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ABSTRACT

Neural Operators that directly learn mappings between function spaces have re-
ceived considerable recent attention. Deep Operator Networks (DeepONets) (Lu
et al., 2021), a popular recent class of operator networks have shown promising
preliminary results in approximating solution operators of parametric partial dif-
ferential equations. Despite the universal approximation guarantees (Lu et al.,
2021; Chen & Chen, 1995) there is yet no optimization convergence guarantee for
DeepONets based on gradient descent (GD). In this paper, we establish such guar-
antees and show that over-parameterization based on wide layers provably helps.
In particular, we present two types of optimization convergence analysis: first, for
smooth activations, we bound the spectral norm of the Hessian of DeepONets and
use the bound to show geometric convergence of GD based on restricted strong
convexity (RSC); and second, for ReLU activations, we show the neural tangent
kernel (NTK) of DeepONets at initialization is positive definite, which can be
used with the standard NTK analysis to imply geometric convergence. Further, we
present empirical results on three canonical operator learning problems: Antideriva-
tive, Diffusion-Reaction equation, and Burger’s equation, and show that wider
DeepONets lead to lower training loss on all the problems, thereby supporting the
theoretical results.

1 INTRODUCTION

Replicating the success of Deep Learning in scientific computing such as developing Neural PDE
solvers, constructing surrogate models and developing hybrid numerical solvers has recently captured
interest of the broader scientific community. Neural Operators (Li et al., 2021a;b) and Deep Operator
Networks (DeepONets) (Lu et al., 2021; Wang et al., 2021) encompass two recent approaches
aimed at learning mappings between function spaces. Contrary to a classical supervised learning
setup which aims at learning mappings between two finite-dimensional vector spaces, these neural
operators/operator networks aim to learn mappings between infinite-dimensional function spaces.
The key underlying idea in both the approaches is to parameterize the solution operator as a deep
neural network and proceed with learning as in a standard supervised learning setup. Since a neural
operator directly learns the mapping between the input and output function spaces, it is a natural
choice for learning solution operators of parametric PDE’s where the PDE solution needs to be
inferred for multiple instances of these “input parameters” or in the case of inverse problems when
the forward problem needs to be solved multiple times to optimize a given functional. While there
exist results on the approximation properties and convergence of DeepONets; see, e.g., (Deng et al.,
2021) for a convergence analysis of DeepONets – vis-a-vis their approximation guarantees– for
the advection-diffusion equation, there do not exist any optimization results on when and why GD
converges during the optimization of the DeepONet loss.

In this work we put forth theoretical convergence guarantees for DeepONets centered around over-
parameterization and show that over-parameterization based on wider layers (for both branch and
trunk net) provably helps in DeepONet convergence. This is reflected in Figure 1 which summarizes
an empirical evaluation of over-parameterized DeepONets with ReLU and smooth activations on a
prototypical operator learning problem. In order to complement our theoretical results, we present
empirical evaluation of our guarantees on three template operator learning problems: (i) Antideriva-
tive operator, (ii) Diffusion-Reaction PDE, and (iii) Burger’s equation and demonstrate that wider
DeepONets lead to overall lower training loss at the end of the training process.
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(a) ReLU Activation
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(b) Smooth Activation

Figure 1: Benefits of over-parameterization on learning of DeepONets for the Antiderivative Operator:
Gθ(u)(x) =

∫ x

0
u(ξ) dξ. In both cases m denotes the width of the branch net and the trunk net. For

both ReLU and smooth activations, increasing the width m leads to much lower losses. Note that the
y-axis is in log-scale.

The rest of the paper is organized as follows. In Section 2 we review the existing literature on
neural operators, operator networks and over-parameterization based approaches for establishing
convergence guarantees for deep networks. Next, we devote Section 3 to briefly outline the the
DeepONet model, the learning problem and the corresponding architecture. Section 4 contains the
first technical result of the paper. In Section 4 we establish convergence guarantees for DeepONets
with smooth activations (for both branch and trunk net) based on the Restricted Strong Convexity
(RSC) of the loss. Next, in Section 5, we present the second technical result of the paper where
we establish optimization guarantees for DeepONets with ReLU activations by showing that the
Neural Tangent Kernel (NTK) of the DeepONet is positive definite at initialization. In Section 6 we
present simple empirical evaluations of the main results by carrying out a parametric study based
on increasing the DeepONet width and noting its effect on the total loss during training. We finally
conclude by summarizing the main contributions in Section 7.

2 RELATED WORK

2.1 LEARNING OPERATOR NETWORKS

Constructing operator networks for ordinary differential equations (ODE’s) using learning-based
approaches was first studied in (Chen & Chen, 1995) where the authors showed that a neural network
with a single hidden layer can approximate a nonlinear continuous functional to arbitrary accuracy.
This was, in essence, akin to the Universal Approximation Theorem for classical neural networks
(see, e.g., (Cybenko, 1989; Hornik et al., 1989; Hornik, 1991; Lu et al., 2017)). While the theorem
only guaranteed the existence of a neural architecture, it was not practically realized until (Lu et al.,
2021) which also provided an extension of the theorem to deep networks. Since then a number of
works have pursued applications of DeepONets to different problems (see, e.g. (Goswami et al., 2022;
Wang et al., 2021; Wang & Perdikaris, 2021)). Recently (Kontolati et al., 2022) studied the influence
of over-parameterization on neural surrogates based on DeepONets in context of dynamical systems.
While their paper studies the effects of over-parameterization on the generalization properties of
DeepONets, an optimization analysis of DeepONets is a largely open problem.

2.2 OPTIMIZATION: NTK, ETC.

Optimization of over-parameterized deep networks have been studied extensively (see, e.g., (Du
et al., 2019; Arora et al., 2019b;a; Allen-Zhu et al., 2019; Liu et al., 2021a)). In particular, (Jacot
et al., 2018) showed that the neural tangent kernel (NTK) of a deep network converges to an explicit
kernel in the limit of infinite network width and stays constant during training. (Liu et al., 2021a)
showed that this constancy arises due to the scaling properties of the hessian of the predictor as a
function of network width. (Du et al., 2019; Allen-Zhu et al., 2019) showed that gradient descent
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converges to zero training error in polynomial time for a deep over-parameterized model, with (Du
et al., 2019) showing it for a deep model with residual connections (ResNet) while (Allen-Zhu et al.,
2019) showed in context of feed-forward models, CNNs and ResNets. (Karimi et al., 2016) showed
that the Polyak-Lojasiewicz (PL) condition, a much weaker condition than strong convexity can be
used to explain the linear convergence of gradient-based methods.

3 LEARNING DEEP OPERATOR NETWORKS

Learning neural operators (Li et al., 2020; Lu et al., 2021) is a fundamentally challenging problem as
it requires learning parametric maps between two infinite-dimensional function spaces which is in
sharp contrast to classical deep learning which learns parametric maps between two finite-dimensional
vector spaces. A succinct review of learning in infinite dimensions is provided in Section A.1 in the
Appendix. Here we focus on the DeepONet model and outline its main features.

