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ABSTRACT

Computer-Use Agents (CUA) are becoming increasingly capable of au-
tonomously operating digital environments through Graphical User Interfaces
(GUI). Yet, most GUI remain designed primarily for humans—prioritizing aes-
thetics and usability—forcing agents to adopt human-oriented behaviors that are
unnecessary for efficient task execution. At the same time, rapid advances in
coding-oriented language models (Coder) have transformed automatic GUI de-
sign. This raises a fundamental question: Can CUA as judges to assist Coder for
automatic GUI design? To investigate, we introduce AUI-Gym, a benchmark for
Automatic GUI development spanning 52 applications across diverse domains.
Using language models, we synthesis 1560 tasks that simulate real-world scenar-
ios. To ensure task reliability, we further develop a verifier that programmati-
cally checks whether each task is executable within its environment. Building
on this, we propose a Coder–CUA in Collaboration framework: the Coder acts
as Designer, generating and revising websites, while the CUA serves as Judge,
evaluating functionality and refining designs. Success is measured not by visual
appearance, but by task solvability and CUA navigation success rate. To turn
CUA feedback into usable guidance, we design an CUA Dashboard that com-
presses multi-step navigation histories into concise visual summaries, offering in-
terpretable guidance for iterative redesign. By positioning agents as both designers
and judges, our framework shifts interface design toward agent-native efficiency
and reliability. Our work takes a step toward shifting agents from passive use
toward active participation in digital environments.

1 INTRODUCTION

Recent advances in language agents have shown that Computer-Use Agents openai (2025); An-
thropic (2025) can autonomously operate within GUIs—performing tasks such as online shopping
by sequentially clicking through multiple buttons Zhou et al. (2024). However, today’s environ-
ments remain fundamentally human-centric, optimized for aesthetics and usability through features
like dynamic animations or colorful layouts. To adapt to these settings, researchers typically train
CUA on large-scale human demonstration trajectories, click logs, or static screenshots Xu et al.
(2024); Lin et al. (2024b); Seed (2025), effectively forcing agents to imitate human behavior. This
approach binds automation to human-oriented design choices, where stylistic details crucial for hu-
mans are redundant for agents whose primary objective is efficient task completion. In parallel,
coding-oriented language models—Coders—have already demonstrated strong capabilities, capa-
ble of generating functional HTML pages or even entire websites from a single instruction Si et al.
(2024). Yet these outputs remain confined to human-facing loops: even when generated by agents,
interfaces are still optimized for human use rather than agent-native interaction.

Both CUA and Coders thus exhibit remarkable potential for automation and design. This motivates
a fundamental question: Can CUA assists Coders redesign UIs in an automatic manner—where
environments are created for, and evaluated by, agents themselves, with CUA acting as judges? In
this work, we reconceptualize the UI as a tunable environment. The core idea is to employ the
Coder as Designer—responsible for initializing and revising UIs—while the CUA acts as Judges,
navigating through tasks and collecting interaction trajectories as feedback.

1
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● Human as designer
● Users as Judge (e.g., aesthetics)

Humans Collaboration

● Coder as Designer
● CUA as Judge (e.g., success rate)

Coder-CUA Collaboration

Human Designer

User Experience

Coder

Computer-
Use

Agent

Create

Used by

Feedback

Create

Used by

Feedback

Figure 1: Illustration of Humans Collaboration vs. our Coder-CUA Collaboration in term of UI
designs. Left: Most GUIs are designed by humans and optimized for user experience (e.g., aesthet-
ics), forcing trained agents to adapt to human-oriented behaviors. Right: Our Coder-CUA Collab-
oration framework leverages Coder as Designer and CUA as Judge together, enabling more reliable
task execution and improved usability for agents.
As no existing testbed aligns with our goal, we introduce AUI-Gym to pioneer evaluation in this
setting. AUI-Gym automatically develops websites across 52 applications spanning six domains
(apps, landing pages, games, interactive demos, tools, and utilities). Unlike most coders that fo-
cus on single-page generation, AUI-Gym requires agents to produce fully automated, executable,
application-level designs with an emphasis on functional completeness. Enabling sufficient, scal-
able, and human-free evaluation is non-trivial. however, is non-trivial. To simulate realistic usage
scenarios, we prompt GPT-5 to propose 30 candidate tasks per application, yielding 1560 tasks in
total. These tasks are then validated by humans. To ensure that each website can be reliably tested,
GPT-5 also generates a customized rule-based functional checker for individual task, determining
whether the task is feasible within the given interface. This infrastructure establishes a human-free,
reliable foundation for subsequent CUA exploration and feedback-driven UI refinement.

To this end, we develop a Coder–CUA collaboration framework. The Coder acts as Designer, re-
sponsible for UI initialization and refinement, while the CUA serves as Judge, supplying feedback.
The central challenge is how to transform raw CUA interactions into effective revision signals from
an agent perspective. We address this through two complementary dimensions of feedback: (a)
CUA Navigation, where the agent executes tasks through atomic actions such as clicks or typing
and judges success or failure; and (b) Task Solvability, where unsolvable tasks are accumulated
as functionality failures and returned to the Coder as precise indicators of missing features. CUA
navigation produces long, multi-step trajectories interleaved with screenshots, making direct feed-
back difficult to interpret. To overcome this, we introduce the CUA Dashboard, which condenses
each task, its outcome, actions, and intermediate states into a single 1920 × 1080 image. Rather
than storing every screenshot, the dashboard highlights only key interactive regions, with region
sizes adaptively scaled by the number of steps. This dynamic design reduces redundancy by average
76.2% while preserving essential cues, offering a clear step-by-step view of how the CUA perceives
and acts on the interface. As a result, success and failure points become immediately visible, and
the dashboard provides concise, interpretable feedback that the Coder to guide iterative UI redesign.

Our empirical results show that while state-of-the-art Coders can generate complete GUIs that ap-
pear suitable to humans, they still encounter notable limitations: (i) Task solvability as a founda-
tion. Initial UIs often fail to capture many practical scenarios, resulting in low usability. However,
by collecting failure cases, the Coder can readily boost performance through language-based func-
tional summarization. (ii) CUA navigation as a key bottleneck. Even when UIs achieve high func-
tional completeness, CUAs initially exhibit low success rates due to the complexity of multi-step
navigation. Through our Coder–CUA collaboration, we substantially improve navigation success
rates, particularly showing that CUA feedback-driven redesigns—such as de-stylization, increased
contrast, and simplified layouts—significantly enhance CUA execution. Together, these findings
highlight the promising potential of agents for automatic UI design and testing, improving both task
success and robustness. To summarize, our contributions are threefold:

1. AUI-Gym: a scalable testbed for automatic GUI development and testing, covering 52 ap-
plications across six domains with 1560 GPT-5–proposed, human-validated tasks and per-task
rule-based checkers. This enables human-free development of automatic UI creation and testing.

2. Coder–CUA framework with CUA Dashboard. The Coder initializes and refines UIs while
the CUA judges via two signals: navigation outcomes and task solvability. A single-image 1K
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CUA Dashboard compresses task goal, actions, intermediate states, and outcome by highlighting
key interactive regions with adaptive scaling, reducing visual tokens by 76.2% on average while
preserving essential cues for redesign.

3. Evaluation insights. Task solvability is foundational yet readily improved via failure-driven
functional summarization, whereas CUA navigation is the main bottleneck. Feedback-driven
redesigns (e.g., de-stylization, higher contrast, simplified layouts) substantially raise execution
success and overall robustness.

