
Revisiting Sampling for Combinatorial Optimization

Haoran Sun * 1 Katayoon Goshvadi 2 Azade Nova 2 Dale Schuurmans 2 Hanjun Dai 2

Abstract

Sampling approaches like Markov chain Monte
Carlo were once popular for combinatorial opti-
mization, but the inefficiency of classical meth-
ods and the need for problem-specific designs
curtailed ongoing develpment. Recent work has
favored data-driven approaches that mitigate the
need for hand-craft heuristics, but these are often
not usable as out-of-the-box solvers due to depen-
dence on in-distribution training and limited scal-
ability to large instances. In this paper, we revisit
the idea of using sampling for combinatorial opti-
mization, motivated by the significant recent ad-
vances of gradient-based discrete MCMC and new
techniques for parallel neighborhood exploration
on accelerators. Remarkably, we find that modern
sampling strategies can leverage landscape infor-
mation to provide general-purpose solvers that
require no training and yet are competitive with
state of the art combinatorial solvers. In particular,
experiments on cover vertex selection, graph parti-
tion and routing demonstrate better speed-quality
trade-offs over current learning based approaches,
and sometimes even superior performance to com-
mercial solvers and specialized algorithms.

1. Introduction
Combinatorial optimization (CO) is a core challenge in
domains like logistics, supply chain management and hard-
ware design, and has been a fundamental problem of study
in computer science for decades. Since CO problems are
typically NP-hard, developing approximate algorithms that
can efficiently find high-quality sub-optimal solutions has
been a critical concern. For problems of this kind, sampling
based approaches offer an appealing property by providing
a simple trade-off between runtime and solution quality.

*Work done during an internship at Google 1Georgia
Tech 2Google Deepmind. Correspondence to: Haoran Sun
<hsun349@gatech.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

A long and fruitful literature has investigated the connec-
tions between CO and sampling methods. A particularly
famous approach is simulated annealing (SA) (Kirkpatrick
et al., 1983), which leverages local thermal fluctuations en-
forced by Metropolis-Hastings updates (Metropolis et al.,
1953; Hastings, 1970). SA and its variants, such as tem-
pered transitions (Neal, 1996) and parallel tempering (Iba,
2001), have demonstrated good performance in many appli-
cations (Johnson et al., 1989; 1991; Earl & Deem, 2005).
However, except for a few algorithms, such as Swedesen-
Wang (Swendsen & Wang, 1987) and Hamze-Freitas-Selbey
(Hamze & de Freitas, 2012) that exploit special structure of
the underlying problem, sampling in general discrete spaces
has primarily relied on Gibbs sampling, which exhibits no-
toriously poor efficiency in high dimensional spaces. This
disadvantage has prevented sampling from being a primary
method for combinatorial optimization for quite some time.

A recent trend in CO has been to leverage learning for
optimization in a data-driven way, which has alleviated
the reliance on hand-crafted heuristics while being able
to leverage modern accelerators like GPUs and TPUs to
improve the efficiency. Though some learning methods
require supervised information (Li et al., 2018; Gasse et al.,
2019; Gupta et al., 2020) which can be hard to obtain, many
approaches have leveraged reinforcement learning (Khalil
et al., 2017; Kool et al., 2018; Chen & Tian, 2019) or other
unsupervised learning techniques (Karalias & Loukas, 2020;
Sun et al., 2022c; Wang et al., 2022) to broaden applicability.
However, despite obtaining better speed-quality trade-offs
for modest sized problems, the requirement of learning on
in-distribution instances typically makes it hard to use these
approaches as an out-of-the-box solver on problems drawn
from arbitrary distributions. Additionally, scaling a learned
optimizer to large problems is difficult in general without
the assistance of search algorithms (Nair et al., 2020) or
problem specific decomposition (Manchanda et al., 2020).

