenario sampling interval T, policy update interval
TP number of worlds W
Output: Final policy 74
1. B (), D+ ()t«+ 0,l+0, Ty < Ty, > Reset scenario/experience buffers, iterators, and policy
2: while t < T"™" do

3:  if0=¢ mod T then
4: l+<1+1 _ > Increment sampling iteration
5: (6)w—1,B < SAMPLEFROMCURRICULUM(B, ©"" ) > Sample scenarios for worlds
6: D: = {{0n,w, an,w, oil’w, Tn,w, en,w}ne[Ngw] Fwew] > Record experiences over a single step
7: B < UPDATECURRICULUM(D:, U, B) © Update curriculum with the scores of terminated scenarios
8 D<+DUD, > Update experience buffer with new interactions
9:  if0=t mod T* then
10: 7w, D < &(D) > Update self-play policy via RL algorithm ®, and reset the experience buffer D
11: t<«t+ Dy > Update training iteration

where R%™ is the maximum return that agent - € [Nj] collected in scenario  so far. In contrast
to Eq. (3), Eq. (8) accounts for the expected behavior of 7, as batched simulators enable the col-
lection of multiple episodes in a scenario before sampling new scenarios. As an approximation,
CL4AD computes the average of K-many episodes it observes between sampling steps. In addition
to regret-based UAMOAE  [/PVL [TMaxMC “an( success-based U™, CL4AD introduces three novel
utility functions: learnability-hard U4 ooal-conditioned average distance error (GC-ADE)

UCGC-ADE “and action mean absolute error (Act-MAE) UAMAE which we define as
Ng
1
Learn-hard o,m, 0,m,
pham (e g) = < S g (1= "), ©)
0
n=1
1 No 1 H—-1
GC-ADE _ T - _ Jlogged |2
U (m,0) =Enrp Ny nz_:l H ;Hxn,t Xt 5], (10)
1 No 1 H—-1
Act-MAE _ - - _ logged
U (m,0) =FEr 9 N 2 H ;Hamt a,; || - (11)
pleam-hard g 5 guccess-based utility function that, in contrast to U™, utilizes the rate of agent

n reaching its goal without colliding or going off-road in scenario 6 via self-play policy 7. Such
difficult-to-satisfy success rates appear in AD works, as they capture both robustness and safety
(Cusumano-Towner et all 2025). UCGCADE 35q [JAMAE g6 realism-based utility functions that
compute the distance between the positions and actions of RL agents and the logged trajectories,
respectively. Since the fundamental objective in training AD policies is to deploy them in the real
world, their realism becomes crucial for harmonious behavior. Realism-based metrics often serve
as a way to evaluate behavior plausibility (Caesar et al., 2021 |Gulino et al.| 2023} (Cornelisse &
Vinitskyl 2024). In contrast, CL4AD uses them to determine which scenarios to prioritize.

Algorithm[T]is a pseudocode illustrating the integration of PLR into a batched simulator via CL4AD.
At the beginning of the training, we initialize the parameters ¢ of the self-play policy 7y, and reset
scenario and experience buffers B and D, as well as the training and scenario sampling iterations, ¢
and [, respectively (Line 1). Until training iteration reaches T™", CL4AD first checks if it is time
to sample new scenarios via PLR based on its replay buffer 5 (Line 3-5). If so, CL4AD samples
new scenarios, and sets them to concurrently simulated worlds. Note that PLR only keeps B™**
highest ranking scenarios in the buffer for sampling. Then, the self-play policy 7 takes a step in all
scenarios, and D, records them (Line 6). CL4AD updates the curriculum buffer using the utility of
terminated scenarios (Line 7). Note that each utility function requires different signals. For example,
realism-based functions compare agents’ observations/actions against logged data. Success-based
ones check success and collision/off-road flag. Regret-based functions require rewards and values.
Finally, an RL algorithm updates the policy using the experience buffer D (Line 8-10) every TP
steps. We refer the reader to Appendix [D]for more details on sampling from and updating curricula.
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Figure 3: Case 1: Performance progression during training with 1000 scenarios: We evaluate in
(top) training partition, and (bottom) 150 test scenarios. Bold markers indicate the mean, whereas
the shaded area covers one standard deviation around it across three independent training runs.
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5 EXPERIMENTAL RESULTS

We implement CL4AD in GPUDRIVE (Kazemkhani et al.} [2025) and conduct experiments using
traffic scenarios from WOMD (Ettinger et al.,2021)) to investigate the following questions:

[3.I) Can curriculum learning accelerate learning performant AD policies?