3.1 DEEPONET SETUP

In what follows, we use the notation f(θf ;u) to denote a deep network fθf
: Rm 7→ Rn where u

denotes the input and θf the learnable parameters. A DeepONet is an operator network that learns a
parametric map Gθ such that Gθ(u) ≈ G†(u), where u denotes the input function, and G† denotes
the “true” operator whose approximation we wish to learn. Following (Lu et al., 2021) a DeepONet
predictor can defined as the inner product of two deep networks: f = {fk}Kk=1 known as the branch
net and g = {gk}Kk=1 the trunk net, namely

Gθ(u)(y) :=

K∑
k=1

fk(θf ;u)gk(θg;y), (1)

where u ∈ Rdu is the input function and y ∈ dom(Gθ(u)) ⊆ Rdv the output locations1. The training
data comprises of n input functions, that is {u(i)}ni=1 and qi output locations for each G(u(i)), i.e.
{{y(i)j }qij=1}ni=1 with y

(i)
j denoting the j-th output location for Gθ(u

(i)). The branch net f has
parameters θf ∈ Rpf and the trunk net g has parameters θg ∈ Rpg . The entire set of parameters for
the DeepONet is given by θ = [θ⊤

f θ⊤
g ]

⊤ ∈ Rpf+pg . Further, let {xr}Rr=1 ∈ dom(u) ⊆ Rd ∀r ∈
[R] and u(i)(xr) ∈ Rdu . For scalar functions u(i) ∈ R the branch net takes input {u(i)(xr)}Rr=1,
which implies f : RR 7→ RK . Similarly, for scalar output locations y(i)j ∈ R we have g : R 7→ RK .
The DeepONet learning problem can then be cast as the minimization of the following empirical risk:

θ† = argmin
θ∈Θ

L
(
Gθ(u), G

†(u)
)
=

1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ
(
Gθ(u

(i))(y
(i)
j )−G†(u(i))(y

(i)
j )
)
, (2)

with

Gθ(u
(i))(y

(i)
j ) =

K∑
k=1

fk

(
θf ; {u(i)(xr)}Rr=1

)
gk

(
θg; y

(i)
j

)
, (3)

and ℓ(z) := 1/2(z)2 denoting the mean-squared error (MSE) loss. Note that the “true” operator G†

whose approximation is sought in (2) can either be explicit, e.g. integral of a function, or implicit, e.g.
the solution to a nonlinear partial differential equation (PDE).

3.2 DEEPONET ARCHITECTURE

We now briefly outline the architecture used throughout the analysis in Sections 4 and 5 and in the
numerical experiments in Section 6. We adopt fully connected feedforward neural networks (FNNs)
for both the branch and trunk nets which is also the baseline DeepONet model in (Lu et al., 2021).
Figure 4 in the Appendix shows a schematic of the architecture and the notation used throughout this
paper. For the architecture we adopt the unstacked configuration (see, Fig 1d in (Lu et al., 2021)).

1The original DeepONet paper puts forth the above model and another one with a bias term added to the
inner product. For definiteness, we restrict our attention to the model without bias
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Remark 3.1 (DeepONet Training Tuple). As mentioned in the prequel, each DeepONet training data
comprises of the tuple D(i) :=

(
{u(i)(xr)}Rr=1, {y(i)j }qij=1, {G(u(i))(y

(i)
j }qij=1

)
.

Remark 3.2 (Training Dataset). The entire training dataset D is then simply given by the collection
of all tuples {D(i)}ni=1.
Remark 3.3 (Widths mf and mg). We denote the width of the branch net by mf and the trunk net by
mg and use mf = mg = m interchangeably through Sections 4-5. Similarly, for the experiments we
use mf = mg unless otherwise stated. For the latter (i.e. when mf ̸= mg) the analysis in Section 4
still holds with m = min(mf ,mg)

Remark 3.4 (Last layer of the branch and trunk net). Note that the last layer of the branch and trunk
net is simply a linear layer and does not have any nonlinearity/activation.

4 OPTIMIZATION GUARANTEES FOR DEEPONETS: SMOOTH ACTIVATIONS

In this section, we focus on DeepONets based on smooth activation functions. To build up to the
optimization analysis, we first establish a bound on the spectral norm of the DeepONet predictor,
in particular showing that ∥∇2Gθ(u)(y)∥2 = O( 1√

m
) where, again, m = mf = mg. The spectral

norm bound is then used to establish a form of Restricted Strong Convexity (RSC) of the DeepONet
loss (2), which in turn is used to establish geometric convergence of gradient descent (GD). For the
analysis, analogous to (Liu et al., 2021b), we consider a FNN for the branch net:

β
(0)
f = u, β

(l)
f = ϕl

(
1√
mf

W
(l)
f β

(l−1)
f

)
, ∀l ∈ [L− 1], β

(L)
f = W

(L)
f β

(L−1)
f

fk = β
(L)
f,k , ∀k ∈ [K] ,

(4)

where mf = m and L denote the width and depth of the branch net respectively, [K] := {1, . . . ,K},
ϕl is the activation function at layer l, β(l)

f are the outputs at layer l and W
(l)
f ≡ w

(l)
fij

denote the
weight matrices at layer l. Similarly, we consider a fully connected feedforward network for the trunk
net:

β(0)
g = y, β(l)

g = ϕl

(
1

√
mg

W (l)
g β(l−1)

g

)
, ∀l ∈ [L− 1], β(L)

g = W (L)
g β(L−1)

g

gk = β
(L)
g,k , ∀k ∈ [K] ,

(5)

where, again, mg = m and L denote the width and depth of the trunk net respectively and W
(l)
g ≡

w
(l)
gij denote the weight matrices at layer l of the trunk net. In order to aid our analysis, we make the

following assumptions on the activations, the loss and the weights:
Assumption 1 (Activation functions). The activation functions ϕl at each layer l are 1-Lipschitz and
βϕ-smooth (i.e. ϕ′′ ≤ βϕ) for some βϕ > 0.
Assumption 2 (Loss function). We assume the loss ℓi,j is (i) strongly convex, i.e., ℓ′′i,j ≥ a > 0, (ii)
smooth, i.e., ℓ′′i,j ≤ b, and (iii) Lipschitz, i.e.,

∣∣ℓ′i,j∣∣ ≤ λ., where we make use of the following notation

ℓi,j ≡ ℓ
(
Gθ(u

(i))(y
(i)
j )−G†(u(i))(y

(i)
j )
)
, ℓ′i,j ≡ ℓ′

(
Gθ(u

(i))(y
(i)
j )−G†(u(i))(y

(i)
j )
)
,

ℓ′′i,j ≡ ℓ′′
(
Gθ(u

(i))(y
(i)
j )−G†(u(i))(y

(i)
j )
)
.

(6)

Assumption 3 (Initialization of Weights). All weights of the branch and trunk net are initialized as
w

(l)
fij

|t=0 = w
(l)
f0, ij

∼ N (0, σ2
0) and w

(l)
gij |t=0 = w

(l)
g0, ij ∼ N (0, σ2

0) for l ∈ [L−1] and some constant
σ0 > 0 respectively. Furthermore, in order for the model (1) to have a suitable scaling in our analysis,
we initialize the weights in the last layer of the branch and trunk nets as wL

f0, ij
∼ N (0, 1/(mK))

and wL
g0, ij ∼ N (0, 1/(mK)) respectively.

Remark 4.1. For Assumption 1, our analysis straightforwardly extends to general ς-Lipschitz
activations, with constants depending ς . For Assumption 2, the Lipschitz loss assumption can be
dropped by assuming that the true responses G†(u)(y) are bounded and showing that the prediction
responses Gθ(u)(y) are bounded with high probability.
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Definition 1 (Norm ball). Our analysis focuses on the standard Euclidean norm ball around the
initialization θ0, i.e. BEuc

ρ (θ0), where

BEuc
ρ (θ̄) :=

{
θ ∈ Rpf+pg |

∥∥θ − θ̄
∥∥
2
≤ ρ
}
. (7)

4.1 SPECTRAL NORM OF THE HESSIAN OF BRANCH AND TRUNK NETS

The convergence analysis makes use of the gradients and hessians of the total loss (2) and the predictor
(1) with respect to the parameters θ, namely,

∇θL(θ) =
[∇θf

L;∇θg
L] , and ∇2

θL = H (θ) =

[
Hff Hfg

Hgf Hgg

]
, (8)

where ∇θf
L(θ) ∈ Rpf and ∇θg

L(θ) ∈ Rpg . Note that we make use of the notation ∇θf
(·) to

denote the derivative wrt the parameters θf and this is not a functional gradient. Similarly, the
individual blocks in the 2× 2 block hessian H(θ) are given by