In this paper, we revisit sampling as a viable approach to
develop an out-of-the-box CO solver. Together with mo-
tivation from recent theoretical findings (Ma et al., 2019;
Dong & Tong, 2021) on the advantages of sampling for non-
convex problems, we are also motivated by the recent ad-
vances in Markov chain Monte Carlo (MCMC) for discrete
spaces (Sun et al., 2022a). By treating sampling methods as
a simulation of Langevin dynamics in a discrete space (Sun

1

Revisiting Sampling for Combinatorial Optimization

et al., 2022a), the efficiency of Gibbs sampling, which is
analogous to coordinate descent, can be greatly accelerated
by far more effective simulations (Grathwohl et al., 2021;
Sun et al., 2021; Zhang et al., 2022). The core of these
advances relies on estimating an objective ratio among the
neighborhood of a current point (Zanella, 2020). We show
that these objective ratios can be effectively obtained (or
approximated) by gradients with low bias in many CO prob-
lems. Moreover, these ratios can be obtained in parallel
for large neighborhoods, allowing us to leverage the power
of Machine Learning (ML) compilers like XLA or frame-
works like JAX with autograd on modern accelerators, in
much the same way as learning based CO solvers. Our main
goal is to show that, with these improvements, sampling for
CO provides a very strong and simple alternative to data-
driven approaches, and their potential advantages should be
carefully recalibrated.

We empirically justify our claims on five common CO prob-
lems in the areas of vertex selection, graph partitioning and
routing. In many cases, improved sampling for CO produces
a better speed-quality trade-off than data-driven approaches,
and in some cases improves upon commercial solvers and
the best available specialized algorithms.

2. Background
Our approach will build upon the classical foundations of
energy based models for flexible distribution representa-
tion, Metropolis-Hastings for designing MCMC chains that
achieve desired stationary distributions, and simulated an-
nealing to drive an MCMC chain to a low energy state.

Energy Based Model (EBM). Let S be the state space. An
EBM defines an energy function f : S → R with the target
distribution π(x) = e−f(x)/τ/Z, where τ is a temperature
parameter used to control the smoothness of the system, and
Z =

∑
z∈S e−f(z)/τ is the partition function (van Hemmen,

1986; LeCun et al., 2006). The energy function provides a
great deal of flexibility in characterizing a complex distri-
bution. However, in general it is difficult to obtain samples
from such a distribution.

Metropolis-Hastings (M-H) Algorithm. M-H is a generic
framework for sampling from a target distribution. Let π
denote the distribution we want to draw sample from. Given
a current state x(t), an M-H sampler (Metropolis et al., 1953;
Hastings, 1970) proposes a candidate state y from a proposal
distribution q(x(t), y). Then, with probability

min
{
1,

π(y)q(y, x(t))

π(x(t))q(x(t), y)

}
, (1)

the proposed state is accepted and x(t+1) = y; otherwise,
x(t+1) = x(t). In this way, the detailed balance condition
is satisfied and the M-H sampler generates a Markov chain

x(0), x(1), ... that has π as its stationary distribution.

Simulated Annealing. Simulated annealing (SA) for com-
binatorial optimization was introduced by Kirkpatrick et al.
(1983) and independently by Černỳ (1985). SA is a proba-
bilistic relaxation of local search (Dowsland & Thompson,
2012). At each iteration, one site in the current configu-
ration x is subjected to a small displacement, the energy
difference δE = f(x′)− f(x) calculated, and the new state
x′ accepted with probability exp(−δE/τ). By gradually
decreasing the temperature τ to 0, the configuration x will
stop at a low energy state with high probability.

3. Method
We first formalize the optimization problem in Section 3.1
and revisit a generic framework for sampling from a se-
quence of distributions that seeks higher quality solutions.
Then we show how the generic framework can be instanti-
ated with improved efficiency and parallelism in Section 3.2,
by leveraging the latest advances in discrete space MCMC
and ML compilers for accelerators. We will denote the final
improved sampling algorithm for combinatorial optimiza-
tion as iSCO.

3.1. Optimization via sampling

Problem formulation: Without loss of generality, we con-
sider combinatorial optimization problems that admit the
following integer program form:

min
x∈S={0,1,...,n−1}d

a(x), s.t. b(x) = 0 (2)

where the solution x ∈ S is a d dimensional vector
such that each dimension takes a discrete value from
{0, 1, . . . , n− 1}. We will primarily focus on discrete vari-
ables as these are usually the most challenging to deal with,
although it will be possible to extend the approach to the
mixed-integer case. For ease of exposition, we also assume
b(x) ⩾ 0,∀x ∈ S, but otherwise do not limit the form of
a and b, except for some mild conditions required by the
sampling algorithms.

