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Abstract
This paper argues that continual learning methods can benefit by splitting the1

capacity of the learner across multiple models. We use statistical learning theory2

and experimental analysis to show how multiple tasks can interact with each other3

in a highly non-trivial fashion when trained on a single model. The generalization4

error on a particular task can improve when it is trained with synergistic tasks, but5

can just as easily deteriorate when trained with competing tasks. This phenomenon6

motivates ourmethod namedModel Zoowhich, inspired from the boosting literature,7

grows an ensemble of small models, each of which is trained during one episode8

of continual learning. We demonstrate gains in accuracy on a variety of continual9

learning benchmarks.10

1 Introduction11

A continual learner seeks to leverage data from past tasks to learn new tasks shown to it in the future,12

and in turn, leverage data from these new tasks to improve its accuracy on past tasks. It stands to13

reason that the performance of such a learner would depend upon the relatedness of these tasks. If the14

two sets of tasks are dissimilar, learning on past tasks is unlikely to benefit future tasks—it may even15

be detrimental. And similarly, new tasks may cause the learner to “forget” and result in deteriorated16

accuracy on past tasks. Our goal in this paper is to model the relatedness between tasks and develop17

new methods for continual learning that result in good forward-backward transfer by accounting for18

such similarities and dissimilarities between tasks. Our contributions are as follows.19

1. Theoretical analysis: We characterize when multiple tasks can be learned using a single20

model and, likewise, when doing so is detrimental to the accuracy of a particular task. 2. Algorithm21

development: We develop such a continual learner called Model Zoo that splits the learning capacity22

amongst synergistic tasks using an algorithm loosely inspired from AdaBoost. 3. Empirical results:23

We evaluate Model Zoo on benchmarks from task-incremental continual learning. There is a wide24

variety of problem settings and we find that in a number of these settings, Model Zoo obtains better25

accuracy than existing methods (improvement in average per-task accuracy is as large as 30% on26

Split-miniImagenet). 4. A critical look at continual learning: We find that even an Isolated learner,27

i.e., one which trains a (small) model on tasks from each episode and does not perform any continual28

learning, all most continual learning methods on the evaluated benchmark problems, e.g., by more29

than 8% in Fig. 1. This strong performance is surprising because it is a very simple learner that30

has better training/inference time, no data replay, and a comparable number of weights to existing31

methods.32

2 A theoretical analysis of how to learn from multiple tasks33

2.1 Problem Formulation34

A supervised learning task is defined as a joint probability distribution P (x, y) of inputs x ∈ X35

and labels y ∈ Y . The learner has access to m i.i.d samples S = {xi, yi}i=1,...,m from the task.36

A hypothesis is a function h : X → Y with h ∈ H being the hypothesis space. The learner may37

select a hypothesis that minimizes the empirical risk êS(h) = 1
m

∑m
i=1 1{h(xi)6=yi} with the hope of38

achieving a small population risk eP (h) = P(h(x) 6= y).39

Let D = VC(H), refer to the VC-dimension of the hypothesis spaceH . We define the “excess40

risk” of a hypothesis as EP (h) = eP (h)− infh∈H eP (h). In the continual learning setting, a new task41

is shown to the learner at each episode (or round). Hence after n episodes, the learner is presented42

with n tasks P̄ := (P1, . . . , Pn), with the corresponding training sets S̄ := (S1, . . . , Sn), each with43
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Figure 1: Left: How well do existing continual learning methods work? We track the average accuracy
(over all tasks seen until the current episode) on the Split-miniImagenet dataset and compare our method Model
Zoo and its variants (all in bold) to existing continual learning methods (faint lines, see Table A1 for references).
All methods in this plot (except red/orange lines) use the single epoch setting, i.e., each new task is allowed only
1 epoch of training. Isolated refers to a simplistic realization of Model Zoo where a separate model is fitted at
each episode without any continual learning, or data sharing between tasks; Isolated-small or Model Zoo-small
refer to using a small deep network with 0.12M weights. A number of surprising findings are seen here. (i)
Isolated-small (black) outperforms existing methods by more than 10% margin, while having a faster training
time, inference time, comparable model size and without performing any data replay. This indicates that existing
methods do not sufficiently leverage data from multiple tasks. (ii) While the larger model with 3.6M weights
per round, Isolated-Single Epoch (royal blue), performs poorly, its accuracy is better than the compared methods
(Isolated-Multi Epoch) upon being trained for multiple epochs. This indicates that existing methods may be
severely under-trained in the single-epoch setting. (iii) Model Zoo and Model Zoo-small which replay all
data from past tasks (A-GEM also replays 10% of the data), achieves around 10% improvement over its Isolated
counterparts in both the single-epoch and multi-epoch setting; This indicates that replaying data from past tasks
is beneficial (Robins, 1995), even if replay may not conform to certain stylistic formulations of continual learning
in the literature.
Right: Does the single-epoch setting show forward-backward transfer? The evolution of individual task
accuracy of Model Zoo (the multi-epoch setting in bold and single-epoch setting in dotted), on the Split-
miniImagenet dataset (only 5 tasks are plotted here, see Fig. A6 for the full version). The X markers denote
the accuracy of Isolated. Accuracy of tasks improves with each episode which indicates backward transfer.
Also, the X markers are often below the initial accuracy of the task during continual learning, which indicates
forward transfer. While both single-epoch and multi-epoch Model Zoo show good forward-backward transfer,
the accuracy of tasks for the former is about 25% worse than the latter; corresponding plots for other methods are
in Appendix B.7. This indicates that we should also pay attention to under-training and per-task accuracy in
continual learning.
m samples, and the learner selects n hypotheses h̄ = (h1, . . . , hn) ∈ Hn, each hi ∈ H . If it seeks44

a small average population risk eP̄ (h̄) = 1
n

∑n
i=1 ePi(hi), it may do so by minimizing the average45

empirical risk êS̄(h̄) = 1
n

∑n
i=1 êSi

(hi).46

2.2 Task competition in hypothesis spaces with limited capacity47

There could be settings under which fitting one model on multiple tasks may not suffice. To study48

this, we consider a weaker notion of relatedness. We say that two tasks Pi, Pj are ρij-related if49

c E1/ρij
Pi

(h) ≥ EPj (h, h∗i ), for all h ∈ H. (1)

Here EP (h, h′) := eP (h)− eP (h′) and h∗i = argminh∈H ePi
(h) is the best hypothesis for task Pi;50

we set c ≥ 1 to be a coefficient independent of i, j. Smaller the ρij , more useful the samples from51

Pi to learn Pj . The definition suggests that all hypotheses h which have low excess risk on Pi52

also have low excess risk on Pj up to an additive term ePj (h∗) and this effect becomes stronger53

as ρij → 1+. Hanneke and Kpotufe (2020) call this the transfer exponent. We can now show the54

following theorem bounds the excess risk EP1
(h) for a hypothesis h trained using data from multiple55

tasks. See Appendix C for the proof.56

Theorem 1 (Task competition). Say we wish to find a good hypothesis for task P1 and have access to57

n tasks P1, . . . , Pn where each pair Pi, Pj are ρij-related. Arrange tasks in an increasing order of ρi1,58

i.e., their relatedness to P1. Let this ordering be P(1), P(2), . . . , P(n) with ρ(1) ≤ ρ(2) ≤ . . . ≤ ρ(n)59

and P(1) ≡ P1 and ρ(1) = 1. Let ĥk be the hypothesis that minimizes the average empirical risk of60

2



the first k ≤ n tasks. Then, with probability at least 1− δ over draws of the training data,61

EP1(ĥk) ≤ 1
k

∑k
i=1 EP1

(h∗(i)) + c
k

(
eS̄(h) + c′

(
D−log δ
km

)1/2
)1/ρmax

(2)

where ρmax(k) = max
{
ρ(1), . . . , ρ(k)

}
and c, c′ are constants.62

The first term can be understood as quantifying the competition between multiple tasks and the63

second term captures the benefit of learning multiple tasks together. The first term grows with the64

number of tasks k because we pick tasks with larger ρi1 that are more and more dissimilar to P1. The65

second term typically decreases with an increasing the number of tasks k.66

The generalization error of task P1 is minimized when trained alongside the k most related tasks67

(not necessarily all available tasks) where k minimizes the upper-bound from equation (2). Also,68

different tasks have different orderings of the most related tasks. Inspired by equation (2) we design69

Model Zoo, which splits the capacity of the model amongst different subsets of tasks.70

3 Model Zoo: A continual learner that grows its learning capacity71

Theorem 1 indicates that ones should not always expect improved excess risk by combining data72

from different tasks. This theorem also suggests a way to work around the problem. If we learn73

small models on synergistic tasks, we can hope to have each task benefit from the synergies without74

deterioration of accuracy due to task competition with dissonant tasks. Model Zoo is a simple method75

that is designed for this purpose.76

Model 1

Model 2

Model 3

P3 P4

P6

P5

P1

P2

Figure 2: Ideally, wewant to train synergistic
tasks together, e.g., Model 1 for P1 using
P3, P6 and Model 3 for P3 using P1, P4, P5.
Model Zoo is a simple, scalable instantiation
of this idea. Discovering noncompeting tasks
is difficult, so it selects tasks that have high
training loss under the current ensemble.