2 RELATED WORKS

2.1 COMPUTER-USE AGENTS

Recent studies reveal the potential of LLMs beyond language modeling, with advancements in
demonstrating their ability to autonomously complete complex tasks using tool integration Schick
et al. (2023) like humans. This has prompted the development of GUI automation agents that learn
to operate digital user interfaces by imitating human trajectories. This learning is primarily achieved
in two ways: (i) by steering general multimodal foundation models Achiam et al. (2023) with in-
context human trajectory examples, and the general models perceive the UI through intermediate
representations like HTML, accessibility trees Drouin et al. (2024); Gao et al. (2023); Zheng et al.
(2024), Optical Character Recognition Lu et al. (2024), or Set of Masks Yang et al. (2023). (ii) by
pre-training specialized GUI foundation models through extensive supervised fine-tuning or rein-
forcement learning on large-scale vision-text UI data (e.g., screenshots and instructions) Xu et al.
(2024); Lin et al. (2024b); Gou et al. (2024); Lin et al. (2024a); Lu et al. (2025); Seed (2025).
While foundational, these data-driven approaches suffered from heavy requirements for high-quality
human trajectories to achieve agent performance improvements. Despite their methodological dif-
ferences, these approaches share a common, agent-centric paradigm, focusing on improving the
agent’s capabilities to navigate a static and often complex environment. Notably, we investigate a
complementary approach. Instead of adapting the agent, we explore how to dynamically tune the
environment to enhance the performance of a frozen agent.

2.2 AUTOMATIC SOFTWARE DESIGNS

Besides CUAs, there have been extensive research on software automation, automatic interface
design Lu et al. (2023); Kong et al. (2008) and generation Si et al. (2024); Beltramelli (2018);
Laurençon et al. (2024). Programmatic and semantic UI components—such as accessibility lay-
ers, ARIA tags, and declarative interface frameworks (e.g., React Native, Flutter)—illustrate how
environments can be annotated or abstracted for automated processes. Similarly, benchmarks in au-
tomated software interaction, such as WebArena Zhou et al. (2024) and GAIA Mialon et al. (2023),
assume agent operates within fixed, human-oriented systems for task automation. More recently,
embodied AI environments (e.g., ALFRED Shridhar et al. (2020), Habitat Puig et al. (2023), Mine-
Dojo Fan et al. (2022)) show how environments can be crafted to accelerate agent training, though
primarily in physical or simulated domains. These efforts highlight the growing recognition that
environments themselves can be reimagined for machine interaction, yet a systematic framework
for designing agent-centric digital environments in everyday computing remains absent.

3 AUI-GYM BENCHMARK

3.1 TASK DEFINITIONS

Design & 
Explore

Feedback

Create a Data 
Visualization 
Playground…

Agents

Coder

CUA
User Tunable GUI

❄ 🔥

Figure 2: AUI-Gym task definition. A user issues a request
(e.g., “Create a Data Visualization Playground”), and agents
(e.g., Coder or CUA) interact with the GUI through design,
exploration, and feedback. In this setup, the GUI serves as
a tunable environment.

We develop AUI-Gym for automatic
GUI development and testing. Given
a language user query Q as input and
several available agents (e.g., Coder
or CUA), the output is a complete
website that serves as a tunable en-
vironment E . We detail the input and
output respectively below.
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Input Query Task Proposal Verifier

Create a single-page app in a single 
HTML file with the following 
requirements:
- Name: Micro Habit Tracker
- Goal: Track up to 7 daily habits 

with streaks and simple charts…

>gridContainer contains

'Meditate 5 min'

>.cell[data-

date='today'].done exists

LLM
Simulation

Human
Filtering

What tasks might 
occur in this app?

Website (to be tested)

• Create a habit named 'Meditate 5 
min', then view today's column and 
the habit chart.
• For a habit with a current positive 
streak, mark today as 'Skip day' 
instead of done.

Task are rule-
based  verifiable

LLM
Verifier

Reject?

Figure 3: AUI-Gym construction pipeline. (i) An input query specifies the app requirements.
(ii) GPT-5 proposes candidate tasks with explicit goals. (iii) Humans filter and refine tasks using
domain-specific principles. (iv) A test-time Verifier reads the website HTML and generates task-
specific, rule-based checkers to validate success on the to-be-tested website.

Input Query Q. Since the outcome is a website, the user query Q should be both descriptive and
concrete. To this end, we explicitly standardize queries into the structured format illustrated above.
This supplements the query with a name, goal, functional features, and UI theme.

Input formulation

Create a single-page app in a single HTML file with the following requirements:
- Name: {Camping Gear Checklist}
- Goal: {Track gear for camping trips}.
- Features: {Checklist items, weight calculator, save lists.}
- Theme: {The UI should be outdoor-themed.}

Output website E . The website is an application-level deliverable that must be fully functional,
going beyond a static page to support navigation, transitions, button interactions, and completion of
functional goals, with the objective of maximizing the agent’s success rate. Constructing an effective
evaluation framework in this setting is non-trivial and introduces several challenges. We next present
our scalable, automatic solutions.

3.2 TASK CREATION

The full curation pipeline is illustrated in Fig.3. To construct the benchmark, we collect 52 task
prompts from OpenAI’s playground 1, covering multiple domains.

Synthesize candidate tasks T . Applications are typically designed to support a variety of relevant
tasks, and a key evaluation is whether they can smoothly handle such tasks. We leverage GPT-
5 OpenAI (2025) to synthesize diverse user requirements: given an instruction I, it generates a set
of candidate tasks T that simulate practical usage. As illustrated in Fig. 3, for the application ‘Micro
Habit Tracker’, an example task is: “Create a habit named ‘Meditate 5 min,’ then view today’s
column and the habit chart.” These tasks serve as fine-grained probes that capture the potential
demands of the environment E .

Manual quality control. As the tasks are automatically generated by GPT-5, human oversight is
required to ensure their quality. Different applications demand different characteristics: for example,
tasks for game UIs should emphasize interactivity and control, while tasks for utility tools should
capture information accessibility and workflow patterns. To this end, humans define domain-specific
principles and filter out low-quality tasks (e.g., trivial clicks) or nonsensical ones (e.g., beyond the
application scope), ambiguous query (cross-application), ensuring that the proposed tasks remain
concrete, meaningful and aligned with each domain’s design philosophy.

Data Statistics. Based on the above strategy, we obtain 30 tasks for each application. The bench-
mark spans 52 web applications across six domains, yielding a total of 1,560 tasks and enabling
comprehensive evaluation across diverse applications. As illustrated in Table 7, the domains in-
clude: (i) App, general-purpose applications; (ii) Landing, commercial and promotional interfaces;
(iii) Game, puzzle and arcade-style challenges; (iv) Interactive, dynamic user engagement with real-
time feedback; (v) Tool, specialized utilities; and (vi) Utility, everyday organizational support. This
diverse coverage captures distinct GUI challenges-—ensuring robust evaluation across varied inter-
action paradigms and functional complexities.

1https://github.com/openai/gpt-5-coding-examples
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Table 1: Examples of App domains in AUI-Gym. For each domain, we show a website created
by GPT-5, paired with 30 tasks (blue) simulating real-world usage. Each task is further linked to a
rule-based verifier (green). See full distribution and examples in Tab.7.

Domain #Apps Percen-
tage Example Instruction GUI created by GPT-5

App 11 21% Create a single-page app in a single HTML file with the following
requirements:
- Name: Healthy Meal Tracker
- Goal: Log meals and nutrition info.
- Features: Ingredient list, calories per meal, daily summary.
- The UI should be clean with food icons.
Task: Add five meals for today’s date (any names/ingredients) so
today’s meal count reaches at least 5.
Rule: #dailyMealCount >= 5

3.3 EVALUATION WITH VERIFIERS

Even with the proposed tasks, it remains challenging to determine whether a given GUI can truly
satisfy them, as websites are interactive and highly diverse environments. More importantly, since
the GUIs are generated at test time, it is difficult to design fixed standards that generalize across
all cases, given the variety of possible implementation approaches. A naive solution is to adopt
a VLM-as-Judge approach, but this inevitably introduces bias and uncertainty. Ideally, the most
reliable solution would be concrete functional checks with manual validation, yet this approach is
prohibitively expensive and labor-intensive.