[5.2) How does curriculum learning guide scenario selection?

[3.3) Is curriculum learning effective under limited compute resources?

[5.4) Can curriculum learning scale up with the number of scenarios?

[3.3) Do utility functions correlate with each other and performance metrics?
For quantitative questions, we consider 1) return, 2) success, 3) collision, 4) off-road rates, and
5) goal-conditioned average displacement error (GC-ADE) (Cornelisse & Vinitsky} [2024) to assess
performance, safety, and realism of trained policies. For qualitative questions, we visualize replay
distributions, prioritized scenarios, and the progression of expected utility in training scenarios.

We train RL agents in GPUDRIVE using self-play PPO, following [Kazemkhani et al.| (2025)); [Cor-|
[nelisse et al| (2025). The observation of an agent is its bird-eye-view (BEV) within a fixed radius,
while its action consists of speed and steering inputs. Agents receive rewards for goal completion,
and penalties for collisions and going off-road. Note that an episode does not terminate if a crash or
off-road event occurs. We report results from CL4AD trained with PufferLib 2024). We
compare DR, the default sampling approach, against two heuristic-based curriculum methods and
7 UED methods, i.e., combinations of PLR with utility functions in Sections @ and 4} Regret-
based UAMGAE | [7PVL gq UMaxMC. gccess-based ULeam and {heam-hard. peqlism-based U7SCAPE and
UAMAE Note that, by combining PLR with UPVE, UM&MC apd leam | we evaluate efficient ver-
sions of Robust PLR and SFL. Heuristic-Dense and Heuristic-Sparse prioritize scenarios with high
and low vehicle counts, respectively. We refer the reader to Appendix [E] for more details.

5.1 CAN CURRICULUM LEARNING ACCELERATE LEARNING PERFORMANT AD POLICIES?

To evaluate curriculum learning in GPUDRIVE, we first train GC-ADE |
RL agents using a mini version of WOMD with 1,000 traffic
scenarios and evaluate on the test partition with unseen 150
scenarios. Fig. [3] shows the progression of trained policies
when evaluated on the training (top) and test (bottom) parti-
tions. PLR, with all utility functions except U AMGAE 5 hieves
the highest returns and success rates in training scenarios.
Fig. |Z| further evidences that, in test scenarios, PLR achieves

100+

50

o ol el L | I T
L N

99% success rate a billion steps earlier than DR, reducing
wall clock time by 77%. Compared with Heuristic-Sparse and
Heuristic-Dense, PLR accelerates training to achieve the same

Number of policy updates (x103)
Figure 4: Case 1: Realism progres-
sion in test partition.
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Figure 5: Case 1: Pyplay progression of PLR combined with UM*MC in mini WOMD: We illustrate
(top) the evolution of Preplay, where darker line segments indicate scenarios with higher replay like-
lihood, (middle) a version of replay distribution under categorization with respect to the number of
controlled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.

success rate by 40% and 66%, respectively. Note that PLR with UAMGAE gutperforms DR with
a small margin in terms of return. PLR also yields realistic policies faster than DR (see Fig. ),
showecasing that curriculum learning is not only sample-efficient but also obtains plausible behavior.

5.2 HOW DOES CURRICULUM LEARNING GUIDE SCENARIO SELECTION?

Fig. [5] shows how replay distributions Prepiay (Eq. (5)) of
PLR combined with UM™MC eyolve across independent
training runs. We observe that certain scenarios are con-
sistently assigned a high likelihood (dark red) in all runs
across multiple stages of training, such as those illustrated
in the bottom row. Note that scenarios with ID 58 and 264
involve at least 15 controlled agents (blue), and highly con-
gested cases are rare (see the middle row). Fig. [f]illustrates
the progression of U™ in training scenarios. Approaches
that converge early (see Fig. ), obtain high learnability
early on, showing improved learning speed, and achieve the
lowest learnability the fastest in the end.

Method

W PLR4+PVL PLR+learn-Hard MW PLR+ACt-MAE Heuristic-Sparse
Learnability
LR
0.21
0.11 | I

Number of policy updates (x103)
Figure 6: Case 1: Learnability.