Let us assume that tasks P1, . . . , Pn are shown sequen-77

tially to the continual learner. We assume that all tasks have78

the same input domain X but may have different output79

domains Y1, . . . , Yn. At each “episode” k, Model Zoo is80

designed to train using the current task Pk and a subset of81

the past tasks. Let the set of tasks considered at episode82

k be denoted by P̄k = {Pω1
k
, . . . , Pωb

k
} where b ≤ k is83

a hyper-parameter and ωik ∈ {1, . . . , k}. Training on P̄k84

will involve, training one model with a feature generator85

hk and task-specific classifiers gk,ωi
k
for each task selected86

in that round. Such models, one trained in each round,87

together form the “Model Zoo”. After k rounds, data from,88

say, Pi with i ≤ k can be predicted using the average of89

class probabilities output by all models that were fitted on90

that task, i.e.,91

pk,i(y | x) ∝
∑k
l=1 1{Pi∈P̄l} gl,i ◦ hl(x). (3)

This expression is also used to predict at test time.92

Selecting tasks to train with for each round using boosting. In principle, we could use the transfer93

exponents ρij to select synergistic tasks, but computing the transfer exponents is essentially as94

difficult as training on all tasks. We therefore develop an automatic way to select tasks in each95

round. We draw inspiration from boosting (Schapire and Freund, 2013) for this purpose. Recall96

the AdaBoost algorithm which builds an ensemble of weak learners, each of which is fitted upon97

iteratively re-weighted training data (Breiman, 1998).98

We think of the models learned at each episode of continual learning in Model Zoo as the “weak99

learners” and each round of boosting as the equivalent of each episode of continual learning. Let100

w̄k ∈ Rn be a normalized vector of task-specific weights. After episode k101

w̄k,i ∝ exp
(
−1/m

∑
(x,y)∈Si

log pk,i(y | x)
)
. (4)

for each task Pi with i ≤ k; for i > k, w̄k,i = 0. Tasks for the next round P̄k+1 are drawn from102

a multinomial distribution with weights w̄k. Therefore, tasks with a low empirical risk under the103

current Model Zoo get a low weight for the next boosting round. Just like AdaBoost drives down104

the training error on all samples to zero exponentially (Schapire and Freund, 2013) by iteratively105

focusing upon difficult-to-classify samples, Model Zoo achieves a low empirical risk on all tasks as106

more models are added.107
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Method Rotated- Permuted- Split- Split- Split- Coarse- Split-
MNIST MNIST MNIST CIFAR10 CIFAR100 CIFAR100 miniImagenet

EWC (Kirkpatrick et al., 2017) •84 •96.9 - - •42.40 - 46.69
GEM (Lopez-Paz and Ranzato, 2017) 86.07 82.60 - - ∗67.8 - 51.86
RWalk (Chaudhry et al., 2018) † - •93.5 99.3 - ∗,•40.9 - -
A-GEM (Chaudhry et al., 2019a) † - 89.1 - - ∗62.3 - 61.13
Stable-SGD (Mirzadeh et al., 2020b) † 70.8 80.1 - - ∗59.9 - 57.79
ER-Reservoir (Chaudhry et al., 2019b) † - 79.8 - - ∗68.5 - 64.03
MEGA-II (Guo et al., 2020a) - 91.20 - - 66.12 - -
RMN (Kaushik et al., 2021) (strict) - 97.73 99.5 - 80.01 - -

Our methods
Isolated-small - - - 96.88 90.18 69.07 82.48
Model Zoo-small - - - 96.85 92.06 73.72 94.27
Model Zoo-small (10% replay) - - - 96.58 89.76 77.18 84.6
Isolated 99.64 98.03 99.98 97.46 91.90 80.72 86.28
Model Zoo 99.66 97.71 99.97 98.68 94.99 84.27 96.84

Multi-Head (multi-task) 99.66 98.16 99.98 98.11 95.38 83.19 90.83

Table 1: Average per-task accuracy (%) at the end of all episodes. MNIST, Permuted-MNIST and Rotated-
MNIST are not informative benchmarks for judging forward and backward transfer because even Isolated achieves
99%+ accuracy. Model Zoo outperforms, by significant margins, all existing continual learning methods on all
datasets. Accuracy of existing methods is worse than Isolated which suggests little to no forward or backward
transfer. Model Zoo-small and Isolated-have comparable number of weights as that of existing methods, Note: ∗
indicates that the evaluation was on Split-CIFAR100 with each task containing randomly sampled labels and is
hence it is not directly comparable to other methods. † train for 1 epoch per episode. * denotes that accuracy is
reported from other publications,

4 Experiments108

Table 1 shows the validation accuracy of different continual learning methods on standard benchmark109

problems. Isolated can be thought of as the simplest possible continual learner—one that unfreezes110

new capacity at each episode and does not replay data. We also evaluate on the "small" variant111

of models, consisting of far fewer parameters (0.12M weights for each learner) and with a limited112

experience replay. For more details and experiments, see Appendix B.113

(i) Accuracy of existing methods in Table 1, regardless of their specific setting, is much poorer114

than Isolated (more than 10% for both the small and standard versions). This indicates that existing115

methods may be failing to achieve forward or backward transfer compared to simply training the task116

in isolation; Table A2 investigates this further.117

(ii) In comparison, Model Zoo (all three variants: small, small with 10% data replay and118

the standard method) has dramatically better accuracy (more than 10% better than existing119

methods) both compared to existing methods as well as compared to Isolated. This shows the utility120

of splitting the capacity of the learner across multiple tasks.121

(iii) Model Zoomatches the accuracy of themulti-task learner in the last row of Table 1 which122

has access to all tasks beforehand. Surprisingly,Model Zoo performs better than Multi-Head in123

spite of being trained in continual fashion, especially on harder problems like Coarse-CIFAR100124

and Split-miniImagenet. This is a direct demonstration of the effectiveness of Model Zoo in mitigating125

task competition.126

5 Discussion127

Continual learning is an important problem as deep learning systems transition from the traditional128

paradigm of having a fixed model that makes inferences on user queries to settings where we would like129

to update the model to handle new types of queries. The key desiderata of such a system are clear: it130

must display high per-task accuracy and strong forward-backward transfer. This paper seeks to develop131

such a continual learner and investigates the problem using the lens of task relatedness. It argues132

that the learner must split its capacity across sets of tasks to mitigate competition between tasks and133

benefit from synergies among them. We develop Model Zoo, which is a continual learning algorithm134

inspired by AdaBoost.We show that across a wide variety of datasets, problem formulations, and135

evaluation criteria, Model Zoo and its variants significantly outperform all existing continual136

learning methods.137

Our goal is to provide grounding to the practice of continual learning. We believe that there is138

merit in studying problem settings such as no data replay, or single epoch training. But if even a simple139

“baseline” method, where a separate, small model is trained independently in each episode, handily140

outperforms existing methods, or if even a small amount of data replay can obtain so much better141

accuracy and forward-backward transfer, then we need to consider whether the problem formulations142

may be holding us back from building effective algorithms. We advocate that these desiderata should143

be the focus of future investigations.144
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A A theoretical analysis of how to learn from multiple tasks229

In this section, we (i) formulate the problem of learning from multiple tasks, (ii) discuss a simple230

model that highlights when training one model on multiple tasks is beneficial, and (iii) show new231

results on how the fixed capacity of the model causes competition between tasks.232

A.1 Problem Formulation233

A supervised learning task is defined as a joint probability distribution P (x, y) of inputs x ∈ X234

and labels y ∈ Y . The learner has access to m i.i.d samples S = {xi, yi}i=1,...,m from the task.235

A hypothesis is a function h : X → Y with h ∈ H being the hypothesis space. The learner may236

select a hypothesis that minimizes the empirical risk êS(h) = 1
m

∑m
i=1 1{h(xi)6=yi} with the hope of237

achieving a small population risk eP (h) = P(h(x) 6= y). Classical PAC-learning results (Vapnik,238

1998) suggest that with probability at least 1− δ over draws of the data S, uniformly for any h ∈ H ,239

we have eP (h) ≤ êS(h) + ε if240

m = O
(
(D − log δ) /ε2

)
(5)

where D = VC(H) is the VC-dimension of the hypothesis space H . We define the “excess risk”241

of a hypothesis as EP (h) = eP (h)− infh∈H eP (h). In the continual learning setting, a new task is242

shown to the learner at each episode (or round). Hence after n episodes, the learner is presented with243

n tasks P̄ := (P1, . . . , Pn), with the corresponding training sets S̄ := (S1, . . . , Sn), each with m244

samples, and the learner selects n hypotheses h̄ = (h1, . . . , hn) ∈ Hn, each hi ∈ H . If it seeks a245

small average population risk eP̄ (h̄) = 1
n

∑n
i=1 ePi

(hi), it may do so by minimizing the average246

empirical risk êS̄(h̄) = 1
n

∑n
i=1 êSi(hi). As Baxter (2000) shows, under very general conditions, if247

m = O
(
ε−2 (dH(n)− 1/n log δ)