Verifier(input = GUI_HTML, task):
analyze elements and states
if task solvable:

return (Yes, function_checker)
else:

return (No, None)

To address this, we define a Verifier V(·) pow-
ered by GPT-5 at test time, which takes as input a
candidate GUI together with a specific task. It an-
alyzes the available elements and states, reason-
ing over the presence of required UI components,
their properties, and potential interaction paths. If the task is deemed solvable, the Verifier produces
a task-specific verification function checker Ṽ(·) (by JavaScript) that encodes the success con-
dition by element status; otherwise, the task is discarded as invalid, preventing noisy or unachievable
goals from disrupting evaluation. Such as in Fig.3, for task “Create a habit named ‘Meditate 5 min,’
then view today’s column and the habit chart.”, based on the candidate website (right), the verifier
generate the rule gridContainer contains ’Meditate 5min’ In this way, the Verifier
is customized for each website and each task at test time, ensuring reliable validation.

Metrics. With the support of function checkers as reliable verification, we can ensure that a website
is both actionable and workable for the CUA. This further allows us to evaluate whether tasks are
completed after CUA navigation, thereby measuring task success rate within the UI environment. In
this way, we divise the following measure:

(i) CUA Success Rate (SR). This measures the average success rate over all tasks executed by CUA.
If CUA successfully completes a task, it is counted as a success; otherwise, it is counted as a failure.
Notably, if the Coder fails to yield a functional checker, the task is counted as a failure.

SR =
1

|T |
∑
t∈T

1 (task t is successfully completed) , (1)

where T denotes the set of all tasks and 1{·} is the indicator function.

(ii) Function Completeness (FC). While CUA performance reflects the ultimate goal, it may be
sparse if most CUAs fail to complete tasks. Therefore, we devise a second metric to evaluate only
whether the Coder-created website functionally supports the task (valid), independent of CUA nav-
igation. This metric reflects task validity and serves as a more basic measure.

FC =
1

|T |
∑
t∈T

1{a functional checker exists for task t}. (2)
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CUA-Coder
in

Collaboration

Coder

CUA

Output: Finalized UI

Create a single-page app in a single 
HTML file with the following 
requirements:
- Name: Micro Habit Tracker
- Goal: Track up to 7 daily habits 

with streaks and simple charts…
Verifier

Design & Explore

Feedback

Revise
Mode

Initialize 
Mode

CUA as Judge

Coder as Designers

✅ 1. Create a habit named 
'Meditate 5 min', then view 
today's column and the habit 
chart. 
❌ 2. Pick an existing habit 
with several past entries, 
rename it (e.g., from 'Drink 
Water' to 'Hydrate 8 cups'), 
then verify its historical 
checkmarks, streak, and chart 
labeling.
❌ 3. For a habit with a current 
positive streak, mark today as 
'Skip day' instead of done.

Which 
tasks are 
Solvable?

T-th Environment (T+1)-th Environment0-th Environment

Testing Environment Error Log

LeftClick 
[1191,47]

…

GUI navigation: Create a habit named 'Meditate 5 min', then view today's column 
and the habit chart.

Testing Environment Final status: Success

Task 1

Query

Figure 4: Overview of the Agent-centric User Interface (AUI) framework. The process begins
with the Coder as Designer, which initializes and iteratively revises the UI based on queries and
feedback. In parallel, the CUA as Judge executes task-driven navigation within the testing environ-
ment, generating trajectories and error logs to evaluate task solvability. A verifier ensures functional
correctness, while feedback from CUA navigation informs subsequent UI revisions. This collabora-
tion yields a finalized agent-centric UI optimized for both functionality and execution success.

4 CUA–CODER IN COLLABORATION

Overview. We present our framework for enabling collaboration between the CUA and the Coder,
consisting of two main components: the Coder as Designer while the CUA as Judge. Given a user
instructionQ, AUI generates an initial UI environment E0, which is iteratively revised through inter-
action and feedback. The framework involves two central roles: a Coder policy πCoder that proposes
and revises UI designs, and a CUA policy πCUA that explores the UI and evaluates its functionality.
We formalize this process as a Markov Design Process. The state is the current UI Et, the action
is a design update proposed by πCoder, and the transition deterministically Et+1 ← πCoder(Et,Rt).
The feedback Rt is relate to the metrics (i.e., Eq.1 and Eq.2) results achieved by the CUA when
interacting with Et, i.e., Rt ← S(Et, πCUA). The Coder is optimized to maximize the total reward
E
[∑

t γ
tRt

]
. In this formulation, the CUA acts as a user that provides actionable feedback by

testing the environment, while the Coder serves as a designer who integrates this feedback into code
revisions to iteratively improve the UI. Unlike conventional CUA setups, where the agent adapts to a
fixed environment πCUA ← E , our framework adapts the environment itself based on CUA feedback
E ← πCUA, thereby optimizing UIs for agent-native success. We illustrate the full workflow in Fig. 4
and detail each role in the following subsections.

4.1 CODER AS DESIGNERS

Recent advances in Coder OpenAI (2025); Qwen (2025); anthropic (2025) demonstrate strong capa-
bilities in generating UI applications. In our framework, we position Coders as designers, responsi-
ble not only for creating new environments but also for refining them based on feedback from CUAs.
Accordingly, Coders operate in two complementary modes: one dedicated to the initial creation of
UIs, and the other focused on their iterative improvement through CUA-guided feedback.

i. Initialization. Given a user query defined in formulation 3.1 and enriched with multiple details,
the Coder progressively generates long-context code to construct a complete HTML-rendered UI E0
from scratch, which serves as the base environment for subsequent interactions.

6
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Task Load the app for the first time and wait for the curtain reveal to complete.

Website

1280× 720

Dashboard
(an image)

Before: 6× 1280× 720→ After: 1× 1950× 975, 76.2% tokens reduction

Result Failure

Comments
The weather-theatre app requires button clicks to trigger curtain reveal, but the task expects

automatic curtain opening on first load without user interaction, creating a fundamental
mismatch between expected auto-start behavior and actual manual activation requirement.

Table 2: Illustration of CUA Dashboard. The dashboard generates one informative image that
clearly demonstrates how the CUA performs each step along with the corresponding observations,
while reducing visual tokens by cropping to the key interactive regions.

ii. Revision from Feedback. After constructing the initial environment E0, the Coder enters an
iterative refinement loop to update the UI: Et+1 ← (Et,Rt), where Rt denotes the feedback signal
expressed as a language caption, described in the next section.

4.2 CUA AS JUDGES

We employ Computer-Use Agents (CUAs) as Judges to trial and diagnose the UIs Et generated
by the Coder, providing actionable feedback for iterative redesign. Specifically, we define two
complementary forms of reward signals:

(i) Task Solvability Feedback Rtask. Before navigation begins, we verify whether a task τ is
implementable on the current UI. Let V denote the verifier in Sec. 3.3. A task is deemed solvable if
and only if V(Et, τ) = 1; otherwise it is labeled a functionality failure. This gate prevents wasted
rollouts on impossible tasks and sharpens the feedback signal. We collect all failed tasks into Tfail =
{τ : V(Et, τ) = 0} and return them to the Coder as precise indicators of missing features. The
Coder then aggregates and summarizes these failures into a language feedback signalRtask.

(ii) CUA Navigation Feedback Rnav. For solvable tasks Tsucc = {τ : V(Et, τ) = 1} , eval-
uation proceeds as a UI navigation problem. At step k, the CUA receives an observation ok (a
screenshot of the current state), emits an action ak ∈ {CLICK, TYPE, SCROLL, . . .} with an optional
reasoning trace, and the environment transitions to the next state, yielding ok+1. The trajectory

7
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Table 3: Main results on AUI-Gym per Coder. Top: Function Completeness Rate (%). Bottom:
CUA Success Rate (%).