Hff =
∂2L
∂θf

2 , Hfg =
∂2L

∂θf∂θg
, Hgf = H⊤

fg =
∂2L

∂θg∂θf
, and Hgg =

∂2L
∂θg

2 , (9)

where Hff ∈ Rpf×pf , Hgg ∈ Rpg×pg , Hfg ∈ Rpf×pg , Hgf ∈ Rpg×pf and the argument θ is
ignored for clarity of exposition. Using (2) and rewriting the derivatives in (8) and (9), we get

∂L
∂θf

=
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′i,j

K∑
k=1

g
(i)
k,j∇θf

f
(i)
k and

∂L
∂θg

=
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′ij

K∑
k=1

f
(i)
k ∇θg

g
(i)
k,j , (10)

for the gradients, and

∂2L
∂θf

2 =
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′i,j

K∑
k=1

g
(i)
k,j∇2

θf
f
(i)
k +

1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j

 K∑
k,k̂=1

g
(i)
k,jg

(i)

k̂,j
∇θf

f
(i)
k ∇θf

f
(i)⊤
k̂

 ,

∂2L
∂θg

2 =
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′i,j

k∑
k=1

f
(i)
k ∇2

θg
g
(i)
k,j +

1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j

 K∑
k,k̂=1

f
(i)
k f

(i)

k̂
∇θg

g
(i)
k,j∇θg

gk̂,j
(i)⊤

 ,

∂2L
∂θf∂θg

=
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′i,j

K∑
k=1

∇θf
f
(i)
k ∇θg

g
(i)⊤
k,j︸ ︷︷ ︸

=H
(1)
fg

+
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j

 K∑
k,k̂=1

g
(i)
k,jf

(i)

k̂
∇θf

f
(i)
k ∇θg

gk̂,j
(i)⊤


︸ ︷︷ ︸

=H
(2)
fg

,

(11)

for the individual blocks of the hessian (8) where, we make use of the notation g
(i)
k,j = gk(θg; y

(i)
j )

and f
(i)
k = fk(θf ;u

(i)).

Lemma 4.1. Under Assumptions 1, 2 and 3, and for θ ∈ BEuc
ρ (θ0), with high-probability we have

for all k ∈ [K]

max
i∈[n]

∥∥∥∇2
θf
f
(i)
k

∥∥∥ ≤ c(f)
√
mf

, and max
i∈[n]

max
j∈[qi]

∥∥∥∇2
θg
g
(i)
k,j

∥∥∥ ≤ c(g)
√
mg

(12)∥∥∇θf
fk
∥∥
2
≤ ϱ(f), and

∥∥∇θggk
∥∥ ≤ ϱ(g) , (13)

where c(f), c(g), ϱ(f), ϱ(g) are suitable constants, ∇θf
(·) = ∂(·)/∂θf , ∇θg

(·) = ∂(·)/∂θg,
∇2

θf
(·) = ∂2(·)/∂θ2

f and ∇2
θg
(·) = ∂2(·)/∂θ2

g .

Proof. The proof follows directly from Theorem 3.2 in (Liu et al., 2021a).
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4.2 GEOMETRIC CONVERGENCE BASED ON RESTRICTED STRONG CONVEXITY

We now focus on establishing the convergence of gradient descent (GD) by using the Hessian spectral
norm bound. The convergence analysis is based on a generalization of the notion of restricted strong
convexity (RSC) of the loss (2) (see (Negahban et al., 2012; Negahban & Wainwright, 2012; Zhang
& Cheng, 2015; Zhang & Yin, 2013; Lai & Yin, 2013) for a review of RSC and its applications in
high-dimensional statistics for linear models). In order to further aid clarity of exposition, we state
the main results along with their implications in this section and leave the details of the proofs to
Section A.3 in the Appendix.

Definition 2 (Restricted Strong Convexity (RSC)). A function L is said to satisfy α-restricted strong
convexity (α-RSC) with respect to the tuple (Q,θ) if for any θ′ ∈ Q ⊆ Rp and some fixed θ ∈ Rp,
we have L (θ′) ≥ L(θ) + ⟨θ′ − θ,∇θL(θ)⟩+ α

2 ∥θ′ − θ∥22, with α > 0.

Note that L being α-RSC w.r.t. (S,θ) does not need L to be convex on Rp. Further, let {θt}t≥0

denote a sequence of iterates obtained from GD, i.e.,

θt+1 = θt − ηt∇θL (θt) . (14)

Since θ⊤
t = [θ⊤

f,t θ
⊤
g,t]

⊤, we will use dynamic restricted sets Qt
κ ⊆ Rp, where p = pf + pg , to show

RSC of the DeepONet loss. Note that these sets are parameterized by a constant κ which measures
the absolute cosine similarity between suitable vectors (see Section A.3 and specifically Proposition 1
in the Appendix for a detailed discussion on these sets). Further, our optimization for DeepONets is
based on a second order Taylor expansion of the loss (2) w.r.t. θt = [θ⊤

f,t θ
⊤
g,t]

⊤:

L(θ) = L(θt) + ⟨θ − θt,∇θL(θt)⟩+
1

2
(θ − θt)

⊤H(θ̃)(θ − θt) , (15)

where, ∇θL(θt) and H(θ̃) are as in (8), (9), (10), and (11), and θ̃ = τθ + (1 − τ)θ̄ for some
τ ∈ [0, 1].

Definition 3 (Qt
κ sets.). For an iterate θt = [θ⊤

f,t θ
⊤
g,t]

⊤, consider the singular value decomposition

1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′i,j

K∑
k=1

∇θf
f
(i)
k ∇θgg

(i) ⊤
k,j =

q̃∑
h=1

σhahb
⊤
h , (16)

where q̃ ≤ qk, and σh > 0,ah ∈ Rpf , bh ∈ Rpg respectively denote the singular values, left singular
vectors, and right singular vectors. Further, let

Ḡθ =
1

n

n∑
i=1

1

qi

qi∑
j=1

Gθ(u
(i))(y

(i)
j ) . (17)

Then, for some suitable κ ∈ (0, 1
2 ], we define the set:

Qt
κ :=

{
θ′ = [θ′

f ;θ
′
g] : | cos(θ′ − θt,∇θḠθt

)| ≥ κ,

q̃∑
h=1

σh⟨θ′
f − θf,t,ah⟩⟨θ′

g − θg,t, bh⟩ ≥ 0 , ∀h ∈ [q̃]

}
.

(18)

Remark 4.2. Note that pf , pg are respectively the number of parameters in the branch and trunk nets
and the models can be sufficiently over-parameterized such that they are larger than the number of
training examples q =

∑n
i=1 qi.

Remark 4.3 (Qt
κ sets). The specifics of the restricted set Qt

κ ∈ Rpf+pg stem from technicalities in
the analysis. For a detailed outline of these sets we refer the reader to Section A.3 and specifically
Proposition 1 in the Appendix.
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Theorem 4.2 (RSC of the loss). Under the assumptions Assumptions 1, 2 and 3, ∀θ′ ∈ Bt
κ :=

Qt
κ ∩BEuc

ρ (θ0) with high probability we have

L (θ′) ≥ L (θt) + ⟨θ′ − θt,∇θL (θt)⟩+
αt

2
∥θ′ − θt∥22 , where αt = c1∥∇θḠt∥22 −

c2√
m

,

(19)
where Ḡt = 1

n

∑n
i=1

1
qi

∑qi
j=1 Gθt(u

(i))(y
(i)
j ) and c1, c2 > 0 are constants. Thus, the loss L(θ)

satisfies RSC w.r.t (Bt
κ,θt) whenever αt > 0.

Proof. A detailed proof is presented in Section A.3 in the Appendix.

