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Abstract

Mean Field Control (MFC) is a powerful approximation tool to solve large-scale Multi-
Agent Reinforcement Learning (MARL) problems. However, the success of MFC relies on
the presumption that given the local states and actions of all the agents, the next (local)
states of the agents evolve conditionally independent of each other. Here we demonstrate
that even in a MARL setting where agents share a common global state in addition to their
local states evolving conditionally independently (thus introducing a correlation between
the state transition processes of individual agents), the MFC can still be applied as a good
approximation tool. The global state is assumed to be non-decomposable i.e., it cannot be
expressed as a collection of local states of the agents. We compute the approximation error
as O(e) where e = 1√

N

[√
|X |+

√
|U|
]
. The size of the agent population is denoted by

the term N , and |X |, |U| respectively indicate the sizes of (local) state and action spaces
of individual agents. The approximation error is found to be independent of the size of
the shared global state space. We further demonstrate that in a special case if the reward
and state transition functions are independent of the action distribution of the population,
then the error can be improved to e =

√
|X |√
N

. Finally, we devise a Natural Policy Gradient
based algorithm that solves the MFC problem with O(ϵ−3) sample complexity and obtains
a policy that is within O(max{e, ϵ}) error of the optimal MARL policy for any ϵ > 0.

1 Introduction

Adaptive decision-making by a large number of cooperative autonomous entities in the presence of a changing
environment is a frequently appearing theme in many areas of modern human endeavor such as transporta-
tion, telecommunications, and internet networks. For example, consider the ride-hailing service provided by
a large fleet of vehicles. Not only those vehicles are needed to be strategically placed to allow the maximum
number of passengers to be served but such a formidable task needs to be performed even in the presence
of spatio-temporal variation of passenger demand. In this and many other similar scenarios, the central
question is how a large number of agents can learn to cooperatively achieve a desired target. The framework
of cooperative multi-agent reinforcement learning (MARL) has been developed to answer such questions.
However, in comparison to the single-agent learning framework, the task of cooperative MARL is signifi-
cantly more challenging since as the number of agents increases, the size of the joint state space increases
exponentially.
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Several heuristic approaches have been designed to circumvent the aforementioned curse of dimensionality.
Based on how the agents are trained, these approaches can be primarily classified into two categories. In
Independent Q Learning (IQL) (Tan, 1993), the agents are trained independently. In contrast, centralized
training with decentralized execution (CTDE) based methods (Rashid et al., 2018) train the agents in a
centralized fashion. Both approaches avoid the problem of state-space explosion by restricting the policies of
each agent to depend only on its local state. Despite having empirical success, none of the above approaches
can be shown to have an optimality guarantee. Another approach that has recently emerged as an excellent
approximation tool for cooperative MARL with theoretical optimality guarantee is called mean-field control
(MFC). It works on the premise that in an infinite collection of homogeneous and exchangeable agents, the
behavior of an arbitrarily chosen representative accurately reflects the behavior of the entire population.

The guarantee of MFC as an approximation tool of MARL primarily relies on the law of large numbers
which dictates that the empirical average of a large number of independent and identically distributed
random variables, with high probability, is very close to their mean value. To utilize this property, it is
commonly assumed in the mean-field literature, often implicitly, that the agents are each associated with a
local state that evolves conditionally independently of each other (Gu et al., 2021). Unfortunately, in many
of the practical scenarios, such an assumption might appear to be too restrictive. As an example, consider
the ride-sharing problem discussed before. Assume that the local state perceived by a vehicle is the location
of the potential riders in its immediate vicinity. If two vehicles are located far apart, their local states might
be assumed to evolve conditionally independently. However, if they are so close such that their pickup areas
intersect, then the presumption of independent evolution of states might not hold.

Does MFC-based approximation still hold if the local state evolution processes of different agents are cor-
related? This is one of the most crucial questions that need to be addressed if mean-field-based techniques
are to be adopted in a wide array of real-world MARL problems. In this paper, we establish that if each
agent, in addition to their conditionally independently evolving local states, also possesses a common global
state, the mean-field approach can still be shown to be a good approximation of MARL. The global state is
assumed to be non-decomposable i.e., in general, it cannot be expressed as a collection of some agent-specific
local components. Note that, as the global state is common to all agents, the combined state perceived by
each agent can now no longer be considered to be evolving independently. As a result, the techniques that
are commonly applied to show mean-field approximations can no longer be directly used. We address this
challenge by showing that instead of naively applying the previously developed methods, if the problems are
transformed to an equivalent but slightly different representation, then we can find new variables that evolve
conditionally independently of each other and help us break the correlation barrier.

1.1 Our Contribution

We consider a network comprising N number of agents, each associated with a local state space of size
|X |, a non-decomposable global state space of size |G| and an action space of size |U| (all are assumed to
be of finite size). Given the global state, local states, and actions of all agents at time t, local states at
t + 1 are presumed to evolve conditionally independently of each other. The combined (local, global) states
of each agent, however, do not evolve conditionally independently. We prove that the mean-field control-
based approximation results can be applied even in the presence of such a correlation. We quantify the
approximation error to be O(e) where e ≜ 1√

N

[√
|X |+

√
|U|
]
. Note that the expression of e is independent

of |G|, the size of the global state-space. In a special case where the reward function and both the local
and global state transition functions are assumed to not depend on the action distribution of the agent
population, the approximation error is shown to improve to e =

√
|X |√
N

i.e., it becomes independent of the
size of the action space.

In traditional MFC (with no non-decomposable global state), one of the crucial steps in proving the MARL-
MFC approximation error is upper bounding the term E|µN

t −µt|1 as O(1/
√

N) where µN
t , and µt are the

state-distributions of the N -agent and the infinite agent systems respectively at time t. The key intuition in
proving this bound comes from the fact that µN

t (x) can be written as the average of the random variables
{δ(xi

t = x)}N
i=1 where xi

t is the state of the ith agent at time t. Moreover, the above-mentioned random
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variables are independent conditioned on µN
t−1. This allows one to use the law of large numbers and obtain

the desired bound.

If we follow the same footsteps in our setting (with a non-decomposable global state), we will end up with
the term

∑
x,g E|µN

t (x)δ(gN
t = g)−µt(x)δ(gt = g)| where gN

t and gt are the non-decomposable states in the
N -agent and the infinite agent systems respectively. Note that, we can write µN

t (x)δ(gN
t = g) as the average

of the random variables {δ(xi
t = x, gN

t = g)}N
i=1. Due to the common factor δ(gN

t = g), the above-mentioned
random variables are now correlated, and hence the law of large numbers can no longer be applied. This is
essentially the primary challenge addressed by our paper. We invent new techniques to prove approximation
guarantees even in the presence of a non-decomposable state. The details are provided in section 6.

Finally, we develop a natural policy gradient (NPG) based algorithm and using the result of (Liu et al.,
2020), and our own approximation guarantee, establish that the proposed algorithm generates a policy that
is within O(max{e, ϵ}) error of the optimal MARL policy for any ϵ > 0. Moreover, the sample complexity
bound for obtaining such a solution is shown to be O(ϵ−3).

1.2 Related Works

Single Agent Learning: Pioneering works in the single agent learning setup includes various finite
state/tabular algorithms such as Q-learning (Watkins and Dayan, 1992) and SARSA (Rummery and Ni-
ranjan, 1994). Despite having theoretical guarantees, these algorithms did not get adopted in large-scale
applications due to the huge memory requirement. Recently, neural network (NN) based Deep Q Learning
(DQL) (Mnih et al., 2015) and policy gradient-based algorithms (Mnih et al., 2016) have garnered popularity
due to the large expressive powers of NNs. Nevertheless, due to the exponential increase in the size of the
joint state space with the number of agents, these algorithms are far from being the panacea for large-scale
MARL problems.

CTDE-based Approaches for MARL: As stated before, the idea behind centralized training and de-
centralized execution (CTDE) based approaches is to restrict the policies to solely take the local state of
the associated agent as an input. Depending on how such local policies are trained, various algorithms
have been constructed. For example, VDN (Sunehag et al., 2017), trains the local policies by minimizing
the Bellman error corresponding to the sum of individual Q-functions of each agent. QMIX (Rashid et al.,
2018), on the other hand, computes the Bellman error corresponding to the state-dependent weighted sum
of the Q-functions of each agent. Various other CTDE-based algorithms are WQMIX (Rashid et al., 2020),
QTRAN (Son et al., 2019) etc. Parallel to CTDE, IQL-based algorithms have also garnered popularity in
large-scale MARL (Wei et al., 2019). Alongside these heuristics, there have been some recent efforts to
theoretically characterize the efficacy of the local policies Qu et al. (2020); Lin et al. (2021); Mondal et al.
(2022c). However, none of them include a common global state.

Mean-Field Control (MFC): MFC is a relatively recent development that solves MARL with theoretical
optimality guarantees. (Gu et al., 2021) exhibited that if all the agents are homogeneous and exchangeable,
MFC can be used as a good approximation of an N -agent problem. Later, similar approximation results
were proved for K-class of heterogeneous agents (Mondal et al., 2022a) and non-exchangeable agents (Mondal
et al., 2022b). Moreover, various model-based (Pasztor et al., 2021) and model-free (Angiuli et al., 2022)
algorithms have been developed to solve the MFC problem. We would like to point out that our framework
is closely aligned with the framework of MFC with common noise (Motte and Pham, 2022; Carmona et al.,
2019). However, (Motte and Pham, 2022) only considers open-loop policies which are essentially sequences of
actions, rather than state-to-action maps (also known as closed-loop policies). On the other hand, although
(Carmona et al., 2019) do consider closed-loop policies, they do not show the convergence between MARL
and MFC as a function of the number of agents. Empirically, MFC has found its application in a diverse
range of scenarios, including epidemic management (Watkins et al., 2016), congestion control (Wang et al.,
2020), and ride-sharing (Al-Abbasi et al., 2019).

Beyond Mean-Field Control: The presumption of homogeneity of the agents turns out to be too restric-
tive in many practical scenarios. Graphon mean-field control (Caines and Huang, 2019) is an emerging new
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area that attempts to do away with the presumption of homogeneity. However, as explained in (Mondal
et al., 2022b), such approaches also come with their own set of restrictions.

Mean-Field Games: Similar to MFC, mean-field games (MFG) attempt to characterize the behavior of
an infinite number of agents in a non-cooperative setup. In contrast to MFC, the goal of MFG is to identify
the Nash equilibrium of the system (Elie et al., 2020; Yang et al., 2017).

2 MARL with Shared Global State

We consider a collection of N interacting agents each with a local state space X and an action space U . At
instant t, the local state and action of the ith agent are respectively indicated by xi

t, ui
t. In addition to the

local state, at time t, each agent also observes a global state gN
t whose realizations are from the global state

space, G. The collection of local states and actions of all agents are expressed as xN
t , uN

t respectively. Given
the tuple (xN

t , gN
t , uN

t ), the local state of ith agent at time t + 1 is given by the following transition law,
xi

t+1 ∼ Pi(xN
t , gN

t , uN
t ). Similarly, the transition law for the global state is given as gN

t+1 ∼ PG(xN
t , gN

t , uN
t ).

It is assumed that the random variables {{xi
t+1}N

i=1, gN
t+1} are independent, conditioned on {xN

t , gN
t , uN

t }.
At time t, the (expected) reward received by the ith agent is denoted as ri(xN

t , gN
t , uN

t ). Let µN
t , νN

t indicate
the empirical state and action distributions of N agents at instant t which are defined respectively as follows.

µN
t (x) ≜ 1

N

N∑
i=1

δ
(
xi

t = x
)

,∀x ∈ X (1)

νN
t (u) ≜ 1

N

N∑
i=1

δ
(
ui

t = u
)

,∀u ∈ U (2)

where δ(·) is an indicator function. We assume the agents to be homogeneous and exchangeable. Hence, the
reward and state transition functions can be written as follows.

ri(xN
t , gN

t , uN
t ) = r(xi

t, ui
t, µN

t , gN
t , νN

t ) (3)
Pi(xN

t , gN
t , uN

t ) = P (xi
t, ui

t, µN
t , gN

t , νN
t ) (4)

PG(xN
t , gN

t , uN
t ) = PG(µN

t , gN
t , νN

t ) (5)

where r, P, PG are given as follows: r : X ×U×∆(X )×G×∆(U)→ R, P : X ×U×∆(X )×G×∆(U)→ ∆(X )
and PG : ∆(X )× G ×∆(U)→ ∆(G). The symbol ∆(S) defines the probability simplex defined over the set
S. Note that (5) is written with a slight abuse of notations.

A policy πt is a function of the form, πt : X ×∆(X )× G → ∆(U). In simple terms, a policy is a recipe for
the agents to (probabilistically) choose actions based on their current local states, the empirical local state
distribution of all the agents, and the global state1. Let π ≜ {πt}t∈{0,1,··· } be a sequence of policies. The
value generated by the sequence π corresponding to the initial state (xN

0 , gN
0 ) is defined as follows.

VN (xN
0 , gN

0 , π) ≜ 1
N

N∑
i=1

E

[ ∞∑
t=0

γtri(xN
t , gN

t , uN
t )
]

= 1
N

N∑
i=1

E

[ ∞∑
t=0

γtr(xi
t, ui

t, µN
t , gN

t , νN
t )
] (6)

where the expectation is taken over all trajectories generated by the policy sequence π starting from the
initial states (xN

0 , gN
0 ) and γ ∈ (0, 1) is the discount factor. The target of MARL is to compute a policy

sequence that maximizes VN (xN
0 , gN

0 , ·) over the set of admissible policy sequences Π∞ ≜ Π×Π×· · · where Π
is the set of admissible policies. In the next section, we shall discuss the mean-field control (MFC) framework
that can be used to approximately solve the MARL problem.

1Here we implicitly assume that all agents execute the same policy. This is primarily because the agents are presumed to
have the same reward function and state-transition function (Gu et al., 2021; Pasztor et al., 2021).
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3 Mean-Field Control (MFC) Framework

In this setting, we consider the size of the agent population to be infinite. Due to homogeneity, we can
arbitrarily select a representative agent whose local state and action at time t are defined as xt, and ut

respectively. In addition, let gt indicate the global state at time t. Let µt, νt be the distributions of local
states and actions at time t over the infinite agent population. For a given sequence π = {πt}t∈{0,1,··· },
define the following.

νt = νMF(µt, gt, πt) ≜
∑
x∈X

πt(x, µt, gt)µt(x) (7)

The above relation demonstrates how the action distribution νt can be obtained from the local state distri-
bution µt and the global state gt. Now we quantitatively describe how µt+1, the local state distribution at
t + 1, can be obtained from µt an gt.

