
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

PFFAA: Prototype-based Feature and Frequency Alteration
Attack for Semantic Segmentation

Anonymous Authors

ABSTRACT
Recent research has confirmed the possibility of adversarial attacks
on deep models. However, these methods typically assume that
the surrogate model has access to the target domain, which is
difficult to achieve in practical scenarios. To address this limitation,
this paper introduces a novel cross-domain attack method tailored
for semantic segmentation, named Prototype-based Feature and
Frequency Alteration Attack (PFFAA). This approach empowers a
surrogate model to efficiently deceive the black-box victim model
without requiring access to the target data. Specifically, through
limited queries on the victim model, bidirectional relationships are
established between the target classes of the victim model and the
source classes of the surrogate model, enabling the extraction of
prototypes for these classes. During the attack process, the features
of each source class are perturbed to move these features away
from their respective prototypes, thereby manipulating the feature
space. Moreover, we propose substituting frequency information
from images used to train the surrogate model into the frequency
domain of the test images to modify texture and structure, thus
further enhancing the attack efficacy. Experimental results across
multiple datasets and victim models validate that PFFAA achieves
state-of-the-art attack performances.

CCS CONCEPTS
• Computing methodologies→ Image segmentation.

KEYWORDS
Black-Box Attack, Cross-Domain Transfer-Based Attack, Semantic
Segmentation

1 INTRODUCTION
It is well known that computer vision models, such as those em-
ployed in classification, object detection, and segmentation, are
susceptible to the influence of carefully crafted adversarial exam-
ples [4, 16, 31]. In current research, black-box attacks [3, 15, 23, 32]
have been extensively studied as a method that limits the informa-
tion available to attackers. These attacks suppose that the surrogate
model is trained on the data related to the victim model, which is
challenging in practical scenarios. Some methods [21, 22, 26, 35, 44]
focus on the transferability of adversarial samples across domains
in classification, e.g., Inkawhich et al. [22] propose a correlation
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Figure 1: Difference between FDA and PFA. Compared with
FDA, the proposed PFA makes it easier to control the direc-
tion of the features in the attack and improve the success
rate of the attack.

matrix-based attack method. However, the cross-domain attacks
are still under-explored in semantic segmentation.

Therefore, this paper proposes a cross-domain transferable black-
box attack method for segmentation tasks, called Prototype-based
Feature and Frequency Alteration Attack (PFFAA). This method
addresses the aforementioned issue from two perspectives, i.e.,
Prototype-based Feature Attack (PFA) and Frequency Alteration
Attack (FAA).

Initially, we train a segmentation model (surrogate model) in an
independent source domain and establish correspondence between
the surrogate and victim models using a limited image set from the
source domain. However, the semantic segmentation requires pixel-
level predictions, so it is more complex compared with classification.
A single target class might correspond to multiple source classes,
and these source classes may exhibit significant differences in their
feature values. Consequently, the Feature Distribution Attack (FDA)
[21] forces the features away from those in clean images, but may
steer them towards other intermediate features corresponding to
the same target class. To tackle this, we construct a relationship
matrix between these classes and devise a feature prototype for
each source and target class. Subsequently, we propose modifying
the features generated by the surrogate model in the feature space
to digress from the corresponding feature prototypes, i.e., PFA. Fig.
1 illustrates the difference between PFA and FDA.

Moreover, given the unknown target domain, we further en-
hance the effectiveness of the attack through a frequency domain
attack, namely the Frequency Alteration Attack (FAA). Specifically,
we utilize Fourier transforms to extract detailed information from
images in the source domain. Then, we replace the amplitude in-
formation of test images in the Fourier space with that from the
source domain images and transform them back to the RGB space.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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This process alters the texture and structure of the images without
any target information.

Extensive experiments on multiple victim models under several
different datasets validate the effectiveness of the proposed attack,
and the algorithm can successfully fool the victim model without
the target data.

Our main contributions can be summarized as follows:
•We present PFFAA, a novel cross-domain attack method that

allows for effective attacks on unknown segmentation models with-
out requiring access to the target domain.

• We propose PFA to tackle feature space perturbations that
might redirect features towards other features related to the same
target class in cross-domain attacks.

• We propose FAA, which modifies the texture and structure of
test images by employing Fourier transforms and replacing ampli-
tude information to enhance the effectiveness.

•We demonstrate through extensive experiments that PFFAA
generates transferable adversarial samples with significantly better
performances than state-of-the-art methods.