Theorem 4.3 (Smoothness of Loss). Under the assumptions Assumptions 1, 2 and 3, with high
probability, for θ ∈ BEuc

ρ (θ0), L(θ) is β-smooth with β = bϱ2+ c
√
λ√
m

with c = max(c(f), c(g)), ϱ =

max(ϱ(f), ϱ(g)) with c(f), c(g), ϱ(f), ϱ(g) as in Lemma 4.1.

Proof. We again refer the reader to Section A.3 in the Appendix for a detailed proof.

Lemma 4.4 (RSC =⇒ Restricted PL). The RSC and Smoothness of the Loss together imply a
form of Polyak-Łojasiewicz (PL) condition w.r.t. the tuple (Bt,θt), unlike standard PL which holds
without restrictions (Karimi et al., 2016).

Proof. For a detailed outline of the proof, we refer the reader to Section A.3 in the Appendix.

Theorem 4.5 (Global Loss Reduction). Consider the same conditions as in Theorem 4.3 and αt > 0
for t ∈ [T ] for a gradient descent update θt+1 = θt− ηt∇θL(θt) with ηt =

ωt

β for some ωt ∈ (0, 2),
where β is defined as in Theorem 4.3. Then, with high probability, ∀θ̄ ∈ arginf

θ∈BEuc
ρ (θ0)

L(θ) with

0 ≤ γt :=
L(θ̄t+1)−L(θ̄)

L(θt)−L(θ̄)
< 1 and θ̄t+1 ∈ arginfθ∈Qt

κ∩BEuc
ρ (θ0) L(θ), we have

L(θt+1)− L(θ̄) ≤
(
1− αtωt(1− γt)

β
(2− ωt)

)
(L(θt)− L(θ̄)) . (20)

Proof. We refer the reader to Section A.3 and in particular Lemma 1 in the Appendix for the
proof.

Remark 4.4. A direct consequence of Theorem 4.5 is global reduction in the loss in Rp and thus the
convergence of gradient descent for the DeepONet optimization problem.

5 OPTIMIZATION GUARANTEES FOR DEEPONETS: RELU ACTIVATIONS

We now present an alternative optimization analysis2, based on the Neural Tangent Kernel (NTK) (Ja-
cot et al., 2018), to establish guarantees for the convergence of gradient descent and its variants for
DeepONets. Although the NTK convergence theory holds for both smooth and ReLU activations (see,
e.g. (Allen-Zhu et al., 2019; Du et al., 2019)), we present this in context of the latter. Further, in this
work we only present a proof for the positive definiteness of the DeepONet NTK at initialization. This
allows one to readily transcribe analogous existing arguments for deep networks, for the convergence
of gradient descent, to the DeepONet model. (Allen-Zhu et al., 2019; Du et al., 2019; Nguyen et al.,
2021) Now, recall the DeepONet predictor

Gθ

(
u(i)
)
(y

(i)
j ) :=

K∑
k=1

fk

(
θf ;u

(i)
)
gk

(
θg; y

(i)
j

)
, (21)

2The hessian-based analysis presented in Section 4 constitutes a sufficient condition and is not directly
applicable for the case of ReLU activations. In contrast, the NTK analysis presented here applies to both smooth
and ReLU activations.
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and its corresponding gradient with respect to the parameters θ,

∇θGθ(u
(i))(y

(i)
j ) =

K∑
k=1

gk (θg; y(i)j

)
∇θf

fk
(
θf ;u

(i)
)

fk
(
θf ;u

(i)
)
∇θggk

(
θg; y

(i)
j

) . (22)

This allows us to write the NTK K(θ) of the DeepONet, which is a q × q matrix as:

K(θ) =
[〈

∇θGθ(u
(i))(y

(i)
j ) ,∇θGθ(u

(i′))(y
(i′)
j′ )

〉]
q×q

, (23)

where, again, q =
∑n

i=1 qi. Given the branch and trunk nets are initialized using standard initial-
ization techniques, as typically done in practice for deep networks, (Arora et al., 2019b; Du et al.,
2019) with the addition of Assumption 3, the resulting branch net NTK Kf,k and trunk net NTK
Kg,k, namely

Kf,k =
[〈

∇θf,k
fk

(
θf ;u

(i)
)

,∇θf,k
fk

(
θf ;u

(i′)
)〉]

n×n

Kg,k =
[〈

∇θg,k
gk

(
θg; y

(i)
j

)
,∇θg,k

gk

(
θg; y

(i′)
j′

)〉]
q×q

,
(24)

can be shown to be positive definite with high probability for each k ∈ [K] (Nguyen, 2021; Liu et al.,
2021a; Du et al., 2019). In particular, with high probability, for k ∈ [K], we have

λmin(Kf,k) ≥ λ0,f , and λmin(Kg,k) ≥ λ0,g ∀ k ∈ [K] , (25)

where λmin(Kf,k) and λmin(Kg,k) are the minimum eigenvalues of the branch and trunk net NTKs
respectively, and λ0,f , λ0,g > 0 are positive constants (see, e.g., Theorem 4.1 in (Nguyen, 2021)).

Theorem 5.1 (K(θ) is positive definite at initialization). Given standard initialization for the branch
and trunk nets, and granted that the individual branch and trunk net NTKs are positive definite
(24)-(25), the NTK of DeepONet is positive definite at initialization, i.e.

α⊤E[K(θ)]α ≥ c > 0, (26)

where α denotes an arbitrary block unit vector with n blocks, and αi,j corresponds to the j-th entry
in the i-th block and c denotes a positive constant.

Proof. We refer the reader to Section A.4 and specifically Propositions 2, 3 and 4

Remark 5.1. A direct consequence of Theorem 5.1 is that the DeepONet NTK is positive definite
at initialization. It is then straightforward to invoke standard NTK analysis to show convergence of
gradient descent during training, see, e.g. (Jacot et al., 2018; Du et al., 2019; Arora et al., 2019b;a;
Allen-Zhu et al., 2019; Nguyen et al., 2021).

6 EXPERIMENTS

We now turn to an empirical evaluation of the effect of over-parameterization on the training perfor-
mance of DeepONets, as measured by the empirical risk over a mini-batch B of the training dataset
(3.2), for three canonical operator-learning problems. The results for smooth activations empirically
verify the analysis in Section 4 whereas the ones for ReLU activations verify the analysis in Section 5.
In all the examples described below, we consider FNN architectures for both branch and trunk nets
which are similar to the ones chosen in (Lu et al., 2021). For definiteness, we set the width in each
layer of the branch and trunk net to be the same (i.e. mf = mg = m) and then increase it uniformly
from m = 10 to m = 500. We monitor the training process over 80, 000 training epochs and report
the resulting average loss over each mini-batch with size nB ,

LDB
:=

1

nB

nB∑
i=1

1

qi

qi∑
j=1

ℓ
(
Gθ(u

(i))(y
(i)
j )−G†(u(i))(y

(i)
j )
)
, (27)

where nB denotes the number of input training functions (ui) in the batch B. We refer the reader to
Section A.5 in the Appendix for specific details of the setup. Figure 2 shows the training loss (27) as
a function of the epochs for DeepONets with smooth activations and Figure 3 shows the same for
ReLU activations.
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Figure 2: Training progress of DeepONet with a smooth activation function selu (Klambauer et al.,
2017) for (a) Antiderivative Operator, (b) Diffusion-Reaction Equation and (c) Burger’s Equation.
We plot the training loss (27) as a function of the epochs with the y-axis on a log-scale to clearly
distinguish the effect of increasing width (m). Increasing the width m of the branch and trunk net
leads to lower losses for all the problems.
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(a) Antiderivative: relu
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Figure 3: Training progress of DeepONet with ReLU activations for (a) Antiderivative Operator, (b)
Diffusion-Reaction Equation and (c) Burger’s Equation. The y-axis is again plotted on a log-scale to
clearly demarcate the effect of increasing width. Increasing the width m again leads to lower training
losses.

Remark 6.1. We store the mini-batch training loss at every 100-th training epoch and observe that
the training loss measured over the mini-batch is lower for wider DeepONets. This observation is
consistent for both smooth (selu) and non-smooth (relu) activations.