µt+1 =
∑
x∈X

∑
u∈U

P (x, u, µt, gt, νMF(µt, gt, πt))× πt(x, µt, gt)(u)µt(x) ≜ P MF(µt, gt, πt) (8)

Define λt ≜ PG(µt−1, gt−1, νt−1), t ≥ 1 and λ0 ≜ 1(g0) where 1(g0) indicates a one-hot vector with a
nonzero element at the position corresponding to g0. Intuitively, λt denotes the conditional distribution of
gt given (µt−1, gt−1, νt−1). Note that the following relation holds ∀t ≥ 0.

λt+1 = P MF
G (µt, gt, πt) ≜ PG(µt, gt, νMF(µt, gt, πt)) (9)

Finally, the average reward at time t is expressed as follows.

rMF(µt, gt, πt) =
∑
x∈X

∑
u∈U

πt(x, µt, gt)(u)× µt(x)× r(x, u, µt, gt, νMF(µt, gt, πt)) (10)

The mean-field value generated by π = {πt}t∈{0,1,··· } for a local state distribution µ0 and global state g0 is
expressed as follows.

V∞(µ0, g0, π) =
∞∑

t=0
γtE

[
rMF(µt, gt, πt)

]
(11)

where the expectation is obtained over {gt}t∈{1,2··· } where gt+1 ∼ P MF
G (µt, gt, πt), µt+1 = P MF(µt, gt, πt),

t ≥ 0. The goal of MFC is to maximize the function V∞(µ0, g0, ·) over the set of admissible policy sequences,
Π∞. In the following section, we show that the optimal value of MARL is approximately equal to its
associated optimal MFC value.

4 Approximation Result

We shall first dictate some assumptions that are needed to establish the main result.
Assumption 1. The functions r, P and PG are assumed to follow the following relations ∀µ1, µ2 ∈ ∆(X ),
∀ν1, ν2 ∈ ∆(U), ∀x ∈ X , ∀u ∈ U , and ∀g ∈ G

(a) |r(x, u, µ1, g, ν1)| ≤MR

(b) |r(x, u, µ1, g, ν1)− r(x, u, µ2, g, ν2)| ≤ LR{|µ1 − µ2|1 + |ν1 − ν2|1}
(c) |P (x, u, µ1, g, ν1)− P (x, u, µ2, g, ν2)|1 ≤ LP {|µ1 − µ2|1 + |ν1 − ν2|1}
(d) |PG(µ1, g, ν1)− PG(µ2, g, ν2)|1 ≤ LG{|µ1 − µ2|1 + |ν1 − ν2|1}

The constants LR, LP are arbitrary positive numbers. The function | · |1 denotes the L1-norm.
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Assumption 1(a) states that the reward function is bounded within the finite interval [−MR, MR]. On the
other hand, assumption 1(b), 1(c), and 1(d) respectively dictates that the reward function, r, the local state
transition function, P and the global state transition function, PG are all Lipschitz continuous with respect
to their local state distribution and action distribution arguments. Such assumptions are common in the
literature (Pasztor et al., 2021; Hinderer, 2005; Gu et al., 2021). We would like to point out that although
the state and action distributions are treated as continuous variables, in an N -agent problem, they can only
take a finite number of values in their respective probability simplexes. In the MFC problem, however, these
variables can be arbitrary. Therefore, while comparing the N -agent and the MFC problem, we are implicitly
extending the domain of definition for the reward and the state transition functions.
Assumption 2. The set of admissible policies, Π is such that any π ∈ Π satisfies the following inequality
∀x ∈ X , ∀µ1, µ2 ∈ ∆(X ), and ∀g ∈ G.

|π(x, µ1, g)− π(x, µ2, g)| ≤ LQ|µ1 − µ2|1

Assumption 2 states that the set of admissible policies is selected such that each of its elements is Lipschitz
continuous with respect to their local state distribution argument. Such assumption typically holds for
neural network (NN) based policies with bounded weights (Mondal et al., 2022a; Pasztor et al., 2021; Cui
and Koeppl, 2021).

We are now ready to state the main result. The proof of the theorem stated below is relegated to Appendix
A.
Theorem 1. Let x0 ≜ {xi

0}i∈{1,··· ,N} and g0 be the initial states and µ0 denote the empirical distribution
of x0. If Assumption 1 holds and the set of admissible policies, Π satisfies Assumption 2, then the following
relation is true whenever γSP < 1.

| sup
π

VN (x0, g0, π)− sup
π

V∞(µ0, g0, π)|

≤ sup
π
|VN (x0, g0, π)− V∞(µ0, g0, π)| ≤

(
MR + LR

√
|U|

1− γ

)
1√
N

+
√
|U|
N

MRLGγ

(1− γ)2

+
(

CP

SP − 1

)[(
MRSG

SP − 1 + SR

){
1

1− γSP
− 1

1− γ

}
− γMRSG

(1− γ)2

]
× 1√

N

[√
|X |+

√
|U|
]

where SP ≜ 1 + 2LP + LQ(1 + LP ), SR ≜ MR + 2LR + LQ(MR + LR), SG ≜ LG(2 + LQ) and CP ≜ 2 + LP .
Suprema are performed over the class of all admissible policy sequences, Π∞.

Theorem 1 states that if the discount factor γ is sufficiently small, then under assumptions 1 and 2, the
optimal N -agent value function is at most O

(
1√
N

[√
|X |+

√
|U|
])

error away from the optimal mean-field
value function. In other words, if the number of agents, N is large and the sizes of local states and actions
of individual agents is sufficiently small, then an optimal solution of MFC well approximates the optimal
solution of a MARL problem as described in section 2. Interestingly, notice that the approximation error
does not depend on the size of global state space |G|. Thus, the approximation error can be kept small even
when |G| is dramatically large or even potentially infinite.

Let, πMF
ϵ ∈ Π∞ be an admissible policy sequence that solves the MFC problem with ϵ accuracy. Note that,

| sup
π

VN (x0, g0, π)− VN (x0, g0, πMF
ϵ )| ≤ | sup

π
VN (x0, g0, π)− sup

π
V∞(µ0, g0, π)|︸ ︷︷ ︸

≜J1

+ | sup
π

V∞(µ0, g0, π)− V∞(µ0, g0, πMF
ϵ )|︸ ︷︷ ︸

≜J2

+ |V∞(µ0, g0, πMF
ϵ )− VN (x0, g0, πMF

ϵ )|︸ ︷︷ ︸
≜J3

The terms J1, J3 can be bounded by Theorem 1 while J2 can be bounded by ϵ. This result suggests that if we
can come up with a way to approximately solve the MFC problem, then that solution must be a good proxy
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for the optimal MARL solution. Before discussing the algorithmic aspects of solving the MFC problem, we
would like to first discuss a special case where the approximation error can be lower in comparison to that
stated in Theorem 1.

5 Improvement in a Special Case

In this section, we shall demonstrate that if certain structural restrictions are imposed on the reward and
state transition functions, then the approximation error stated in Theorem 1 can be improved further. In
particular, the assumption imposed on the stated functions can be mathematically described as follows.
Assumption 3. The following relations hold ∀µ ∈ ∆(X ), ∀ν ∈ ∆(U), ∀x ∈ X , ∀g ∈ G, ∀u ∈ U ,

(a) r(x, u, µ, g, ν) = r(x, u, µ, g),
(b) P (x, u, µ, g, ν) = P (x, u, µ, g),
(c) PG(µ, g, ν) = PG(µ, g)

Note that the above relations are stated with a slight abuse of notations.

Assumption 3 dictates that the reward function, r, the local state transition function, P , and the global
state transition function, PG are independent of the action distribution of the population. We would like to
point out that the functions r and P may still depend on the action of the associated agent even if they are
independent of the actions of others. In Theorem 2, we discuss the implication of Assumption 3. The proof
of Theorem 2 is relegated to Appendix N.
Theorem 2. Let x0 ≜ {xi

0}i∈{1,··· ,N} and g0 be the initial states and µ0 indicate the empirical distribution of
x0. If assumptions 1 and 3 hold and the set of admissible policies, Π obeys assumption 2, then the following
relation is true whenever γQP < 1,

| sup
π

VN (x0, g0, π)− sup
π

V∞(µ0, g0, π)| ≤
(

MR

1− γ

)
1√
N

+
√
|X |√
N

×
(

2
QP − 1

)[(
MRLG

QP − 1 + QR

){
1

1− γQP
− 1

1− γ

}
− γMRLG

(1− γ)2

]
where QP ≜ 1 + LP + LQ and QR ≜ MR(1 + LQ) + LR. Suprema are computed over the set of all admissible
policy sequences, Π∞.

Theorem 2 dictates that if the reward, r, and state transition functions, P and PG are independent of
the action distribution of the entire agent population, then the approximation error can be improved to

O
(√

|X |√
N

)
. Therefore, in addition to large global state space, such system can also afford to have large

action space without compromising the MFC based approximation accuracy.

6 Proof Outline

Here we present a brief outline of the proof of Theorem 1. The proof of Theorem 2 is similar. In order to
describe the proof steps, the infinite agent value function given in (11) needs to be written in an equivalent
but slightly different representation.

6.1 An Equivalent Representation

Let us focus on the expected infinite-agent reward at time t, denoted by the expression E[rMF(µt, gt, πt)].
Note that, starting from µ0, g0, the sequence of local state distribution and global states {(µl, gl)}, l ∈
{1, · · · , t} can be recursively obtained as follows.

µl+1 = P MF(µl, gl, πl) (12)
gl+1 ∼ P MF

G (µl, gl, πl), l ∈ {0, · · · , t− 1} (13)
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where P MF, P MF
G are defined in (8), (9) respectively. Note that (12) is a deterministic relation. Therefore, if

we fix a particular realization of the global states {gl}, l ∈ {1, · · · , t− 1}, then, by recursively applying (12),
µl+1 can be written as follows, ∀l ∈ {0, · · · , t− 1}.

µl+1 = P̃ MF(µ0, g0:l, π0:l)
≜ P MF(·, gl, πl) ◦ P MF(·, gl−1, πl−1) ◦ · · · ◦ P MF(·, g1, π1) ◦ P MF(·, g0, π0)(µ0)

(14)

where ◦ indicates function composition, g0:l ≜ {g0, · · · , gl} and π0:l ≜ {π0, · · · , πl}. On the other hand, recur-
sively using (13), the probability of occurrence of a particular realisation of the sequence g1:t ≜ {g1, · · · , gt}
can be written as follows.

P(g1:t|µ0, g0, π0:t−1) ≜ P MF
G (µ0, g0, π0)(g1)× · · · × P MF

G (µt−1, gt−1, πt−1)(gt) (15)

For notational convenience, we denote this conditional joint probability as P̃ MF
G (µ0, g0:t−1, π0:t−1)(gt). In-

voking (14), this can be alternatively written as follows.

P̃ MF
G (µ0, g0:t−1, π0:t−1)(gt) = P MF

G (µ0, g0, π0)(g1)× P MF
G (P̃ MF(µ0, g0:0, π0:0), g1, π1)(g2)

× · · · × P MF
G (P̃ MF(µ0, g0:t−2, π0:t−2), gt−1, πt−1)(gt)

(16)

Using these notations, we can now define r̃MF(µ0, g0, π0:t) ≜ E[rMF(µt, gt, πt)] as follows.

r̃MF(µ0, g0, π0:t) ≜
∑
1:t

P̃ MF
G (µ0, g0:t−1, π0:t−1)(gt)× rMF(P̃ MF(µ0, g0:t−1, π0:t−1), gt, πt) (17)

where
∑

1:t is the summation operation over g1:t ∈ Gt for t ≥ 1. For t = 0, we define r̃MF(µ0, g0, π0:0) ≜
rMF(µ0, g0, π0).

6.2 Proof Outline

With the new representation defined above, we are now ready to sketch a brief outline of the proof.

Step 0: Recall from the definitions (6) and (11) that both N -agent and infinite agent value functions are
γ-discounted sum of expected rewards. To obtain their difference corresponding to a given policy sequence,
π = {πt}t∈{0,1,··· }, we therefore must calculate the difference between the expected N -agent reward at time t
and the expected infinite agent reward at time t. Mathematically, this difference can be expressed as follows.

∆Rt ≜

∣∣∣∣∣ 1
N

N∑
i=1

E
[
r(xi

t, ui
t, µN

t , gN
t , νN

t )
]
− E

[
rMF(µt, gt, πt)

]∣∣∣∣∣
where all the notations are the same as used in sections 2 and 3.

Step 1: We upper bound ∆Rt as ∆Rt ≤ ∆R1
t + ∆R2

t . The first term is given as follows.

∆R1
t ≜ E

∣∣∣∣∣ 1
N

N∑
i=1

r(xi
t, ui

t, µN
t , gN

t , νN
t )− rMF(µN

t , gN
t , πt)

∣∣∣∣∣
We show that ∆R1

t = O
(√
|U|/N

)
in Lemma 13 (Appendix A.3). The second term ∆R2

t is the following.

∆R2
t ≜

∣∣E[rMF(µN
t , gN

t , πt)]− E[rMF(µt, gt, πt)]
∣∣ (18)

8
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Step 2: Using the definition of r̃MF in section 6.1, we can write, E[rMF(µN
t , gN

t , πt)] = E[r̃MF(µN
t , gN

t , πt:t)]
and E[rMF(µt, gt, πt)] = r̃MF(µ0, g0, π0:t) = E[r̃MF(µ0, g0, π0:t)]. We now further bound ∆R2

t as follows.

∆R2
t =

∣∣E[r̃MF(µN
t , gN

t , πt:t)]− E[r̃MF(µ0, g0, π0:t)]
∣∣

(a)=

∣∣∣∣∣
t−1∑
k=0

E[r̃MF(µN
k+1, gN

k+1, πk+1:t)]− E[r̃MF(µN
k , gN

k , πk:t)]

∣∣∣∣∣
≤

t−1∑
k=0

∣∣E[r̃MF(µN
k+1, gN

k+1, πk+1:t)]− E[r̃MF(µN
k , gN

k , πk:t)]
∣∣︸ ︷︷ ︸

≜∆R2
k,t

(19)

In the above inequality, we implicitly use the convention that µN
0 = µ0, gN

0 = g0. Equality (a) is essentially
a telescoping series.

Step 3: We shall now focus on the first term of ∆R2
k,t. Note that,

E[r̃MF(µN
k+1, gN

k+1, πk+1:t)]
= E

[
E
[
r̃MF(µN

k+1, gN
k+1, πk+1:t)

∣∣µN
k , gN

k , νN
k

]]
(a)= E

E
∑

g∈G
r̃MF(µN

k+1, g, πk+1:t)PG(µN
k , gN

k , νN
k )(g)

∣∣µN
k , gN

k , νN
k


= E

∑
g∈G

r̃MF(µN
k+1, g, πk+1:t)PG(µN

k , gN
k , νN

k )(g)


where (a) follows from the fact that µN

k+1, gN
k+1 are conditionally independent given µN

k , gN
k , νN

k and gN
k+1 ∼

PG(µN
k , gN

k , νN
k ).