)
, (6)

then we have eP̄ (h̄) ≤ eS̄(h̄) + ε for any h̄ ∈ Hn. The quantity dH(n) here is a generalized248

VC-dimension for the family of hypothesis spaces Hn, which depends on the joint distribution of249

tasks. Larger the number of tasks n, smaller the dH(n) (Ben-David and Borbely, 2008). Whether (6)250

is an improvement upon training the task in isolation as in (5) depends upon the hypothesis class H251

and the relatedness of tasks P1, . . . , Pn through the quantity dH(n). The most important thing to252

note here is that according to these calculations, if one wishes to obtain a small average population253

risk across tasks, training multiple tasks together cannot be worse: dH(n) ≤ VC(H).254

A.2 Controlling the excess risk of a specific task for synergistic tasks255

An important goal of continual learning is to have low risk on all tasks. This is a stronger requirement256

than for (6) which bounds the average population risk on all tasks.257

Suppose there exists a family F of functions fi : X → X that map the inputs of one task to those258

of another, i.e., any task can be written as259

Pj(A) = f [Pi](A) = Pi({(f(x), y) : (x, y) ∈ A})

for some function f ∈ F for any set A. We can assume without loss of generality that F acts as a260

group over the hypothesis space and H is closed under its action. In simple words, this entails that261

given h ∈ H suitable for task P , we can obtain a new hypothesis h ◦ f that is suitable for another task262

f [P ]. Instead of searching over the entire spaceHn like in Appendix A.1, we now only need to find a263

hypothesis h ∈ H such that its orbit264

[h]F = {h′ : ∃f ∈ F with h′ = h ◦ f}

contains hypotheses that have low empirical risk on each of the n tasks. Conceptually, this step learns265

the inductive bias (Baxter, 2000; Thrun and Pratt, 2012). The sample complexity of doing so is266

exactly (6). From within this orbit, we can select a hypothesis that has low empirical risk for a chosen267

task P1. The sample complexity of this second step is268

|S1| = O
(
ε−2 (dmax − log δ)

)
(7)

where dmax = suph∈H VC([h]F ). By uniform convergence, as Ben-David and Schuller (2003) show,269

this two-step procedure assures low excess risk for every task P1, . . . , Pn. We have270

suph∈H VC([h]F ) = dmax ≤ dH(n+ 1) ≤ dH(n) ≤ D = VC(H). (8)
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The total sample complexity is favorable to that of learning the task in isolation if both dH(n) and271

dmax are small. For instance, if F is finite and n/ log n ≥ D, we have dH(n) ≤ 2 log |F | which272

indicates that we get a statistical benefit of learning with multiple tasks if D � log |F |.273

Remark 2 (Data from other tasks may not improve accuracy even if they are synergistic). Let274

us make a few observations using the above analysis. (i) From (8), number of samples per taskm275

decreases with n; this is the benefit of the strong relatedness among tasks and as we see next, this is not276

the case in general. (ii) The number of tasks scales essentially linearly with D, which indicates that277

one should use a small model if we have few tasks. (iii) But we cannot always use a small model. If278

tasks are diverse and related by complex transformations with a large |F |, we need a large hypothesis279

space to learn them together. If |F | is large and H is not appropriately so, the VC-dimension dmax is280

as large as D itself; in this case there is again no statistical benefit of training with multiple tasks281

together, but there is no deterioration either.282

A.3 Task competition occurs for hypothesis spaces with limited capacity283

There could be settings under which fitting one model on multiple tasks may not suffice. To study284

this, we consider a weaker notion of relatedness. We say that two tasks Pi, Pj are ρij-related if285

c E1/ρij
Pi

(h) ≥ EPj (h, h∗i ), for all h ∈ H. (9)

Here EP (h, h′) := eP (h)− eP (h′) and h∗i = argminh∈H ePi
(h) is the best hypothesis for task Pi;286

we set c ≥ 1 to be a coefficient independent of i, j. Smaller the ρij , more useful the samples from287

Pi to learn Pj . The definition suggests that all hypotheses h which have low excess risk on Pi288

also have low excess risk on Pj up to an additive term ePj (h∗) and this effect becomes stronger as289

ρij → 1+. Note that the definition of relatedness is not symmetric. Hanneke and Kpotufe (2020) call290

this the transfer exponent. To gain some intuition, we can connect this definition to a certain triangle291

inequality between the tasks developed by Crammer et al. (2008): in the realizable setting where292

ePi
(h∗i ) = 0, for c, ρij = 1, we can write (9) as293

ePi
(h) + ePj

(h∗i ) ≥ ePj
(h)

which is akin to a triangle with vertices at h, h∗i and h∗j with terms like ePi
(h) representing the length294

of the side between h and h∗i . This definition therefore models a set of tasks and hypothesis space295

that is not unduly pathological, ePj
(h) cannot be much worse than the sum of the other two sides. We296

can now show the following theorem bounds the excess risk EP1
(h) for a hypothesis h trained using297

data from multiple tasks. See Appendix C for the proof.298

Theorem 3 (Task competition). Say we wish to find a good hypothesis for task P1 and have access to299

n tasks P1, . . . , Pn where each pair Pi, Pj are ρij-related. Arrange tasks in an increasing order of ρi1,300

i.e., their relatedness to P1. Let this ordering be P(1), P(2), . . . , P(n) with ρ(1) ≤ ρ(2) ≤ . . . ≤ ρ(n)301

and P(1) ≡ P1 and ρ(1) = 1. Let ĥk be the hypothesis that minimizes the average empirical risk of302

the first k ≤ n tasks. Then, with probability at least 1− δ over draws of the training data,303

EP1
(ĥk) ≤ 1

k

∑k
i=1 EP1

(h∗(i)) + c
k

(
eS̄(h) + c′

(
D−log δ
km

)1/2
)1/ρmax

(10)

where ρmax(k) = max
{
ρ(1), . . . , ρ(k)

}
and c, c′ are constants.304

Notice that the first term grows with the number of tasks k because we pick tasks with lower ρi1305

that are more and more dissimilar to P1. The second term typically decreases with k. The empirical306

risk eS̄(h) is typically small; in our experiments with deep networks we achieve essentially zero307

training error on all. Increasing the number of tasks k, increases the effective number of samples km,308

thereby reducing the second term in totality. At the same time, these new samples are increasingly309

more inefficient because ρmax(k) increases with k.310

Remark 4 (Picking the size of the hypothesis space). The first and second terms characterize311

synergies and competition between tasks and balancing them is the key to good performance on a312

given task. Increasing the size of the hypothesis space reduces the first term since it allows a single313

hypothesis to more easily agree on two distinct distributions Pi and Pj . However, this comes at the314

cost of increasing the second term which grows with the size of the hypothesis space.315

Remark 5 (The set of synergistic tasks can be different for different tasks). The right hand side316

in (10) is minimized for a choice of k (where 1 ≤ k ≤ n) that balances the first and second terms.317

The optimal k can vary with the task, e.g., for generic tasks most other tasks will be synergistic and318
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similarly a small optimal k indicates task dissonance where the particular task, say P1 should be319

trained on with a specific set of other tasks. Even for typical datasets like CIFAR-100, it is highly320

nontrivial to understand the ideal set of tasks to train with; Fig. A1 studies this experimentally.321

Remark 6 (Continual learning is particularly challenging due to task competition). Theorem 3322

indicates that not only is the learner shown tasks sequentially, but it also may have to work against the323

competition between the current task and the representation learned on a past task. It does not have324

access to synergistic tasks from the future while learning on the current task. And further, in settings325

where there is no data replay, the learner cannot benefit from past synergistic tasks explicitly, other326

than the representation that it has already learnt. This suggests that one must be even more careful327

about how the representation in continual learning should be updated.328

7 8 9 10 11 12 13 14 15 16 17 18 19 20
Number of tasks trained together
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ReptilesA
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ra
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f 
fi
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d
 s

u
b
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t 
o
f 
ta

sk
s 68.75 69.85 69.30 68.75 70.25 69.65 69.00 67.35 69.05 69.25 69.60 69.75 70.15 70.90

65.85 65.60 65.70 66.30 66.25 66.40 66.10 65.80 65.85 65.25 66.90 66.65 67.90

68.00 68.95 69.30 68.55 69.15 68.70 68.45 69.75 68.45 70.40 69.35 69.00

74.65 75.00 75.20 73.05 73.50 73.50 73.60 73.85 73.70 74.10 73.05

78.55 77.55 78.15 79.15 78.35 78.40 77.45 78.00 78.70 79.10

79.25 78.25 77.60 78.55 78.40 77.40 78.65 80.05 78.45

71.10 67.95 70.10 69.50 69.60 68.70 69.75 70.00

42.65 40.80 41.05 41.75 43.20 42.65 41.55

58.75 57.70 57.05 57.85 59.25 59.00

Figure A1: Competition between tasks in continual learning can be non-trivial. In order to demonstrate
how some tasks help and some tasks hurt each other, we run a multi-task learner for a varying number of tasks
(X-axis) and track the accuracy on a few tasks from CIFAR100 (each task is a superclass). Each cell represents a
different experiment, i.e, there is no continual learning being performed here. Cells are colored warm if accuracy
is worse than the median accuracy of that row. For instance, multi-task training with 11 tasks is beneficial for
“Man-made Outdoor” but accuracy drops drastically upon introducing task #12, it improves upon introducing
#14, while task #17 again leads to a drop. One may study the other rows to reach a similar conclusion: there is
non-trivial competition between tasks, even in commonly used datasets. As we show, tackling this effectively is
the key to obtaining good performance on multi-task learning problems. See Appendix B.1 for a more elaborate
version.