Remark 6.2 (Antiderivative Operator). The Antiderivative operator is a linear operator and hence is
learned very accurately especially for wider DeepONets (LDB

∼ 10−12 at the end of training).

Remark 6.3 (Diffusion Reaction). The Diffusion reaction equation also demonstrates lower loss
with increasing width, albeit less markedly than the antiderivative operator. This can be attributed in
part to the fact that the operator is inherently nonlinear.

Remark 6.4 (Burger’s equation). The operator corresponding to Burger’s equation is more intricate
with the added periodicity constraints on the solution (see Section A.5.3 in the appendix for details
on the problem). We remark the distinction from the operator learning problem for Burger’s equation
studied in (Li et al., 2021a) where the operator only sought to learn the mapping from the input (initial
condition t = 0) to the final output t = 1 and not the entire solution space (x, t) ∈ [0, 1]× [0, 1].

7 DISCUSSION AND CONCLUSION

We present two novel optimization analyses for DeepONets (Lu et al., 2021) based on over-
parameterization and establish convergence guarantees for the DeepONet models with smooth
and ReLU activations. The analysis for smooth activations is built on top of the restricted strong
convexity of the DeepONet loss whereas the one for ReLU activations is based on the positive
definiteness of the NTK at initialization. To the best of our knowledge, this is the first work to
mathematically and empirically show the benefits of over-parameterization on the the learning of
DeepONets.
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A APPENDIX

A.1 LEARNING OPERATORS

Here we briefly outline the notion of learning for neural operators (Li et al., 2021a; 2020; Lu et al.,
2021). The standard operator learning problem seeks to approximate a possibly nonlinear operator
G† : U 7→ V by a parametric operator Gθ∈Θ : U 7→ V that depends on the learnable parameters
θ. The goal is to learn an optimal set of parameters θ† such that Gθ† ≈ G†. Given observations
{u(j)}nj=1 ∈ U and {G†(u(j))}nj=1 ∈ V where u(j) ∼ µ is an i.i.d sequence from the probability
measure µ supported on U and G(u(j)) is possibly corrupted with noise, the objective is to find θ† as
the solution of the minimization problem

θ† = argmin
θ∈Θ

Eu∼µ

[
C
(
Gθ(u), G

†(u)
)]

, (28)

where U and V are separable Banach spaces and C a suitable cost functional. This is analogous to the
notion of learning in finite dimensions, which is precisely the setup classical deep learning used for.

A.2 DEEPONET ARCHITECTURE
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Figure 4: A schematic of the unstacked DeepONet architecture (Lu et al., 2021) used in this study.
Note that the input functions need not be sampled on a structured grid of points in general.

A.3 OPTIMIZATION GUARANTEES FOR DEEPONETS: SMOOTH ACTIVATIONS

Theorem 4.2 (RSC of the loss). Under the assumptions Assumptions 1, 2 and 3, ∀θ′ ∈ Bt
κ :=

Qt
κ ∩BEuc

ρ (θ0) with high probability we have

L (θ′) ≥ L (θt) + ⟨θ′ − θt,∇θL (θt)⟩+
αt

2
∥θ′ − θt∥22 , where αt = c1∥∇θḠt∥22 −

c2√
m

,

(19)
where Ḡt = 1

n

∑n
i=1

1
qi

∑qi
j=1 Gθt(u

(i))(y
(i)
j ) and c1, c2 > 0 are constants. Thus, the loss L(θ)

satisfies RSC w.r.t (Bt
κ,θt) whenever αt > 0.

Proof. From the Taylor expansion in (15), to establish (19) it suffices to focus on the second order
term and for θ′ ∈ Bt show

(θ′ − θt)
⊤H(θ̃)(θ − θt) ≥ αt∥θ′ − θt∥22 . (29)
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Given the 2× 2 block structure of the Hessian as in (8), denoting δθ := θ′ − θt for compactness, we
note that

δθ⊤H(θ̃)δθ = δθ⊤
f Hffδθf︸ ︷︷ ︸

T1

+2δθ⊤
f Hfgδθg︸ ︷︷ ︸

T2

+ δθ⊤
g Hggδθg︸ ︷︷ ︸

T3

. (30)

Focusing on T1 and using the exact form of Hff as in (11), we have

T1 =
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j

〈
δθf ,

K∑
k=1

g
(i)
k,j∇θf

f
(i)
k

〉2

+
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′ij

K∑
k=1

g
(i)
k,jδθ

⊤
f ∇2

θf
f
(i)
k δθf

(a)

≥ 1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j

〈
δθf ,∇θf

Gθ(u
(i))(y

(i)
j )
〉2

− λc0c
(f)

√
mf

∥δθf∥22 , (31)

where (a) follows from Assumption 2 and Lemma 4.1. The analysis for T3 is similar, and we get

T3 ≥ 1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j

〈
δθg,∇θgGθ(u

(i))(y
(i)
j )
〉2

− λc0c
(g)

√
mg

∥δθg∥22 . (32)

Focusing on T2 and using the exact forms in terms of H(1)
fg and H

(2)
fg as in (11), we have

1

2
T2 = δθ⊤

f

 1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′ij

K∑
k=1

∇θf
f
(i)
k ∇θg

g
(i) ⊤
k,j

 δθg

+ δθ⊤
f

 1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j

(
K∑

k=1

g
(i)
k,j∇θf

f
(i)
k

)(
K∑

k′=1

f
(i)
k′ ∇θg

g
(i) ⊤
k′,j

) δθg

(a)
= δθ⊤

f

(
q̃∑

h=1

σhahb
⊤
h

)
δθg + δθ⊤

f

 1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j∇θf
Gθ(u

(i))(y
(i)
j )∇θg

Gθ(u
(i))(y

(i)
j )⊤

 δθg

=

q̄∑
h=1

σh⟨δθf ,ah⟩⟨δθg, bh⟩+
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j

〈
δθf ,∇θf

Gθ(u
(i))(y

(i)
j )
〉〈

δθg,∇θg
Gθ(u

(i))(y
(i)
j )
〉

(b)

≥ 1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j

〈
δθf ,∇θf

Gθ(u
(i))(y

(i)
j )
〉〈

δθg,∇θgGθ(u
(i))(y

(i)
j )
〉

. (33)

where (a) follows from SVD as in (16), (b) follows since by Definition 3, ⟨δθf ,ah⟩ ≥ 0, ⟨δθg, bh⟩ ≥
0. Combining (31), (33), (32), using m = mg = mf and c1 = max(c(f), c(g)), we have

δθ⊤H(θ̃)δθ ≥ 1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j

(〈
δθf ,∇θf

Gθ(u
(i))(y

(i)
j )
〉
+
〈
δθg,∇θgGθ(u

(i))(y
(i)
j )
〉)2

− λc0c1√
m

∥δθ∥22

(a)

≥ a
1

n

n∑
i=1

1

qi

qi∑
j=1

(〈
δθf ,∇θf

Gθ(u
(i))(y

(i)
j )
〉
+
〈
δθg,∇θg

Gθ(u
(i))(y

(i)
j )
〉)2

− λc0c1√
m

∥δθ∥22

(b)

≥ a
(〈

δθf ,∇θf
Ḡθ(u

(i))(y
(i)
j )
〉
+
〈
δθg,∇θg

Ḡθ(u
(i))(y

(i)
j )
〉)2

− λc0c1√
m

∥δθ∥22

= a
〈
δθ,∇θḠθ

〉2 − λc0c1√
m

∥δθ∥22
(c)

≥ aκ2∥∇θḠθ∥22∥δθ∥22 −
λc0c1√

m
∥δθ∥22

= αt∥δθ∥22 ,
where (a) follows from Assumption 2, (b) follows from Jensen’s inequality and with Ḡθ =
1
n

∑n
i=1

1
qi

∑qi
j=1 Gθ(u

(i))(y
(i)
j ) as in Definition 3, (c) follows from Definition 3, and αt =

aκ2∥∇θḠθ∥22 − λc0c1√
m

. That completes the proof.
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Proposition 1 (Qt
κ is non-empty). For over-parameterized branch and trunk nets with pf , pg > qk,

the restricted set Qt
κ is non-empty.