2 RELATEDWORK
2.1 Black-box Adversarial Attacks
In black-box attacks, the attacker has no access to the model and
cannot obtain model parameters or gradients computed by back-
propagation. Currently, black-box attack methods fall into two
categories: transfer-based attacks [7, 24, 28, 36] and query-based
attacks [6, 10, 20, 25, 39]. The former assumes similarity between
the model and the victim model, allowing adversarial examples
generated by a surrogate model to deceive the victim model. The
latter explores the adversarial space and generated attacks based
on feedback obtained from the victim model. While these methods
often achieve high success rates, they might require a substantial
number of queries.

2.2 Cross-Domain Attacks
Several recent studies have proposed methods for cross-domain
attack capabilities for transfer-based attacks. There are two ap-
proaches to generate perturbations: decision space and feature
space attacks. The former aims to influence the output layer of clas-
sifiers, pushing predictions away from the correct decision bound-
ary. This is typically achieved by optimizing cross-entropy loss.
Dong et al. [11] introduced a momentum-based iterative algorithm
to strengthen the attack effect. Additionally, they [12] proposed
a translation-invariant method to enhance the transferability of
adversarial examples. Xie et al. [43] randomly transformed input
images at each iteration to increase diversity. The latter generates
perturbations primarily by moving features away from the original
state. Ganeshan et al. [14] identified the limitations of decision
space attacks and introduced a new attack called FDA. Inkawhich
et al. [21] developed a novel attack based on modeling classification
and layer depth feature distribution. While Lu et al. [30] and Naseer
et al. [34] destroyed intermediate features of models to modify im-
ages, they focused on attacking distinct visual tasks rather than
cross-domain settings. Inkawhich et al. [22] proposed a correlation
matrix-based attack. Wang et al. [41] trained the surrogate model
from scratch by the adversary-centric contrastive learning with

unlabeled data. However, these methods are designed for classifica-
tion tasks, and cross-domain and cross-model attacks on semantic
segmentation have not been fully investigated.

2.3 Attacks against segmentation
Different from classification tasks, semantic segmentation possesses
higher task complexity [1, 2, 19, 42]. Cai et al. [4] employed a col-
lection of context-aware attacks based on proxy sets and queries.
Recent research [1, 15, 16] introduced a transferable non-targeted
attack using a single proxy model. SegPGD [16] can effectively uti-
lize adversarial strategies to mislead the prediction results. CosPGD
[1] incorporated attacks for pixel prediction tasks and exploited
the cosine similarity between the prediction and the ground truth.
In contrast to these individual proxy models, EBAD [3] used multi-
ple agent models to generate more effective adversarial examples.
Rony et al. [37] handled large numbers of constraints within a non-
convex minimization framework via an Augmented Lagrangian
approach, coupled with adaptive constraint scaling and masking
strategies. However, these methods do not consider cross-domain
transferability of adversarial samples.

2.4 Frequency-based analysis
Recent studies have analyzed the adversarial example approach
through a frequency domain perspective and found that the low-
frequency components primarily represent image content. In con-
trast, high-frequency components encode edge and texture infor-
mation. Wang et al. [40] utilized high-frequency features to im-
prove the accuracy of models, suggesting a smoothing convolution
kernel approach. Conversely, Guo et al. [17] proposed the attack
method, which targets low-frequency components to reduce model
queries. However, the generated adversarial examples are not realis-
tic enough and are easily detected. Recent works have concentrated
on manipulating specific frequency content to craft adversarial
attacks. Deng et al. [9] proposed the perturbation generation across
frequency domains. Maiya et al. [33] introduced the frequency-
based analysis for balancing accuracy and robustness. However,
these approaches do not address the complexity of semantic seg-
mentation attacks.

3 METHODOLOGY
3.1 Overview
Let 𝑥𝑡 be a colored image with a size𝑊 ×𝐻 , and 𝑦𝑡 is the ground-
truth label in the target domain 𝐷𝑡 . The victim model𝑀𝑡 is trained
on 𝐷𝑡 , which includes a feature extractor ℎ𝑡 and a classifier 𝑓𝑡 . Our
goal is to train a surrogate model 𝑀𝑠 on the source domain 𝐷𝑠

that derives the adversarial example 𝑥 ′𝑡 = 𝑥𝑡 + 𝛿 , where 𝛿 is the
perturbation generated by the attack algorithm. This adversarial
example will induce the victim model to make incorrect predictions.
To make sure that the difference between 𝑥 ′𝑡 and 𝑥𝑡 is imperceptible,
the 𝑙∞ norm of the perturbation 𝛿 is constrained to be smaller than
a threshold 𝜖 , i.e., | |𝑥 ′𝑡 −𝑥𝑡 | |∞ < 𝜖 . Therefore, the final optimization
problem can be formulated as:

𝑀𝑡 (𝑥 ′𝑡 ) ≠ 𝑦𝑡 ,

𝑠 .𝑡 . 𝑥 ′𝑡 = argmax
𝑥 ′𝑡

L(𝑀𝑠 ,𝑥𝑡 ), | |𝑥 ′𝑡 − 𝑥𝑡 | |∞ < 𝜖 (1)
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Figure 2: Overview of PFFAA. Our method obtains the correlation matrix, the prototype, and the Fourier amplitude informa-
tion of the source data in the query amplitude. After that, it generates the adversarial image by realizing the perturbation of
the image through FAA and PFA in the attack phase.

whereL(𝑀𝑠 , 𝑥𝑡 )means the objective function of the attack strategy,
which is used to generate the adversarial image 𝑥 ′𝑡 by𝑀𝑠 . 𝜖 means
the perturbation budget.