B Empirical Validation329

B.1 Setup330

Datasets. ∗ We evaluate on Rotated-MNIST (Lopez-Paz and Ranzato, 2017), Split-MNIST (Zenke331

et al., 2017), Permuted-MNIST (Kirkpatrick et al., 2017), Split-CIFAR10 (Zenke et al., 2017),332

Split-CIFAR100 (Zenke et al., 2017), Coarse-CIFAR100 (Rosenbaum et al., 2017) and Split-333

miniImagenet (Vinyals et al., 2016; Chaudhry et al., 2019b). Split-MNIST, Split-CIFAR10, Split-334

CIFAR100 and Split-miniImagenet use consecutive groups of labels (2, 2, 5 and 10, respectively)335

to form tasks. Coarse-CIFAR100 is a variant of CIFAR100 where each super-class is considered a336

different task; this dataset has not been used for benchmarking in continual learning prior to our work.337

Our study in Fig. A1 has found that Coarse-CIFAR100 is a difficult dataset for continual learning,338

perhaps because of the semantic differences among the different super-classes.339

Neural architectures and training methodology. We use a small wide-residual network340

of Zagoruyko and Komodakis (2016) (WRN-16-4 with 3.6M weights) with task-specific classi-341

fiers (one fully-connected layer). We also use an even smaller network (0.12M weights) with 3342

convolution layers (kernel size 3 and 80 filters) interleaved with max-pooling, ReLU, batch-norm layers,343

with task-specific classifier layers. Stochastic gradient descent (SGD) with Nesterov’s momentum344

and cosine-annealed learning rate is used to train all models in mixed precision. Ray Tune (Liaw345

et al., 2018) was used for hyper-parameter tuning using a multi-task learning model on all tasks from346

Coarse CIFAR-100. When we do full replay, Model Zoo samples b = min(k, 5) tasks at the kth347

episode; for problems with n = 5 tasks, we set b = 2; note that b = 1 indicates no data replay. All348

hyper-parameters are kept fixed for all datasets and all experiments (see Appendix B.2).349

See Appendix A for more details.350

∗ Some works (Rebuffi et al., 2017a; Lopez-Paz and Ranzato, 2017; Chaudhry et al., 2019a; Mirzadeh et al.,
2020b) evaluate on a split of the CIFAR100 dataset where each task is random subset of 5 classes. We do not
evaluate on this variant because it is difficult to exactly reproduce the composition of tasks; as Fig. A1 suggests
different compositions can have vastly different task accuracy. This is also highlighted by large differences in the
accuracy on Split-CIFAR100 and Coarse-CIFAR100 in our work.
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B.2 Evaluating continual learning methods351

There is a wide variety of problem formulations in the continual learning literature (Farquhar and Gal,352

2019; Prabhu et al., 2020; Vogelstein et al., 2020; Lopez-Paz and Ranzato, 2017; Van de Ven and353

Tolias, 2019). Formulations vary with respect to whether they allow replaying data from past tasks,354

the number of epochs the learner is allowed to train each task for, and the capacity of the model being355

fitted. We next explain these different formulations, the rationale behind them, and how we execute356

Model Zoo to conform to each of these settings.357

(i) The strict formulation, e.g., Kirkpatrick et al. (2017); Kaushik et al. (2021), does not allow358

any replay of data. For the strict formulation of Model Zoo, we simply set w̄k,i = 0 for all i 6= k in (4).359

At each episode, a single model is trained on the current task and added to the zoo—we call this rather360

simplistic learner Isolated. From a practical standpoint, such a formulation imposes a constraint on361

the amount of computational resources (compute and/or memory) available during training.†362

(ii) One can replay data to various degrees, e.g., all of it (Nguyen et al., 2017; Guo et al.,363

2020b), or a subset of it (Chaudhry et al., 2019a). Just like AdaBoost, Model Zoo is fundamentally364

designed to allow full replay of past tasks. However, we can easily execute it with limited replay by365

only using a subset of the data to compute gradient updates and the accuracy on past tasks in (3) in366

episode kth. We use the nomenclature Model Zoo (10% replay) to indicate that only 10% of the367

data from past tasks is used; algorithms like A-GEM (Chaudhry et al., 2019a) also use 10% of past368

data on CIFAR100 datasets. Note that Model Zoo without any data replay is simply Isolated. Let us369

emphasize that across all these problem settings, Model Zoo remains a legitimate continual learner370

because it gets access to each task sequentially and has a fixed computational budget (b tasks) at each371

episode. For a multi-task learner, the computational complexity scales with the number of tasks.372

(iii) To impose a strict constraint on the computational complexity of each episode some works,373

e.g., Chaudhry et al. (2019a), train each task for a single epoch. We therefore show results using374

both Model Zoo (single epoch) (where we replay past data for 1 epoch) and Isolated (single epoch)375

(no replay). Even if the rationale behind using each datum only once is well-taken, one single376

epoch is quite insufficient to train modern deep networks; if one thinks of biological considerations,377

local-descent algorithms like stochastic gradient descent (SGD) are quite different from recurrent378

circuits in the biological brain (Kietzmann et al., 2019). We also run single epoch methods using a379

very small model (0.12M weights); these are Model Zoo/Isolated-small (single epoch).380

(iv) Multi-Head trains one single model on all tasks to minimize the average empirical risk with381

task-specific classifiers; mini-batches contain samples from different tasks. Since Multi-Head is382

trained on all tasks together, it is not a continual learner, but its accuracy is expected to be an upper383

bound on the accuracy of continual learning methods.384

Evaluation criteria. We compare algorithms in terms of the validation accuracy averaged across all385

tasks at the end of all episodes, average per-task forward transfer (accuracy on a new task when it386

is first seen, larger this number more the forward transfer), average per-task forgetting (gap in the387

maximal accuracy of a task during continual learning and its accuracy at the end, larger this number388

more the forgetting and worse the backward transfer), training and inference time, and memory. Let389

us note that forward transfer is also sometimes called “learning accuracy” (Lopez-Paz and Ranzato,390

2017), and another measure of backward transfer is the gap between the accuracy at the end of training391

and the initial accuracy of the task.392

B.3 Results393

Table A1 shows the validation accuracy of different continual learning methods on standard benchmark394

problems. There are many striking observations here.395

(i) Accuracy of all existing methods in Table A1, regardless of their specific setting, is much396

poorer than Isolated (more than 10% for both the small and standard versions). This is surprising397

because Isolated can be thought of as the simplest possible continual learner—one that unfreezes new398

capacity at each episode and does not replay data. This indicates that existing methods may be failing399

to achieve forward or backward transfer compared to simply training the task in isolation; Table A2400

investigates this further.401

(ii) In comparison, Model Zoo (all three variants: small, small with 10% data replay and402

the standard method) has dramatically better accuracy (more than 10% better than existing403

† There is an additional restriction in the strict setting, namely no task-specific classifiers. But even a simple
permutation of classes of the same task will make continual learning impossible in this case; this is also argued
in Chaudhry et al. (2019a). Further, identifying task-specific weights is very expensive at inference time (RMN
in Table A2). Therefore, like most existing works, we use task-specific classifiers and assume that the task
identity is known at test time.
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Method Rotated- Permuted- Split- Split- Split- Coarse- Split-
MNIST MNIST MNIST CIFAR10 CIFAR100 CIFAR100 miniImagenet

EWC (Kirkpatrick et al., 2017) •84 •96.9 - - •42.40 - 46.69
GEM (Lopez-Paz and Ranzato, 2017) 86.07 82.60 - - ∗67.8 - 51.86
RWalk (Chaudhry et al., 2018) † - •93.5 99.3 - ∗,•40.9 - -
A-GEM (Chaudhry et al., 2019a) † - 89.1 - - ∗62.3 - 61.13
Stable-SGD (Mirzadeh et al., 2020b) † 70.8 80.1 - - ∗59.9 - 57.79
ER-Reservoir (Chaudhry et al., 2019b) † - 79.8 - - ∗68.5 - 64.03
MEGA-II (Guo et al., 2020a) - 91.20 - - 66.12 - -
RMN (Kaushik et al., 2021) (strict) - 97.73 99.5 - 80.01 - -

Our methods
Isolated-small - - - 96.88 90.18 69.07 82.48
Model Zoo-small - - - 96.85 92.06 73.72 94.27
Model Zoo-small (10% replay) - - - 96.58 89.76 77.18 84.6
Isolated 99.64 98.03 99.98 97.46 91.90 80.72 86.28
Model Zoo 99.66 97.71 99.97 98.68 94.99 84.27 96.84