Coder Feedback Type landing (%) game (%) app (%) utility (%) interactive (%) tool (%) overall (%)
Function Completeness

GPT-5

Baseline 53.0 77.8 70.6 63.3 73.0 70.0 67.9
+ Task Solvability 19.7 100.0 69.4 65.6 55.6 56.2 60.5
+ CUA Navigation 53.3 87.8 74.2 70.0 70.4 69.5 70.8
+ Integrated 75.3 92.2 85.2 73.3 82.6 76.7 81.5

Qwen3-
Coder-30B

Baseline 16.3 50.4 41.2 43.9 52.2 54.8 42.1
+ Task Solvability 55.0 79.6 58.5 67.8 56.3 74.3 64.3
+ CUA Navigation 23.3 50.4 38.8 49.4 39.3 55.2 41.3
+ Integrated 47.7 72.2 59.7 56.7 57.0 69.5 60.1

GPT-4o

Baseline 9.7 55.2 36.1 38.9 44.8 37.6 36.3
+ Task Solvability 23.7 55.9 52.1 55.0 58.9 65.2 50.6
+ CUA Navigation 8.3 55.2 28.2 34.4 26.3 35.7 30.4
+ Integrated 16.3 68.5 36.4 51.7 51.1 41.4 43.1

CUA Success Rate

GPT-5

Baseline 34.7 24.8 27.3 14.4 18.1 21.9 24.5
+ Task Solvability 16.3 39.3 26.7 16.1 20.7 11.9 22.6
+ CUA Navigation 17.7 43.3 30.0 21.1 21.1 17.6 25.7
+ Integrated 40.7 27.4 31.5 22.2 14.1 12.9 26.0

Qwen3-
Coder-30B

Baseline 5.3 9.3 9.1 11.7 7.0 1.4 7.3
+ Task Solvability 14.7 42.2 19.1 14.4 11.1 4.3 18.3
+ CUA Navigation 6.7 20.7 9.1 11.1 12.2 11.4 11.7
+ Integrated 23.7 30.7 22.4 7.8 9.3 13.8 19.0

GPT-4o

Baseline 4.7 12.6 12.4 6.7 9.3 5.7 8.8
+ Task Solvability 8.7 18.5 19.1 5.6 8.5 22.9 14.1
+ CUA Navigation 5.7 31.5 10.0 8.3 10.4 6.7 12.3
+ Integrated 10.3 27.4 13.9 13.3 15.2 16.7 16.1

H = (o0, a0, . . . , oK) terminates when either (a) the function checker signals success Ṽ(Et, τ) = 1,
or (b) a step limit is reached, which we record as a failure. We log full trajectories—observations,
actions, and intermediate rationales—and use them to construct targeted feedback for UI refinement.

CUA Dashboard for Compact Feedback. Raw trajectories H are long and interleaved, making
them ill-suited for direct ingestion by the Coder. We therefore distill each rollout into an CUA
Dashboard (Fig. 2): a single, fixed-resolution (1920 × 1080) canvas that compresses key evidence
from the trial. Rather than storing full frames, we crop and tile only interactive regions touched
by the CUA, allocating dynamic region sizes based on step order to preserve temporal structure.
This yields a substantial reduction in redundancy (e.g., a 76.2% drop in visual content) while retain-
ing the cues needed to localize failure modes (missed affordances, hidden state, ambiguous labels)
and success paths at a glance. The dashboard provides a step-by-step visual trace aligned with ac-
tions, making error locations immediately visible. Finally, we convert the dashboard into a concise
language summaryRnav by passing it to the Coder and as the feedback used in the revision rule.

5 EXPERIMENTS

5.1 SETTINGS

Baselines. For the Coder, we select representative models including GPT-5 OpenAI (2025), GPT-
4o Hurst et al. (2024), and the open-source Qwen3-Coder Qwen (2025). For the CUA, we adopt
UI-TARS-1.5-7B Seed (2025) and Operator openai (2025). UI-TARS-1.5-7B is a lightweight yet
strong performer among open models with high efficiency, and Operator is among the state-of-
the-art close-source API-based CUAs. The experiment results highlight that the performance gain
brought by our proposed method is universal for both lightweight and powerful CUAs.

5.2 MAIN RESULTS

Table 3 reports results across six domains for three coders. Several key findings emerge: (i) Func-
tion Completeness. Revision based on task solvability feedback leads to substantial gains, con-
sistently boosting the overall functionality completeness for all coders. After applying integrated

8
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revision for GPT-5, the function completeness is increased to 81.5% from 67.9%, reaching the high-
est. Notably, the landing, game and app domains have dramatic improvements, with the maximum
improvements of 38.7%. Interestingly, Revision based on task solvability feedback or CUA nav-
igation feedback alone does not guarantee function completeness improvents, but the integrated
revision combining these two components bring stable improvents on all domains for all coders,
highlighting the strength of our design. Moreover, fixing unresolved functionalities alone also ben-
efits CUA task solving, yielding a 4.8% average improvement on CUA evaluation, highlighting the
mutual reinforcement between task solvability and CUA navigation.

(ii) CUA performance. Open-source CUAs initially perform poorly, with an average overall CUA
success rate of only 13.5%. However, our framework can consistently improve the CUA success
rate, with an average 6.8% improvements. Interestingly, our framework bring large improvements
to weak coders such as Qwen3-Coder-30B and GPT-4o, with a maximum overall improvement of
11.7%, showcasing that our framework can greatly empower weak models. Overall, these results
demonstrate the effectiveness of our framework: task solvability feedback guides to robust UI de-
sign, while leveraging CUA navigation feedback optimizes interfaces toward agent-centric success.

6 KEY ABLATIONS

Effects by different CUAs choices. In Fig. 5, we compare UI-TARS and Operator as CUA policies
within the integrated revision loop. We evaluate with two coders—GPT-5 (closed-source, stronger)
and Qwen3-Coder-30B (open-source, weaker)—to cover both capability and licensing spectra. Both
CUA policies yield comparable gains in functional completeness, with UI-TARS slightly outper-
forming on Qwen3-Coder-30B. Although the task-solvability signal is identical across CUAs, UI-
TARS tends to fail more tasks, thereby surfacing richer failure cases and driving greater function-
oriented revisions. For CUA success rate (SR), Operator delivers larger gains with the stronger
coder (GPT-5), while improvements are similar across CUAs for the weaker coder. This suggests
Operator’s navigation strengths are best realized on more complex UIs, whereas weaker coders often
produce simpler interfaces. Overall, lightweight open-source CUAs like UI-TARS are an efficient
and effective choice for harvesting navigation feedback in practice.

See the Appendix and for more ablations (Sec.A) and quantification examples (Sec.E).
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Figure 5: Effect by different Coders, including open-source UI-TARS and SoTA Operator.

7 CONCLUSION

We introduced AUI-Gym, a new benchmark for automatic GUI development (52 applications; 1,560
tasks with programmatic checkers), and a Coder–CUA collaboration framework that recasts UI de-
sign as an agent-native loop, with the Coder as Designer and the CUA as Judge. Central to this loop
is the CUA Dashboard, which compresses long navigation trajectories into compact, interpretable
summaries that convert raw interactions into actionable revision signals. Empirically, task solvabil-
ity is foundational—readily improved by failure-driven functional summarization—whereas CUA
navigation remains the primary bottleneck; feedback-driven redesigns (e.g., de-stylization, higher
contrast, simplified layouts) consistently raise execution success and robustness, highlighting the
value of designing for agents rather than merely adapting human-centric interfaces.
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ETHICS STATEMENT

This work proposes a UI generation benchmark AUI-Gym, a multi-agent framework AUI and does
not involve sensitive or private information. Human annotation was conducted with informed con-
sent and fair compensation. We see minimal risk of harm; potential misuse (e.g., generating mis-
leading visualizations) is noted, and we release our benchmark strictly for research purposes.

REPRODUCIBILITY STATEMENT

We provide details of dataset construction, evaluation protocols, and model settings in the main text
and appendix. All data used are publicly available, and our benchmark, code, and evaluation scripts
will be released upon publication to facilitate replication of our results.
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A EXPERIMENT RESULTS

Below, we show the experiment results additional to the results showcased in the main paper.