We employ PGD to optimize the perturbation, which is an un-
targeted attack:

𝛿𝑡+1 = 𝛿𝑡 + 𝜆▽𝛿𝑠𝑖𝑔𝑛(L(𝑀𝑠 , 𝑥𝑡 )) (2)

where 𝑡 indicates the attack step, and 𝜆 is the step size.
Fig. 2 shows the proposed method. Initially, before the attack on

a victim model, we conduct several queries to obtain the Class Cor-
respondence Matrix and Class Correspondence Prototype, which is
used to establish the relationships between classes. Furthermore,
based on the source domain image, we extract the amplitude fea-
tures of the source domain in Fourier space. It is worth noting that
this step is a one-time process and can be considered as an offline
operation. Subsequently, our method conducts a two-stage attack
on clean images. In the first stage, we use the amplitude features
of the source domain in Fourier space to replace the amplitude
features of the clean image and obtain a new image. In the second
stage, the features of the new image are pushed away from the
prototypes of relevant classes in the feature space. The proposed
method will be further elaborated in the following subsections.

3.2 Extract Correlation Information
Before the formal attack, we establish a relationship between the
victim and surrogate models by conducting a limited number of
queries to the victim model. Specifically, we select a query set S𝑞
from the source domain 𝐷𝑠 , containing 𝑛 images. We then obtain
the prediction map for each image, indicated as the pseudo-label 𝑦∗𝑡
on the target domain by𝑀𝑡 . Additionally, these images are queried
by 𝑀𝑠 to obtain the pseudo-label 𝑦∗𝑠 on the source domain. With
these sets of pseudo-labels, we can obtain the relationship matrix

𝐼 ∈ RC𝑠×C𝑡 , where C𝑡 represents the set of classes on the source
domain, and C𝑠 represents the set of classes appearing in the query
on the target domain. For a pair of classes 𝐼𝑐𝑠 ,𝑐𝑡 , the value 𝐼𝑐𝑠 ,𝑐𝑡
equals 1 in the relationship matrix if the surrogate model predicts
the presence of pixels as 𝑐𝑠 and the victim model predicts it as 𝑐𝑡 .
This creation of relationships is accomplished by querying over
different domains and models based on a small number of queries.
Additionally, we extract the feature prototype pcs,ct on the surrogate
model for each (𝑐𝑠 , 𝑐𝑡 ):

pcs,ct =

∑
𝑠𝑞 ∈S𝑞

∑𝐻𝑊
𝑖 ℎ𝑠 (𝑠𝑞)1𝑦∗

𝑡=𝑐𝑡∩𝑦∗
𝑠=𝑐𝑠∑

𝑠𝑞 ∈S𝑞
∑𝐻𝑊
𝑖 1𝑦∗

𝑡=𝑐𝑡∩𝑦∗
𝑠=𝑐𝑠

(3)

where ℎ𝑠 is the feature extractor.
The pcs,ct represents the features of the corresponding surrogate

model when the two models predict 𝑐𝑠 and 𝑐𝑡 , respectively.
Furthermore, to implement FFA, we start the process by extract-

ing and fusing amplitude information from the 𝑛 images of the
source domain. The purpose of this fusion is to create a combined
representation of the frequency components from multiple source
images, denoted as:

𝐹S (𝑢, 𝑣) =
1

|S𝑞 |
∑

𝑠𝑞 ∈S𝑞
F (𝑠𝑞 [𝑚,𝑛]) (4)

where 𝐹S (𝑢, 𝑣) denotes the fused frequency information from the
source domain, 𝑢 and 𝑣 represent the frequency components, and
F is Fast Fourier transform.𝑚 and 𝑛 represent the row and column
indices of a image, respectively.