5.3 IS CURRICULUM LEARNING EFFECTIVE UNDER LIMITED COMPUTE RESOURCES?

To investigate curriculum learning under computational constraints, we ran an ablation study using
a GPU with significantly smaller memory, which only allows one-eighth of the number of worlds
W and one-fourth the size of the experience buffer D, in contrast to the GPU we used in other cases
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Figure 7: (Top) Ablation study on the effectiveness of CL under compute constraints across three
independent runs. (Middle-bottom) Performance progression during training in (case 2) 10,000,
and (case 3) 80,000, scenarios from WOMD, both evaluated in 10,000 unseen test scenarios.

(see Appendix [F] for more details). Although a smaller buffer results in a higher frequency of policy
updates, this setup causes training to take about four times longer in wall-clock time while limiting
the diversity of scenarios used for updates. Figs. [7a] and [7b] show that, although DR needs fewer
interactions than the regular set-up, PLR is faster at reaching 99% success rate by 67% than DR.

5.4 CAN CURRICULUM LEARNING SCALE UP WITH THE NUMBER OF SCENARIOS?

To evaluate the scalability of curriculum learning for AD in terms of training dataset size, we train
self-play agents in (case 2) 10,000 and (case 3) 80,000 scenarios from WOMD. Figs. [7c| and [7d]
demonstrate that, PLR reduces the number of interactions needed to reach 99% success rate by over
55%, when combined with UM*MC and [JACCMAE jp case 2. Similarly, Figs. @ and show that PLR
improves sample-efficiency by 72% when combined with U™ in case 3. Here, Heuristic-Dense
can match PLR, whereas Heuristic-Sparse does not have any advantages over DR.

5.5 DO UTILITY FUNCTIONS CORRELATE WITH EACH OTHER AND PERFORMANCE METRICS?

Fig.[§]illustrates a heat map for Pearson correlation between utility functions and performance met-
rics. We investigate each case separately to determine whether scaling up the dataset affects results.
For a complete analysis, we evaluate all policies reported in Figs. B} [7d] and [7f] comparing the
progression of trained agents; thus, our analysis includes agents with varying capabilities. Within
utility function categories, there is a trend of positive correlation, except for realism, unsurprisingly.
Imagine an RL agent taking a turn at an intersection, turning earlier/later than the logged trajectory,
causing high USCAPE yet Jow UACMAE a5 apart from the moment when the agent takes a turn, it
will act similarly. Note that identical/divergent sequences of actions also lead to the same/distinct
trajectories, respectively; hence, there is no clear correlation. In contrast, regret-based functions tend
to be positively correlated, since, though in different ways, they all approximate regret. Interestingly,
the correlation between these utilities increases monotonically as the training dataset grows, possi-
bly because improved value estimation also improves TD-error estimation for UAMSAE and UPVE,
resulting in better performance in case 2 than in case 1. Finally, success-based functions measure
the variance of similar statistics; hence, they have a high positive correlation.
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Figure 8: Pearson correlation between utility functions and performance metrics, i.e, success, colli-
sion, and off-road rates: Results from training in (a) 1,000 (b) 10,000, and (¢) 80,000 scenarios.

Across categories, though not high, there is a positive correlation between regret- and success-based
utility functions because, in general, high regret scenarios have high success variance. Such cases
yield high TD errors, as the agent can achieve a high return but has a low estimated value because
it is not optimal yet. Realism-based functions are not necessarily correlated with the rest, except for
the small correlation in case 3. The reason is that realism is not equivalent to optimality with respect
to a reward function, which, in GPUDRIVE, incentivizes reaching the goal as quickly as possible
while avoiding collisions and going off-road. An RL agent can behave optimally in terms of such
a basic reward function, yet also not realistically, as the reward function does not address attributes
such as comfort, staying within lanes, or going under the speed limit.

Finally, we investigate how utility functions correlate with performance metrics. UAMSAE correlates
with collision/off-road rates, with the highest in case 1, likely leading to UAMSAE underperforming,
as it prioritizes scenarios with crashes/off-road events. UFYL does not correlate with any perfor-
mance metrics. In contrast to UAMGAE [7MaxMC ghowg a positive correlation with returns. Although
this leads to UM¥MC outperforming most PLR variants in case 1, as the correlation decreases, its
performance degrades as well. Success-based functions have a negative correlation with return and
success, and a positive correlation with collision/off-road rates. This is possibly because high vari-
ance in success occurs when the agent collects low returns. Realism-based functions do not correlate
with any performance metrics, in general, likely because, as aforementioned, realistic (unrealistic)
behavior does not necessarily correspond to optimal (suboptimal) policy.