Step 4: Using Lemma 9 (stated in Appendix A.2), we can expand the second term of ∆R2
k,t as follows.

E[r̃MF(µN
k , gN

k , πk:t)] = E

[∑
g∈G

PG(µN
k , gN

k , νMF(µN
k , gN

k , πk))(g)× r̃MF(P MF(µN
k , gN

k , πk), g, πk+1:t)
]

Step 5: Lemma 8 (Appendix A.2) shows that r̃MF(·, g, πk+1:t) is Lipschitz continuous with a (k, t)-dependent
Lipschitz parameter for any g, πk+1:t. Therefore, one can write the following.∣∣r̃MF(µN

k+1, g, πk+1:t)− r̃MF(P MF(µN
k , gN

k , πk), g, πk+1:t)
∣∣ = O

(∣∣µN
k+1 − P MF(µN

k , gN
k , πk)

∣∣
1

)
The leading constants in the above bound are (k, t) dependent. In Lemma 12 (Appendix A.3), we further
show that,

E
∣∣µN

k+1 − P MF(µN
k , gN

k , πk)
∣∣
1 = O

(
1√
N

[√
|X |+

√
|U|
])

Using Assumption 1(d), one can write the following for any choice of µN
k , gN

k , νN
k and πk.

|PG(µN
k , gN

k , νN
k )− PG(µN

k , gN
k , νMF(µN

k , gN
k , πk))|1 ≤ LG

∣∣νN
k − νMF(µN

k , gN
k , πk)

∣∣
1

Moreover, in Lemma 11 (Appendix A.3), we show that,

E
∣∣νN

k − νMF(µN
k , gN

k , πk)
∣∣
1 = O

(√
|U|√
N

)

9
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Combining all these results with the expansions obtained in steps 3 and 4, we finally conclude that,

∆R2
k,t = O

(
1√
N

[√
|X |+

√
|U|
])

where the leading constants are (k, t)-dependent.

Step 6: Substituting the bound of ∆R2
k,t in (19), we can obtain a bound for ∆R2

t which, combined with
the previously obtained bound for ∆R1

t , yields a bound for ∆Rt. We finally obtain the difference between
N -agent and infinite agent value corresponding to π by computing the upper bound of the sum

∑∞
t=0 γt∆Rt.

We would like to point out here that the leading coefficient of ∆Rt turns out to be an exponential function
of t. In order for the sum to converge, one must have γ to be sufficiently small.

Step 7: We establish the desired result by observing that | supπ VN (x0, g0, π) − supπ V∞(µ0, g0, π)| ≤
supπ |VN (x0, g0, π)− V∞(µ0, g0, π)| where the suprema are calculated over the class of all admissible policy
sequences Π∞.

We would like to conclude this section by pointing out how our proof technique fundamentally differs from
the techniques used in the existing papers such as Mondal et al. (2022a); Gu et al. (2021) where the common
global state is not considered. Note that in absence2 of the shared state-space G, the infinite agent state
distributions {µt}t∈{0,1,··· } are all deterministic and the error ∆R2

t defined in (18) can be bounded as,

∆R2
t ≜

∣∣E[rMF(µN
t , πt)]− E[rMF(µt, πt)]

∣∣
≤ E

∣∣rMF(µN
t , πt)− rMF(µt, πt)

∣∣ (a)= O
(
E|µN

t − µt|1
) (20)

Relation (a) is proven by establishing that rMF(·, πt) is Lipschitz continuous. The error term E|µN
t − µt|1

shown in (20) is bounded by establishing a recursion on t. Unfortunately, such simplified recursion does not
hold once the global state space is introduced. In our analysis, we rather need to keep track of the whole
trajectory induced by the policy sequence, πk:t for k < t. The need to trace out convoluted trajectories and
the lack of any simplified recursion makes our analysis much more difficult and incompatible with the proof
techniques available in the literature.

7 Algorithm to solve MFC

In this section, we present a natural policy gradient (NPG) based algorithm to obtain an optimal policy for
the mean-field control (MFC) problem. As clarified in section 3, the size of the agent population is presumed
to be infinite in an MFC framework and we can arbitrarily select any agent to be a representative. Assume
that at time t the representative agent chooses an action ut ∈ U after observing its local state xt ∈ X , the
global state gt ∈ G, and the distribution of local states of all agents denoted by µt ∈ ∆(X ). The goal of
MFC, therefore, reduces to maximizing the discounted expected reward of this representative agent. Clearly,
it is a single agent Markov Decision Process (MDP) with a state space of X ×∆(X )×G and action space U .

Without loss of generality, we can assume that the optimal policy sequence is stationary (Puterman, 2014,
Theorem 6.2.12). Note that the collection of admissible policies is denoted by the set Π. We assume that
the elements of Π are characterized by a d−dimensional parameter Φ ∈ Rd. In the forthcoming discussion, a
policy with the parameter Φ will be denoted as πΦ whereas, with a slight abuse of notations, the stationary
sequence generated by it will also be denoted as πΦ. Let the Q-value corresponding to the policy πΦ be
defined as follows ∀x, µ, g, u.

QΦ(x, µ, g, u) ≜ E

[ ∞∑
t=0

γtr(xt, ut, µt, gt, νt)
∣∣∣x0 = x, µ0 = µ, g0 = g, u0 = u

]
(21)

where the quantities µt and νt are recursively calculated by applying (8) and (7) respectively. Moreover, the
expectation is taken over xt+1 ∼ P (xt, ut, µt, gt, νt), ut ∼ πΦ(xt, µt, gt), and gt+1 ∼ PG(µt, gt, νt), ∀t ≥ 0.

2This can be considered a special case of our model by imposing |G| = 1.
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The advantage function corresponding to πΦ is defined as follows.

AΦ(x, µ, g, u) ≜ QΦ(x, µ, g, u)− E[QΦ(x, µ, g, u′)] (22)

where the expectation is over u′ ∼ πΦ(x, µ, g).

Let µ0 ∈ ∆(X ) be the distribution of initial local states and g0 be the initial global state. Define V ∗
∞(µ0, g0) ≜

supΦ∈Rd V∞(µ0, g0, πΦ) to be the optimal mean-field value obtained over the collection of admissible policies,
Π corresponding to the initial state (µ0, g0). Assume that {Φj}J

j=1 is a sequence of d−dimensional parameters
generated by the NPG algorithm (Liu et al., 2020; Agarwal et al., 2021) as follows.

Φj+1 = Φj + ηwj , wj ≜ arg minw∈Rd L
ζ

Φj

(µ0,g0)
(w, Φj) (23)

where η > 0 is the learning parameter. The function L
ζ

Φj

(µ0,g0)
and the occupancy measure ζ

Φj

(µ0,g0) are defined

below.

LζΦ′
(µ0,g0)

(w, Φ) ≜E(x,µ,g,u)∼ζΦ′
(µ0,g0)

[(
AΦ(x, µ, g, u)− (1− γ)wT∇Φ log πΦ(x, µ, g)(u)

)2]
, (24)

ζΦ′

(µ0,g0)(x, µ, g, u) ≜
∞∑

τ=0
γτP(xτ = x, µτ = µ, gτ = g, uτ = u|x0 = x, µ0 = µ, g0 = g, u0 = u, πΦ′)(1− γ)

(25)

Note that in order to calculate the update direction, wj at the j-th NPG update (23), we must solve another
optimization problem over Rd. The second minimization problem can be handled via a stochastic gradient
descent (SGD) approach. Particularly, for a given Φj ∈ Rd, the minimizer of L

ζ
Φj

(µ0,g0)
(·, Φ) can be obtained

via the following SGD updates: wj,l+1 = wj,l−αhj,l (Liu et al., 2020) where α > 0 is the learning parameter
for the sub-problem and hj,l, the gradient at the l-th iteration is given as follows.

hj,l ≜

(
wT

j,l∇Φj
log πΦj

(x, µ, g)(u)− 1
1− γ

ÂΦj
(x, µ, g, u)

)
∇Φj

log πΦj
(x, µ, g)(u) (26)

where the tuple (x, µ, g, u) is sampled from the occupancy measure ζ
Φj

λ0
, and ÂΦj (x, µ, g, u) denotes a unbi-

ased estimator of AΦj (x, µ, g, u). The sampling procedure and the method to obtain the estimator has been
described in Algorithm 2 in Appendix V. It is to be clarified that Algorithm 2 is based on Algorithm 3 of
(Agarwal et al., 2021). The whole NPG procedure is summarized in Algorithm 1.

Based on the result (Theorem 4.9) of (Liu et al., 2020), in Lemma 1, we establish the convergence of
Algorithm 1 and characterize its sample complexity. However, the following assumptions are needed to
prove the Lemma. The assumptions stated below are respectively similar to Assumptions 2.1, 4.2, 4.4 of
(Liu et al., 2020).
Assumption 4. ∀Φ ∈ Rd, ∀(µ0, g0) ∈ ∆(X )×G, for some χ > 0, F(µ0,g0)(Φ)−χId is positive semi-definite
where F(µ0,g0)(Φ) is defined as stated below.

F(µ0,g0)(Φ) ≜E(x,µ,g,u)∼ζΦ
(µ0,g0)

[
{∇ΦπΦ(x, µ, g)(u)} × {∇Φ log πΦ(x, µ, g)(u)}T

]
Assumption 5. ∀Φ ∈ Rd, ∀µ ∈ ∆(X ), ∀x ∈ X , ∀g ∈ G, ∀u ∈ U , the following holds

|∇Φ log πΦ(x, µ, g)(u)|1 ≤ G

for some positive constant G.
Assumption 6. ∀Φ1, Φ2 ∈ Rd, ∀µ ∈ ∆(X ), ∀x ∈ X , ∀g ∈ G, ∀u ∈ U , the following holds,

|∇Φ1 log πΦ1(x, µ, g)(u)−∇Φ2 log πΦ2(x, µ, g)(u)|1 ≤M |Φ1 − Φ2|1

for some positive constant M .
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Algorithm 1 Natural Policy Gradient
1: Input: η, α: Learning rates, J, L: Number of execution steps

w0, Φ0: Initial parameters,
µ0: Initial local state distribution
g0: Initial global state

2: Initialization: Φ← Φ0
3: for j ∈ {0, 1, · · · , J − 1} do
4: wj,0 ← w0
5: for l ∈ {0, 1, · · · , L− 1} do
6: Sample (x, µ, g, u) ∼ ζ

Φj

(µ0,g0) and ÂΦj
(x, µ, g, u) using Algorithm 2

7: Compute hj,l using (26)
8: wj,l+1 ← wj,l − αhj,l

9: end for
10: wj ←

1
L

∑L
l=1 wj,l

11: Φj+1 ← Φj + ηwj

12: end for
13: Output: {Φ1, · · · , ΦJ}: Policy parameters

Assumption 7. ∀Φ ∈ Rd, ∀(µ0, g0) ∈ ∆(X )× G,

LζΦ∗
(µ0,g0)

(w∗
Φ, Φ) ≤ ϵbias, w∗

Φ ≜ arg minw∈RdLζΦ
(µ0,g0)

(w, Φ)

where Φ∗ is the parameter of the optimal policy.
Remark 1. Note that Assumption 7 is trivially satisfied with ϵbias = 2MR/(1−γ). Assume that, U = {1, 2},
and a restricted class of parameterized policies is defined as follows.

πΦ(x, µ, g) =
[

exp(Φ)
1 + exp(Φ)

1
1 + exp(Φ)

]T

where (x, µ, g) ∈ X ×∆(X )×G, and Φ ∈ [−ξ, ξ] for some constant, ξ > 0. One can check that, for the set of
policies stated above, assumptions 4− 6 are satisfied with χ = exp(2ξ)/(1 + exp(ξ))4, G = 1, and M = 1/4.

We are now ready to state the convergence result which is a direct application of Theorem 4.9 of (Liu et al.,
2020).
Lemma 1. Let {Φj}J

j=1 be the sequence of policy parameters obtained from Algorithm 1. If Assumptions 4−7
hold, then the following inequality holds for η = (1−γ)2χ2

4G2MRM , α = 1
4G2 , J = O

(
1

(1−γ)2ϵ

)
, L = O

(
1

(1−γ)4ϵ2

)
,

V ∗
∞(µ0, g0)− 1

J

J∑
j=1

E
[
V∞(µ0, g0, πΦj )

]
≤
√

ϵbias

1− γ
+ ϵ,

for arbitrary initial parameter Φ0, initial local state distribution µ0 ∈ ∆(X ) and initial global state g0. The
parameters {MR, χ, G, M} are defined in Assumptions 1, 4, 5, 6 respectively. The term ϵbias is a positive
constant. The sample complexity of Algorithm 1 is O(ϵ−3).

The term ϵbias introduced in Lemma 1 is termed as the expressivity error of the policy class Π parameterized
by the d−dimensional parameter. For dense neural network-based policies, ϵbias appears to be small (Liu
et al., 2020).

Lemma 1 states that Algorithm 1 can approximate the optimal mean-field value, V ∗
∞(µ0, g0) for any (µ0, g0) ∈

∆(X )× G with an error bound of ϵ, and a sample complexity of O(ϵ−3). The constant term hiding in O(·)
is dependent on the parameters {MR, χ, G, M} defined in Assumptions 1, 4, 5, 6. Combining Lemma 1 with
Theorem 1, we now arrive at the following result.

12
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Theorem 3. Let x0 ≜ {xi
0}i∈{1,··· ,N} and g0 be the initial local and global states respectively and µ0 be the

empirical distribution of x0. Assume that {Φj}J
j=1 are the policy parameters generated from Algorithm 1

corresponding to the initial condition (µ0, g0, Φ0), and and the set of policies, Π follows Assumption 2. If
assumptions 1, 2, 4 - 7 are true, then, ∀ϵ > 0, the following inequality holds for the choice of the parameters
{η, α, J, L} stated in Lemma 1.∣∣∣∣∣∣V ∗

N (x0, g0)− 1
J

J∑
j=1

E
[
V∞(µ0, g0, πΦj )

]∣∣∣∣∣∣ ≤
√

ϵbias

1− γ
+ C max{e, ϵ}

where V ∗
N (x0, g0) = sup

Φ∈Rd
VN (x0, g0, πΦ), e ≜

1√
N

[√
|X |+

√
|U|
]

whenever γSP < 1 where SP is defined in Theorem 1. The parameter, C is a constant and the parameter
ϵbias is defined in Lemma 1. The sample complexity of the process is O(ϵ−3).