Multi-Head (multi-task) 99.66 98.16 99.98 98.11 95.38 83.19 90.83

Table A1: Average per-task accuracy (%) at the end of all episodes. MNIST, Permuted-MNIST and
Rotated-MNIST are not informative benchmarks for judging forward and backward transfer because even Isolated
achieves 99%+ accuracy. Model Zoo outperforms, by significant margins, all existing continual learning methods
on all datasets. Accuracy of existing methods is worse than Isolated which suggests little to no forward or
backward transfer. Model Zoo-small and Isolated-have comparable number of weights as that of existing methods,
and in some cases, much fewer. For single-epoch numbers refer to Fig. 1 and Table A2. Note: ∗ indicates that
the evaluation was on Split-CIFAR100 with each task containing randomly sampled labels and is hence it is not
directly comparable to other methods. † train for 1 epoch per episode. * denotes that accuracy is reported from
other publications, e.g., (Nguyen et al., 2017; Serra et al., 2018; Chaudhry et al., 2019a).

methods) both compared to existing methods as well as compared to Isolated. This shows the utility404

of splitting the capacity of the learner across multiple tasks.405

(iii) Model Zoo matches the accuracy of the multi-task learner in the last row of Table A1406

which has access to all tasks beforehand. Surprisingly,Model Zoo performs better thanMulti-Head407

in spite of being trained in continual fashion, especially on harder problems like Coarse-CIFAR100408

and Split-miniImagenet. This is a direct demonstration of the effectiveness of Model Zoo in mitigating409

task competition: the capacity splitting mechanism not only avoids catastrophic forgetting, but it can410

also leverage data from other tasks even if they are shown sequentially.411

Table A2 shows a comparison of the methods developed in this paper with existing methods on412

Split-CIFAR100 in terms of continual-learning specific metrics. We find:413

(i) There are no significant differences in the forward transfer performance in the single epoch414

setting; larger variants of Isolated and Model Zoo do not work well here because a single epoch is415

not sufficient to train modern deep networks. But Model Zoo and variants show dramatically416

less forgetting, it is essentially zero. This indicates that although existing methods are designed to417

avoid forgetting (the single epoch setting aids this directly), say, A-GEM, or EWC, they do forget.418

Forgetting can be mitigated by the capacity splitting mechanism in Model Zoo. The per-task accuracy419

of existing methods is also rather low compared to Model Zoo variants.420

(ii) If our methods are implemented in the multi-epoch setting, then the forward transfer is421

exceptionally good and almost as good as the average accuracy of the task. Surprisingly, this does422

not come at the cost of forgetting, which is again essentially zero.423

(iii) Even if Model Zoo and its variants are implemented with very small models (0.12M weight-424

s/episode, which is 2.42M weights/20 episodes), the accuracy is dramatically better (Table A1).425

This suggests that Model Zoo is a performant and viable approach to continual learning. In fact, even426

the larger model used in Model Zoo is a WRN-16-4 with 3.6M weights and therefore we can train427

multiple models on the same GPU easily; this is why the training time of Model Zoo is about the428

same as that of Model Zoo-small.429

(iv) The simplicity of Model Zoo and its variants results in much smaller training times and430

comparable inference times as compared to existing methods.431

A Details of the experimental setup432

A.1 Datasets433

We performed experiments using the following datasets.434

1. Rotated-MNIST (Lopez-Paz and Ranzato, 2017) uses the MNIST dataset to generate 5435

different 10-way classification tasks. Each task involves using the entire MNIST dataset436

rotated by 0, 10, 20, 30, and 40 degrees, respectively.437

2. Permuted-MNIST (Kirkpatrick et al., 2017) involves 5 different 10-way classification tasks438

with each task being a different permutation of the input pixels. The first task is the original439
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Method Inference Training Storage Metrics (Multi Epoch) Metrics (Single Epoch)
time time Samples #Weights Accuracy Forgetting Forward Accuracy Forgetting Forward

(ms/sample) (min) (%) (M) (%) (%) (%) (%) (%) (%)
EWC 10.34 50 0 1.6 - - - 42.4 17.52 67.76
Prog-NN - 82 0 23.7 - - - 59.2 0.0 59.2
GEM 10.34 1048 5–10 1.6 - - - 61.2 6.0 67.61
A-GEM 10.34 88 5–10 1.6 - - - 62.3 7.0 70.13
RMN 2712.4 - 0 11.5 80.01 - - - - -
Our methods
Isolated-small 2.34 17.09 0 2.42 90.18 0.0 91.18 71.6 0.0 71.6
Model Zoo-small 11.70 31.71 100 2.42 92.28 0.17 90.0 73.67 0.20 71.91
Model Zoo-small (10% replay) 11.70 22.41 10 2.42 89.76 0.22 89.8 71.09 0.69 70.5
Isolated 2.34 20.76 0 54.8 91.9 0.0 91.0 50.43 0.0 50.43
Model Zoo 31.84 41.86 100 54.8 94.99 0.21 94.02 57.67 0.81 56.58

Table A2: A comparison of continual learning evaluation metrics on Split-CIFAR100 for existing methods
and the methods developed in this paper. Our methods demonstrate strong forward and backward transfer, high
per-task accuracy, smaller training times and comparable inference times. Training times of other methods are
from Chaudhry et al. (2019a) and it is the total training time in minutes for all tasks. The Inference time is the
per sample prediction latency averaged over 50 mini-batches of size 16.

Replay Split- Split-
(%) CIFAR100 miniImagenet
0 71.91 65.80
1 70.48 67.18
5 71.33 70.71
10 71.97 74.22
100 73.67 81.05

# Tasks (b) Split- Split-
(100% replay) CIFAR100 miniImagenet

1 71.91 65.02
2 72.26 67.33
5 73.67 81.05
7 73.97 88.76
9 74.13 84.9

Method Model Ensemble of

Zoo Isolated (100×)

Split-CIFAR100 73.67 71.46

Split-miniImagenet 81.05 67.26

Figure A2: Ablation studies that show the average per-task accuracy as we vary the size of data replay for
Model Zoo (left), the number of past tasks sampled at each episode (middle, b = 1 implies no replay), and
compare Model Zoo with an ensemble of Isolated models (right). These results are for the single-epoch setting
and are therefore directly comparable to those in Table A2 and Table A1 as far as comparison to other methods
is concerned. Accuracy is roughly the same on Split-CIFAR100 across varying degrees of replay while it
improves significantly on Split-miniImagenet; this suggests that Model Zoo also works with very small amounts
of data replay. Accuracy on Split-CIFAR100 is consistent as the number of replay tasks is changed but increases
dramatically on larger datasets like Split-miniImagenet where there are many more tasks. Finally, the performance
of Model Zoo is not merely an artifact of ensembling. Even if Isolated is a strong model, a very large ensemble of
Isolated compares poorly to Model Zoo with 100% replay; this indicates that Model Zoo can effectively leverage
data from past tasks without forgetting. Se the Appendix for more ablation studies.

MNIST task as is convention. All other tasks are distinct random permutations of MNIST440

images.441

3. Split-MNIST (Zenke et al., 2017) has 5 tasks with each task consisting of 2 consecutive442

labels (0-1, 2-3, 4-5, 6-7, 8-9) of MNIST.443

4. Split-CIFAR10 (Zenke et al., 2017) has 5 tasks with each task consisting of 2 consecutive444

labels (airplane-automobile, bird-cat, deer-dog, frog-horse, ship-truck) of CIFAR10.445

5. Split-CIFAR100 (Zenke et al., 2017) has 20 tasks with each task consisting of 5 consecutive446

labels of CIFAR100. See the original paper for the exact constitution of each task.447

6. Coarse-CIFAR100 (Rosenbaum et al., 2017) has 20 tasks with each task consisting of448

5 labels. The tasks are based on an existing categorization of classes into super-classes449

(https://www.cs.toronto.edu/ kriz/cifar.html).450

7. Split-miniImagenet (Vinyals et al., 2016) is a ariant introduced in Chaudhry et al. (2019b),451

consisting of 20 tasks, with each task consisting of 10 consecutive labels. We merge the452

meta-train and meta-test categories to obtain a continual learning problem with 20 tasks.453

Each task containing 10 consecutive labels and 20% of the samples are used as the validation454

set.455

The CIFAR10 and CIFAR100-based datasets consist of RGB images of size 32×32 while456

MNIST-based datasets consist of images of size 28×28. The Mini-imagenet dataset consists of RGB457

images of size 84×84.458

A.2 Architecture459

We use the Wide-Resnet (Zagoruyko and Komodakis, 2016) architecture for some of our experiments.460

The final pooling layer is replaced with an adaptive pooling layer in order to handle input images of461

different sizes. Convolutional layers are initialized using the Kaiming-Normal initialization. The bias462

parameter in batch normalization is set to zero with the affine scaling term set to one. The bias of the463
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final classification layer is also set to zero; this helps keep the logits of the different tasks on a similar464

scale.465

To ensure that the number of weights is similar to those in other methods, we also consider a466

smaller convolution neural network consisting of 3 convolution layers, with batch-normalization,467