6 CONCLUSION

In this work, we introduce CL4 AD, the first integration of CL into batched AD simulators. CL4AD
frames scenario selection as a UED problem, enabling adaptive prioritization of traffic scenarios via
a well-known method, PLR (Jiang et al.l [2021b), combined with utility functions that measure the
regret, success, and realism of the trained agent’s behavior. We conduct extensive large-scale experi-
ments by integrating CL4AD into GPUDRIVE, an open-source batched AD simulator. Empirically,
curriculum learning achieves 99% goal-completion in test scenarios up to 77% faster than domain
randomization, i.e., the default scenario sampling technique, when trained with datasets ranging
from 1,000 to 80,000 traffic scenarios. CL4AD further demonstrates that, CL reduces wall-clock
time to reach the same success rate by 67% under limited compute resources, as well.

Limitations and future work. CL4AD evidences that CL scales up to the high-throughput of
batched AD simulators. However, CL4AD is currently limited to an implementation of PLR and re-
quires access to a real self-driving dataset as a source of traffic scenarios for sampling, e.g., WOMD,
since GPUDRIVE operates on pre-defined scenarios. To address these limitations, future work will
explore UED methods such as ACCEL (Parker-Holder et al.,2022), which randomly mutates priori-
tized scenarios, hence increasing scenario diversity for training robust policies. In addition, synthetic
scenario generation tools, e.g., Scenario Dreamer 2025), can enable CL4AD to further
accelerate training and improve the robustness and generalization capabilities of trained agents by
creating safety-critical or out-of-distribution scenarios that the agent struggles with.
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Set of agents, number of agents (|| = N) in POSG
State, action and observation spaces in POSG

State, action, observation, and reward in POSG
Transition, observation, and reward functions in POSG
Initial state distribution in POSG

Discount factor and horizon in POSG

Set of scenarios and scenarios, i.e., § € O, in UPOSG
UPOSG

Set of agents, number of agents (|A"®| = N) in UPOSG
State, action and observation spaces in UPOSG

State, action, observation, and reward in UPOSG
Transition, observation, and reward functions in UPOSG
Initial state distribution in UPOSG

Discount factor and horizon in UPOSG

Position of an agent in a scenario in UPOSG

Number of scenarios in a UPOSG, i.e., |©| = M

Goal states in a UPOSG

Level generator for UED

Policy space in UED

Distribution over levels in UED

Utility function in UED, constant utility in UED
Replay buffer and distribution in PLR

Score and staleness distribution in PLR

Scenario sampling iteration in PLR

Staleness coefficient, score temperature, replay rate, max replay buffer size
Policy, value function

GAE discount factor, TD error

Maximum return of an agent

Success rate

Trainable policy parameter

Number of interactions for training, sampling scenarios, and updating policy
Number of concurrent worlds

Experience buffer

RL algorithm of choice to update policy

End of episode flag

Rollout
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Algorithm 2 SAMPLEFROMCURRICULUM()

Input: Replay buffer 13, set of training scenarios ©"", sampling iteration [
Parameters: Replay rate d, staleness p, temperature /3, max buffer size B™*, number of worlds W
Output: Sampled scenarios (6,,)V_,, and buffer B with updated staleness

w=1"

1: B + DISCARDLOWESTRANKINGSCENARIOS (B, B™™)

2: if |B| = 0 or (Bernoulli(d) = 0 and |©"3" — Bscenario| > () then

30 Pgample < Uniform(@train — Bscenario) > Uniformly randomly sample scenarios
4: else

5: Psample ¢ Preplay > Replay scenarios based on Prepiay
6: (Qw)zjvzl — Sample(Psample, W) > Sample W-many scenarios based on Pyampie
7; peeenario o gseenario (g VW _ > Update scenarios in the replay buffer
8: lg, + I,YVw € [W] > Update sampling iteration for staleness distribution
9: 19, < (),Yw € [W] > Reset the rollout

Algorithm 3 UPDATECURRICULUM()