Proof. We simply construct a θ′ = [θ′
f
⊤ θ′

g
⊤]⊤ ∈ Qt

κ along with the value of κ. Without loss
of generality, we make θt the origin of the coordinate system and work with the unit vector ḡ =

[ḡ⊤
f ḡ⊤

g ]
⊤ =

∇θḠθt

∥∇θḠθt∥2
. Further, we assume θ′ also to be a unit vector. Then, our problem reduces to

feasibility of the following system of two quadratic equations over θ′
f ∈ Rpf ,θ′

g ∈ Rpg :

θ′⊤
f

(
q̃∑

h=1

σh1ah1b
⊤
h1

)
θ′
g ≥ 0

(
⟨θ′

f , ḡf ⟩+ ⟨θ′
g, ḡg⟩

)2 ≥ κ2 ,

where σh1
, σh2

> 0, ah ∈ Rpf are orthogonal unit vectors, bh ∈ Rpg are orthogonal unit vectors,
ḡ = [ḡ⊤

f ḡ⊤
g ]

⊤ ∈ Rpf+pg and θ′ = [θ′
f ;θ

′
g] ∈ Rpf+pg are unit vectors, and we can choose κ ∈ (0, 1].

Without loss of generality, assume ∥ḡf∥2 ≥ ∥ḡg∥2. Then, set θ′
g = 0 so that our feasibility condition

reduces to ⟨θ′
f , ḡf ⟩2 ≥ κ2 for some suitably chosen κ ∈ (0, 1]. Finally, set θ′

f =
ḡf

∥ḡf∥2
so that

⟨θ′
f , ḡf ⟩2 =

(
ḡf

∥ḡf∥2
ḡf

)2

= ∥ḡf∥22 := κ2 ,

so that κ ∈ (0, 1] (in fact, κ ≥ 1/
√
2) as desired. That completes the proof.

Theorem 4.3 (Smoothness of Loss). Under the assumptions Assumptions 1, 2 and 3, with high
probability, for θ ∈ BEuc

ρ (θ0), L(θ) is β-smooth with β = bϱ2+ c
√
λ√
m

with c = max(c(f), c(g)), ϱ =

max(ϱ(f), ϱ(g)) with c(f), c(g), ϱ(f), ϱ(g) as in Lemma 4.1.

Proof. By the second order Taylor expansion about θ̄, we have L(θ′) = L(θ̄)+ ⟨θ′ − θ̄,∇θL(θ̄)⟩+
1
2 (θ

′ − θ̄)⊤ ∂2L(θ̃)
∂θ2 (θ′ − θ̄), where θ̃ = ξθ′ + (1− ξ)θ̄ for some ξ ∈ [0, 1]. Then,

(θ′ − θ̄)⊤
∂2L(θ̃)
∂θ2

(θ′ − θ̄) = (θ′ − θ̄)⊤
(
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j∇Gθ̃(u
(i))(y

(i)
j )∇Gθ̃(u

(i))(y
(i)
j )⊤

+ ℓ′i,j∇2Gθ̃(u
(i))(y

(i)
j )

)
(θ′ − θ̄)

=
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j

〈
θ′ − θ̄,∇Gθ̃(u

(i))(y
(i)
j )
〉2

︸ ︷︷ ︸
I1

+
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′i,j(θ
′ − θ̄)⊤∇2Gθ̃(u

(i))(y
(i)
j )(θ′ − θ̄)︸ ︷︷ ︸

I2

.

Now, note that

I1 =
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′′i,j

〈
θ′ − θ̄,∇Gθ̃(u

(i))(y
(i)
j )
〉2

(a)

≤ b

n

n∑
i=1

1

qi

qi∑
j=1

∥∥∥∇Gθ̃(u
(i))(y

(i)
j )
∥∥∥2
2
∥θ′ − θ̄∥22

(b)

≤ bϱ2∥θ′ − θ̄∥22 ,
where (a) follows by the Cauchy-Schwartz inequality and (b) from Lemma 4.1.
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For I2, with Qt,(i,j) = (θ′ − θ̄)⊤∇2Gθ̃(u
(i))(y

(i)
j )(θ′ − θ̄), we have

|Qt,(i,j)| ≤ ∥θ′ − θ̄∥22
∥∥∥∇2Gθ̃(u

(i))(y
(i)
j )
∥∥∥
2
≤ c∥θ′ − θ̄∥22√

m
.

Then, we have

I2 =
1

n

n∑
i=1

1

qi

qi∑
j=1

ℓ′i,j(θ
′ − θ̄)⊤∇2Gθ̃(u

(i))(y
(i)
j )(θ′ − θ̄)

(a)

≤ λ

(
1

n

n∑
i=1

1

qi
Q2

t,(i,j)

)1/2

≤ λ
c∥θ′ − θ̄∥22√

m
,

where (a) follows by Cauchy-Schwartz. Putting the upper bounds on I1 and I2 back, we have

(θ′ − θ̄)⊤∇2Gθ̃(u
(i))(y

(i)
j )(θ′ − θ̄) ≤

[
bϱ2 +

c
√
λt√
m

]
∥θ′ − θ̄∥22 .

This completes the proof.

Lemma 4.4 (RSC =⇒ Restricted PL). The RSC and Smoothness of the Loss together imply a
form of Polyak-Łojasiewicz (PL) condition w.r.t. the tuple (Bt,θt), unlike standard PL which holds
without restrictions (Karimi et al., 2016).

Proof. Define
L̂θt

(θ) := L(θt) + ⟨θ − θt,∇θL(θt)⟩+
αt

2
∥θ − θt∥22 .

By Theorem A.3, ∀θ′ ∈ Bt, we have

L(θ′) ≥ L̂θt(θ
′) . (34)

Further, note that L̂θt
(θ) is minimized at θ̂t+1 := θt −∇θL(θt)/αt and the minimum value is:

inf
θ

L̂θt
(θ) = L̂θt

(θ̂t+1) = L(θt)−
1

2αt
∥∇θL(θt)∥22 .

Then, we have

inf
θ∈Bt

L(θ)
(a)

≥ inf
θ∈Bt

L̂θt
(θ) ≥ inf

θ
L̂θt

(θ) = L(θt)−
1

2αt
∥∇θL(θt)∥22 ,

where (a) follows from (34). Rearranging terms completes the proof.

Lemma 1 (Local Loss Reduction in Bt). Let αt, β be as in Theorems A.3 and A.3 respectively, and
Bt := Qt

κ ∩BEuc
ρ (θ0)∩BEuc

ρ2
(θt). Under assumptions Assumptions 1, 2 and 3, for gradient descent

with step size ηt =
ωt

β , ωt ∈ (0, 2), for any θt+1 ∈ arginfθ∈Bt
L(θ), we have with high probability

L(θt+1)− L(θt+1) ≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θt+1)) . (35)

Proof. Since L is β-smooth by Theorem A.3, we have

L(θt+1) ≤ L(θt) + ⟨θt+1 − θt,∇θL(θt)⟩+
β

2
∥θt+1 − θt∥22

= L(θt)− ηt∥∇θL(θt)∥22 +
βη2t
2

∥∇θL(θt)∥22

= L(θt)− ηt

(
1− βηt

2

)
∥∇θL(θt)∥22

(36)
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Since θ̄t+1 ∈ arginfθ∈Bt
L(θ) and αt > 0 by assumption, from Lemma A.3 we obtain

−∥∇θL(θt)∥22 ≤ −2αt(L(θt)− L(θ̄t+1)) .