Sampling framework: To convert the optimization prob-
lem to a sampling problem, we first rewrite the constrained
optimization into a penalty form via a penalty coefficient
λ, then treat this as an energy function for an EBM. In
particular, the energy function takes the form:

f(x) = a(x) + λ · b(x) (3)

Furthermore, we introduce a parameter τ to serve as a tem-
perature that balances the exploration and exploitation trade-
off in much the same way as SA algorithms. That is, we
define the probability of x at temperature τ by:

pτ (x) ∝ exp(−f(x)/τ) (4)

2

Revisiting Sampling for Combinatorial Optimization

The original optimization problem essentially seeks sam-
ples from limτ→0 pτ (x). A naive approach to this problem
would be to attempt to directly sample from pτ→0(x), but
such a distribution is highly nonsmooth and unsuitable for
MCMC methods. Instead, following classical SA and recent
advances in distribution matching (Song & Ermon, 2020),
we define a sequence of distributions parameterized by a
sequence of decaying temperatures:

P = [pτ0(x), pτ1(x), . . . , pτT (x)] (5)

where the sequence τ0 > τ1 > . . . τT → 0 converges to
zero as T increases.

3.2. Improved implementation

In generic SA for discrete spaces, Gibbs sampling is the
default algorithm for obtaining samples from pτ (x). Even
though the acceptance rate for Gibbs sampling is always
1, this sampling strategy is extremely inefficient since only
one dimension can be updated at a time, and the loop over
dimensions cannot generally be parallelized. Thus it is
prohibitive to tackle CO problems with Gibbs sampling
whenever the number of decision variables is large.

However, recent advances in sampling for discrete spaces
have revealed important new opportunities for improving
efficiency to achieve practical scalability in many CO prob-
lems. To simplify our notation, we will drop the temperature
parameter τ and write p(x) for pτ (x) when appropriate.

Sun et al. (2022a) showed how a principled gradient flow
toward p(x) can be defined and characterized by a contin-
uous time Markov chain, whose discrete time simulation
xt1 , xt2 , ..., xtn is still a Markov chain that converges to
p(x). Denote ρt as the probability distribution on S. Then
the continuous time Markov chain can be defined by the
Langevin dynamics

d

dt
ρt = ρtR, R ∈ R|S|×|S|, (6)

where the rate matrix R satisfies

R(x, y) =

{
c(x, y)g

(p(y)
p(x)

)
1{y∈N (x)}, y ̸= x

−
∑

z∈N (x) R(x, z), y = x
. (7)

Here, g(·) : R+ → R+ is a locally balanced weight function
that satisfies g(z) = zg(1z), for example g(z) =

√
z or

g(z) = z
z+1 (Zanella, 2020). TheN (x) is the neighborhood

of x, for example a 1-Hamming Ball. The weight c(x, y)
is an edge weight that serves as a preconditioning of the
underlying graph, which we will just set to c(x, y) ≡ 1 in
this paper.

Note that if the ratio p(y)/p(x) can be obtained easily for
all y ∈ N (x), then the Langevin dynamics can be simulated

efficiently (Sun et al., 2022a). We will demonstrate how this
can be done for some CO problems in Section 3.2.1, and
present a variant of a recently proposed sampler for CO to
realize the simulation in Section 3.2.2.

3.2.1. EFFICIENT NEIGHBORHOOD RATIO ESTIMATION

Let Nx := |N (x)| denote the size of the neighborhood
around x. Note that since p(y)/p(x) ∝ exp(f(x)− f(y)),
we are interested in calculating the set of energy differ-
ences, f(y) − f(x), between x and its neighboring states
y ∈ N (x). If we enumerate the set of neighborhood states
y(1), y(2), ..., y(Nx) ∈ N (x) we can recover the vector of
energy differences ∆(x) ∈ RNx :

∆(x) := [f(y(1))−f(x), f(y(2))−f(x), ..., f(y(Nx))−f(x)]

For the special case when N (x) is the 1-Hamming Ball of
x, we can write ∆(x)(i,j) = f([x1, x2, ..., yi = j, ...]) −
f(x) where the neighbor y indexed by (i, j) is obtained by
copying y := x and changing the i-th dimension of y to
value j. In the binary case, we omit j as one can only flip
xi from 1 to 0 or vice versa.