Proof. Note that,∣∣∣∣∣V ∗
N (x0, g0)− 1

J

J∑
j=1

V∞(µ0, g0, πΦj
)

∣∣∣∣∣ ≤ |V ∗
N (x0, g0)− V ∗

∞(µ0, g0)|+

∣∣∣∣∣∣V ∗
∞(µ0, g0)− 1

J

J∑
j=1

V∞(µ0, g0, πΦj
)

∣∣∣∣∣∣
Applying Theorem 1, the first term can be bounded by C ′e for some constant C ′. The second term can be
bounded by √ϵbias/(1− γ) + ϵ with a sample complexity of O(ϵ−3) (Lemma 1). Using C = 2 max{C ′, 1}, we
conclude.

Theorem 3 states that Algorithm 1 generates a policy such that its associated N−agent value is at most
O(max{e, ϵ}) error away from the optimal N−agent value. Additionally, it also guarantees that such a
policy can be obtained with a sample complexity of O(ϵ−3) where ϵ is an arbitrarily chosen positive number.
We would like to point out that in Theorem 3, e =

[√
|X |+

√
|U|
]

/
√

N . However, if we assume that
Assumption 3 holds in addition to all the assumptions mentioned in Theorem 3, then using Theorem 2, one
can similarly show that the average difference between the optimal MARL value and the sequence of values
generated by Algorithm 1 is O(max{e, ϵ}) where e =

√
|X |/
√

N and such an error can be achieved with a
sample complexity of O(ϵ−3) where ϵ > 0 is a tunable parameter.

8 Experiments

For numerical experiment, we shall consider a variant of the model described in Subramanian and Mahajan
(2019). The model consists of N collaborative firms operated by a single company. All of them produces the
same product but with different quality. At time t, the i-th firm may decide to improve the current quality
of its product (denoted by xi

t) by investing λR amount of money. The action corresponding to investment is
denoted as ui

t = 1 whereas no investment is indicated as ui
t = 0. Clearly, the action space is U = {0, 1}. On

the other hand, the state space is assumed to be X = {0, 1, · · · , Q − 1}. The state transition model of the
i-th firm is as follows.

xi
t+1 =


xi

t if ui
t = 0

xi
t +
⌊

χ
(
Q− 1− xi

t

)(
1− µ̄N

t

Q

)⌋
elsewhere

(27)

where χ is a uniform random variable in [0, 1], µN
t is the empirical distribution of xN

t ≜ {xi
t}i∈{1,··· ,N} and

µ̄N
t is the mean of µN

t . The intuition for (27) is that the product quality does not change when no investment
is made and it improves probabilistically otherwise. However, the improvement also depends on the average
product quality, µ̄N

t of the economy. Specifically, it is harder to improve the quality when µ̄N
t is high. The
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Figure 1: The error as a function of N . The bold line and half-width of the shaded region respectively
denote the mean and standard deviation of the error obtained over 25 experiments conducted with different
random seeds. The chosen model parameters are as follows: λ0 = 1, λ1 = 0.5, βR = 0.5, λR = 0.5, Q = 10.

term (1− µ̄N
t /Q) signifies the resistance to improvement. The reward experienced by the i-th firm at time

t is expressed as follows.

r(xi
t, ui

t, µN
t , αN

t ) = αN
t xi

t − βRµ̄N
t − λRui

t (28)

The first term αN
t xi

t is the revenue earned by the i-th firm. One can interpret αN
t as the price per unit

quality at time t. Clearly, αN
t plays the role of shared global state. In (Subramanian and Mahajan, 2019),

αN
t was taken to be a constant. Here we assume it to be linearly dependent on the average product quality

at t − 1 i.e., αN
t = λ0(1 − λ1(µ̄N

t−1/Q)) where λ0, λ1 are arbitrary positive constants. The intuition is that
the average quality at t−1 influences the price at t. Specifically, as µ̄t−1 rises, the firms can charge less price
per quality, αN

t . The second term, βRµ̄N
t denotes the cost incurred due to the average product quality, µ̄N

t .
Finally, the third term, λRui

t indicates the investment cost. Let π∗ be the policy given by the Algorithm 1.
We define the error as,

error ≜ |VN (x0, α0, π∗)− V∞(µ0, α0, π∗)|

where x0 = {xi
0}i∈{1,··· ,N} is the initial local states, µ0 is its empirical distribution and α0 is the initial

global price. Moreover, VN and V∞ are defined via (6) and (11) respectively. Fig. 1 plots the error as a
function of N . We can observe3 that the error decreases with N .

9 Conclusions

In this paper, we introduce a MARL framework where the agents, in addition to their local states that
transitions conditionally independently, also possess a shared global state. As a result, the combined state
transition processes of each agent becomes correlated with each other. Our contribution is to show that
mean-field based approximations are valid even in presence of such correlation. We obtain the expression
for the approximation error as a function of different parameters of the model and surprisingly observe that
it is not dependent on the size of the global state-space. Furthermore, we designed an algorithm that ap-
proximately obtains an optimal solution to the MARL problem. Although our work shows approximation

3The code can be accessed at: https://github.itap.purdue.edu/Clan-labs/MeanFieldwithGlobalState
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results in presence of correlated evolution, the presumed structure of correlation is not in the most generic
form. Specifically, we assumed that the states of each agent can be segregated into two part−one evolving
conditionally independently and the other being identical to every agent. Whether mean-field control tech-
niques work in presence of more general form of correlated evolution is an important question that needs to
be investigated in the future.

A Proof of Theorem 1

The following helper lemmas are needed to establish the main result.

A.1 Continuity Lemmas

In the following lemmas, π ∈ Π is an arbitrary policy and µ, µ̄ ∈ ∆(X ) are arbitrary local state distributions.
Lemma 2. If νMF(·, ·, ·) is defined by (7), then the following relation holds ∀g ∈ G.

|νMF(µ, g, π)− νMF(µ̄, g, π)| ≤ (1 + LQ)|µ− µ̄|1

Lemma 3. If P MF(·, ·, ·) is defined by (8), then the following relation holds ∀g ∈ G.

|P MF(µ, g, π)− P MF(µ̄, g, π)|1 ≤ SP |µ− µ̄|1

where SP ≜ 1 + 2LP + LQ(1 + LP ).
Lemma 4. If P MF

G (·, ·, ·) is defined by (9), then the following relation holds ∀g ∈ G.

|P MF
G (µ, g, π)− P MF

G (µ̄, g, π)|1 ≤ SG|µ− µ̄|1

where SG ≜ LG(2 + LQ).
Lemma 5. If rMF(·, ·, ·) is defined by (10), then the following relation holds ∀g ∈ G.

|rMF(µ, g, π)− rMF(µ̄, g, π)| ≤ SR|µ− µ̄|1

where SR ≜ MR + 2LR + LQ(M + LR).

The lemmas stated above exhibit that the functions νMF(·, ·, ·), P MF(·, ·, ·), P MF
G (·, ·, ·) and rMF(·, ·, ·) defined

in section 3 are Lipschitz continuous. Proofs of Lemma 2− 5 are relegated to Appendix B−E.

A.2 Continuity of Some Relevant Functions

Let {πl}l∈{0,1,··· } ∈ Π∞ be an arbitrary policy sequence and {gl}l∈{0,1,··· } ∈ G∞ be a given sequence of
global states. Recall the definition of P MF given in (8). For every µl ∈ ∆(X ), we define the following.

P̃ MF(µl, gl:l+r, πl:l+r) ≜ P MF(·, gl+r, πl+r) ◦ P MF(·, gl+r−1, πl+r−1) ◦ · · · ◦ P MF(·, gl, πl)(µl) (29)

where ◦ denotes function composition and l, r ∈ {0, 1, · · · }. Note that, using r = 0 in (29), we get
P̃ MF(µl, gl:l, πl:l) = P MF(µl, gl, πl). Similarly, using the definition of P MF

G given in (9), we define the
following ∀µl ∈ ∆(X ).

P̃ MF
G (µl, gl:l+r, πl:l+r)(gl+r+1) ≜P MF

G (µl, gl, πl)(gl+1)× P MF
G (P̃ MF(µl, gl:l, πl:l), gl+1, πl+1)(gl+2)×

· · · × P MF
G (P̃ MF(µl, gl:l+r−1, πl:l+r−1), gl+r, πl+r)(gl+r+1)

(30)

Finally, using the definition of rMF given in (10), we define the following ∀µl ∈ ∆(X ).

r̃MF(µl, gl, πl:l+r)

=


∑

l+1:l+r

rMF(P̃ MF(µl, gl:l+r−1, πl:l+r−1), gl+r, πl+r)P̃ MF
G (µl, gl:l+r−1, πl:l+r−1)(gl+r), if r ≥ 1

rMF(µl, gl, πl) if r = 0
(31)
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where
∑

l+1:l+r indicates a summation operation over {gl+1, · · · , gl+r} ∈ Gr. We prove the continuity
property of these newly defined functions in the following lemmas. Proofs of Lemma 6− 8 are relegated to
Appendix F−H.
Lemma 6. The following relations hold ∀l, r ∈ {0, 1, · · · }, ∀µl, µ̄l ∈ ∆(X ), ∀gl:l+r ∈ Gr+1 and ∀πl:l+r ∈
Πr+1.

|P̃ MF(µl, gl:l+r, πl:l+r)− P̃ MF(µ̄l, gl:l+r, πl:l+r)|1 ≤ Sr+1
P |µl − µ̄l|1

where SP is defined in Lemma 3.

Lemma 6 establishes the Lipschitz continuity of P̃ MF with respect to its first argument.
Lemma 7. The following relations hold ∀l, r ∈ {0, 1, · · · }, ∀µl, µ̄l ∈ ∆(X ), ∀gl:l+r ∈ Gr+1 and ∀πl:l+r ∈
Πr+1. ∑

l+1:l+r

∣∣P̃ MF
G (µl, gl:l+r, πl:l+r)− P̃ MF

G (µ̄l, gl:l+r, πl:l+r)
∣∣
1 ≤ SG(1 + SP + · · ·+ Sr

P )|µl − µ̄l|1

where
∑

l+1:l+r indicates a summation operation over {gl+1, · · · , gl+r} ∈ Gr for r ≥ 1 and an identity
operation for r = 0. The terms SP , SG are defined in Lemma 3 and 4 respectively.

Lemma 7 establishes the Lipschitz continuity of P̃ MF
G with respect to its first argument. Finally we establish

the Lipschitz continuity of r̃MF with respect to its first argument in the following lemma.
Lemma 8. The following relations hold ∀l, r ∈ {0, 1, · · · }, ∀µl, µ̄l ∈ ∆(X ), ∀gl ∈ G and ∀πl:l+r ∈ Πr.

|r̃MF(µl, gl, πl:l+r)− r̃MF(µ̄l, gl, πl:l+r)| ≤
[(

MRSG

SP − 1

)
(Sr

P − 1) + SRSr
P

]
|µl − µ̄l|1

where SP , SG and SR are defined in Lemma 3, 4 and 5 respectively.

Finally, we prove an important property of the function r̃MF that directly follows from its definition.
Lemma 9. The following relations hold ∀l ∈ {0, 1, · · · }, ∀r ∈ {1, 2, · · · }, ∀µl ∈ ∆(X ), ∀gl ∈ G and
∀πl:l+r ∈ Πr.

r̃MF(µl, gl, πl:l+r) =
∑

gl+1∈G
r̃MF(P MF(µl, gl, πl), gl+1, πl+1:l+r)P MF

G (µl, gl, πl)(gl+1)

where P MF and P MF
G are defined in (8) and (9) respectively.

Proof of Lemma 9 is relegated to Appendix I.

A.3 Approximation Lemmas

First we would like to state an important result that will be useful in proving the following lemmas.
Lemma 10. If ∀m ∈ {1, · · · , M}, {Xmn}n∈{1,··· ,N} are independent random variables that lie in [0, 1], and
satisfy

∑
m∈{1,··· ,M} E[Xmn] ≤ 1, ∀n ∈ {1, · · · , N}, then the following holds,

M∑
m=1

E

∣∣∣∣∣
N∑

n=1
(Xmn − E[Xmn])

∣∣∣∣∣ ≤ √MN (32)

In the following, π ≜ {πt}t∈{0,1,·} is an arbitrary sequence of policies, {µN
t , νN

t , gN
t } denote the empirical

state distribution, action distribution and global state of N agent system at time t and {xi
t, ui

t} are the state
and action of ith agent at time t induced by π from initial states x0, g0.
Lemma 11. The following inequality holds ∀t ∈ {0, 1, · · · }.

E
∣∣νN

t − νMF(µN
t , gN

t , πt)
∣∣
1 ≤

1√
N

√
|U| (33)
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Lemma 12. The following inequality holds ∀t ∈ {0, 1, · · · }.

E
∣∣µN

t+1 − P MF(µN
t , gN

t , πt)
∣∣
1 ≤

CP√
N

[√
|X |+

√
|U|
]

(34)

where CP ≜ 2 + LP .
Lemma 13. The following inequality holds ∀t ∈ {0, 1, · · · }.

E

∣∣∣∣∣ 1
N

∑
i=1

r(xi
t, ui

t, µN
t , gN

t , νN
t )− rMF(µN

t , gN
t , πt)

∣∣∣∣∣ ≤ MR√
N

+ LR√
N

√
|U|

The proofs of Lemma 10− 13 are relegated to Appendix J−M.

A.4 Proof of the Theorem

Let, π = {πt}t∈{0,1,··· } be an arbitrary policy sequence. We shall use the notations introduced in section
A.3. Additionally, we shall consider {µt, gt} as the local state distribution and the global state of the infinite
agent system at time t. Consider the following.

|VN (x0, g0, π)− V∞(µ0, g0, π)|

≤
∞∑

t=0
γtE

∣∣∣∣∣ 1
N

∑
i=1

r(xi
t, ui

t, µN
t , gN

t , νN
t )− rMF(µN

t , gN
t , πt)

∣∣∣∣∣+
∞∑

t=0
γt |E[rMF(µN

t , gN
t , πt)]− E[rMF(µt, gt, πt)]|︸ ︷︷ ︸

≜Jt

(a)
≤

(
MR + LR

√
|U|

1− γ

)
1√
N

+
∞∑

t=0
γtJt

(35)

Inequality (a) follows from Lemma 13. Note that, using the definition (31), we can write the following.