Table 4: Main results per model (Operator as CUA): CUA Success Rate (Function Completeness
Rate).

Model Version landing game app utility interactive tool overall

GPT-5 Baseline 34.7% (53.0%) 24.8% (77.8%) 27.3% (70.6%) 14.4% (63.3%) 18.1% (73.0%) 21.9% (70.0%) 24.5% (67.9%)
+ Integrated 41.3% (75.3%) 42.6% (92.2%) 38.8% (85.2%) 27.8% (73.3%) 10.7% (82.6%) 21.4% (76.7%) 31.5% (81.5%)

Qwen3-
Coder-30B

Baseline 5.3% (16.3%) 9.3% (50.4%) 9.1% (41.2%) 11.7% (43.9%) 7.0% (52.2%) 1.4% (54.8%) 7.3% (42.1%)
+ Integrated 10.0% (47.0%) 27.0% (68.9%) 19.1% (60.3%) 20.6% (55.6%) 13.7% (57.4%) 23.8% (62.9%) 18.6% (58.5%)

GPT-4o Baseline 4.7% (9.7%) 12.6% (55.2%) 12.4% (36.1%) 6.7% (38.9%) 9.3% (44.8%) 5.7% (37.6%) 8.8% (36.3%)
+ Integrated 15.7% (19.0%) 35.9% (59.3%) 14.5% (44.5%) 15.0% (47.8%) 5.9% (50.7%) 13.8% (46.2%) 16.9% (43.8%)

As shown in the Table 4, when using operator as CUA policy for integrated revision, consistent
improvements for both function completeness and CUA success rate can be observed. Moreover,
compared to the CUA success rate showcased in Table 3, it can be observed that Operator has higher
CUA success rate than UI-TARS in hard domains such as game and app that requires responsive and
complex intractions, showcasing its strong navigation capability.

Table 5: Commenter Ablations per model: CUA Success Rate (Function Completeness Rate).

Model Variant landing game app utility interactive tool overall

GPT-5
Text-only 24.0% (50.7%) 31.1% (87.8%) 21.2% (69.4%) 16.1% (55.6%) 8.9% (59.3%) 6.2% (43.3%) 18.7% (62.1%)
Screenshot-only 17.3% (30.3%) 16.7% (65.6%) 12.4% (42.7%) 15.6% (38.3%) 5.2% (27.8%) 9.5% (46.7%) 12.8% (41.7%)
Dashboard 17.7% (53.3%) 43.3% (87.8%) 30.0% (74.2%) 21.1% (70.0%) 21.1% (70.4%) 17.6% (69.5%) 25.7% (70.8%)

Qwen3-
Coder-30B

Text-only 8.0% (18.3%) 20.7% (61.9%) 7.3% (42.4%) 8.3% (54.4%) 10.7% (48.9%) 16.2% (57.1%) 11.7% (45.6%)
Screenshot-only 9.3% (20.7%) 11.9% (63.7%) 5.2% (34.5%) 10.6% (40.6%) 7.4% (55.9%) 5.2% (37.6%) 8.1% (41.7%)
Dashboard 6.7% (23.3%) 20.7% (50.4%) 9.1% (38.8%) 11.1% (49.4%) 12.2% (39.3%) 11.4% (55.2%) 11.7% (41.3%)

GPT-4o
Text-only 7.7% (13.0%) 14.8% (57.0%) 12.7% (34.8%) 2.8% (37.8%) 15.9% (39.3%) 7.6% (29.0%) 10.8% (34.8%)
Screenshot-only 4.7% (10.3%) 15.6% (43.7%) 10.6% (31.2%) 6.1% (45.6%) 5.6% (34.8%) 7.1% (37.6%) 8.5% (32.5%)
Dashboard 5.7% (8.3%) 31.5% (55.2%) 10.0% (28.2%) 8.3% (34.4%) 10.4% (26.3%) 6.7% (35.7%) 12.3% (30.4%)

Table 5 demonstrates the results when using different types of commenters for revision based on
CUA navigation feedback. From the results, it can be inferred that dashboard is capable to provide
comprehensive visual and textual cues derived from the CUA policy trajectories, but requiring the
commenter to have strong visual perception.

Table 6 demonstrates that why VLM evaluation on CUA task trajectory is unreliable. It can be
observed that the the compared to rule-based oracle evaluation, the VLM evalation tends to judge the
CUA policy outcome as failure, thus having very low balanced accuracy, recall and F1. Moreover,
the low Cohen’s κ indicates very weak agreement of VLM evaluation compared to rule-based oracle
evaluation. This indicates that VLM evaluation on the final screenshot only is unreliable, and may
requires more screenshots along the CUA policy task trajectory for more reliable evaluation, leading
to much higher computational cost.
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Table 6: VLM evaluation on final screenshot only is unreliable. Given the final screenshot of
CUA trajectory and the expected outcome, the accuracy of VLM evaluation is only slightly above
the naive all-fail baseline; Balanced Accuracy is near 0.55; Recall/F1 and Cohen’s κ are low.

Metric Overall GPT-5 Qwen2.5-VL-72B GPT-4o

Naive all-fail baseline accuracy 0.720 0.720 0.720 0.720
Accuracy vs. oracle 0.735 0.736 0.738 0.732
Balanced accuracy 0.556 0.549 0.568 0.552
Precision (Pass) 0.616 0.660 0.612 0.589
Recall (Pass) 0.147 0.121 0.178 0.142
F1 (Pass) 0.237 0.205 0.276 0.229
Cohen’s κ 0.145 0.128 0.175 0.132

B AGENT’S PROMPTS

Task Proposer Prompt. Below, we show the prompt used by the Task Proposer.

Task Proposer Prompt

Propose a comprehensive set of 30 diverse, realistic user tasks for the following {tag type} application:

Application: {app title}
Description: {app description}

Each task should be:
- Clear and specific in its description
- Represent realistic user scenarios
- Cover different complexity levels and use cases
- Grounded in an observable outcome: The task’s completion must be marked by a clear and unambiguous
change in the application’s state or interface. The expected outcome description must precisely define
this terminal state.
- Avoid single element grounding (focus on complete workflows)
- Test the application’s core functionality effectively

{tag specific content}

Tag Philosophy Template:

game:
Focus on GAME-SPECIFIC user tasks:
1. Playing complete game rounds or levels
2. Achieving high scores and personal bests
3. Completing specific game objectives or challenges
4. Using game controls and input methods
5. Navigating game menus and settings
6. Restarting games and trying different strategies
7. Progressing through difficulty levels

Additional task requirements:
- Focus on actual gameplay actions and goals
- Include winning and losing scenarios
- Cover different skill levels and strategies
- Test game restart and replay functionality
- Emphasize user enjoyment and engagement

tool:
Focus on TOOL-SPECIFIC user tasks:
1. Creating or generating content using the tool
2. Inputting data in various formats and types (typed/pasted text or on-page controls)

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

3. Transforming and processing information
4. Previewing results in-page (no file uploads/downloads)
5. Using tool-specific features and options
6. Working with both simple and complex inputs
7. Completing end-to-end workflows within the page

Additional task requirements:
- Focus on practical use cases and workflows
- Include both basic and advanced tool usage
- Cover different input types and scenarios without external files
- Verify visible in-page outputs or status changes in the DOM
- Emphasize real-world problem solving

utility:
Focus on UTILITY-SPECIFIC user tasks:
1. Setting up and configuring the utility for personal use
2. Adding, organizing, and managing data or items
3. Tracking progress and monitoring status over time
4. Using timers, reminders, and scheduling features
5. Customizing settings and preferences
6. Completing daily or routine activities
7. Accessing and updating information quickly

Additional task requirements:
- Focus on everyday productivity scenarios
- Include setup and personalization tasks
- Cover routine and habitual usage patterns
- Test organization and tracking features
- Emphasize practical daily life applications

interactive:
Focus on INTERACTIVE-SPECIFIC user tasks:
1. Exploring and experimenting with interactive elements
2. Creating and manipulating visual or audio content
3. Adjusting parameters and settings in real-time
4. Playing with creative tools and features
5. Experiencing immersive visual or audio effects
6. Using touch, click, and gesture interactions
7. Customizing appearance and behavior