3.3 Prototype-based Feature Attack
Feature space methods use white-box intermediate feature informa-
tion to compute the adversarial perturbation. In contrast, PFFAA
leverages the intermediate feature information of the surrogate
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Algorithm 1 Attack process of each image
Input: Surrogate model𝑀𝑠 , and clean image 𝑥𝑡

Output: Attack image 𝑥 ′𝑡
1: Get pseudo-label 𝑦∗𝑡 and feature 𝐹𝑡 of 𝑥𝑡 from𝑀𝑠

2: Get the image 𝑥𝑠−>𝑡 with Eqs. (6), (7) and (8)
3: Clip 𝑥𝑠−>𝑡 with | |𝑥𝑠−>𝑡 − 𝑥𝑡 | |∞ < 𝜖

4: while step less than total attack steps do
5: Get feature 𝐹 ′𝑠−>𝑡 of 𝑥𝑠−>𝑡 from𝑀𝑠

6: Compute loss L𝑃𝐹𝐴 according Eq. (5)
7: Update 𝛿 with Eq. (2)
8: Get 𝑥 ′𝑡 by 𝑥𝑠−>𝑡 + 𝛿

9: Clip 𝑥 ′𝑡 with | |𝑥 ′𝑡 − 𝑥𝑡 | |∞ < 𝜖 , and 𝑥𝑠−>𝑡 = 𝑥 ′𝑡
10: end while
11: Return 𝑥 ′𝑡

model𝑀𝑠 to compute this adversarial perturbation. The multi-layer
Feature Distribution Attack (FDA) is often used in feature space
attacks. However, FDA does not guarantee the effectiveness of cross-
domain attacks. Therefore, we design a multi-layer Prototype-based
Feature Attack (PFA). Specifically, for each source class, PFA ob-
tains the set of possibly related source classes by two queries of the
matrix. PFA first acquires the possible corresponding target classes
of the source classes, and then gets the possible associated source
classes of each target class to form a set (𝑆𝑐𝑠 ,𝑐𝑡 ). The loss function
of PFA L𝑃𝐹𝐴 is defined as:

L𝑃𝐹𝐴 =

𝑦∗
𝑠∑
𝑐

(𝑝 (𝑐 |ℎ𝑐𝑠 (𝑥 + 𝛿)) + 𝜂 ( | |ℎ
𝑐
𝑠 (𝑥 + 𝛿) − ℎ𝑐𝑠 (𝑥) | |2

| |ℎ𝑐𝑠 (𝑥) | |2

+
∑

(𝑐𝑠 ,𝑐𝑡 ) ∈(𝑆𝑐𝑠 ,𝑐𝑡 )

| |ℎ𝑐𝑠 (𝑥 + 𝛿) − pcs,ct | |2
| |pcs,ct | |2

))
(5)

where ℎ𝑐𝑠 (·) means the features associated with class 𝑐 , and 𝑝 (·)
denotes the predicted probability. 𝜂 is the weight.

3.4 Frequency Alteration Attack
Frequency domain attack is a technique that leverages the spec-
tral information of an image, obtained through a two-dimensional
Fourier transform, to manipulate the structure and features of the
image with targeted low-frequency modifications. The process be-
gins by transforming the target image into the frequency domain to
extract its amplitude and phase information. We convert the clean
image 𝑥𝑡 to the frequency domain by Fast Fourier transform:

𝑥𝑡 (𝑢, 𝑣) = F (𝑥𝑡 [𝑚,𝑛]) =
𝐻−1∑
𝑚=0

𝑊 −1∑
𝑛=0

𝑥𝑞 [𝑚,𝑛] · 𝑒−𝑖2𝜋 (
𝑢𝑚
𝐻

+ 𝑣𝑛
𝑊 ) (6)

where 𝑥𝑡 (𝑢, 𝑣) is the Fourier transform of the clean image.
Therefore, the amplitude of the query image is𝜙c (𝑢, 𝑣) = |𝑥𝑡 (𝑢, 𝑣) |.

Subsequently, the amplitude information extracted from the source
domain is applied to replace the amplitude of the target image. This
selective replacement is realized by the following equation:

𝜙c (𝑢, 𝑣) = 𝜙S (𝑢, 𝑣) (7)

where 𝜙S (𝑢, 𝑣) is the source amplitude, which equals |𝐹S (𝑢, 𝑣) |.
Finally, the modified amplitude is transformed back to the origi-

nal image space using the inverse Fourier transform to obtain the

image 𝑥𝑠−>𝑡 :

𝑥𝑠−>𝑡 = 𝐶𝑙𝑖𝑝𝜖 (F −1 (𝜙c (𝑢, 𝑣), 𝑎𝑟𝑔(𝑥𝑡 (𝑢, 𝑣)))) (8)

where F −1 is the inverse Fourier transform, 𝐶𝑙𝑖𝑝𝜖 means the clip-
ping operation, and 𝑎𝑟𝑔(∗) means the phase of it.