Input: Interaction set Dy, utility function U, replay buffer B
Output: Updated replay buffer B

1: for w € [W] do

2:  if ey is True Vn € [Ny, ] then

3 scoreg,, ¢ < U (T@w) > Compute utility score for terminated episode
4: scoreg,, < MovingAverage(scoreg,, , SCOreg,, ¢ ) > Update the score in the buffer
5 7o, < () > Reset the rollout
6: else

7 Th, < T, Y {On’w, ap w, O/n’w, Tr,w, e’ﬂ,w}’ILG[Ng,w] > Update the rollout with new interactions

D DETAILS OF CL4AD

In this section, we provide a more detailed look into how CL4 AD works to support the material in
Section[d] Algorithm[2]is a pseudocode for how CL4AD samples new scenarios during training via
PLR. First, CL4AD removes scenarios with ranking lower than B™* in the buffer (Line 1), where
B™ is the maximum size of B for sampling. If the buffer size is smaller than or equal to B™,
then no scenario is removed. Then, it determines whether to sample traffic scenarios from the replay
buffer. If the replay buffer is empty, or the random replay decision is False, conditioned on the fact
that there are still unseen scenarios, then CL4AD uniformly randomly samples unseen scenarios
from the training dataset. Otherwise, it uses the replay distribution Prepjay to sample from the replay
buffer B (lines 2-6). Then, CL4AD updates the scenarios in the buffer with the newly sampled ones
and sets their corresponding last sampling iteration to the current one for staleness computation later
on (lines 7-9). Algorithm [3]is a pseudocode for how CL4AD updates the buffer. CL4AD goes
through every world and checks whether an episode has terminated. If so, it computes the utility of
that episode based on the rollout that CL4AD has kept track of. Then, this score is used to update
the score in the buffer via moving average, and finally, the rollout is reset for a new episode to save
memory. If the episode continues, CL4AD updates the rollouts with the latest interactions.

E EXPERIMENTAL DETAILS

In this section, we describe the process of hyperparameter selection for our experiments.

E.1 SIMULATION SET-UP

Our integration of CL4AD into GPUDRIVE follows the simulation set-up in [Kazemkhani et al.
(2025), where the simulator ignores collisions and going off-road, i.e., they do not lead to episode
termination; the observation of a vehicle is its bird-eye-view of a radius of 50m; non-vehicle objects
are omitted; a goal is considered to be achieved if an agent is in its proximity by 2m; the action
consists of two discrete random variables for steering and acceleration inputs, divided into evenly
spaced grids, 13 and 7, respectively; maximum number of controlled agents in a scenario is 64;
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Table 1: Self-play PPO Hyperparameters

Parameter Case 1,2,3 Ablation
total_timesteps T™" 2,000, 000,000 1,000,000,000
num_worlds W 800 100
batch_size TP 524,288 131,072
minibatch_size 16, 384 8,192
learning._rate 0.0003 0.0003
anneal_lr false false
gamma 7y 0.99 0.99
gae_gamma \ 0.95 0.95
update_epochs 2 4
norm-adv true true
clip_coef 0.2 0.2
clip-vloss false false
vi_clip_coef 0.2 0.2
ent_coef 0.0001 0.0001
vf_coef 0.5 0.3
max_-grad-norm 0.5 0.5
target_k1l null null
collision_weight —0.75 —0.75
off_road-weight —0.75 —0.75
goal_achieved.weight 1.0 1.0

the agents only observe the current time step; and the episode takes 90 timesteps, amounting to 9
seconds, at most. For more details, we refer the reader to the default PufferLib configuration (see
environment section) in the repository published by Kazemkhani et al.[(2025).

E.2 SELF-PLAY PPO TRAINING

Table[T]lists the hyperparameters for self-play PPO training in cases 1, 2, and 3, as well as the abla-
tion study. As the ablation study investigates limited compute resources, i.e., the use of fewer worlds
and lower batch sizes, we essentially set them according to the hyperparameters in|Kazemkhani et al.
(2025), where the number of worlds W = 50. In comparison, cases 1, 2, and 3 studies a larger scale
in terms of throughput, hence utilize significantly more concurrent worlds and a larger experience
buffer. As a result, their hyperparameters come from |Cornelisse et al. (2025)), which focuses on a
similar scale. The weights for collision/off-road penalties and goal completion rewards also come
from |Cornelisse et al.| (2025). For cases 1 and 2, as well as the ablation study, the experiments
are over three independent runs, utilizing seeds 42, 12, and 67. Case 3 uses seeds 42 and 12. The
network architecture also follows the settings in|Cornelisse et al.|(2025).