Additional task requirements:
- Focus on creative and exploratory activities
- Include experimentation and play scenarios
- Cover different interaction methods
- Test customization and personalization
- Emphasize sensory and aesthetic experiences

landing:
Focus on LANDING-SPECIFIC user tasks:
1. Browsing and exploring page content and sections
2. Reading and understanding key information
3. Clicking on call-to-action buttons and links
4. Navigating through different page sections
5. Finding contact information and ways to engage
6. Viewing team, product, or service details
7. Accessing additional resources and links

Additional task requirements:
- Focus on visitor browsing and exploration
- Include information-seeking behaviors
- Cover engagement and conversion actions
- Test navigation and content discovery
- Emphasize typical visitor journey scenarios

14
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app (default/other):
Focus on APP-SPECIFIC user tasks:
1. Creating, editing, and managing content or data
2. Using multiple features in combination
3. Setting up and personalizing the application
4. Completing complex multi-step workflows
5. Organizing and categorizing information
6. Accessing and updating saved information

Additional task requirements:
- Focus on practical in-app usage
- Include multi-feature workflows and combinations
- Cover content creation and management
- Test personalization and customization
- Verify completion via visible state changes in the DOM (no external integrations)

Task Categorization Framework:
Each task must be categorized into one of the following three archetypes, which provides a structured
approach to evaluating different facets of the application’s functionality:
- ”core function”: Tests a single, primary feature in isolation.
- ”user workflow”: Tests a sequence of features that represent a complete user goal.
- ”edge case”: Tests non-standard inputs, boundary conditions, or less common interaction patterns.

Please respond in JSON format:

{
"app_name": "<app_name>",
"tags": ["<tag1>", "..."],
"tasks": [
{
"id": 1,
"description": "Clear, specific task description",
"category": "core_function|user_workflow|edge_case",
"expected_outcome": "What should happen when task completes"

}
]

}

Coder Prompt. Below, we show the prompt used by the Coder.

Coder Prompt

[Initial Website Generation]

Create a single-page web application based on the following specification:

{instruction}

Requirements:
1. Create a complete HTML file with embedded CSS and JavaScript
2. The app should be fully functional and interactive
3. Use modern HTML5, CSS3, and vanilla JavaScript (no external libraries)
4. Include proper semantic HTML structure
5. Make the UI clean, responsive, and user-friendly
6. Add unique IDs to interactive elements for easier automation testing
7. Ensure the app works in a 1280x720 viewport

Please generate the complete HTML file:

[Revision from CUA Failures — Core Prompt]
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You are tasked with improving a web application based on detailed failure analysis from auto-
mated testing.

## CONTEXT
Application: {app name}
Model: {model name}
Total Failed Tasks: {len(failed tasks)}
Failure Categories: {list(failure categories.keys())}
Original HTML Length: {len(initial html.strip())}

## OUTPUT FORMAT
Generate a single, complete, and self-contained HTML file. The file must be fully functional, including
all necessary CSS and JavaScript, from ‘!DOCTYPE html‘ to ‘/html‘. Do not use placeholders or truncate
the code.

## ORIGINAL INITIAL WEBSITE (FULL)

{initial_html}

## COMMENTER UI ANALYSIS
{(failure analysis or ”No visual UI analysis available”).strip()}

{(non regression contract prompt or ”).strip()}

## IMPROVEMENT REQUIREMENTS

### 1. Core Issues to Address
Based on the failure analysis, you must:
- Identify missing DOM elements that tasks expect to exist
- Add missing JavaScript functionality for user interactions
- Fix timing issues that prevent task completion
- Ensure proper event handling and state management
- Add missing visual feedback and UI updates

### 2. Specific Fixes Needed
For each failed task category:
- **basic usage**: Ensure fundamental interactions work (clicking, displaying, updating)
- **workflow**: Support complete user workflows and multi-step processes
- **advanced feature**: Implement sophisticated UI behaviors and animations
- **edge case**: Handle unusual inputs and boundary conditions properly

### 3. Technical Implementation Guidelines
- Preserve ALL existing working functionality from initial version
- Add missing HTML elements with unique IDs for automation
- Implement complete JavaScript event handlers and state updates
- Ensure synchronous UI updates for immediate feedback
- Do NOT introduce new input constraints that would block task inputs implied by the tasks (e.g., accept
plain text or non-HTTP payloads if tasks need them). Validation must be permissive and never reduce
what the initial version allowed.
- Do NOT auto-trigger flows on page load that would change initial states relied upon by tasks (e.g.,
auto-generation, auto-download, auto-navigation). Initial state should be neutral and idle.
- Keep critical controls visible within a 1280x720 viewport without scrolling. Avoid multi-panel ”hub”
layouts; prefer single-view, compact layouts that fit important controls on screen.
- Avoid adding non-essential animations/transitions; prioritize high visibility and clarity over decoration.
- Make sure timers, counters, and dynamic content work correctly

### 4. DOM Structure Requirements
- Every interactive element MUST have a unique ID
- Form controls must have proper event listeners
- Dynamic content areas must update immediately on state changes
- Visual feedback must be implemented for all user actions

### 5. JavaScript Functionality Requirements
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- All user interactions mentioned in failed tasks must be fully implemented
- State changes must be reflected in the DOM immediately
- Event handlers must properly update all related UI elements
- Any game logic, scoring, timing must be complete and functional

Surgical Revision Policy
- Preserve existing IDs; do not rename or remove working elements from initial version.
- Avoid large rewrites. Patch only the functions, event handlers, and minimal markup necessary to satisfy
the failed/unsupported tasks.
- Preserve working logic from initial version; do not regress features that already work.
- Reuse existing elements/IDs for state wherever possible; only add new IDs if strictly necessary to
expose the state of new logic.
- Preserve initial version immediacy semantics. Do NOT introduce extra confirmation steps as prerequi-
sites where initial version achieved completion via immediate interactions. Implement functional logic
first, then expose proxies from the same code path; never update proxies without the underlying state
change.

Commenter JSON (if provided)
- If the COMMENTER UI ANALYSIS is a JSON object, prioritize applying entries in ‘action-
able changes‘ precisely.
- Keep changes surgical and bounded by those actionable suggestions; do not broaden scope beyond them.

## OUTPUT REQUIREMENTS
Generate a COMPLETE, FULLY FUNCTIONAL HTML file that:
1. Addresses ALL failure points identified in the analysis
2. Maintains existing successful functionality from initial version
3. Implements missing features causing task failures
4. Provides proper DOM elements for automation testing
5. Ensures immediate UI feedback for all user actions

[Revision — Agent-Centric Design Principles]

While improving functionality, apply the following design principles to optimize the UI for auto-
mated agents. The goal is functionality and testability, not human aesthetics.

### A. Visual Clarity and Simplicity
- Use a simple color scheme (e.g., black text on a white background).
- Avoid decorative elements that do not serve a functional purpose, such as animations, gradients, or
shadows.
- Establish a clear visual hierarchy using typography and spacing. Logically group related controls.

### B. Robust Agent Interaction
- All interactive controls must be clearly labeled and sized appropriately to be easily and unambiguously
targeted by automation tools.
- Support keyboard-based interaction for all core functionality. Navigable elements should have clear
focus indicators.
- Prioritize immediate state updates upon interaction. Avoid complex, multi-step confirmation dialogs for
actions where direct manipulation is sufficient.
- All critical functionality should be accessible within a standard 1280x720 viewport without requiring
scrolling.

### C. Transparent State Management
- The DOM must serve as a reliable, single source of truth for the application’s state.
- Ensure that any significant state change (e.g., a result is generated, a calculation is complete) is clearly
and synchronously reflected in the DOM. This can be achieved by updating element attributes, text
content, or values.
- Interactive elements and state indicators must have unique and stable IDs to facilitate reliable testing
and interaction.