This process changes the amplitude information of the target
image, thus changing the texture and structure of the image. It is
worth noting that the image 𝑥𝑠−>𝑡 still needs to conform to the
constraint | |𝑥 ′𝑡 − 𝑥𝑡 | |∞ < 𝜖 .

3.5 Attack Process
Algorithm 1 shows the pseudo-code of the attack process for each
image. PFFAA first attacks the clean image using the frequency
information of the source domain to change its texture and other
information. After that, the features and predictions output by the
image on the surrogatemodel are obtained and the image is attacked
using the proposed prototype-based feature attack method to obtain
adversarial samples that are transferable over different domains
and model structures. Note that the optimization loss L(𝑀𝑠 , 𝑥𝑡 ) in
Eq. (1) is L𝑃𝐹𝐴 in our attacker.

4 EXPERIMENTS
4.1 Experimental Setup

Datasets and victim models. To verify the effectiveness of
the proposed method, we select multiple target domains and vari-
ous models to validate its ability to generate adversarial samples
with strong transferability. Specifically, we conduct experiments on
validation datasets obtained from Pascal VOC2012 [13], ADE20k
[46] and Cityscapes [8], which contain 1499, 2000, and 500 images
with 21, 150, and 19 classes, respectively. For the black-box victim
models, we choose six different models, including PSPNet [45] and
DeepLabV3 [5] with ResNet50 [18] as the backbone (referred to as
PSP-R50 and DLV3-R50, respectively), PSPNet and DeepLabV3 with
ResNet101 [18] as the backbone (referred to as PSP-R101 and DLV3-
R101, respectively), UperNet with ResNet101 as the backbone, and
HRNet [38] with FCN [29] as the decoder and HRNet48 [38] as the
backbone.

Implementation details. For surrogatemodels, we choose PSP-
Net and DeepLabV3 with ResNet50 as the backbone. The source
domain𝐷𝑠 is the COCO 2017 dataset [27] in our experiments, which
contains 164k images and 171 semantic categories. The surrogate
model is trained on the COCO 2017 dataset with 80k steps. We use
the perturbation budget 𝑙∞ ≤ 16 out of 255 in PGD. As in previous
work [22, 26], the number of iterations of the PGD attack is 10. We
set 𝑛 = 100 in our experiments. The hyperparameter 𝜂 is set to 10.

Competitors.We adopt the recent cross-domain transfer-based
attacks as baselines. Specifically, we utilize attackers such as BIA
[44], CDA [35], CDTA [26], AGS [41], and the attacker proposed
by Inkawhich et al. [22]. For BIA, CDA, CDTA and AGS, we use
their proposed models as surrogate models. While Inkawhich et al.
[22] propose the Class Correlation Matrix attack for cross-domain
scenarios, which is model-agnostic, so we retrain DLV3-R50 as the
surrogate model for this attacker. Additionally, we incorporate PGD
[31] and FDA [14] to show the challenges of cross-domain and cross-
model attacks. They generate adversarial images from surrogate
models (DLV3-R50 and PSP-R50) trained on the COCO dataset. For
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Table 1: Comparisons of attack mIoU scores (%) on the Pascal VOC2012 dataset. “Surrogate model” is the surrogate model used
by each attacker, which is a white-box network for the attacker. Herein, the best results are marked in boldface.

Attack Surrogate model Black-box Victim model (mIoU ↓)
DLV3-R50 PSP-R50 DLV3-R101 PSP-R101 UperNet HRNet

Clean Images - 76.17 76.78 78.70 78.47 77.10 75.87
BIA [44] - 50.08 50.32 51.29 52.56 56.90 56.43
CDA [35] - 47.71 46.60 51.71 51.72 52.06 53.13
CDTA [26] - 45.32 44.70 49.89 50.46 51.81 51.35
AGS [41] - 54.28 53.50 56.90 57.11 55.98 57.83

Inkawhich et al. [22] DLV3-R50 32.38 31.64 33.35 32.64 40.29 42.55

PGD [31] DLV3-R50 38.59 38.83 42.74 43.55 42.33 50.79
PSP-R50 39.39 38.97 42.40 43.27 44.09 51.31

FDA [14] DLV3-R50 35.66 36.99 38.42 39.02 42.71 47.15
PSP-R50 34.30 37.52 38.10 38.24 43.29 49.07

PFFAA (Ours) DLV3-R50 22.96 23.93 23.31 24.87 20.61 25.91
PSP-R50 22.33 21.58 24.14 22.91 20.51 25.35

Table 2: Comparisons of attack mIoU scores (%) on the ADE20k dataset.