E.3 SCENARIO SAMPLING DETAILS

Table [2| demonstrates the hyperparameters used for the experiments we report in cases 1, 2, 3, and
the ablation study. The search space for PLR hyperparameters is as follows: staleness coefficient
p € {0.1,0.2} and score temperature § € {2,4}, based mainly on Jiang et al.(2021b). We first
conduct a grid search in Case 1, where we train agents using all score functions on three independent
runs for one billion interactions. Then we select the pair that yields the highest success rate, the
fastest at test-time. [Jiang et al.| (2021a) suggests a lower temperature; however, our experiments
indicate that a higher temperature, especially considering the size of the training dataset, is more
performant in large-scale training. Case 3 and the ablation study also utilize these hyperparameters.
In case 2, we find that a higher temperature yields better results. We set the replay buffer size to the
size of the training dataset, and sample scenarios every 2, 000, 000 interactions.
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Table 2: Case 1: PLR Hyperparameters

Utility Function d (8 p

[JAc-MAE 05 2 03
UAMGAE 05 4 03
—  [JGC-ADE 05 4 03
g yleam 05 4 0.1
@] ULearn—hard 0.5 2 0.1
UMaxMC 05 2 03
UPvL 05 4 03
~  UAMAE 05 4 03
g ylem 05 4 0.1
O pyMaxMC 05 4 03
@ ylem 05 4 0.1
g yMaMC 05 2 03
O
§ UAMAE 05 2 03
g ytem 05 4 0.1
S yMeMe 05 2 03

F COMPUTATIONAL RESOURCES

We run our experiments in cases 1, 2, and 3 on an NVIDIA H200, which has 141 GB of GPU
memory. One training run, which amounts to 2 billion steps and approximately 3,800 policy updates,
takes around 60 hours. For the ablation study, we train agents on NVIDIA RTX A5000, which has
a GPU memory of 24GB, for a billion interactions, which takes over 110 hours.

G DETAILED RESULTS

G.1 QUANTITATIVE RESULTS

Figures 9] and[T2] demonstrate the progression of trained agents in cases 1, 2, and 3, as well
as the ablation study, respectively. These figures provide details on the progression of performance,
regret, realism, and learnability when agents are evaluated in the training and test partitions of their
respective experiments. Regret, learnability, and realism in the training partition highlight how au-
tomated curricula impact training. In most cases, we observe that PLR variants are significantly
faster than DR at achieving low utility scores in these metrics, indicating that they obtain more per-
formant and realistic policies more quickly. The performance progression, when evaluated on the
training partition, leads to a similar observation as well. Progression in test scenarios demonstrates
the generalization capabilities of these trained agents, as these scenarios were not encountered dur-
ing training. Overall, we observe that PLR variants are again quickly becoming more capable at
generalization or becoming robust and reliable faster than agents trained via DR.

G.2 QUALITATIVE RESULTS

Figures and [18] illustrate the Preplay progression of PLR in case 1. Here we

omit UM™MC a5 we provide its illustration in the main document. The utility functions with a high
score temperature, i.e., 5 = 4, as opposed to 5 = 2, lead to a more uniform replay distribution

(see Figures for JAMGAE | [JGC-ADE " prleam “and [JPVL | respectively). As the score

17



Under review as a conference paper at ICLR 2026

Method
—— PLR+PVL —#— PLR+Learn —+— PLR+GC-ADE —¥— PLR+Act-MAE Heuristic-Sparse
PLR+MaxMC PLR+Learn-Hard —+— PLR+AMGAE —+— DR —e— Heuristic-Dense
Average Magnitude of GAE . Maximum Monte Carlo Goal-Cond. Ave. Distance Err. {
el 1e-1 Positive Value Loss le-1 le2
3
3 5
39 | , R
21 0 .
' ' 1 g ; 1
1 T——— - —— _5 ¢
0700404 X 2927040, 5,9 0700404 Xy 2929040, 59 0700404 M 2929040, 070004 M1 87270,0, 0,9
Number of policy updates 1e3 Number of policy updates 1e3 Number of policy updates 1e3 Number of policy updates 1e3
(a) Evaluation on training partition
Average Magnitude of GAE Positive Value Loss Maximum Monte Carlo
1.0 1.0
1.0
0.5 0.5
N
¥ N
0.0 9 — = =—s 00 e —t—
03004045y 8q270,0, 5,0 030040454 87270,0, 5,0 030040454 8q270,0, 0,0
Number of policy updates 1e3 Number of policy updates 1e3 Number of policy updates 1e3
1e—1 Learnability-Hard le-1 Learnability