### D. Versatile Input Handling
- For continuous inputs (like sliders), provide alternative discrete control mechanisms (e.g., step buttons,
direct text input). No interaction should rely solely on pointer-dragging.
- Input validation should be permissive and should not block inputs that an automated task might
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reasonably provide.
- Distinguish between actions that cause immediate, reversible state changes (e.g., selecting an option)
and those that trigger irreversible, multi-step processes (e.g., submitting a form).

### E. Behavior Preservation
- Simplifying the visual design must not alter the core interaction logic.
- Any user action that was immediate in initial version must remain immediate in the revised version.

Please generate the complete improved HTML file:

[Revision from Unsupported Tasks]

You are tasked with improving a web application to support additional tasks that are currently un-
supported.

## CONTEXT
Application: {app name}
Model: {model name}
Total Unsupported Tasks: {len(unsupported tasks)}
Original HTML Length: {len(initial html.strip())}

## OUTPUT FORMAT
Generate a single, complete, and self-contained HTML file. The file must be fully functional, including
all necessary CSS and JavaScript, from ‘!DOCTYPE html‘ to ‘/html‘. Do not use placeholders or truncate
the code.

## ORIGINAL INITIAL WEBSITE (FULL)

{initial_html}

## UNSUPPORTED TASKS ANALYSIS
{unsupported summary}

## CODE PRESERVATION CONTRACT (Non-Regression)
{” if ablate no contract else (non regression contract prompt or ”).strip()}

## IMPROVEMENT REQUIREMENTS

### 1. Task Support Issues to Address
Based on the unsupported task analysis, you must ADD missing functionality:
- Add missing DOM elements that tasks expect to exist
- Implement missing JavaScript functionality for user interactions
- Add missing form controls and input handling
- Implement missing display areas and visual feedback
- Add missing navigation and UI components

### 2. Implementation Guidelines
- PRESERVE all existing working functionality from initial version
- ADD new HTML elements with unique IDs for automation
- IMPLEMENT complete JavaScript event handlers for new features
- ENSURE new UI elements are properly styled and visible
- DO NOT introduce new input constraints that would block task inputs implied by tasks; validation must
be permissive and must not reduce what the initial version allowed.
- DO NOT auto-trigger flows on load that change initial states (no auto-generation, auto-download,
auto-navigation). Start in a neutral, idle state.
- FIT critical controls within a 1280x720 viewport without scrolling. Avoid multi-panel hub layouts and
unnecessary panels that push controls below the fold.
- IMPLEMENT missing workflows and user interaction patterns

### 3. DOM Structure Requirements
- Every new interactive element MUST have a unique ID
- New form controls must have proper event listeners
- New content areas must update appropriately on state changes
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- New visual feedback must be implemented for added interactions

### 4. JavaScript Functionality Requirements
- All new user interactions mentioned in unsupported tasks must be fully implemented
- New state changes must be reflected in the DOM immediately
- New event handlers must properly update all related UI elements
- Any new game logic, scoring, timing must be complete and functional

## OUTPUT REQUIREMENTS
Generate a complete and fully functional HTML file that:
1. Maintains all existing functionality from initial version.
2. Adds the missing functionality required to support the new tasks.
3. Implements all necessary DOM elements and JavaScript for task support.
4. Ensures all new features are robust and testable.

Commenter JSON (if provided)
- If upstream provides a commenter JSON analysis with ‘actionable changes‘, follow those changes first,
precisely and surgically.

Surgical Revision Policy
- Preserve existing IDs; do not rename or remove working elements from initial version.
- Avoid large rewrites. Patch only the functions, event handlers, and minimal markup necessary to satisfy
the failed/unsupported tasks.
- Preserve working logic from initial version; do not regress features that already work.
- Reuse existing elements/IDs for state wherever possible; only add new IDs if strictly necessary to
expose the state of new logic.
- Preserve initial version immediacy semantics. Do NOT introduce extra confirmation steps as prerequi-
sites where initial version achieved completion via immediate interactions. Implement functional logic
first, then expose proxies from the same code path; never update proxies without the underlying state
change.

Please generate the complete improved HTML file:

CUA Policy Prompt. Below, we show the prompt used by the CUA Policy.

CUA Policy Prompt

You are a GUI agent. You are given a task and your action history, with screenshots. You need to perform
the next action to complete the task.

## Output Format

Thought: ...
Action: ...

## Action Space

click(point=’x1 y1’)
left double(point=’x1 y1’)
right single(point=’x1 y1’)
drag(start point=’x1 y1’, end point=’x2 y2’)
hotkey(key=’ctrl c’) # Split keys with a space and use lowercase. Also, do not use more than 3 keys in
one hotkey action.
type(content=’xxx’) # Use escape characters \’, \”, and \n in content part to ensure we can parse the
content in normal python string format. If you want to submit your input, use \n at the end of content.
scroll(point=’x1 y1’, direction=’down or up or right or left’) # Show more information on the ‘direction‘
side.
wait() #Sleep for 5s and take a screenshot to check for any changes.
finished(content=’xxx’) # Use escape characters \’, \”, and \n in content part to ensure we can parse the
content in normal python string format.
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## Note
- Use {language} in ‘Thought‘ part.
- Write a small plan and finally summarize your next action (with its target element) in one sentence in
‘Thought‘ part.

## User Instruction
{instruction}

Dashboard Commenter Prompt. Below, we show the prompt used by the Dashboard Commenter.

Dashboard Commenter Prompt

You are diagnosing UI design issue that caused a task failure for a Computer-Use Agent (CUA). Your
goal is to conduct a root cause analysis based on a core set of design principles and output a structured
diagnostic report in JSON format. This report will guide the next iteration of UI code generation.

You will be provided with two images:
1. The current website state (Resolution: {width}x{height})
2. A storyboard summarizing the failed task attempt, arranged as a grid of step screenshots (variable
count) fitted into a 1920x1080 canvas

Your analysis must be guided by the following Agent-Centric UI Design Principles:

1. State Visibility: Any significant state change resulting from an agent’s action must be clearly
and synchronously reflected in the DOM. This can be achieved by updating element attributes, text
content, or values. Ambiguous or out-of-band feedback (like temporary toast notifications) is considered
a violation.
2. Interaction Robustness: All UI components critical for task completion must be visible and actionable
within a standard 1280x720 viewport without requiring scrolling. Elements should have clear, stable
identifiers.
3. Input Permissiveness: Input fields and controls should accept the most general data format required for
the task, avoiding overly restrictive client-side validation that may block agent inputs.
4. Predictable Behavior: The UI should remain in a stable, neutral state upon loading.

Based on these principles, analyze the provided materials and output a compact JSON object.

Output strictly as JSON with these keys only:
- issues: An array of up to 3 short strings identifying the primary UI problem categories, derived from the
violated principles (e.g., ”visibility”, ”interaction”, ”feedback”).
- actionable changes: An array of 3–6 diagnostic statements. Each statement must identify a specific UI
element (referencing selectors/IDs) and explain which design principle it violated, providing a root cause
for the failure. Example: ”The element ’#submit-btn’ violates the Interaction Robustness principle, as it
is not visible in the default viewport.”
- fit within screen: A diagnostic boolean flag. Set to ‘true‘ only if the primary reason for failure was a
violation of the Interaction Robustness principle concerning viewport visibility.
- avoid regressions: A confirmation flag, set to ‘true‘, signifying that the diagnosis adheres to a ”minimal
intervention” philosophy. This confirms the analysis focuses solely on fixing the observed failure without
disturbing unrelated, functional parts of the UI.

Respond with JSON only, no extra text.