Attack Surrogate model Black-box Victim model (mIoU ↓)
DLV3-R50 PSP-R50 DLV3-R101 PSP-R101 UperNet HRNet

Clean Images - 42.42 41.13 44.08 41.90 43.57 41.90
BIA [44] - 33.71 34.48 36.84 37.05 35.86 38.36
CDA [35] - 28.91 29.18 31.07 31.78 29.78 35.38
CDTA [26] - 26.44 27.74 28.62 29.63 27.75 32.18
AGS [41] - 22.25 21.48 23.07 21.48 21.70 23.69

Inkawhich et al. [22] DLV3-R50 18.30 16.80 20.16 20.97 19.94 25.60

PGD [31] DLV3-R50 22.67 21.23 25.43 24.58 23.67 27.17
PSP-R50 22.55 21.35 24.97 24.11 23.13 27.44

FDA [14] DLV3-R50 20.74 20.48 23.46 22.78 23.14 25.15
PSP-R50 21.00 19.65 23.13 22.21 23.01 24.28

PFFAA (Ours) DLV3-R50 7.62 9.60 11.01 12.09 9.85 14.78
PSP-R50 8.54 10.97 12.56 12.62 11.34 13.55

competitors [21, 22, 26, 31, 35, 44], we give further instructions
to explain our experimental setup. The surrogate models of BIA,
CDA, CDTA, and AGS are obtained by training them after careful
design, mainly to make the models generate universal intermediate
features. Therefore, for these four methods, we use their original
models as surrogate models.

Evaluation metrics. For semantic segmentation, the mean In-
tersection over Union (mIoU) metric is frequently used to measure
the performance of the model. Therefore, the attack performance
is evaluated using mIoU, and the lower the mIoU score the better
the attack performance.

4.2 Quantitative Evaluation
We first investigate the effectiveness of the proposed method com-
pared with competitors.

Pascal VOC2012 dataset. Table 1 presents the experimental
results on the Pascal VOC2012 dataset. Notably, all victim mod-
els demonstrate effective performance on clean images. Initially,
algorithms designed for cross-domain classification attacks (BIA,
CDA and CDTA) frequently disregard the complexities of semantic

segmentation, leading to less effective attack results. AGS performs
below the desired level because its surrogate model is trained on
the unlabeled dataset. FDA that attacks in the feature space, clearly
outperforms PGD, which attacks in the decision space, achieving
approximately 2% higher attack performance. This highlights the
importance of prioritizing the feature space in these types of at-
tacks. Moreover, Inkawhich et al. [22] successfully outperforms
FDA using DLV3-R50 as a surrogate model. It is worth noting that
these methods are substantially less effective in attacking HRNet.
This is because HRNet employs HRNet48 as the backbone, which
generates significantly different intermediate features compared
to ResNet. In contrast, our algorithm reduces the mIoU of all vic-
tim models to less than 30%, notably reducing the mIoU of HRNet
to 25.35%, which is considerably better than existing methods in
generating the transferable samples.

ADE20k dataset. The experimental results of the transfer capa-
bility on the ADE20k dataset are presented in Table 2. This dataset is
more challenging, where the victim model achieves at most 44.08%
mIoU (DLV3-R101) even on clean images. Attacks on across-domain
and cross-model (HRNet) remain highly challenging on this dataset.
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Table 3: Comparisons of attack mIoU scores (%) on the Cityscapes dataset.

Attack Surrogate model Black-box Victim model (mIoU ↓)
DLV3-R50 PSP-R50 DLV3-R101 PSP-R101 UperNet HRNet

Clean Images - 79.09 77.85 77.12 78.34 79.40 78.48
BIA [44] - 37.98 36.85 39.05 39.14 36.30 45.40
CDA [35] - 36.27 34.52 36.97 38.28 35.53 42.92
CDTA [26] - 26.72 26.85 33.07 32.69 29.76 40.74
AGS [41] - 26.98 26.99 35.14 31.03 33.61 38.09

Inkawhich et al. [22] DLV3-R50 21.34 22.89 26.83 25.36 22.24 35.44

PGD [31] DLV3-R50 24.57 24.40 35.08 31.41 25.16 41.56
PSP-R50 24.05 23.82 34.81 30.94 26.52 40.76

FDA [14] DLV3-R50 21.50 21.52 32.24 28.04 24.93 39.17
PSP-R50 21.56 21.55 31.39 29.38 23.94 38.68

PFFAA (Ours) DLV3-R50 12.80 11.79 13.88 12.93 11.21 15.78
PSP-R50 12.79 12.09 12.49 13.85 11.67 17.14

Table 4: Ablation study of different components on the Pascal VOC2012 dataset. The surrogate model is DLV3-R50.