07004044890 0,0, 809 0300404 My 2920 0,0, M0 0
Number of policy updates le3 Number of policy updates le3

(b) Evaluation on test partition

Figure 9: Case 1: Regret (UAMOAE [JPVL  [MaxMC) realism (USC-APE), and learnability (U™,
pleam-hard) ‘hrooression during training with 1000 scenarios from WOMD: We evaluate in (a) train-
ing partition, and (b) 150 test scenarios. Bold markers indicate the mean, whereas the shaded area

covers one standard deviation around it across three independent training runs.

temperature decreases, the impact of the ranking on the replay distribution also decreases. Further-
more, we observe that certain utility functions result in significant changes in the replay distribution
throughout training, specifically when visualized with respect to the number of controlled agents in
scenarios (see Figures[13|and[16]for UACMAE and team-hard | regpectively). The reason behind such
changes may be the use of a lower score temperature, which allows the ranking to impact the replay

distribution more drastically.
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Figure 10: Case 2: Performance, Regret (UAMGAE  [JPVL  (yMaxMCy “realism (USC-APE) and learn-
ability (Ubeam  grteam-hardy - hrooression during training with 10,000 scenarios from WOMD: We
evaluate in (a) training partition, and (b) 10,000 test scenarios. Bold markers indicate the mean,
whereas the shaded area covers one standard deviation around it across three training runs.
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Figure 11: Case 3: Regret (UAMGAE  [JPVL  [JMaxMC) “reqlism (USC-APE), and learnability (U-*™,
yleam-hard) “5rooression during training with 80,000 scenarios from WOMD: We evaluate in 10,000

test scenarios. Bold markers indicate the mean, whereas the shaded area covers one standard devia-
tion around it across two independent training runs.
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Figure 12: Ablation: Performance, regret (UAMSGAE [JPVL  [JMaMC) “reqlism (UOCAPE) and learn-
ability (Uteam, yteam-hard) nrooression during training for our ablation study on compute resources:
We evaluate in (a) training partition, and (b) 150 test scenarios. Bold markers indicate the mean,
whereas the shaded area covers one standard deviation around it across three training runs.
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Figure 13: Preplay progression of PLR combined with U Ac-MAE i1y mini WOMD: We illustrate (top)
the evolution of Prepay, Where darker line segments indicate scenarios with higher replay likelihood,
(middle) a version of replay distribution under categorization with respect to the number of con-
trolled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.
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Figure 14: Pypiay progression of PLR combined with UAMSAE in mini WOMD: We illustrate (top)
the evolution of Prepi.y, Where darker line segments indicate scenarios with higher replay likelihood,
(middle) a version of replay distribution under categorization with respect to the number of con-
trolled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.
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Figure 15: Pyeplay progression of PLR combined with US“APE in mini WOMD: We illustrate (top)
the evolution of Prepi.y, Where darker line segments indicate scenarios with higher replay likelihood,
(middle) a version of replay distribution under categorization with respect to the number of con-
trolled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.
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Figure 16: Pyeplay progression of PLR combined with UM ™hard jp mini WOMD: We illustrate (top)
the evolution of Prepay, Where darker line segments indicate scenarios with higher replay likelihood,
(middle) a version of replay distribution under categorization with respect to the number of con-
trolled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.
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Figure 17: Prepiay progression of PLR combined with U Learn i mini WOMD: We illustrate (top)
the evolution of Prep.y, Where darker line segments indicate scenarios with higher replay likelihood,
(middle) a version of replay distribution under categorization with respect to the number of con-
trolled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.
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Figure 18: Prplay progression of PLR combined with U PVL in mini WOMD: We illustrate (top) the
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trolled agents in scenarios, and (bottom) we exemplify three scenarios that appear frequently.
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