C EXPERIMENT DETAILS

For the GPT-5 experiments, we configured GPT-5 with high verbosity and high reasoning effort for
coding and low verbosity and minimal reasoning effort for commenting. For the Qwen experiments,
we used the Qwen3-Coder-30B-A3B-Instruct model for coding and Qwen2.5-VL-72B-Instruct for
commenting. Experiments that involve the CUA policy used UI-TARS-1.5-7B for the UI-TARS
CUA and OpenAI Computer-Use-Preview for the Operator CUA. The Task Proposer and the Verifier
were both GPT-5 with high verbosity and high reasoning effort. In the CUA policy test we set the
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maximum steps to 20 to prevent infinite loops and we ran the environment with Playwright. The
CUA performed coordinate-based Computer Use actions only and did not interact with elements
directly. This design makes the evaluation more challenging and more informative for UI design,
since element layout and visibility become critical.

Effects by Refinement Round. As shown in the figure 8, iteratively applying revision can con-
sistently bring improvements on the function completeness for all coders. Interestingly, it can be
observed that the CUA success rate of GPT-5 coder may drop after repeated revision, while Qwen3-
Coder-30B and GPT-4o can consistently gain from repeated revision. This indicates that the revision
improvement may saturate for strong coders, but weak coders can be improved with iterative feed-
back and revisions.
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Figure 6: Ablation comparison of different commenters across two evaluation dimensions.

Figure 6 demonstrates the results when using different types of commenters for revision based on
CUA navigation feedback. Besides dashboard commenter, there are two additional commenters
which either use text only or screenshot only for CUA policy trajectory information. Text-only com-
menter will only percept the same text information used in the dashboard, i.e., task description, task
expected outcome, CUA thought and action, etc. Screenshot-only commenter will only percept the
same screenshots used in the dashboard. Besides the CUA trajectory information, all the three com-
menters will see the full UI screenshot for UI analysis. It can be observed that dashboard can bring
significant improvements for GPT-5 commenter and coder, but its performance is slightly lower than
text-only commenter for Qwen commenter and coder. This indicates that dashboard offers compre-
hensive visual and textual cues for revision, which in turn requires strong visual perception to fully
capture the information; meanwhile, a text-only commenter remains a reliable proxy for commenters
with weaker perception.

D FULL STATISTICS AND EXAMPLES

Below, we display the full statistics and corresponding examples.

E QUALITATIVE ANALYSIS

In this section, we present four representative revision cases—artisan-csa, color-match-challenge,
csv-to-charts, and festival-lights-show. Each row displays the initial UI alongside its revised ver-
sions, evaluated under two criteria: Function Test and CUA Test. Across the four cases, the revi-
sions demonstrate distinct patterns of improvement. Revisions based on the Function Test, which
addresses unsupported tasks, tend to focus on adding underlying functionality, sometimes with sub-
tle visual changes. For example, the festival-lights-show revision added a crucial “Running” state
indicator, and the csv-to-charts revision added a button to select a delimiter. In contrast, revisions
based on the CUA Test consistently yield more significant visual modifications geared towards agent
accessibility. For most websites, this meant adding buttons with clear boundaries and visual hints.
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Table 7: Distribution and examples of six domains in AUI-Gym. For each domain, we show a
website created by GPT-5, paired with 30 tasks (blue) simulating real-world usage. Each task is
further linked to a rule-based verifier (green).

Domain #Apps Percen-
tage Example Instruction GUI created by GPT-5

App 11 21% Create a single-page app in a single HTML file with the following
requirements:
- Name: Healthy Meal Tracker
- Goal: Log meals and nutrition info.
- Features: Ingredient list, calories per meal, daily summary.
- The UI should be clean with food icons.
Task: Add five meals for today’s date (any names/ingredients)
so today’s meal count reaches at least 5.
Rule: #dailyMealCount >= 5

Landing 10 19% Create a single-page app in a single HTML file with the following
requirements:
- Name: Nonprofit Impact Report
- Goal: Show measurable results of programs.
- Features: Infographics, success stories, donation link.
- The UI should be inspiring and visually engaging.
Task: Navigate to Success Stories and expand the first story
card to reveal the full narrative.
Rule: #slides .slide:first-child
button[aria-expanded] == ’true’ OR #slides
.slide:first-child.expanded exists

Game 9 17% Create a single-page app in a single HTML file with the following
requirements:
- Name: Typing Rain
- Goal: Type falling words before they reach the bottom.
- Features: Increasing difficulty, accuracy tracker, score.
- The UI should be the city background with animated raindrop
words.
Task: In a single run, achieve a score of at least 500 points.
Rule: #scoreValue >= 500

Interactive 9 17% Create a single-page app in a single HTML file with the following
requirements:
- Name: Festival Lights Show
- Goal: Control a virtual light show.
- Features: Color changes, patterns, music sync.
- The UI should be vibrant and dynamic.
Task: Enable Music Sync, start playback, then pause the
built-in track; confirm audio status is Paused while Music
Sync remains enabled.
Rule: #audioStatus == ’Paused’ AND #syncBadge
!= ’Sync: Off’

Tool 7 13% Create a single-page app in a single HTML file with the following
requirements:
- Name: Customer Journey Flow
- Goal: Sketch customer journey stages and connections.
- Features: Add/edit stages, connect nodes, view JSON of the flow.
- The UI should be simple and full-screen.
Task: Create ’Social Ad’ and ’Search Ad’ leading to ’Landing
Page’, then to ’Consideration’ and ’Purchase’ (two branches
merging into one path).
Rule: #io-json contains ’Social Ad’ AND
#io-json contains ’Search Ad’ AND #io-json
contains ’Landing Page’ AND #io-json
contains ’Consideration’ AND #io-json
contains ’Purchase’

Utility 6 12% Create a single-page app in a single HTML file with the following
requirements:
- Name: Pomodoro
- Goal: Time focus and break sessions.
- Features: Focus/break modes, timers, basic controls.
- The UI should be minimal and distraction-free.
Task: Start a short break and verify the mode label and
starting time show a 5-minute break.
Rule: #lblSession == ’Short Break’ AND
#lblTime contains ’05:00’

In both color-match-challenge and csv-to-charts, both revision types improved accessibility by pre-
senting more information and controls upfront, reducing the need for scrolling. A key CUA-friendly
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Initial UI w. Task Solvability Feedback w. CUA Navigation Feedback

(a) artisan-csa: Create a single-page app, in a single HTML file, for a community-supported agriculture
program with a hand-drawn, watercolor aesthetic.

Initial UI w. Task Solvability Feedback w. CUA Navigation Feedback

(b) color-match-challenge: Create a single-page app in a single HTML file for a fast-paced “color
match” game. - Show a word (e.g., “RED”) in a random font color — player must click the correct color button
(not the word meaning). - Keep score based on correct answers within 30 seconds. - Use large typography,
color-coded buttons, and smooth button press animations.

Initial UI w. Task Solvability Feedback w. CUA Navigation Feedback

(c) csv-to-charts: Create a single-page app in a single HTML file with the following requirements: -
Name: Data Visualization Playground - Goal: Upload CSV and generate charts. - Features: Chart type selector,
color customization, save as image. - The UI should be modern with a focus on charts.

Initial UI w. Task Solvability Feedback w. CUA Navigation Feedback

(d) festival-lights-show: Create a single-page app in a single HTML file with the following require-
ments: - Name: Festival Lights Show - Goal: Control a virtual light show. - Features: Color changes, patterns,
music sync. - The UI should be vibrant and dynamic.

Figure 7: Qualitative comparison of UI v.s. AUI. Each row shows an initial UI (left), its revision
based on function (middle), and its revision based on CUA-failed tasks (right).

adaptation is seen in festival-lights-show, where “increase” and “reduce” buttons were added as a
complement to sliders, providing a more direct and reliable interaction method for automated agents.

F THE USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) in two limited ways. First, during manuscript preparation,
LLMs were employed solely for surface-level editing (e.g., grammar correction and minor rephras-
ing) to improve readability; they were not used to generate research ideas, methods, experiments, or
conclusions. Second, in our benchmark experiments, LLMs were included as baseline models for
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Figure 8: Effects of Revision round.

comparison, with results reported transparently in the main paper. All core research contributions,
dataset design, and analyses are the sole work of the authors.
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