Baseline Components Black-box Victim model (mIoU ↓)
FAA PFA DLV3-R50 PSP-R50 DLV3-R101 PSP-R101 UperNet HRNet

✓ 76.17 76.78 78.70 78.47 77.10 75.87
✓ 35.21 34.51 36.22 38.47 38.91 39.22

✓ 32.99 32.29 34.66 33.77 35.24 35.64
✓ ✓ 22.96 23.93 23.31 24.87 20.61 25.91

Table 5: Ablation study of the order of PFA and FFA on the Pascal VOC2012 dataset. FAA → PFA implies conducting the
amplitude attack first, followed by PFA, and PFA→ FAA implies conducting PFA first, followed by FAA.

Attack Surrogate model Black-box Victim model (mIoU ↓)
DLV3-R50 PSP-R50 DLV3-R101 PSP-R101 UperNet HRNet

Clean Images - 76.17 76.78 78.70 78.47 77.10 75.87

PFA → FAA DLV3-R50 27.16 28.33 30.21 29.64 32.15 33.49
PSP-R50 26.33 27.12 29.99 28.74 31.17 32.82

FAA → PFA DLV3-R50 22.96 23.93 23.31 24.87 20.61 25.91
PSP-R50 22.33 21.58 24.14 22.91 20.51 25.35

For instance, FDA and PGD only reduce mIoU to 24.28% and 27.44%.
Notably, our algorithm not only performs far better than other
methods in all victim models, but also reduces the mIoU of the
victim HRNet to 13.55%, exceeding the benchmark by 10.73%.

Cityscapes dataset. Table 3 presents the experimental results
on the Cityscapes dataset, which focuses on city scenarios and dif-
fers notably from the other datasets in terms of domains. The victim
model achieves impressive performance on clean images. Attackers
designed for cross-domain attacks also show better performance
on this dataset, e.g., CDTA achieves a performance degradation
of 52.37% on the victim model DVL3-R50. Given the substantial
domain difference, FDA outperforms PGD by approximately 2%-
3%. Moreover, the attack of AGS on this dataset is more effective.
Compared with them, our method showcases superior attack per-
formance again, particularly on the victim HRNet, surpassing the
state-of-the-art result by 19.66%. This demonstrates the advantage
of PFFAA to generate transferable adversarial samples in the face
of different datasets and different models.

4.3 Ablation Study
Ablation study of each component. To demonstrate the ef-

fectiveness of each component, we conduct corresponding ablation
experiments, and the results are shown in Table 4. Initially, the re-
sults on clean images are established as the baseline. Subsequently,
we introduce PFA on Fourier space, which is independent of the
surrogate model. Remarkably, the amplitude attack demonstrated
significant efficacy across various black-box victim models. Hence,
replacing the amplitude information of test images proves to be
highly effective. Then, using only FAA, we observe evident success
across different victim models by leveraging class relationships
and prototype features. It is worth noting that PFA, as a feature
space attack method, has stronger cross-architectural capabilities.
Finally, the best results are achieved by combining these two attacks
within our approach. This experiment emphasizes the necessity
and effectiveness of the proposed components.

Order of the two attacks. We investigate the impact of chang-
ing the order of the two attack strategies (PFA and FAA) on the
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Table 6: Ablation study on the number of queries. The surrogate model is DLV3-R50 in this experiment.

Number Black-box Victim model (mIoU ↓)
DLV3-R50 PSP-R50 DLV3-R101 PSP-R101 UperNet HRNet

Baseline 76.17 76.78 78.70 78.47 77.10 75.87
0 35.66 36.99 38.42 39.02 37.71 47.15
10 35.40 36.08 37.40 38.41 35.92 44.95
50 33.16 34.16 36.29 35.81 33.75 39.90
100 32.85 32.29 34.66 33.77 32.24 35.64
200 32.91 32.40 34.15 33.52 32.19 35.10
400 32.57 32.15 33.94 33.58 31.99 35.07
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Figure 3: Visualizing feature prototype similarity on the Pascal VOC2012 dataset. DLV3-R50 is used as the surrogate model,
and the victim model is PSP-R50.

effectiveness of the proposed attack. The results, which are listed
in Table 5, indicates that applying the frequency alteration attack
followed by PFA results in better performance, which aligns with
our chosen sequence. This trend primarily arises from the non-
adversarial nature of the frequency alteration attack. In other words,
while FAA can target unified domain information, it lacks the feed-
back to fine-tune the image. Conversely, PFA adjusts the images
after the frequency alteration attack based on feedback, further
enhancing the outcomes.