ReLU and max-pooling present between each layer.468

A.3 Training setup469

Optimization. All models are trained in mixed-precision (32-bit weights, 16-bit gradients) using470

Stochastic Gradient Descent (SGD) with Nesterov’s acceleration with momentum coefficient set to471

0.9 and cosine annealing of the learning rate schedule for 200 epochs. Training of any model with472

multiple tasks involves mini-batches that contain samples from all tasks.473

Hyper-parameter optimization. We used Ray Tune (Liaw et al., 2018) for hyper-parameter opti-474

mization. The Async Successive Halving Algorithm (ASHA) scheduler (Li et al., 2018) was used to475

prune hyper-parameter choices with the search space determined by Nevergrad (Rapin and Teytaud,476

2018). The mini-batch size was varied over [8, 16, 32, 64]; the logarithm (base 10) of the learning477

rate was sampled from a uniform distribution on [−4,−2]; dropout probability was sampled from478

a uniform distribution on [0.1, 0.5]; logarithm of the weight decay coefficient was sampled from479

[−6,−2]. We used a set of experiments for continual learning on the Coarse-CIFAR100 dataset with480

different samples/class (100 and 500) to perform hyper-parameter tuning.481

The final values of traing hyper-parameters that were chosen are, learning-rate of 0.01,482

mini-batch size of 16, dropout probability of 0.2 and weight-decay of 10−5.483

Model Zoo uses b = min(k, 5) at each round of continual learning where n is the number of484

tasks; for tasks with only 5 tasks (MNIST-variants) we use b = 2. We did not tune these two485

hyper-parameters using Ray because it is quite cumbersome to do so. We selected these values486

manually across a few experiments; changing them may result in improved accuracy for Model Zoo.487

All hyper-parameters are kept fixed for all datasets, architectures, and experimental settings. .488

We are interested in characterizing the performance of Model Zoo and its variants across a broad489

spectrum of problems and datasets. While we believe we can get even better numerical accuracy, by490

tuning hyper-parameters specially for each problem, we do not so for the sake of simplicity. As the491

main paper discusses, we outperform existing methods quite convincingly across the board in both492

multi-task and continual learning.493

Data augmentation.MNIST and CIFAR10/100 datasets use padding (4 pixels) with random cropping494

to an image of size 28×28 or 32×32 respectively for data augmentation. CIFAR10/100 images495

additionally have random left/right flips for data augmentation. Images are finally normalized to have496

mean 0.5 and standard deviation 0.25. Split-miniImagenet uses the same augmentation as CIFAR-10497

and CIFAR-100. We use augmentation even in the single epoch setting.498

B Additional Experiments499

B.1 Understanding task competition500

To understand which tasks aid each other’s learning and which compete for capacity and may thereby501

deteriorate performance, we investigated the Coarse-CIFAR100 dataset extensively. We first computed502

the pairwise task competition by comparing the relative gain/drop in classification accuracy of each503

pair of tasks when the row task is trained in isolated versus training the row and column tasks together504

using a simple multi-task learner (Multi-Head). Fig. A1 discusses the results.505

Fig. A2, is the extended version of Fig. A1. It shows the validation accuracy of each task (along a506

single row) as more tasks are added to Multi-Head. Each column is a single Multi-Head model trained507

on a subset of tasks from scratch. As more tasks are added, the accuracy of most tasks increases.508

However, the increase is not monotonic with each added task, and if one follows a particular row, there509

are non-trivial patterns wherein adding a particular task may deteriorate the performance on the row510

task and adding some other task later may recover the lost accuracy. This is a direct demonstration of511

the tussle between the task competition term (first) and the concentration term (third) in Theorem 3.512

This indicates that training on the appropriate set of tasks is crucial to learn from multiple tasks.513

B.2 Competition between tasks of typical benchmark datasets514

Next, we investigated such task competition on other continual learning datasets, namely, Permuted-515

MNIST, Rot-MNIST, Split-CIFAR10, and Split-MNIST. It is clear from Fig. A3 that there is very516

little competition in this case. Either the tasks are quite different from each other (like the case of517

Permuted-MNIST), or they are synergistic (most cells are green), or they do not hurt each other’s518

performance, i.e., they may correspond to the model in Appendix A.2. Note that Rotated-MNIST519
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Figure A1: Pairwise task competition matrix. Cells are colored by the gain(green)/loss(warm) of accuracy
of pairwise Multi-Head training as compared to training the row-task in isolation; this is a good proxy for the
transfer coefficient ρij in (9). Although most pairs benefit each other (green), certain tasks, e.g., “Food Container”
are best trained in isolation while others such as “Aquatic Mammals” are typically detrimental to most other
tasks. One can study this matrix and identify many more such properties. In summary, whether tasks aid or hurt
each other is quite nuanced even for CIFAR100.
exactly corresponds to the multi-view setting discussed in Appendix A.2 were different input images520

are simple transformations of each other.521
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Figure A2: In order to demonstrate how some tasks help and some tasks hurt each other, we run Multi-Head
for a varying number of tasks (X-axis) and track the accuracy on a few tasks from Coarse-CIFAR100. The
order of tasks is the same for rows (top to bottom) and the columns (left to right). In other words, the first
cell (the diagonal) indicates the accuracy of the task trained by itself in isolation (Isolated). Cells are colored
warm if accuracy is worse than the median accuracy of that row. For instance, multi-task training with 11 tasks
is beneficial for “Man-made Outdoor” but accuracy drops drastically upon introducing task #12, it improves
upon introducing #14, while task #17 again leads to a drop. One may study the other rows to reach a similar
conclusion: there is non-trivial competition between tasks, even in commonly used datasets. Tackling this issue
effectively is the key to obtaining good performance on multi-task learning problems
B.3 Visualizing successive iterations of Model Zoo522
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Figure A4: The iterations of Model Zoo are visualized for the Coarse-CIFAR100 dataset for 20 rounds, with 5
tasks selected in every iteration of Model Zoo. Red elements are tasks that were selected by boosting in that
particular round. We observe that the accuracy of most tasks improves over the rounds, which indicates the utility
of Model Zoo-like training scheme This plot also indicates that Model Zoo can improve the per-task accuracy on
nearly all tasks. The model is trained for only a single-epch per boosting round.
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Figure A3: Each row is the relative increase/decrease (green/red) in accuracy of a two task Multi-Head learner
compared to Isolated trained on the task corresponding to the particular row; all entries are computed using 100
samples/class. Cells are colored green for accuracy gained, and warm for accuracy dropped; the entries in this
matrix are a good proxy for the transfer coefficient ρij in (9). A similar plot for Coarse-CIFAR100 tasks is shown
in the right panel of Fig. A1. Split-CIFAR10 and Split-MNIST indicate that most tasks mutually benefit each
other. This is also true, but to a lesser extent, for Rotated-MNIST. Permuted-MNIST is a qualitatively different
problem than these, perhaps because there is no obvious relationship between the tasks and there exist some
tasks that lead to a large deterioration of accuracy.
In order to understand how the accuracy of Model Zoo evolves on all tasks as a function of the episodes,523

we created Fig. A4. This is a very insightful picture and we can draw the following conclusions from524

it.525

(i) The accuracy along the diagonal of most tasks increases along the row, i.e., across episodes.526

Only for a few tasks like Food Container the accuracy drops in later episodes. Note that we527

also see from Fig. A1 that Food Container is a task that is best trained in isolation because it528

leads to deterioration of accuracy when trained with essentially any other task.529

(ii) The is strong backward transfer throughout the dataset, i.e., the accuracy of a task shown in530

earlier rounds increases, sometimes dramatically, as later synergistic tasks are shown to the531

learner.532

(iii) We also see strong forward transfer. Roughly speaking, in the second half of the rows,533

the initial accuracy of most tasks does not improve much with successive episodes. This534

suggests that these tasks already have a good initial accuracy, i.e., there is good forward535

transfer in the learner.536

We advocate that such plots should be made for different continual learning algorithms to obtain a537

precise picture of the amount of forward and backward transfer.538
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B.4 Baseline performance of isolated training on Coarse-CIFAR100539
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Figure A5: Per-task accuracies of Isolated on the Coarse-CIFAR100 dataset for two cases, one with 100
samples/class (top) and another with all 500 samples/class (bottom). Two points are very important to note here.
First, there is a large improvement in the two accuracies for all tasks when the learner has access to more samples.
Second, different tasks have very different accuracies when trained in isolation (using the same WRN-16-4
model). This indicates that different tasks are very different in terms how hard they are, for some tasks such as
People, the base accuracy of the model is quite low and one must have lots of samples in order to perform well.
A lot of other multi-task learning datasets, e.g., derivatives of MNIST (or even CIFAR10 to an extent) are unlike
CIFAR100 in this respect.