Jt =
∣∣E[r̃MF(µN

t , gN
t , πt:t)]− E[r̃MF(µ0, g0, π0:t)]

∣∣
≤

t−1∑
k=0

∣∣E[r̃MF(µN
k+1, gN

k+1, πk+1:t)]− E[r̃MF(µN
k , gN

k , πk:t)]
∣∣

(a)
≤

t−1∑
k=0

∣∣∣∣∣∣E[r̃MF(µN
k+1, gN

k+1, πk+1:t)]− E

∑
g∈G

r̃MF(P MF(µN
k , gN

k , πk), g, πk+1:t)P MF
G (µN

k , gN
k , πk)(g)

∣∣∣∣∣∣
≤

t−1∑
k=0

∣∣∣∣∣∣E [E [r̃MF(µN
k+1, gN

k+1, πk+1:t)
∣∣xN

k , gN
k , uN

k

]]
− E

∑
g∈G

r̃MF(P MF(µN
k , gN

k , πk), g, πk+1:t)P MF
G (µN

k , gN
k , πk)(g)

∣∣∣∣∣∣
(b)=

t−1∑
k=0

∣∣∣∣∣E
E
∑

g∈G
r̃MF(µN

k+1, g, πk+1:t)PG(µN
k , gN

k , νN
k )(g)

∣∣∣xN
k , gN

k , uN
k


− E

∑
g∈G

r̃MF(P MF(µN
k , gN

k , πk), g, πk+1:t)P MF
G (µN

k , gN
k , πk)(g)

 ∣∣∣∣∣
≤

t−1∑
k=0

∑
g∈G

E
∣∣r̃MF(µN

k+1, g, πk+1:t)PG(µN
k , gN

k , νN
k )(g)− r̃MF(P MF(µN

k , gN
k , πk), g, πk+1:t)P MF

G (µN
k , gN

k , πk)(g)
∣∣

≤
t−1∑
k=0

J1
k,t + J2

k,2
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where we use the notation that µN
0 = µ0 and gN

0 = g0. Inequality (a) follows from Lemma 9 whereas
(b) is a result of the fact that µN

k+1 and gN
k+1 are conditionally independent given xN

k , gN
k , uN

k . Moreover,
gN

k+1 ∼ PG(µN
k , gN

k , νN
k ). The first term J1

k,t can be bounded as follows.

J1
k,t ≜

∑
g∈G

E
[∣∣r̃MF(µN

k+1, g, πk+1:t)− r̃MF(P MF(µN
k , gN

k , πk), g, πk+1:t)
∣∣× PG(µN

k , gN
k , νN

k )(g)
]

(a)
≤
[(

MRSG

SP − 1

)
(St−k−1

P − 1) + SRSt−k−1
P

]
× E

∣∣µN
k+1 − P MF(µN

k , gN
k , πk)

∣∣
1 ×

∣∣PG(µN
k , gN

k , νN
k )
∣∣
1︸ ︷︷ ︸

=1
(b)
≤ CP

[(
MRSG

SP − 1

)
(St−k−1

P − 1) + SRSt−k−1
P

]
× 1√

N

[√
|X |+

√
|U|
]

Inequality (a) follows from Lemma 8 whereas (b) results from Lemma 12. Using (9), the second term J2
k,t

can be bounded as follows.

J2
k,t ≜

∑
g∈G

E
[∣∣PG(µN

k , gN
k , νN

k )(g)− PG(µN
k , gN

k , νMF(µN
k , gN

k , πk))(g)
∣∣× ∣∣r̃MF(P MF(µN

k , gN
k , πk), g, πk+1:t)

∣∣]
(a)
≤ MR × E

∣∣PG(µN
k , gN

k , νN
k )− PG(µN

k , gN
k , νMF(µN

k , gN
k , πk))

∣∣
1

(b)
≤ MR × LG × E

∣∣νN
k − νMF(µN

k , gN
k , πk)

∣∣
1

(c)
≤ MRLG

√
|U|
N

Inequality (a) is a consequence of Assumption 1(a) and the definition of r̃MF given in (31). Inequality (b)
follows from Assumption 1(d). Finally, (c) is a consequence of Lemma 11. Combining, we obtain,

Jt ≤ CP

[(
MRSG

SP − 1 + SR

)(
St

P − 1
SP − 1

)
−
(

MRSG

SP − 1

)
t

]
× 1√

N

[√
|X |+

√
|U|
]

+ MRLG

√
|U|
N

t

Substituting in (35), we obtain the following result.

|VN (x0, g0, π)− V∞(µ0, g0, π)| ≤
(

MR + LR

√
|U|

1− γ

)
1√
N

+ MRLG

√
|U|
N

γ

(1− γ)2

+
(

CP

SP − 1

)[(
MRSG

SP − 1 + SR

){
1

1− γSP
− 1

1− γ

}
− γMRSG

(1− γ)2

]
× 1√

N

[√
|X |+

√
|U|
]

We conclude by noting that | supπ VN (x0, g0, π)−supπ V∞(µ0, g0, π)| ≤ supπ |VN (x0, g0, π)−V∞(µ0, g0, π)|
where the suprema are taken over the set of all admissible policy sequences Π∞.
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B Proof of Lemma 2

Note the inequalities stated below.

|νMF(µ, g, π)− νMF(µ̄, g,π)|1
(a)=

∣∣∣∣∣ ∑
x∈X

π(x, µ, g)µ(x)−
∑
x∈X

π(x, µ̄, g)µ̄(x)

∣∣∣∣∣
1

=
∑
u∈U

∣∣∣∣∣ ∑
x∈X

π(x, µ, g)(u)µ(x)−
∑
x∈X

π(x, µ̄, g)(u)µ̄(x)

∣∣∣∣∣
≤
∑
x∈X

∑
u∈U
|π(x, µ, g)(u)µ(x)− π(x, µ̄, g)(u)µ̄(x)|

≤
∑
x∈X
|µ(x)− µ̄(x)|

∑
u∈U

π(x, µ, g)(u)︸ ︷︷ ︸
=1

+
∑
x∈X

µ̄(x)
∑
u∈U
|π(x, µ, g)(u)− π(x, µ̄, g)(u)|

(b)
≤ |µ− µ̄|1 +

∑
x∈X

µ̄(x)︸ ︷︷ ︸
=1

LQ|µ− µ̄|1

(c)= (1 + LQ)|µ− µ̄|1

Inequality (a) follows from the definition of νMF(·, ·) as given in (7). On the other hand, (b) is a consequence
of Assumption 2 and the fact that π(x, µ, g) is a valid probability distribution. Finally, (c) uses the fact that
µ̄ is a distribution. This concludes the lemma.

C Proof of Lemma 3

Observe that,

|P MF(µ, g, π)− P MF(µ̄, g, π)|1
(a)=

∣∣∣∣∣ ∑
x∈X

∑
u∈U

P (x, u, µ, g, νMF(µ, g, π))π(x, µ, g)(u)µ(x)− P (x, u, µ̄, g, νMF(µ̄, g, π))π(x, µ̄, g)(u)µ̄(x)

∣∣∣∣∣
1

≤ J1 + J2

Equality (a) follows from the definition of P MF(·, ·, ·) as depicted in (8). The term J1 satisfies the following
bound.

J1 ≜
∑
x∈X

∑
u∈U

∣∣∣P (x, u, µ, g, νMF(µ, g, π))− P (x, u, µ̄, g, νMF(µ̄, g, π))
∣∣∣
1
× π(x, µ, g)(u)µ(x)

(a)
≤ LP

[
|µ− µ̄|1 + |νMF(µ, g, π)− νMF(µ̄, g, π)|1

]
×
∑
x∈X

µ(x)
∑
u∈U

π(x, µ, g)(u)︸ ︷︷ ︸
=1

(b)
≤ LP (2 + LQ)|µ− µ̄|1
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Inequality (a) is a consequence of Assumption 1(c) whereas (b) follows from Lemma 2, and the fact that
π(x, µ, g), µ are probability distributions. The second term, J2 obeys the following bound.

J2 ≜
∑
x∈X

∑
u∈U
|P (x, u, µ̄, g, νMF(µ̄, g, π))|1︸ ︷︷ ︸

=1

×|π(x, µ, g)(u)µ(x)− π(x, µ̄, g)(u)µ̄(x)|

≤
∑
x∈X
|µ(x)− µ̄(x)|

∑
u∈U

π(x, µ, g)(u)︸ ︷︷ ︸
=1

+
∑
x∈X

µ̄(x)
∑
u∈U
|π(x, µ, g)(u)− π(x, µ̄, g)(u)|

(a)
≤ |µ− µ̄|1 +

∑
x∈X

µ̄(x)︸ ︷︷ ︸
=1

LQ|µ− µ̄|1
(b)= (1 + LQ)|µ− µ̄|1

Inequality (a) results from Assumption 2 and the fact that π(x, µ, g) is a probability distribution whereas
(b) utilizes the fact that µ̄ is a distribution. This concludes the result.

D Proof of Lemma 4

Note the following relations.

|P MF
G (µ, g, π)− P MF

G (µ̄, g, π)|1
(a)= |PG(µ, g, νMF(µ, g, π))− P MF

G (µ̄, g, νMF(µ̄, g, π))|1
(b)
≤ LG

{
|µ− µ̄|1 + |νMF(µ, g, π)− νMF(µ̄, g, π)|1

} (c)
≤ LG(2 + LQ)|µl − µ̄l|1

Equality (a) follows from the definition (9) while (b) follows from Assumption 1(d). Finally, (c) is a result
of Lemma 2.

E Proof of Lemma 5

Observe that,

|rMF(µ, g, π)− rMF(µ̄, g, π)|1
(a)=

∣∣∣∣∣ ∑
x∈X

∑
u∈U

r(x, u, µ, g, νMF(µ, g, π))π(x, µ, g)(u)µ(x)− r(x, u, µ̄, g, νMF(µ̄, g, π))π(x, µ̄, g)(u)µ̄(x)

∣∣∣∣∣
1

≤ J1 + J2

Equality (a) follows from the definition of rMF(·, ·, ·) as depicted in (10). The term J1 satisfies the following
bound.

J1 ≜
∑
x∈X

∑
u∈U

∣∣∣r(x, u, µ, g, νMF(µ, g, π))− r(x, u, µ̄, g, νMF(µ̄, g, π))
∣∣∣× π(x, µ, g)(u)µ(x)

(a)
≤ LR

[
|µ− µ̄|1 + |νMF(µ, g, π)− νMF(µ̄, g, π)|1

]
×
∑
x∈X

µ(x)
∑
u∈U

π(x, µ, g)(u)︸ ︷︷ ︸
=1

(b)
≤ LR(2 + LQ)|µ− µ̄|1
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Inequality (a) is a consequence of Assumption 1(b) whereas (b) follows from Lemma 2, and the fact that
π(x, µ, g), µ are probability distributions. The second term, J2 obeys the following bound.

J2 ≜
∑
x∈X

∑
u∈U
|r(x, u, µ̄, g, νMF(µ̄, g, π))| × |π(x, µ, g)(u)µ(x)− π(x, µ̄, g)(u)µ̄(x)|

(a)
≤ MR

∑
x∈X
|µ(x)− µ̄(x)|

∑
u∈U

π(x, µ, g)(u)︸ ︷︷ ︸
=1

+MR

∑
x∈X

µ̄(x)
∑
u∈U
|π(x, µ, g)(u)− π(x, µ̄, g)(u)|

(b)
≤ MR|µ− µ̄|1 + MR

∑
x∈X

µ̄(x)︸ ︷︷ ︸
=1

LQ|µ− µ̄|1
(c)= MR(1 + LQ)|µ− µ̄|1

Inequality (a) results from Assumption 1(a) where (b) follows from Assumption 2 and the fact that π(x, µ, g)
is a probability distribution. Finally, (c) utilizes the fact that µ̄ is a valid distribution. This concludes the
result.

F Proof of Lemma 6

Fix l ∈ {0, 1, · · · }. We shall prove the lemma via induction on r. Note that, for r = 0, we have,

|P̃ MF(µl, gl:l, πl:l)− P̃ MF(µ̄l, gl:l, πl:l)|1 = |P MF(µl, gl, πl)− P MF(µ̄l, gl, πl)|1
(a)
≤ SP |µl − µ̄l|1

Inequality (a) follows from Lemma 3. Assume that the lemma holds for some r ∈ {0, 1, · · · }. We shall
demonstrate below that the relation holds for r + 1 as well. Note that,

|P̃ MF(µl, gl:l+r+1, πl:l+r+1)− P̃ MF(µ̄l, gl:l+r+1, πl:l+r+1)|1
= |P MF(P̃ MF(µl, gl:l+r, πl:l+r), gl+r+1, πl+r+1)− P MF(P̃ MF(µ̄l, gl:l+r, πl:l+r), gl+r+1, πl+r+1)|1
(a)
≤ SP |P̃ MF(µl, gl:l+r, πl:l+r)− P̃ MF(µ̄l, gl:l+r, πl:l+r)|1

(b)
≤ Sr+2

P |µl − µ̄l|1

Inequality (a) follows from Lemma 3 and (b) is a consequence of the induction hypothesis.

G Proof of Lemma 7

Fix l ∈ {0, 1, · · · }. We shall prove the lemma via induction on r. Note that, for r = 0, we have,

|P̃ MF
G (µl, gl:l, πl:l)− P̃ MF

G (µ̄l, gl:l, πl:l)|1 = |P MF
G (µl, gl, πl)− P MF

G (µ̄l, gl, πl)|1
(a)
≤ SG|µl − µ̄l|1 (36)

Equality (a) follows from Lemma 4. Assume that the lemma holds for some r ∈ {0, 1, · · · }. We shall now
show that the lemma holds for r + 1 as well. Note that,∑
l+1:l+r+1

∣∣P̃ MF
G (µl, gl:l+r+1, πl:l+r+1)− P̃ MF

G (µ̄l, gl:l+r+1, πl:l+r+1)
∣∣
1

(a)=
∑

l+1:l+r+1

∣∣∣P̃ MF
G (µl, gl:l+r, πl:l+r)(gl+r+1)P MF

G (P̃ MF(µl, gl:l+r, πl:l+r), gl+r+1, πl+r+1)

− P̃ MF
G (µ̄l, gl:l+r, πl:l+r)(gl+r+1)P MF

G (P̃ MF(µ̄l, gl:l+r, πl:l+r), gl+r+1, πl+r+1)
∣∣∣
1
≤ J1 + J2
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Equality (a) follows from (30). The first term J1 can be upper bounded as follows.

J1 ≜
∑

l+1:l+r+1
P̃ MF

G (µl, gl:l+r, πl:l+r)(gl+r+1)

×
∣∣∣P MF

G (P̃ MF(µl, gl:l+r, πl:l+r), gl+r+1, πl+r+1)− P MF
G (P̃ MF(µ̄l, gl:l+r, πl:l+r), gl+r+1, πl+r+1)

∣∣∣
1

(a)
≤ SG

∑
l+1:l+r+1

∣∣∣P̃ MF(µl, gl:l+r, πl:l+r)− P̃ MF(µl, gl:l+r, πl:l+r)
∣∣∣
1
× P̃ MF

G (µl, gl:l+r, πl:l+r)(gl+r+1)

(b)
≤ SGSr+1

P |µl − µ̄l|1
∑

l+1:l+r+1
P̃ MF

G (µl, gl:l+r, πl:l+r)(gl+r+1) (c)= SGSr+1
P |µl − µ̄l|1

Inequality (a) follows from Lemma 4 while (b) results from Lemma 6. Finally, (c) can be shown following
the definition (30). The second term J2 can be bounded as follows.