Hence

L(θt+1)− L(θ̄t+1) ≤ L(θt)− L(θ̄t+1)− ηt

(
1− βηt

2

)
∥∇θL(θt)∥22

(a)

≤ L(θt)− L(θ̄t+1)− ηt

(
1− βηt

2

)
2αt(L(θt)− L(θ̄t+1))

=

(
1− 2αtηt

(
1− βηt

2

))
(L(θt)− L(θ̄t+1))

where (a) follows for any ηt ≤ 2
β because this implies 1− βηt

2 ≥ 0. Choosing ηt =
ωT

β , ωt ∈ (0, 2),

L(θt+1)− L(θ̄t+1) ≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θ̄t+1)) .

This completes the proof.

Theorem 4.5 (Global Loss Reduction). Consider the same conditions as in Theorem 4.3 and αt > 0
for t ∈ [T ] for a gradient descent update θt+1 = θt− ηt∇θL(θt) with ηt =

ωt

β for some ωt ∈ (0, 2),
where β is defined as in Theorem 4.3. Then, with high probability, ∀θ̄ ∈ arginf

θ∈BEuc
ρ (θ0)

L(θ) with

0 ≤ γt :=
L(θ̄t+1)−L(θ̄)

L(θt)−L(θ̄)
< 1 and θ̄t+1 ∈ arginfθ∈Qt

κ∩BEuc
ρ (θ0) L(θ), we have

L(θt+1)− L(θ̄) ≤
(
1− αtωt(1− γt)

β
(2− ωt)

)
(L(θt)− L(θ̄)) . (20)

Proof. We start by showing γt =
L(θ̄t+1)−L(θ∗)
L(θt)−L(θ∗) satisfies 0 ≤ γt < 1. Since θ∗ ∈ arginf

θ∈BEuc
ρ (θ0)

L(θ),

θ̄t+1 ∈ arginf
θ∈Bt

L(θ), and θt+1 ∈ Qt
κ ∩BEuc

ρ (θ0) by the definition of gradient descent, we have

L(θ∗) ≤ L(θ̄t+1) ≤ L(θt+1)
(a)

≤ L(θt)−
1

2β
∥∇θL(θt)∥22 < L(θt) ,

where (a) follows from (36). Since L(θ̄t+1) ≥ L(θ∗) and L(θt) > L(θ∗), we have γt ≥ 0. Further,
since L(θ̄t+1) < L(θt), we have γt < 1.

Now, with ωt ∈ (0, 2), we have

L(θt+1)− L(θ∗) = L(θt+1)− L(θ̄t+1) + L(θ̄t+1)− L(θ∗)

≤
(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θ̄t+1)) +

(
1− αtωt

β
(2− ωt)

)
(L(θ̄t+1)− L(θ∗))

+

(
L(θ̄t+1)−

(
1− αtωt

β
(2− ωt)

)
L(θ̄t+1)

)
−
(
L(θ∗)−

(
1− αtωt

β
(2− ωt)

)
L(θ∗)

)
=

(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θ∗)) +

αtωt

β
(2− ωt)(L(θ̄t+1)− L(θ∗))

=

(
1− αtωt

β
(2− ωt)

)
(L(θt)− L(θ∗)) +

αtωt

β
(2− ωt)γt(L(θt)− L(θ∗))

=

(
1− αtωt

β
(1− γt)(2− ωt)

)
(L(θt)− L(θ∗)) .

That completes the proof.
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A.4 OPTIMIZATION GUARANTEES FOR DEEPONETS: RELU ACTIVATIONS

Recall the DeepONet predictor (1)

Gθ

(
u(i)
)
(y

(i)
j ) :=

K∑
k=1

fk

(
θf ;u

(i)
)
gk

(
θg; y

(i)
j

)
. (37)

In the analysis, it is useful to distinguish between the parameters up to the pre-final layer and the
final layer, i.e. dim(θ) = Mf + Mg + (mf + mg)K, where Mf and Mg denote the number of
parameters in the branch and trunk nets till the pre-final layer respectively and mf ·K and mg ·K
are the number of weights in the last layer of the branch and trunk nets respectively. In essence we
have dim(θf ) = Mf +mf ·K and dim(θg) = Mg +mg ·K. We note that it is sufficient to show
positive definiteness of the above NTK at initialization. Once that has been established, standard
approaches (Jacot et al., 2018; Du et al., 2019; Arora et al., 2019b;a; Allen-Zhu et al., 2019) allow
one to show the geometric convergence of (S)GD. In the sequel it proves useful to rewrite the branch
and trunk net outputs as:

fk

(
θf ;u

(i)
)
=

mf∑
h=1

w
(f)
k,hf̄h

(
θf̄ ;u

(i)
)

, gk

(
θg; y

(i)
j

)
=

mg∑
h′=1

w
(g)
k,h′ ḡh′

(
θḡ; y

(i)
j

)
, ∀ k ∈ [K],

(38)

where w
(f)
k,h, h ∈ [mf ] are the weights of the linear last layer of the branch net and w

(g)
k,h′ , h′ ∈ [mg]

are the weights of the linear last layer of the trunk net. Similarly, θf̄ and θḡ are the parameters
leading up to the pre-final layer in branch net with mf outputs [f̄h, h ∈ [mf ]] and trunk net with mg

outputs [ḡh′ , h′ ∈ [mg]] respectively. We will denote by θf,k all the parameters corresponding to fk,
i.e. θf,k := {w(f)

k,h, h ∈ [mf ],θf̄} which includes all the parameters needed for fk for each k ∈ [K].

Similarly we denote by θg,k, all the parameters corresponding to gk, i.e. θg,k := {w(g)
k,h′ , h′ ∈

[mg],θḡ}.

We can explicitly write the NTK for the DeepONet model, specifically entry corresponding to the
inputs {u(i), y

(i)
j } and {u(i′), y

(i′)
j′ } as:〈

∇θGθ(u
(i))(y

(i)
j ) , ∇θGθ(u

(i′))(y
(i′)
j′ )

〉
=

K∑
k,k′=1

gk

(
θg; y

(i)
j

)
gk′

(
θg; y

(i′)
j′

)〈
∇θf

fk

(
θf ;u

(i)
)

,∇θf
fk′

(
θf ;u

(i′)
)〉

+

K∑
k,k′=1

fk

(
θf ;u

(i)
)
fk′

(
θf ;u

(i′)
)〈

∇θg
gk

(
θg; y

(i)
j

)
,∇θg

gk′

(
θg; y

(i′)
j′

)〉

=

K∑
k=1

gk

(
θg; y

(i)
j

)
gk

(
θg; y

(i′)
j′

)
︸ ︷︷ ︸

T
(1)
k

〈
∇θf

fk

(
θf ;u

(i)
)

,∇θf
fk

(
θf ;u

(i′)
)〉

+

K∑
k=1

fk

(
θf ;u

(i)
)
fk

(
θf ;u

(i′)
)

︸ ︷︷ ︸
T

(2)
k

〈
∇θg

gk

(
θg; y

(i)
j

)
,∇θg

gk

(
θg; y

(i′)
j′

)〉

+

K∑
k,k′=1
k ̸=k′

gk

(
θg; y

(i)
j

)
gk′

(
θg; y

(i′)
j′

)
︸ ︷︷ ︸

T
(3)

k,k′

〈
∇θf

fk

(
θf ;u

(i)
)

,∇θf
fk′

(
θf ;u

(i′)
)〉

+

K∑
k,k′=1
k ̸=k′

fk

(
θf ;u

(i)
)
fk′

(
θf ;u

(i′)
)

︸ ︷︷ ︸
T

(4)

k,k′

〈
∇θg

gk

(
θg; y

(i)
j

)
,∇θg

gk′

(
θg; y

(i′)
j′

)〉
.