B.5 Additional experiments540

Table A1 is a more detailed version of Table A1 in the main paper.541

B.6 Single Epoch Metrics542

We obtain metrics from publicly available implementations of a few different continual learning543

algorithms, which are shown in Tables A2 and A3. We see that Model Zoo and its variants uniformly544

have essentially no forgetting and good forward transfer. The average per-task accuracy is also545

dramatically higher than existing methods on these datasets. These tables show results for single-epoch546

training (to be consistent with the implementation of these existing methods).547

Method Avg. Accuracy Forgetting Forward

SGD 34.52 19.88 53.30
EWC 34.71 18.60 52.19
AGEM 37.23 16.96 52.72
ER 41.36 14.29 54.87
Stable-SGD 37.27 12.07 48.43
TAG 43.33 12.39 55.1

Isolated-small 58.719 0.0 58.71
Model Zoo-small 60.3 0.370 59.13
Isolated-large 41.28 0.0 41.28
Model Zoo-large 46.98 0.38 44.43

Table A2: Single Epoch continual learning metrics on Coarse-CIFAR100
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Method Rot-MNIST Permuted-MNIST Split-MNIST Split-CIFAR10 Split-CIFAR100 Coarse-CIFAR100 Split-miniImagenet

Prog-Nets Rusu et al. (2016) - •93.5 - - •59.2 -

iCARL Rebuffi et al. (2017b) - - - - 61.2∗ -

EWC (strict) Kirkpatrick et al. (2017) •84 •96.9 - - •42.40 -

SI (strict) Zenke et al. (2017) - •97.1 •98.9 - - -

GEM Lopez-Paz and Ranzato (2017) 86.07 82.60 - - 67.8∗ -

RWalk Chaudhry et al. (2018) † - •93.5 99.3 - •40.9∗ -

HATSerra et al. (2018) - 98.6 99.0 - - -

A-GEM Chaudhry et al. (2019a) † - 89.1 - - 62.3∗ -

VCL Nguyen et al. (2017) - 95.5 98.4 - - -

Stable-SGD Mirzadeh et al. (2020b) † 70.8 80.1 - - 59.9∗ -

ER-Reservoir Chaudhry et al. (2019b) † - 79.8 - - 68.5∗ -

OGD Farajtabar et al. (2020) 88.32 86.44 98.84 - - -

MC-SGD Mirzadeh et al. (2020a) † 82.63 85.3 - - 63.30 -

TAG Malviya et al. (2021) † - - - - 62.79 - 57.2

FRCL Titsias et al. (2020) - 94.3 97.8 - - -

FROMP Pan et al. (2020) - 94.9 99.0 - - -

MEGA-II Guo et al. (2020a) - 91.20 - - 66.12 -

RMN (strict) Kaushik et al. (2021) - 97.73 99.5 - 80.01 -

Our methods

Isolated-small - - - 96.88 90.18 69.07 82.48

Model Zoo-small - - - 96.85 92.06 73.72 94.27

Model Zoo-small (10% replay) - - - 96.58 89.76 77.18 84.6

Isolated 99.64 98.03 99.98 97.46 91.90 80.72 86.28

Model Zoo 99.66 97.71 99.97 98.68 94.99 84.27 96.84

Multi-Head (multi-task) 99.66 98.16 99.98 98.11 95.38 83.19 90.83

Table A1: Average per-task accuracy (%) for continual learning at the end of all episodes. MNIST, Permuted-
MNIST and Rotated-MNIST are not informative benchmarks for judging forward and backward transfer because
even Isolated achieves 99%+ accuracies. Model Zoo outperforms, by significant margins, all existing continual
learning methods; in fact their accuracy is worse than Isolated which suggests little to no forward or backward
transfer. Note: ∗ indicates that the evaluation was on Split-CIFAR100 with each task containing randomly
sampled labels and is hence not directly comparable to other methods. † train for 1–5 epochs per episode
presumably to avoid forgetting, but this is rather insufficient to learn good features for RGB data. • indicates that
these results were reported using the publications of Chaudhry et al. (2019a); Nguyen et al. (2017); Serra et al.
(2018).

Method Avg. Accuracy Forgetting Forward

SGD 46.69 16.653 62.35
EWC 47.93 14.26 61.34
AGEM 51.86 10.102 61.13
ER 55.41 9.52 64.03
Stable-SGD 49.28 9.76 57.79
TAG 58.38 5.15 63.00

Isolated-small 65.8 0.0 65.8
Model Zoo-small 81.049 1.278 66.57
Isolated-large 40.2 0.0 40.25
Model Zoo-large 64.12 0.27 48.34

Table A3: Single Epoch continual learning metrics on Split-MinImagenet

B.7 Tracking Individual Task Accuracies548

We next study how the individual per-task accuracy evolves on different datasets. The following549

figures are extended versions of the right panel of Fig. 1. We see that the accuracy of all tasks increases550

with successive episodes. This is quite uncommon for continual learning methods and indicates551

that Model Zoo essentially does not suffer from catastrophic forgetting. We have also juxtaposed552

the corresponding curves of the single-epoch setting with the multi-epoch training in Model Zoo;553

we would like to demonstrate the dramatic gap in the accuracy of these problem settings. Even if554

single-epoch variant of Model Zoo also does not forget (its accuracy is much better than existing555
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continual learning methods), the multi-epoch variant has much higher accuracy for every task. This556

indicates that continual learning algorithms should also focus on per-task accuracy in addition to557

mitigating forgetting, if they are to be performant. The performance of Model Zoo is evidence that558

we can build effective continual learning methods that do not forget.559
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Figure A6: Evolution of task accuracy on Coarse-CIFAR100
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Figure A8: Evolution of task accuracy on Split-miniImagenet

B.8 Comparison To Existing Methods560

5 10 15 20
Number of Tasks

30

40

50

60

70

Av
g.

 A
cc

ur
ac

y 
(%

)

SGD (35)
EWC (35)

AGEM (37)
ER (41)

Stable-SGD (37)
TAG (43)

Isolated-small (60)
Model Zoo-small (59)

Isolated-large (47)
Model Zoo-large (41)

Coarse-CIFAR100

5 10 15 20
Number of Tasks

40

50

60

70

Av
g.

 A
cc

ur
ac

y 
(%

)

SGD (52)
EWC (51)

AGEM (53)
ER (60)

Stable-SGD (52)
TAG (63)

Isolated-small (74)
Model Zoo-small (72)

Isolated-large (50)
Model Zoo-large (58)

Split-CIFAR100

Figure A9: This figure compares Model Zoo to existing continual learning methods on the Coarse-CIFAR100
and Split-CIFAR100 datasets with respect to average task accuracy. Model Zoo and its variants are in bold,
similar to the left panel of Fig. 1 (which is for Split-miniImagenet). Isolated-small and Model Zoo-small
significantly outperform existing methods. All methods in the figure are run in the single-epoch setting.

B.9 Additional Continual Learning Experiments on 100 samples/label561

We also performed continual learning experiments with 100 samples/class in Table A4. We find that562

Model Zoo-continual obtains an accuracy that lies in between those of Isolated and the approximate563

upper bound given by Multi-Head (multi-task learning). Note that we have shown that matching or564

improving upon the performance of Isolated (which trains a model independently for each task) for565

continual learning is quite difficult because it necessitates effective forward-backward transfer. Doing566

so indicates strong ability of the learner for both forward and backward transfer. In some cases, the567

continual learner even outperforms Multi-Head trained on all tasks together. This table indicates that568

Model Zoo can be used as a continual learning and demonstrate nontrivial forward and backward569

transfer even with few samples from each class.570
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Dataset Isolated Multi-Head (multi-task) Model Zoo-Continual

Rotated-MNIST 98.17 ± 0.24 98.47 ± 0.18 98.44 ± 0.17
Split-MNIST 97.11 ± 1.21 99.47 ± 0.08 98.98 ± 0.51
Permuted-MNIST 84.59 ± 1.65 86.36 ± 1.15 86.04 ± 1.68

Split-CIFAR10 82.09 ± 0.76 85.73 ± 0.60 84.17 ± 0.60

Split-CIFAR100 80.04 ± 0.44 87.93 ± 0.50 86.27 ± 0.19
Coarse-CIFAR100 65.34 ± 0.41 69.05 ± 0.38 66.80 ± 6.27

Table A4: Average per-task accuracy (%) for continual learning at the end of all episodes using 100 samples/class,
bootstrapped across 5 datasets (mean ± std. dev.). Model Zoo-continual performs better than Isolated on all
problems even if tasks are shown sequentially.

We next visualize the evolution of the per-task test accuracy for various datasets. This is a571

qualitative way to investigate forward and backward transfer in the learner. Forward transfer is572

positive if the accuracy of a newly introduced task in a particular episode is higher than what it would573

be if the task were trained in isolation. Backward transfer is positive if successive episodes and574

tasks result in an increase in the accuracy of tasks that were introduced earlier in continual learning.575

Both Appendix B.7 and Fig. A10 consistently show non-trivial forward and backward transfer.576
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Figure A10: Per-task validation accuracy as a function of the number of episodes of continual learning for
problems using variants of CIFAR10 and MNIST datasets using Model Zoo-continual. Each task has 100
samples/class. X-markers denote accuracy of Isolated on the new task. We see both forward transfer (Model Zoo
often starts with a higher accuracy than Isolated) and backward transfer (accuracy of some past tasks improves in
later episodes). For problems like Permuted-MNIST and Rotated-MNIST, there is little forward or backward
transfer.