J2 ≜
∑

l+1:l+r+1
|P MF

G (P̃ MF(µ̄l, gl:l+r, πl:l+r), gl+r+1, πl+r+1)|1︸ ︷︷ ︸
=1

× |P̃ MF
G (µl, gl:l+r, πl:l+r)(gl+r+1)− P̃ MF

G (µ̄l, gl:l+r, πl:l+r)(gl+r+1)|

=
∑

l+1:l+r+1
|P̃ MF

G (µl, gl:l+r, πl:l+r)− P̃ MF
G (µ̄l, gl:l+r, πl:l+r)|1

(a)
≤ SG(1 + SP + · · ·+ Sr

P )|µl − µ̄l|1

Inequality (a) follows from induction hypothesis. This concludes the lemma.

H Proof of Lemma 8

Note that the result readily follows for r = 0 from Lemma 5. Therefore, we assume r ≥ 1.

|r̃MF(µl, gl, πl:l+r)− r̃MF(µ̄l, gl, πl:l+r)|
(a)
≤

∑
l+1:l+r

|rMF(P̃ MF(µl, gl:l+r−1, πl:l+r−1), gl+r, πl+r)P̃ MF
G (µl, gl:l+r−1, πl:l+r−1)(gl+r)

− rMF(P̃ MF(µ̄l, gl:l+r−1, πl:l+r−1), gl+r, πl+r)P̃ MF
G (µ̄l, gl:l+r−1, πl:l+r−1)(gl+r)| ≤ J1 + J2

Inequality (a) follows from the definition (31). The first term can be bounded as follows.

J1 ≜
∑

l+1:l+r

|rMF(P̃ MF(µl, gl:l+r−1, πl:l+r−1), gl+r, πl+r)|

× |P̃ MF
G (µl, gl:l+r−1, πl:l+r−1)(gl+r)− P̃ MF

G (µ̄l, gl:l+r−1, πl:l+r−1)(gl+r)|
(a)
≤ MR

∑
l+1:l+r−1

|P̃ MF
G (µl, gl:l+r−1, πl:l+r−1)− P̃ MF

G (µ̄l, gl:l+r−1, πl:l+r−1)|1

(b)
≤ MRSG(1 + SP + · · ·+ Sr−1

P )|µl − µ̄l|1 =
(

MRSG

SP − 1

)
(Sr

P − 1)|µl − µ̄l|1
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The bound (a) can be proven using Assumption 1(a) and the definition of rMF given in (10). The bound (b)
follows from Lemma 7. The term J2 can be bounded as follows.

J2 ≜
∑

l+1:l+r

P̃ MF
G (µ̄l, gl:l+r−1, πl:l+r−1)(gl+r)

× |rMF(P̃ MF(µl, gl:l+r−1, πl:l+r−1), gl+r, πl+r)− rMF(P̃ MF(µ̄l, gl:l+r−1, πl:l+r−1), gl+r, πl+r)|
(a)
≤

∑
l+1:l+r

P̃ MF
G (µ̄l, gl:l+r−1, πl:l+r−1)(gl+r)× SR|P̃ MF(µl, gl:l+r−1, πl:l+r−1)− P̃ MF(µ̄l, gl:l+r−1, πl:l+r−1)|

(b)
≤ SRSr

P |µl − µ̄l|1 ×
∑

l+1:l+r

P̃ MF
G (µ̄l, gl:l+r−1, πl:l+r−1)(gl+r) (c)= SRSr

P |µl − µ̄l|1

Inequality (a) follows from Lemma 5 while (b) results from Lemma 6. Finally, (c) can be proven from the
definition (30). This concludes the lemma.

I Proof of Lemma 9

r̃MF(µl, gl, πl:l+r)

=
∑

l+1:l+r

rMF(P̃ MF(µl, gl:l+r−1, πl:l+r−1), gl+r, πl+r)P̃ MF
G (µl, gl:l+r−1, πl:l+r−1)(gl+r)

(a)=
∑

l+1:l+r

rMF(P̃ MF(P MF(µl, gl, πl), gl+1:l+r−1, πl+1:l+r−1), gl+r, πl+r)

× P̃ MF
G (P MF(µl, gl, πl), gl+1:l+r−1, πl+1:l+r−1)(gl+r)P MF

G (µl, gl, πl)(gl+1)

=
∑

gl+1∈G
r̃MF(P MF(µl, gl, πl), gl+1, πl+1:l+r)P MF

G (µl, gl, πl)(gl+1)

Equality (a) follows from the definitions (29) and (30).

J Proof of Lemma 10

Let Ymn ≜ Xmn − E[Xmn], ∀m ∈ {1, · · · , M}, ∀n ∈ {1, · · · , N}. Note that, as Xmn ∈ [0, 1], we have,
E[Y 2

mn] = E[X2
mn] − [E[Xmn]]2 ≤ E[Xmn]. Using independence of {Ymn}n∈{1,··· ,N}, for any given m ∈

{1, · · · , M}, we get,

E

[
N∑

n=1
Ym,n

]2

= E

[
N∑

n1=1

N∑
n2=1

Ym,n1Ym,n2

]
=

N∑
n=1

E
[
Y 2

m,n

]
+ 2

N∑
n1=1

N∑
n2>n1

E[Ym,n1 ]E[Ym,n2 ] =
N∑

n=1
E
[
Y 2

m,n

]

Using the above relation, we finally obtain the following.

M∑
m=1

E

∣∣∣∣∣
N∑

n=1
Ym,n

∣∣∣∣∣ (a)
≤
√

M


M∑

m=1
E

[
N∑

n=1
Ym,n

]2
1
2

=
√

M

{
M∑

m=1

N∑
n=1

E
[
Y 2

m,n

]} 1
2

=
√

M

{
N∑

n=1

M∑
m=1

E [Xm,n]
} 1

2

≤
√

MN
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K Proof of Lemma 11

Notice the following relations.

E
∣∣νN

t − νMF(µN
t , gN

t , πt)
∣∣
1

(a)= E

∣∣∣∣∣νN
t −

∑
x∈X

πt(x, µN
t , gN

t )µN
t (x)

∣∣∣∣∣
1

= E

[
E

[∑
u∈U

∣∣∣∣∣νN
t (u)−

∑
x∈X

πt(x, µN
t , gN

t )(u)µN
t (x)

∣∣∣∣∣
∣∣∣∣∣xN

t , gN
t

]]
(b)= E

[∑
u∈U

E

[
1
N

∣∣∣∣∣
N∑

i=1
δ(ui

t = u)− 1
N

∑
x∈X

πt(x, µN
t , gN

t )(u)
N∑

i=1
δ(xi

t = x)

∣∣∣∣∣
∣∣∣∣∣xN

t , gN
t

]]

= E

[∑
u∈U

E

[∣∣∣∣∣ 1
N

N∑
i=1

δ(ui
t = u)− 1

N

N∑
i=1

πt(xi
t, µN

t , gN
t )(u)

∣∣∣∣∣
∣∣∣∣∣xN

t , gN
t

]]
(c)
≤ 1√

N

√
|U|

Equality (a) follows from the definition of νMF(·, ·, ·) given in (7) while (b) is a consequence of the definitions
of µN

t , νN
t . Finally, (c) uses Lemma 10. Specifically, it utilises the facts that, {ui

t}i∈{1,··· ,N} are conditionally
independent given xN

t , gN
t and the following holds

E
[
δ(ui

t = u)
∣∣∣xN

t , gN
t

]
= πt(xi

t, µN
t , gN

t )(u),∑
u∈U

E
[
δ(ui

t = u)
∣∣∣xN

t , gN
t

]
= 1

∀i ∈ {1, · · · , N},∀u ∈ U . This concludes the lemma.

L Proof of Lemma 12

Notice the following decomposition.

E
∣∣µN

t+1 − P MF(µN
t , gN

t , πt)
∣∣
1

(a)= E

∣∣∣∣∣µN
t+1 −

∑
x′∈X

∑
u∈U

P (x′, u, µN
t , gN

t , νMF(µN
t , gN

t , πt))πt(x′, µN
t , gN

t )(u)µN
t (x)

∣∣∣∣∣
1

(b)=
∑
x∈X

E

∣∣∣∣∣ 1
N

N∑
i=1

δ(xi
t+1 = x)−

∑
x′∈X

∑
u∈U

P (x′, u, µN
t , gN

t , νMF(µN
t , gN

t , πt))(x)πt(x′, µN
t , g′)(u) 1

N

N∑
i=1

δ(xi
t = x′)

∣∣∣∣∣
=
∑
x∈X

E

∣∣∣∣∣ 1
N

N∑
i=1

δ(xi
t+1 = x)− 1

N

N∑
i=1

∑
u∈U

P (xi
t, u, µN

t , gN
t , νMF(µN

t , gN
t , πt))(x)πt(xi

t, µN
t , gN

t )(u)

∣∣∣∣∣
≤ J1 + J2 + J3

Equality (a) uses the definition of P MF(·, ·, ·) as shown in (8) and equality (b) uses the definition of µN
t . The

term J1 obeys the following.

J1 ≜
1
N

∑
x∈X

E

∣∣∣∣∣
N∑

i=1
δ(xi

t+1 = x)−
N∑

i=1
P (xi

t, ui
t, µN

t , gN
t , νN

t )(x)

∣∣∣∣∣
= 1

N

∑
x∈X

E

[
E

[∣∣∣∣∣
N∑

i=1
δ(xi

t+1 = x)−
N∑

i=1
P (xi

t, ui
t, µN

t , gN
t , νN

t )(x)

∣∣∣∣∣
∣∣∣∣∣xN

t , gN
t , uN

t

]]
(a)
≤ 1√

N

√
|X |
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Inequality (a) is obtained from Lemma 10. In particular, it uses the facts that {xi
t+1}i∈{1,··· ,N} are condi-

tionally independent given {xN
t , gN

t , uN
t }, and the following relations hold

E
[
δ(xi

t+1 = x)
∣∣∣xN

t , gN
t , uN

t

]
= P (xi

t, ui
t, µN

t , gN
t , νN

t )(x),∑
x∈X

E
[
δ(xi

t+1 = x)
∣∣∣xN

t , gN
t , uN

t

]
= 1

∀i ∈ {1, · · · , N}, and ∀x ∈ X . The second term satisfies the following bound.

J2 ≜
1
N

∑
x∈X

E

∣∣∣∣∣
N∑

i=1
P (xi

t, ui
t, µN

t , gN
t , νN

t )(x)−
N∑

i=1
P (xi

t, ui
t, µN

t , gN
t , νMF(µN

t , gN
t , πt))(x)

∣∣∣∣∣
≤ 1

N

N∑
i=1

E
∣∣P (xi

t, ui
t, µN

t , gN
t , νN

t )− P (xi
t, ui

t, µN
t , gN

t , νMF(µN
t , gN

t , πt))
∣∣
1

(a)
≤ LPE

∣∣νN
t − νMF(µN

t , gN
t , πt)

∣∣
1

(b)
≤ LP√

N

√
|U|

Inequality (a) is a consequence of Assumption 1(c) while (b) follows from Lemma 11. Finally, the term, J3
can be upper bounded as follows.

J3 ≜
1
N

∑
x∈X

E

∣∣∣∣∣
N∑

i=1
P (xi

t, ui
t, µN

t , gN
t , νMF(µN

t , gN
t , πt))(x)

−
N∑

i=1

∑
u∈U

P (xi
t, u, µN

t , gN
t , νMF(µN

t , gN
t , πt))(x)πt(xi

t, µN
t , gN

t )(u)

∣∣∣∣∣
(a)
≤ 1√

N

√
|X |

Inequality (a) is a result of Lemma 10. In particular, it uses the facts that, {ui
t}i∈{1,··· ,N} are conditionally

independent given xN
t , gN

t , and the following relations hold

E
[
P (xi

t, ui
t, µN

t , gN
t , νMF(µN

t , gN
t , πt))(x)

∣∣∣xN
t , gN

t

]
=
∑
u∈U

P (xi
t, u, µN

t , νMF(µN
t , gN

t , πt))(x)πt(xi
t, µN

t , gN
t )(u),

∑
x∈X

E
[
P (xi

t, ui
t, µN

t , gN
t , νMF(µN

t , gN
t , πt))(x)

∣∣∣xN
t , gN

t

]
= 1

∀i ∈ {1, · · · , N}, and ∀x ∈ X . This concludes the Lemma.

M Proof of Lemma 13

Observe the following decomposition.

E

∣∣∣∣∣ 1
N

∑
i=1

r(xi
t, ui

t, µN
t , gN

t , νN
t )− rMF(µN

t , gN
t , πt)

∣∣∣∣∣
(a)= E

∣∣∣∣∣ 1
N

N∑
i=1

r(xi
t, ui

t, µN
t , gN

t , νN
t )−

∑
x∈X

∑
u∈U

r(x, u, µN
t , gN

t , νMF(µN
t , gN

t , πt))πt(x, µN
t , gN

t )(u)µN
t (x)

∣∣∣∣∣
(b)= E

∣∣∣∣∣ 1
N

N∑
i=1

r(xi
t, ui

t, µN
t , gN

t , νN
t )−

∑
x∈X

∑
u∈U

r(x, u, µN
t , gN

t , νMF(µN
t , gN

t , πt))πt(x, µN
t , gN

t )(u) 1
N

N∑
i=1

δ(xi
t = x)

∣∣∣∣∣
= E

∣∣∣∣∣ 1
N

N∑
i=1

r(xi
t, ui

t, µN
t , gN

t , νN
t )− 1

N

N∑
i=1

∑
u∈U

r(xi
t, u, µN

t , gN
t , νMF(µN

t , gN
t , πt))πt(xi

t, µN
t , gN

t )(u)

∣∣∣∣∣ ≤ J1 + J2
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Equation (a) uses the definition of rMF(·, ·, ·) as shown in (10). Inequality (b) uses the definition of µN
t . The

term, J1, obeys the following.

J1 ≜
1
N

E

∣∣∣∣∣
N∑

i=1
r(xi

t, ui
t, µN

t , gN
t , νN

t )−
N∑

i=1
r(xi

t, ui
t, µN

t , gN
t , νMF(µN

t , gN
t , πt))

∣∣∣∣∣
≤ 1

N
E

N∑
i=1

∣∣r(xi
t, ui

t, µN
t , gN

t , νN
t )− r(xi

t, ui
t, µN

t , gN
t , νMF(µN

t , gN
t , πt))

∣∣
(a)
≤ LRE

∣∣νN
t − νMF(µN

t , gN
t , πt)

∣∣
1

(b)
≤ LR√

N

√
|U|

Inequality (a) results from Assumption 1(b), whereas (b) is a consequence of Lemma 11. The term, J2, obeys
the following.