Number of queries. Table 6 presents experimental results of
different query numbers on the Pascal VOC2012 dataset. To observe
the impact of 𝑛 more effectively, FAA is not utilized in this experi-
ment, resulting in slightly lower attack effectiveness compared with
the complete method. Firstly, when 𝑛 = 0, it means a direct feature
distribution attack on the surrogate model. In this case, as there is a
lack of relationship between the classes, the mIoU only decreases to
36.99% for the victim model PSP-R50. Subsequently, we gradually
increase the number of query images, and relationships between
the source classes and the target classes are gradually established.
Accordingly, the attack effectiveness gradually improves, although
this improvement is decreasing. Even between 𝑛 = 400 and 𝑛 = 100,
the effect of the attack decreases for the victim models DLV3-R50
(-0.28%) and PSP-R50 (-0.14%). In addition, as the number of queries
gradually increases, there is a potential risk of being detected by
the host system. As a trade-off, we set the number of queries to 100.
We utilize this setting in our experiments to evaluate the attack
effectiveness and the risk of being detected by the host system.

Table 7: Comparisons of attackmIoU scores (%) under differ-
ent 𝜖 on the Pascal VOC2012 dataset. The surrogate model is
DLV3-R50 for all methods.

𝜖 Attack Black-box Victim model
DLV3-R50 PSP-R50

8

AGS [41] 64.97 65.27
Inkawhich et al. [22] 44.77 43.65

PGD [31] 57.16 58.03
FDA [21] 46.66 47.10

PFFAA (Ours) 37.70 38.56

16

AGS [41] 54.28 53.50
Inkawhich et al. [22] 32.38 31.64

PGD [31] 38.59 38.83
FDA [21] 35.66 36.99

PFFAA (Ours) 22.96 23.93

32

AGS [41] 36.67 35.57
Inkawhich et al. [22] 20.89 21.42

PGD [31] 28.69 28.83
FDA [21] 22.73 22.58

PFFAA (Ours) 8.35 8.82

Study of perturbation budgets. To compare the performance
of PFFAA under different perturbation budgets 𝜖 , Table 7 shows
the results of several attackers. Larger perturbation budgets offer
greater flexibility to modify image pixels, thereby enhancing the
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Figure 4: Visualization results of some adversarial examples generated by PFFAA that successfully attack to fool the model
on Pascal VOC2012. The victim model is PSP-R50, and the surrogate model is DLV3-R50. ‘PA’ and ‘PC’ mean the output of the
prediction by the victim model of adversarial images generated by PFFAA and clean images, respectively.

success rate of the attack. However, such modifications also be-
come more susceptible to detection. The table shows significant
enhancement in the attack effectiveness of various methods as the
perturbation budget grows. For instance, the FDA reduces mIoU
from 46.66% to 22.73% on the victim model DLV3-R50 as the pertur-
bation budget increases from 8 to 32. It is worth noting that PFFAA
consistently achieves the best attack results under different pertur-
bation budgets. Specifically, it reduces the mIoU to 8.35% and 8.82%
on the victim models (DLV3-R50 and PSP-R50), respectively, at a
budget of 32. Experimental results show that PFFAA has significant
advantages in cross-domain semantic segmentation attacks.

4.4 Qualitative Evaluation
Feature visualization. Fig. 3 illustrates the similarity between

prototypes with features from multiple source classes, which corre-
spond to the same target class on the Pascal VOC2012 dataset. We
show three target classes: (a) “bottle”, (b) “chair” and (c) “person”,
respectively. For semantic segmentation, a single target class may
correspond to multiple source classes. It is noticeable that the in-
termediate features of multiple source classes belonging to a single
target class are not entirely similar. In fact, they may exhibit sub-
stantial differences (less than 0.2 similarity). Therefore, if only FDA
is used for feature perturbation, although it can move the features
of the adversarial image away from the clean image features, it
might bring them closer to another source class corresponding to

the same target class, thus failing to achieve the intended attack
effect. These results also validate the need for designing PFA.

Attack result visualization. Fig. 4 showcases that the cross-
domain adversarial images generated by the surrogatemodel (DLV3-
R50) can effectively deceive the black-box victim model PSP-R50
in the Pascal VOC2012 dataset. The trained model predicts the
foreground class as a wrong class on the adversarial image. This
misclassification is due to the perturbations introduced, which effec-
tively manipulate the decision boundary of the model to interpret
foreground features as belonging to other classes.

5 CONCLUSIONS
In this paper, we introduced a novel cross-domain attack strategy
explicitly designed for semantic segmentation, called Prototype-
based Feature and Frequency Alteration Attack (PFFAA). PFFAA
empowers a surrogate model to effectively deceive a black-box
victim model without the target data. It consists of two parts: the
Prototype-based Feature Attack (PFA) and the Frequency Alteration
Attack (FAA). The former resolves feature space perturbations that
might redirect features to other features related to the same target
class, and the latter involves substituting frequency information
from images used to train the surrogate model into the frequency
domain of the test images, altering texture and structure. Experi-
mental results across diverse datasets and victim models affirm that
PFFAA achieves top-performing cross-domain attacks without the
need for target data.
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