(39)
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Theorem 5.1 (K(θ) is positive definite at initialization). Given standard initialization for the branch
and trunk nets, and granted that the individual branch and trunk net NTKs are positive definite
(24)-(25), the NTK of DeepONet is positive definite at initialization, i.e.

α⊤E[K(θ)]α ≥ c > 0, (26)

where α denotes an arbitrary block unit vector with n blocks, and αi,j corresponds to the j-th entry
in the i-th block and c denotes a positive constant.

Proof. The proof follows as a direct consequence of Proposition 2 together with Propositions 3 and 4

Proposition 2. With the branch and trunk net weights initialized using standard initialization
techniques and the last layer of branch layer initialized according to Assumption 3, we have

E[T (3)
k,k′ |θḡ,θḡ] = 0 , E[T (4)

k,k′ |θḡ,θḡ] = 0 , k, k′ ∈ [K] . (40)

where T
(3)
k,k′ is defined in (39)

Proof. As noted in Assumption 3, the last layer weights for the branch and trunk nets are initialized
as zero mean Gaussians, i.e., w(f)

k,h, w
(g)
k,h′ ∼ N (0, 1

mK ) for k ∈ [K], h ∈ [mf ], h
′ ∈ [mg], similar to

the other layers. Now,

T
(3)
k,k′ = gk

(
θg; y

(i)
j

)
gk′

(
θg; y

(i′)
j′

)
=

(
mg∑
h′=1

w
(g)
k,h′ ḡh′

(
θḡ; y

(i)
j

)) mg∑
h̃′=1

w
(g)

k′,h̃′ ḡh̃′

(
θḡ; y

(i′)
j′

)
=

mg∑
h′,h̃′=1

w
(g)
k,h′w

(g)

k′,h̃′ ḡh′

(
θḡ; y

(i)
j

)
ḡh̃′

(
θḡ; y

(i′)
j′

)
,

(41)

which in turn implies

E[T (3)
k,k′ |θḡ,θḡ] =

mg∑
h′,h̃′=1

E[w(g)
k,h′w

(g)

k′,h̃′ ]ḡh′

(
θḡ; y

(i)
j

)
ḡh̃′

(
θḡ; y

(i′)
j′

)
(a)
=

mg∑
h′,h̃′=1

E[w(g)
k,h′ ]E[w(g)

k′,h̃′ ]ḡh′

(
θḡ; y

(i)
j

)
ḡh̃′

(
θḡ; y

(i′)
j′

)
= 0 ,

(42)

where (a) follows since w
(g)
k,h′ and w

(g)

k′,h̃′ are independent. The analysis for T (4)
k,k′ is similar. This

completes the proof.

Proposition 3. Given that the terms T (3)
k,k′ and T

(4)
k,k′ can be suitably bounded close to zero, we have

for any arbitrary block unit vector α

αTK(θ)α ≥ λ0,f

K∑
k=1

∥∥∥α⊙ gk(θg;y
(·)
· )
∥∥∥2
2
+ λ0,g

K∑
k=1

∥∥∥α⊙
(
1p ⊗ fk(θf ;u

(·)
)∥∥∥2

2
. (43)

where 1q denotes the q-dimensional vector of all entries equal to one.
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Proof. Focusing on a quadratic form of K(θ), and ignoring the T (3), T
(4)
k,k′ terms, for any arbitrary

block unit vector α, we have

αTK(θ)α =
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where Iq denotes the q-dimensional identity matrix since αi,jgk

(
θg; y

(i)
j

)
varies with j whereas the

kernel Kf does not; 1q is the q-dimensional all ones vector since for the αi,jfk(θf ;u
(i)) terms, for

a fixed i, αi,j differs with j but fk
(
θf ;u

(i)
)

stays the same; λmin(Kf,k ≥ λ0,f ; and λmin(Kg,k) ≥
λ0,g . This completes the proof.

Note that we require α is a block unit vector with αi,j denoting the j-th position in the i-th for
convenience in dealing with the quadratic form above. Given that T (3), T

(4)
k,k′ terms are close to 0 in

expectation, as shown in Proposition 2, we now need to show that the NTK K(θ) is positive definite.

Proposition 4. Given that the terms T
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where 1q denotes the q-dimensional vector of all entries equal to one.

Proof. Now, for the first term, for some k ∈ [K], making use of (38), we have
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Since the trunk net is a ReLU network, following the argument in Lemma 7.1 in (Allen-Zhu et al.,
2019), with probability at least 1− O(qe−Ω(m/4L)), for all (i, j) we have
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Recalling that w(g)
k,h′ ∼ N (0, 1

K ), taking expectation over the randomness of w(g)
k,h′ , we have
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and, with a similar argument
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As a result, we have
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The high probability version of the result can be obtained by applying Hoeffding (for cross terms) and

Bernstein (for square terms) bounds on
〈
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)〉2
. That completes the analysis.

A.5 EXPERIMENTAL DETAILS

For the optimizer we choose Adam (Kingma & Ba, 2014) with an adaptive learning rate schedule
initialized at a learning rate η0 = 10−3. In order to generate training data for all three examples, we
sample the input, denoted by u(x), from a zero mean Gaussian process (GP) on a grid {xl}ml=1 ∈ [0, 1]
and generate outputs corresponding to each sampled function by solving the ODE/PDE (see (Wang
et al., 2021; Lu et al., 2021) for a detailed discussion on data generation). For end-to-end training we
use the deep learning framework JAX (Bradbury et al., 2018) and build our code on top of (Wang
et al., 2021) for Diffusion-Reaction and Antiderivative operators and we develop our own for the
Burger’s equation. We now briefly outline the problems below along with the specifics of the training
process for each of them.

A.5.1 ANTIDERIVATIVE OPERATOR

The antiderivative (or simply the integral) operator corresponds to a linear operator defined explicitly
by a linear ODE (initial value problem) in the unknown function v(x) ∈ V , given the input u(x) ∈ U ,
and the constant v(0) for mathematical well-posedness, i.e.

dv(x)
dx

= u(x), x ∈ [0, 1] s.t. v(0) = 0. (46)

We learn the operator mapping u(x) to its corresponding integral v(x) = Gθ(u)(x) for all x ∈ (0, 1].
For generating the training data, we sample the input functions from a univariate Gaussian process as
outlined above and the output points randomly on the interval [0, 1] and choose nB = 10000 for our
empirical results
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A.5.2 DIFFUSION-REACTION PDE

In this example we learn the operator mapping the input forcing function u(x) to the output v(x, t)
for the nonlinear Diffusion-Reaction PDE given by

∂v

∂t
= D

∂2v

∂x2
+ kv2 + u(x), (x, t) ∈ (0, 1]× (0, 1] s.t.


v(0, x) = 0

v(t, 0) = 0

v(t, 1) = 0

(47)

where D = 0.01 and k = 0.01 are constants denoting the diffusivity and reaction rate respectively.
Note that in this case we are learning the operator v(x, t) = Gθ(u)(x, t). For each sampled input,
the PDE is solved using a backward finite-difference solver on a grid (x, t) of size (150× 120). For
training, the number of input sensors is fixed at m = 120. The number of input samples (n) is chosen
to be 5000 and nB = 10000.

A.5.3 BURGER’S EQUATION

Finally, we look at the Burger’s equation benchmark similar to the one investigated in (Li et al.,
2021a) with the distinction that we learn a mapping from the initial condition v(x, 0) = u(x) to the
solution v(x, t) for (x, t) ∈ [0, 1]× (0, 1]

∂v

∂t
+ v

∂v

∂x
− ν

∂2v

∂x2
= 0, (x, t) ∈ (0, 1)× (0, 1]{

v(x, 0) = u(x), x ∈ (0, 1)

v(1, t) = v(0, t) t ∈ (0, 1)

(48)

We generate the training data using a stiff PDE integrator chebfun (Driscoll et al., 2014) on a grid
resolution of (501, 501) and p = 200 training points sampled randomly on the solution grid.
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