J2 ≜
1
N

E

∣∣∣∣∣
N∑

i=1
r(xi

t, ui
t, µN

t , gN
t , νMF(µN

t , gN
t , πt))−

N∑
i=1

∑
u∈U

r(xi
t, u, µN

t , gN
t , νMF(µN

t , gN
t , πt))πt(xi

t, µN
t , gN

t )(u)

∣∣∣∣∣
= 1

N
E

[
E

[∣∣∣∣∣
N∑

i=1
r(xi

t, ui
t, µN

t , gN
t , νMF(µN

t , gN
t , πt))

−
N∑

i=1

∑
u∈U

r(xi
t, u, µN

t , gN
t , νMF(µN

t , gN
t , πt))πt(xi

t, µN
t , gN

t )(u)

∣∣∣∣∣∣∣∣xN
t , gN

t

]]

= M

N
E

[
E

[∣∣∣∣∣
N∑

i=1
r0(xi

t, ui
t, µN

t , gN
t , νMF(µN

t , gN
t , πt))

−
N∑

i=1

∑
u∈U

r0(xi
t, u, µN

t , gN
t , νMF(µN

t , gN
t , πt))πt(xi

t, µN
t , gN

t )(u)

∣∣∣∣∣∣∣∣xN
t , gN

t

]]
(a)
≤ MR√

N

where r0(·, ·, ·, ·) ≜ r(·, ·, ·, ·)/MR. Inequality (a) follows from Lemma 10. In particular, it uses the fact that
{ui

t}i∈{1,··· ,N} are conditionally independent given xN
t , gN

t , and the following relations hold.

|r0(xi
t, ui

t, µN
t , gN

t , νMF(µN
t , gN

t , πt))| ≤ 1,

E
[
r0(xi

t, ui
t, µN

t , gN
t , νMF(µN

t , gN
t , πt))

∣∣∣xN
t , gN

t

]
=
∑
u∈U

r0(xi
t, u, µN

t , gN
t , νMF(µN

t , gN
t , πt))πt(xi

t, µN
t , gN

t )(u)

∀i ∈ {1, · · · , N},∀u ∈ U .

N Proof of Theorem 2

The following results are needed to prove the theorem.

N.1 Continuity Lemmas

In the following lemmas, π ∈ Π is an arbitrary policy and µ, µ̄ ∈ ∆(X ) are arbitrary local state distributions.
Lemma 14. If P MF(·, ·, ·) is defined by (8), then the following relation holds ∀g ∈ G.

|P MF(µ, g, π)− P MF(µ̄, g, π)|1 ≤ QP |µ− µ̄|1

where QP ≜ 1 + LP + LQ.
Lemma 15. If rMF(·, ·, ·) is defined by (10), then the following relation holds ∀g ∈ G.

|rMF(µ, g, π)− rMF(µ̄, g, π)| ≤ QR|µ− µ̄|1

where QR ≜ MR(1 + LQ) + LR.
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The proofs of Lemma 14 − 15 are relegated to Appendix O−P. In the following three lemmas, we show
the continuity of the functions defined in Appendix A.2. Proofs of the following lemmas are relegated to
Appendix Q−S.
Lemma 16. The following relations hold ∀l, r ∈ {0, 1, · · · }, ∀µl, µ̄l ∈ ∆(X ), ∀gl:l+r ∈ Gr+1 and ∀πl:l+r ∈
Πr+1.

|P̃ MF(µl, gl:l+r, πl:l+r)− P̃ MF(µ̄l, gl:l+r, πl:l+r)|1 ≤ Qr+1
P |µl − µ̄l|1

where QP is defined in Lemma 14.
Lemma 17. The following relations hold ∀l, r ∈ {0, 1, · · · }, ∀µl, µ̄l ∈ ∆(X ), ∀gl:l+r ∈ Gr+1 and ∀πl:l+r ∈
Πr+1. ∑

l+1:l+r

∣∣P̃ MF
G (µl, gl:l+r, πl:l+r)− P̃ MF

G (µ̄l, gl:l+r, πl:l+r)
∣∣
1 ≤ LG(1 + QP + · · ·+ Qr

P )|µl − µ̄l|1

where
∑

l+1:l+r indicates a summation operation over {gl+1, · · · , gl+r} ∈ Gr for r ≥ 1 and an identity
operation for r = 0. The term QP is defined in Lemma 14.
Lemma 18. The following relations hold ∀l, r ∈ {0, 1, · · · }, ∀µl, µ̄l ∈ ∆(X ), ∀gl ∈ G and ∀πl:l+r ∈ Πr.

|r̃MF(µl, gl, πl:l+r)− r̃MF(µ̄l, gl, πl:l+r)| ≤
[(

MRLG

QP − 1

)
(Qr

P − 1) + QRQr
P

]
|µl − µ̄l|1

where QP and QR are defined in Lemma 14 and 15 respectively.

N.2 Approximation Lemmas

We use the same notation introduced in A.3.
Lemma 19. The following inequality holds ∀t ∈ {0, 1, · · · }.

E
∣∣µN

t+1 − P MF(µN
t , gN

t , πt)
∣∣
1 ≤

2√
N

√
|X | (37)

Lemma 20. The following inequality holds ∀t ∈ {0, 1, · · · }.

E

∣∣∣∣∣ 1
N

∑
i=1

r(xi
t, ui

t, µN
t , gN

t )− rMF(µN
t , gN

t , πt)

∣∣∣∣∣ ≤ MR√
N

The proofs of Lemma 19− 20 are relegated to Appendix T−U.

N.3 Proof of the Theorem

Let, π = {πt}t∈{0,1,··· } be an arbitrary policy sequence. We shall use the notations introduced in section
A.3. Additionally, we shall consider {µt, gt} as the local state distribution and the global state of the infinite
agent system at time t. Consider the following.

|VN (x0, g0, π)− V∞(µ0, g0, π)|

≤
∞∑

t=0
γtE

∣∣∣∣∣ 1
N

∑
i=1

r(xi
t, ui

t, µN
t , gN

t )− rMF(µN
t , gN

t , πt)

∣∣∣∣∣+
∞∑

t=0
γt |E[rMF(µN

t , gN
t , πt)]− E[rMF(µt, gt, πt)]|︸ ︷︷ ︸

≜Jt

(a)
≤
(

MR

1− γ

)
1√
N

+
∞∑

t=0
γtJt

(38)
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Inequality (a) follows from Lemma 20. Note that, using the definition (31), we can write the following.

Jt =
∣∣E[r̃MF(µN

t , gN
t , πt:t)]− E[r̃MF(µ0, g0, π0:t)]

∣∣
≤

t−1∑
k=0

∣∣E[r̃MF(µN
k+1, gN

k+1, πk+1:t)]− E[r̃MF(µN
k , gN

k , πk:t)]
∣∣

(a)
≤

t−1∑
k=0

∣∣∣∣∣∣E[r̃MF(µN
k+1, gN

k+1, πk+1:t)]− E

∑
g∈G

r̃MF(P MF(µN
k , gN

k , πk), g, πk+1:t)P MF
G (µN

k , gN
k , πk)(g)

∣∣∣∣∣∣
≤

t−1∑
k=0

∣∣∣∣∣E [E [r̃MF(µN
k+1, gN

k+1, πk+1:t)
∣∣xN

k , gN
k , uN

k

]]
− E

∑
g∈G

r̃MF(P MF(µN
k , gN

k , πk), g, πk+1:t)P MF
G (µN

k , gN
k , πk)(g)

 ∣∣∣∣∣
(b)=

t−1∑
k=0

∣∣∣∣∣E
E
∑

g∈G
r̃MF(µN

k+1, g, πk+1:t)PG(µN
k , gN

k )(g)
∣∣∣xN

k , gN
k , uN

k


− E

∑
g∈G

r̃MF(P MF(µN
k , gN

k , πk), g, πk+1:t)P MF
G (µN

k , gN
k , πk)(g)

 ∣∣∣∣∣
≤

t−1∑
k=0

∑
g∈G

E
∣∣r̃MF(µN

k+1, g, πk+1:t)PG(µN
k , gN

k )(g)− r̃MF(P MF(µN
k , gN

k , πk), g, πk+1:t)PG(µN
k , gN

k )(g)
∣∣

≤
t−1∑
k=0

∑
g∈G

∣∣r̃MF(µN
k+1, g, πk+1:t)− r̃MF(P MF(µN

k , gN
k , πk), g, πk+1:t)

∣∣× PG(µN
k , gN

k )(g)

(c)
≤

t−1∑
k=0

[(
MRLG

QP − 1

)
(Qt−k−1

P − 1) + QRQt−k−1
P

]
× E

∣∣µN
k+1 − P MF(µN

k , gN
k , πk)

∣∣
1 ×

∣∣PG(µN
k , gN

k )
∣∣
1︸ ︷︷ ︸

=1

(d)
≤

t−1∑
k=0

[(
MRLG

QP − 1

)
(Qt−k−1

P − 1) + QRQt−k−1
P

]
× 2√

N

√
|X |

=
(

2
QP − 1

)[(
MRLG

QP − 1 + QR

)(
Qt

P − 1
)
−MRLGt

]
× 1√

N

√
|X |

where we use the notation that µN
0 = µ0 and gN

0 = g0. Inequality (a) follows from Lemma 9 whereas (b) is
a consequence of the fact that µN

k+1 and gN
k+1 are conditionally independent given xN

k , gN
k , uN

k . Moreover,
gN

k+1 ∼ PG(µN
k , gN

k ). Inequality (c) follows from Lemma 18 while (d) is a consequence of Lemma 19.
Substituting in (35), we obtain the following result.

|VN (x0, g0, π)− V∞(µ0, g0, π)| ≤
(

MR

1− γ

)
1√
N

+
(

2
QP − 1

)[(
MRSG

QP − 1 + QR

){
1

1− γQP
− 1

1− γ

}
−
(

MRLG

QP − 1

)
γ

(1− γ)2

]
× 1√

N

√
|X |

We conclude by noting that | supπ VN (x0, g0, π)−supπ V∞(µ0, g0, π)| ≤ supπ |VN (x0, g0, π)−V∞(µ0, g0, π)|
where the suprema are taken over the set of all admissible policy sequences Π∞.
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O Proof of Lemma 14

Observe that,

|P MF(µ, g, π)− P MF(µ̄, g, π)|1
(a)=

∣∣∣∣∣ ∑
x∈X

∑
u∈U

P (x, u, µ, g)π(x, µ, g)(u)µ(x)− P (x, u, µ̄, g)π(x, µ̄, g)(u)µ̄(x)

∣∣∣∣∣
1

≤ J1 + J2

Equality (a) follows from the definition of P MF(·, ·, ·) as depicted in (8). The term J1 satisfies the following
bound.

J1 ≜
∑
x∈X

∑
u∈U

∣∣∣P (x, u, µ, g)− P (x, u, µ̄, g)
∣∣∣
1
× π(x, µ, g)(u)µ(x)

(a)
≤ LP |µ− µ̄|1 ×

∑
x∈X

µ(x)
∑
u∈U

π(x, µ, g)(u)︸ ︷︷ ︸
=1

(b)= LP |µ− µ̄|1

Inequality (a) is a consequence of Assumption 1(c) whereas (b) follows from the fact that π(x, µ, g), µ are
probability distributions. The second term, J2 obeys the following bound.

J2 ≜
∑
x∈X

∑
u∈U
|P (x, u, µ̄, g)|1︸ ︷︷ ︸

=1

×|π(x, µ, g)(u)µ(x)− π(x, µ̄, g)(u)µ̄(x)|

≤
∑
x∈X
|µ(x)− µ̄(x)|

∑
u∈U

π(x, µ, g)(u)︸ ︷︷ ︸
=1

+
∑
x∈X

µ̄(x)
∑
u∈U
|π(x, µ, g)(u)− π(x, µ̄, g)(u)|

(a)
≤ |µ− µ̄|1 +

∑
x∈X

µ̄(x)︸ ︷︷ ︸
=1

LQ|µ− µ̄|1
(b)= (1 + LQ)|µ− µ̄|1

Inequality (a) results from Assumption 2 and the fact that π(x, µ, g) is a probability distribution whereas
(b) utilizes the fact that µ̄ is a distribution. This concludes the result.

P Proof of Lemma 15

Observe that,

|rMF(µ, g, π)− rMF(µ̄, g, π)|1
(a)=

∣∣∣∣∣ ∑
x∈X

∑
u∈U

r(x, u, µ, g)π(x, µ, g)(u)µ(x)− r(x, u, µ̄, g)π(x, µ̄, g)(u)µ̄(x)

∣∣∣∣∣
1

≤ J1 + J2

Equality (a) follows from the definition of rMF(·, ·, ·) as depicted in (10). The term J1 satisfies the following
bound.

J1 ≜
∑
x∈X

∑
u∈U

∣∣∣r(x, u, µ, g)− r(x, u, µ̄, g)
∣∣∣× π(x, µ, g)(u)µ(x)

(a)
≤ LR|µ− µ̄|1 ×

∑
x∈X

µ(x)
∑
u∈U

π(x, µ, g)(u)︸ ︷︷ ︸
=1

(b)= LR|µ− µ̄|1
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Inequality (a) is a consequence of Assumption 1(b) whereas (b) follows from the fact that π(x, µ, g), µ are
probability distributions. The second term, J2 obeys the following bound.

J2 ≜
∑
x∈X

∑
u∈U
|r(x, u, µ̄, g)| × |π(x, µ, g)(u)µ(x)− π(x, µ̄, g)(u)µ̄(x)|

(a)
≤ MR

∑
x∈X
|µ(x)− µ̄(x)|

∑
u∈U

π(x, µ, g)(u)︸ ︷︷ ︸
=1

+MR

∑
x∈X

µ̄(x)
∑
u∈U
|π(x, µ, g)(u)− π(x, µ̄, g)(u)|

(b)
≤ MR|µ− µ̄|1 + MR

∑
x∈X

µ̄(x)︸ ︷︷ ︸
=1

LQ|µ− µ̄|1
(c)= MR(1 + LQ)|µ− µ̄|1

Inequality (a) results from Assumption 1(a) where (b) follows from Assumption 2 and the fact that π(x, µ, g)
is a probability distribution. Finally, (c) utilizes the fact that µ̄ is a valid distribution. This concludes the
result.

Q Proof of Lemma 16

Fix l ∈ {0, 1, · · · }. We shall prove the lemma via induction on r. Note that, for r = 0, we have,

|P̃ MF(µl, gl:l, πl:l)− P̃ MF(µ̄l, gl:l, πl:l)|1 = |P MF(µl, gl, πl)− P MF(µ̄l, gl, πl)|1
(a)
≤ QP |µl − µ̄l|1

Inequality (a) follows from Lemma 14. Assume that the lemma holds for some r ∈ {0, 1, · · · }. We shall
demonstrate below that the relation holds for r + 1 as well. Note that,

|P̃ MF(µl, gl:l+r+1, πl:l+r+1)− P̃ MF(µ̄l, gl:l+r+1, πl:l+r+1)|1
= |P MF(P̃ MF(µl, gl:l+r, πl:l+r), gl+r+1, πl+r+1)− P MF(P̃ MF(µ̄l, gl:l+r, πl:l+r), gl+r+1, πl+r+1)|1
(a)
≤ QP |P̃ MF(µl, gl:l+r, πl:l+r)− P̃ MF(µ̄l, gl:l+r, πl:l+r)|1

(b)
≤ Qr+2

P |µl − µ̄l|1

Inequality (a) follows from Lemma 14 and (b) is a consequence of the induction hypothesis.