C Proofs577

Proof of Theorem 3. From the definition of ρij relatedness for tasks, we have578

c E1/ρi1
Pi

(h) ≥ EP1
(h, h∗i )

= EP1
(h)− EP1

(h∗i , h
∗
1).
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for any i, j ≤ n and h ∈ H . Let us denote ρ(i) = ρi1. We can sum over i ∈ {1, . . . , k} and divide by579

k to get580

EP1
(h) ≤ 1

k

k∑
i=1

EP1
(h∗(i)) +

c

k

k∑
i=1

E1/ρ(i)
P(i)

(h).

The first term is a discrepancy term that measures how distinct different tasks are as measured by581

the probability of the disagreement of their individual hypotheses h∗(i) with that of h∗1 under samples582

drawn from task P1. We need to bound the second term on the right-hand side to prove Theorem 3.583

We have584

1

k

k∑
i=1

E1/ρ(i)
P(i)

(h) ≤ 1

k

k∑
i=1

E1/ρmax

P(i)
(h)

=
1

k

k∑
i=1

(ePi
(h)− ePi

(h∗i ))
1/ρmax

≤ 1

k

k∑
i=1

e
1/ρmax

Pi
(h) ≤ e1/ρmax

P̄
(h).

where the final step involves Jensen’s inequality and P̄ = 1/k
∑k
i=1 P(i). This is the population risk585

of a hypothesis h on the mixture distribution P̄ and by uniform convergence, we can bound it as586

e
1/ρmax

P̄
(h) ≤

(
eS̄(h) + c′

(
D − log δ

km

)1/2
)1/ρmax

for any h ∈ H , in particular ĥk, with probability 1− δ. Putting it all together we have:587
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588

D Frequently asked questions (FAQs)589

1. Why do you consider the setting with unlimited replay?590

As mentioned in §5, we would like to ground the practice of continual learning. Our591

investigation is inspired by the existing work on continual learning and with this paper we592

seek to encourage future works to focus their investigations on key desiderata of continual593

learning, namely per-task accuracy and forward-backward transfer.594

With this goal, we are motivated by our results in Theorem 3 that fitting a single model on595

a set of tasks is fundamentally limiting in performance due to competition between tasks,596

this problem is only exacerbated by introducing the tasks sequentially. We have developed597

a general method named Model Zoo that, although designed for unlimited replay, can be598

executed in any of the standard continual learning settings. Our experiments show that599

Model Zoo significantly outperforms existing methods in all of these settings, including600

problem settings with no replay.601

We allow Model Zoo to revisit past data and grow its capacity iteratively in order to get602

to the heart of the problem of learning multiple tasks sequentially. In our view, if we can603

demonstrate effective continual learning without forgetting at least in this setting, it will604

provide a good foundation to build methods that conform to the stricter problem formulations.605

We believe that such a foundation is needed today if we are to advance the practice of606

continual learning. Let us explain why with an example. The simplest “baseline” algorithm607

named Isolated in our work, surprisingly outperforms all existing continual learning methods,608

without performing any data replay, or leveraging data from multiple tasks. An upper bound609

for performance of a continual learner is the accuracy obtained by a multi-task learner that610
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has access to all tasks before training. We argue that a good continual learner’s performance611

should lie in between the above two: it should be—at least–comparable to training the task612

in isolation, and as close to the performance of the multi-task learner as possible. The fact613

that existing methods perform much poorly than even Isolated indicates that we need to614

thoroughly investigate the tradeoffs that these methods make, e.g., while the single epoch615

setting helps mitigate forgetting, it has quite poor accuracy.616

In short, we would like to argue that before we design new sophisticated methods for617

continual learning, we should take a step back and evaluate what simple methods can do618

and ascertain some level of baseline performance, so that we have a sound benchmark to619

compare the sophisticated method against. This is our rationale for considering the problem620

setting with unlimited replay. We would also like to emphasize that Model Zoo is a621

legitimate continual learner because it gets access to each task sequentially, and has a622

fixed computational budget at each episode. For a multi-task learner, the computational623

complexity scales with the number of tasks.624

2. Why do you call it continual learning, instead of, say, incremental or lifelong learning?625

The current literature is quite inconclusive about the formal distinction between continual,626

incremental and lifelong learning. We have chosen to call our problem “continual learning”627

and, by that, we simply mean that the learner gets access to tasks sequentially instead of628

having access to all tasks before training begins.629

3. Why are you not using the same neural architectures as those in the existing literature?630

Perhaps themethods in this paperwork better because you use a larger/different neural631

architecture.632

We use a small deep network (WRN-16-4 with 3.6M weights) for all our experiments. In633

particular, this is smaller than the Resnet-12 or Resnet-18 architectures that are used in a634

number of continual learning experiments (see Kaushik et al. (2021)) and the Model Zoo635

has a comparable number of weights. The exceptional performance of Model Zoo indicates636

that these observations indicate that the significant gains in accuracy of Model Zoo are not637

simply a result of using a larger model. We also demonstrate results on continual learning638

with a much smaller model, a CNN with 0.12M weights (which entails that Model Zoo has639

about 2.42M weights). This is an extremely small model, and even this model, under all640

problem settings, improves the accuracy of continual learning over existing methods.641

4. Why not compare Model Zoo to ensemble versions of other methods?642

We compare the performance of Model Zoo with ensemble versions of Isolated in Fig. A2.643

We observe that Model Zoo performs better than an ensemble of Isolated models. We did644

not compare against ensemble variants of existing continual learning methods because as645

our results show in multiple places, Isolated significantly outperforms the state of the art as a646

continual learner. We therefore expect that Model Zoo will also outperform ensembles of647

existing methods.648

5. Boosting is not novel.649

We do not claim any novelty in developing boosting and moreover our method is only loosely650

inspired by it. The key property of Model Zoo that makes it effective is the ability to split651

the capacity of the learner across different sets of tasks, the ones that are chosen at each652

round. This entails that the implementation of Model Zoo is similar to that of boosting-based653

algorithms such as AdaBoost, but that is the extent of the similarity between the two. In654

particular, Model Zoo only uses the models that were trained on a particular task in order655

to make predictions for it. Unlike AdaBoost which combines all the weak-learners using656

specific weights, we simply average the predictions of all models trained on each task. To657

emphasize, boosting is not novel, but the ability of Model Zoo to split learning capacity658

across multiple models, one from each round, trained on a set of tasks, is novel.659

6. Identifying that tasks compete is not novel.660

See §5 and the references in Appendix A.1. The fact that tasks compete with each other is661

broadly appreciated–if not rigorously studied–in the theoretical machine learning literature.662

It is also appreciated broadly under the name of catastrophic forgetting in continual learning.663

Theorem 3 elucidates this competition and shows, together with Fig. A1, that it can be quite664

non-trivial. Even if some tasks compete, i.e., a hypothesis that is optimal for one performs665

poorly on the other, they may benefit each other if we have access to lots of samples from666

each task. An effective way to resolve this competition has been missing. Model Zoo is a667

simple and effective framework to tackle task competition; such a mechanism, and certainly668

its use for continual learning, is novel to our knowledge.669
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7. Why does the rate of convergence in Theorem 3 depend upon ρmax, this seems quite670

inefficient.671

The convergence rate in Theorem 3 which depends on ρmax indeed seems pessimistic if672

one chooses a bad set of tasks to train together. But this may be a fundamental limitation673

of non-adaptive methods, e.g., that pool data from all tasks together to compute ĥk. If the674

learner uses adaptive methods, e.g., if it has access to ρij and iteratively restricts the search675

space at iteration k to only consider hypotheses that achieve a low empirical risk êS(i)
on676

all tasks closer than ρ(k), then as (Hanneke and Kpotufe, 2020) shows, we can get better677

convergence rates if all tasks have the same optimal hypothesis. Let us note that we have678

chosen some drastic inequalities in Appendix C in order to elucidate the main point, and it679

may be possible to improve upon the rate.680

8. Can you give some intuition for the transfer exponent?681

The transfer exponent discussed in (9) is inspired by the work of Hanneke and Kpotufe682

(2020) and is defined by the smallest value such that683

c E1/ρij
Pi

(h) ≥ EPj (h, h∗i ) = EPj (h) + ePj (h∗j )− ePj (h∗i )

for all h ∈ H . This should be understood as a measure of similarity between tasks that684

incorporates properties of the hypothesis space. A small value of ρij ≈ 1 suggests that685

minimizing the excess risk on task Pi (the left-hand side) is a good strategy if we want to686

minimize the excess risk on task Pj (the right-hand side). But there may be instances when687

we can only reduce the left hand-side up to an additive term688

ePj
(h∗j )− ePj

(h∗i )

that may be non-zero (or large) if the optimal hypothesesh∗j andh∗i perform very differently on689

samples from Pj . Mathematically, ρij is seen as the rate of convergence of the concentration690

term in Theorem 3 if samples from Pi are used to select a hypothesis for Pj ; larger the691

transfer exponent, more inefficient these samples, even if this additive term is zero.692
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