R Proof of Lemma 17

Fix l ∈ {0, 1, · · · }. We shall prove the lemma via induction on r. Note that, for r = 0, we have,

|P̃ MF
G (µl, gl:l, πl:l)− P̃ MF

G (µ̄l, gl:l, πl:l)|1 = |P MF
G (µl, gl, πl)− P MF

G (µ̄l, gl, πl)|1

= |PG(µl, gl)− PG(µ̄l, gl)|1
(a)
≤ LG|µl − µ̄l|1

(39)

Equality (a) follows from Assumption 1(d). Assume that the lemma holds for some r ∈ {0, 1, · · · }. We shall
now show that the lemma holds for r + 1 as well. Note that,∑
l+1:l+r+1

∣∣P̃ MF
G (µl, gl:l+r+1, πl:l+r+1)− P̃ MF

G (µ̄l, gl:l+r+1, πl:l+r+1)
∣∣
1

(a)=
∑

l+1:l+r+1

∣∣∣P̃ MF
G (µl, gl:l+r, πl:l+r)(gl+r+1)P MF

G (P̃ MF(µl, gl:l+r, πl:l+r), gl+r+1, πl+r+1)

− P̃ MF
G (µ̄l, gl:l+r, πl:l+r)(gl+r+1)P MF

G (P̃ MF(µ̄l, gl:l+r, πl:l+r), gl+r+1, πl+r+1)
∣∣∣
1
≤ J1 + J2
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Equality (a) follows from (30). The first term J1 can be upper bounded as follows.

J1 ≜
∑

l+1:l+r+1
P̃ MF

G (µl, gl:l+r, πl:l+r)(gl+r+1)

×
∣∣∣P MF

G (P̃ MF(µl, gl:l+r, πl:l+r), gl+r+1, πl+r+1)− P MF
G (P̃ MF(µ̄l, gl:l+r, πl:l+r), gl+r+1, πl+r+1)

∣∣∣
1

=
∑

l+1:l+r+1
P̃ MF

G (µl, gl:l+r, πl:l+r)(gl+r+1)

×
∣∣∣PG(P̃ MF(µl, gl:l+r, πl:l+r), gl+r+1)− PG(P̃ MF(µ̄l, gl:l+r, πl:l+r), gl+r+1)

∣∣∣
1

(a)
≤ LG

∑
l+1:l+r+1

∣∣∣P̃ MF(µl, gl:l+r, πl:l+r)− P̃ MF(µl, gl:l+r, πl:l+r)
∣∣∣
1
× P̃ MF

G (µl, gl:l+r, πl:l+r)(gl+r+1)

(b)
≤ LGQr+1

P |µl − µ̄l|1
∑

l+1:l+r+1
P̃ MF

G (µl, gl:l+r, πl:l+r)(gl+r+1) (c)= LGQr+1
P |µl − µ̄l|1

Inequality (a) follows from Assumption 1(d) while (b) results from Lemma 16. Finally, (c) can be shown
following the definition (30). The second term J2 can be bounded as follows.

J2 ≜
∑

l+1:l+r+1
|P MF

G (P̃ MF(µ̄l, gl:l+r, πl:l+r), gl+r+1, πl+r+1)|1︸ ︷︷ ︸
=1

× |P̃ MF
G (µl, gl:l+r, πl:l+r)(gl+r+1)− P̃ MF

G (µ̄l, gl:l+r, πl:l+r)(gl+r+1)|

=
∑

l+1:l+r+1
|P̃ MF

G (µl, gl:l+r, πl:l+r)− P̃ MF
G (µ̄l, gl:l+r, πl:l+r)|1

(a)
≤ LG(1 + QP + · · ·+ Qr

P )|µl − µ̄l|1

Inequality (a) follows from induction hypothesis. This concludes the lemma.

S Proof of Lemma 18

Note that the result readily follows for r = 0 from Lemma 15. Therefore, we assume r ≥ 1.

|r̃MF(µl, gl, πl:l+r)− r̃MF(µ̄l, gl, πl:l+r)|
(a)
≤

∑
l+1:l+r

|rMF(P̃ MF(µl, gl:l+r−1, πl:l+r−1), gl+r, πl+r)P̃ MF
G (µl, gl:l+r−1, πl:l+r−1)(gl+r)

− rMF(P̃ MF(µ̄l, gl:l+r−1, πl:l+r−1), gl+r, πl+r)P̃ MF
G (µ̄l, gl:l+r−1, πl:l+r−1)(gl+r)| ≤ J1 + J2

Inequality (a) follows from the definition (31). The first term can be bounded as follows.

J1 ≜
∑

l+1:l+r

|rMF(P̃ MF(µl, gl:l+r−1, πl:l+r−1), gl+r, πl+r)|

× |P̃ MF
G (µl, gl:l+r−1, πl:l+r−1)(gl+r)− P̃ MF

G (µ̄l, gl:l+r−1, πl:l+r−1)(gl+r)|
(a)
≤ MR

∑
l+1:l+r−1

|P̃ MF
G (µl, gl:l+r−1, πl:l+r−1)− P̃ MF

G (µ̄l, gl:l+r−1, πl:l+r−1)|1

(b)
≤ MRLG(1 + QP + · · ·+ Qr−1

P )|µl − µ̄l|1 =
(

MRLG

QP − 1

)
(Qr

P − 1)|µl − µ̄l|1
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The bound (a) can be proven using Assumption 1(a) and the definition of rMF given in (10). The bound (b)
follows from Lemma 17. The term J2 can be bounded as follows.

J2 ≜
∑

l+1:l+r

P̃ MF
G (µ̄l, gl:l+r−1, πl:l+r−1)(gl+r)

× |rMF(P̃ MF(µl, gl:l+r−1, πl:l+r−1), gl+r, πl+r)− rMF(P̃ MF(µ̄l, gl:l+r−1, πl:l+r−1), gl+r, πl+r)|
(a)
≤

∑
l+1:l+r

P̃ MF
G (µ̄l, gl:l+r−1, πl:l+r−1)(gl+r)×QR|P̃ MF(µl, gl:l+r−1, πl:l+r−1)− P̃ MF(µ̄l, gl:l+r−1, πl:l+r−1)|

(b)
≤ QRQr

P |µl − µ̄l|1 ×
∑

l+1:l+r

P̃ MF
G (µ̄l, gl:l+r−1, πl:l+r−1)(gl+r) (c)= QRQr

P |µl − µ̄l|1

Inequality (a) follows from Lemma 15 while (b) results from Lemma 16. Finally, (c) can be proven from the
definition (30). This concludes the lemma.

T Proof of Lemma 19

Notice the following decomposition.

E
∣∣µN

t+1 − P MF(µN
t , gN

t , πt)
∣∣
1

(a)= E

∣∣∣∣∣µN
t+1 −

∑
x′∈X

∑
u∈U

P (x′, u, µN
t , gN

t )πt(x′, µN
t , gN

t )(u)µN
t (x)

∣∣∣∣∣
1

(b)=
∑
x∈X

E

∣∣∣∣∣ 1
N

N∑
i=1

δ(xi
t+1 = x)−

∑
x′∈X

∑
u∈U

P (x′, u, µN
t , gN

t )(x)πt(x′, µN
t , g′)(u) 1

N

N∑
i=1

δ(xi
t = x′)

∣∣∣∣∣
=
∑
x∈X

E

∣∣∣∣∣ 1
N

N∑
i=1

δ(xi
t+1 = x)− 1

N

N∑
i=1

∑
u∈U

P (xi
t, u, µN

t , gN
t )(x)πt(xi

t, µN
t , gN

t )(u)

∣∣∣∣∣ ≤ J1 + J2

Equality (a) uses the definition of P MF(·, ·, ·) as shown in (8) and equality (b) uses the definition of µN
t . The

term J1 obeys the following.

J1 ≜
1
N

∑
x∈X

E

∣∣∣∣∣
N∑

i=1
δ(xi

t+1 = x)−
N∑

i=1
P (xi

t, ui
t, µN

t , gN
t )(x)

∣∣∣∣∣
= 1

N

∑
x∈X

E

[
E

[∣∣∣∣∣
N∑

i=1
δ(xi

t+1 = x)−
N∑

i=1
P (xi

t, ui
t, µN

t , gN
t )(x)

∣∣∣∣∣
∣∣∣∣∣xN

t , gN
t , uN

t

]]
(a)
≤ 1√

N

√
|X |

Inequality (a) is obtained applying Lemma 10, and the facts that {xi
t+1}i∈{1,··· ,N} are conditionally inde-

pendent given {xN
t , gN

t , uN
t }, and the following relations hold

E
[
δ(xi

t+1 = x)
∣∣∣xN

t , gN
t , uN

t

]
= P (xi

t, ui
t, µN

t , gN
t )(x),∑

x∈X
E
[
δ(xi

t+1 = x)
∣∣∣xN

t , gN
t , uN

t

]
= 1

∀i ∈ {1, · · · , N}, and ∀x ∈ X . The second term satisfies the following bound.

J2 ≜
1
N

∑
x∈X

E

∣∣∣∣∣
N∑

i=1
P (xi

t, ui
t, µN

t , gN
t )(x)−

N∑
i=1

∑
u∈U

P (xi
t, u, µN

t , gN
t )(x)πt(xi

t, µN
t , gN

t )(u)

∣∣∣∣∣ (a)
≤ 1√

N

√
|X |
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Inequality (a) is a result of Lemma 10. In particular, it uses the facts that, {ui
t}i∈{1,··· ,N} are conditionally

independent given xN
t , gN

t , and the following relations hold

E
[
P (xi

t, ui
t, µN

t , gN
t )(x)

∣∣∣xN
t , gN

t

]
=
∑
u∈U

P (xi
t, u, µN

t )(x)πt(xi
t, µN

t , gN
t )(u),

∑
x∈X

E
[
P (xi

t, ui
t, µN

t , gN
t )(x)

∣∣∣xN
t , gN

t

]
= 1

∀i ∈ {1, · · · , N}, and ∀x ∈ X . This concludes the Lemma.

U Proof of Lemma 20

Observe the following decomposition.

E

∣∣∣∣∣ 1
N

∑
i=1

r(xi
t, ui

t, µN
t , gN

t )− rMF(µN
t , gN

t , πt)

∣∣∣∣∣
(a)= E

∣∣∣∣∣ 1
N

N∑
i=1

r(xi
t, ui

t, µN
t , gN

t )−
∑
x∈X

∑
u∈U

r(x, u, µN
t , gN

t )πt(x, µN
t , gN

t )(u)µN
t (x)

∣∣∣∣∣
(b)= E

∣∣∣∣∣ 1
N

N∑
i=1

r(xi
t, ui

t, µN
t , gN

t )−
∑
x∈X

∑
u∈U

r(x, u, µN
t , gN

t )πt(x, µN
t , gN

t )(u) 1
N

N∑
i=1

δ(xi
t = x)

∣∣∣∣∣
= E

∣∣∣∣∣ 1
N

N∑
i=1

r(xi
t, ui

t, µN
t , gN

t )− 1
N

N∑
i=1

∑
u∈U

r(xi
t, u, µN

t , gN
t )πt(xi

t, µN
t , gN

t )(u)

∣∣∣∣∣
= 1

N
E

[
E

[∣∣∣∣∣
N∑

i=1
r(xi

t, ui
t, µN

t , gN
t )−

N∑
i=1

∑
u∈U

r(xi
t, u, µN

t , gN
t )πt(xi

t, µN
t , gN

t )(u)

∣∣∣∣∣ ∣∣∣xN
t , gN

t

]]

= M

N
E

[
E

[∣∣∣∣∣
N∑

i=1
r0(xi

t, ui
t, µN

t , gN
t )−

N∑
i=1

∑
u∈U

r0(xi
t, u, µN

t , gN
t )πt(xi

t, µN
t , gN

t )(u)

∣∣∣∣∣ ∣∣∣xN
t , gN

t

]]
(c)
≤ MR√

N

Equation (a) uses the definition of rMF(·, ·) as shown in (10) while inequality (b) uses the definition of µN
t .

The function r0 is given as, r0(·, ·, ·, ·) ≜ r(·, ·, ·, ·)/MR. Finally, relation (c) follows from Lemma 10. In
particular, it uses the fact that {ui

t}i∈{1,··· ,N} are conditionally independent given xN
t , gN

t , and the following
relations hold.

|r0(xi
t, ui

t, µN
t , gN

t )| ≤ 1,

E
[
r0(xi

t, ui
t, µN

t , gN
t )
∣∣∣xN

t , gN
t

]
=
∑
u∈U

r0(xi
t, u, µN

t , gN
t )πt(xi

t, µN
t , gN

t )(u)

∀i ∈ {1, · · · , N},∀u ∈ U .
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V Sampling Procedure

Algorithm 2 Sampling Algorithm
1: Input: µ0, g0, πΦj , P , PG, r
2: Sample u0 ∼ πΦj

(x0, µ0, g0)
3: ν0 ← νMF(µ0, g0, πΦj

) where νMF is defined in (7).

4: t← 0
5: FLAG← FALSE
6: while FLAG is FALSE do
7: FLAG← TRUE with probability 1− γ.
8: Execute Update
9: end while

10: T ← t
11: Accept (xT , µT , gT , uT ) as a sample.

12: V̂Φj
← 0, Q̂Φj

← 0
13: FLAG← FALSE
14: SumRewards← 0
15: while FLAG is FALSE do
16: FLAG← TRUE with probability 1− γ.
17: Execute Update
18: SumRewards← SumRewards + r(xt, ut, µt, gt, νt)
19: end while

20: With probability 1
2 , V̂Φj ← SumRewards. Otherwise Q̂Φj ← SumRewards.

21: ÂΦj
(xT , µT , gT , uT )← 2(Q̂Φj

− V̂Φj
).

22: Output: (xT , µT , gT , uT ) and ÂΦj
(xT , µT , gT , uT )

Procedure Update:
23: xt+1 ∼ P (xt, ut, µt, gt, νt).
24: gt+1 ∼ PG(xt, ut, µt, gt, νt).
25: µt+1 ← P MF(µt, πΦj

) where P MF is defined in (8).
26: ut+1 ∼ πΦj

(xt+1, µt+1, gt+1)
27: νt+1 ← νMF(µt+1, gt+1, πΦj

)
28: t← t + 1

EndProcedure
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