Evaluating ∆(x) directly is embarrassingly parallelizable
but still expensive. However, for many CO problems we
can identify efficient exact methods for calculating ∆(x), or
obtain an approximation to the probability ratio in a cheaper
way. In a general case, the probability ratio p(y)/p(x) can
be approximated by a first-order Taylor expansion p(y)

p(x) ≈
exp(⟨−∇f(x), y−x⟩) (Grathwohl et al., 2021), which only
requires the gradient ∇f(x) to be evaluated once for the
entire neighborhood y ∈ N (x). We will find that this
general technique is sufficiently efficient and accurate to be
effective in the CO problems we consider below.

The following two exemplar CO problems are expressed
over graphs, so let G = (V,E) denote a graph with
nodes V = {1, ..., d}, node weights c, and edges E =
{e(vi, vj)|vi, vj ∈ V }.

Maximum Independent Set. For a graph G, we use xi = 1
to indicate that node i is selected and xi = 0 to indicate that
node i is not selected. Then the maximum independent set
can be formulated as an optimization problem:

min
x∈{0,1}d

−
d∑

i=1

cixi, s.t. xixj = 0, ∀(i, j) ∈ E (8)

The corresponding energy function is a quadratic function

f(x) := −cTx+ λ
xTAx

2
(9)

where A is the adjacency matrix of the graph G. Since A has
a zero diagonal, the value change of flipping one dimension
can be exactly calculated by:

∆(x) = (1−2x)⊙(−c+λAx) = (1−2c)⊙∇f(x) (10)

3

Revisiting Sampling for Combinatorial Optimization

where ⊙ denotes the element-wise product. Equation (10)
shows that evaluating ∆(x) can be as cheap as evaluating
f(x) once, and the gradient approximation corresponds to
the exact energy difference calculation in this problem.

Balanced Graph Partition. A graph G can be partitioned
into K disjoint sets S1, ..., SK , such that

⋃K
k=1 Sk = V

and Si ∩ Sj = ∅ for any Si ̸= Sj . We denote cut(P,Q) =∑
i∈P,j∈Q e(i, j) and Q̄ = V \Q. The objective for bal-

anced graph partition is expressed by:

Ncut(S1, ..., SK) =

K∑
k=1

cut(Sk, S̄k)

vol(Sk, V)
(11)

where vol(Sk, V) =
∑

vi∈Sk,vj∈V e(vi, vj). To write this
in a matrix form, we denote x ∈ {0, 1}d×k, where each
row xi ∈ {0, 1}k is a one hot vector that represents which
cluster node i is assigned to. Here, ∆(x) ∈ Rd×k gives the
energy difference of switching a node from a current cluster
to an alternative cluster. Also, we overload the notation a bit
to let Sj ∈ {0, 1}d denote the j-th column of x, which is the
binary indicator of the cluster Sj in (11). Let A denote the
adjacency matrix of G and assign α = A1 ∈ Rn to be the
weighted degree for each node. Then, the energy function
can be written as:

f(x) =

K∑
i=1

ST
j A(1− Sj)

ST
j α

(12)

Note that the denominator in (12) implicitly restricts ST
j to

be nonzero, so in practice we can add a sufficiently small ϵ
to the denominator for numerical stability.

When we flip a node xi from cluster k to cluster l, the exact
change of the objective function is:

∆(x) =
ST
k A(1− Sk) + ST

k Aei − eTi A(1− Sk)

ST
k α− αi

+

ST
l A(1− Sl) + eTi A(1− Sl)− ST

l Aei
ST
l α+ αi

−

ST
k A(1− Sk)

ST
k α

− ST
l A(1− Sl)

ST
l α

(13)

=
αiS

T
k A(1− Sk)

(ST
k α− αi)ST

k α
+

ST
k Aei − eTi A(1− Sk)

ST
k α− αi

−

αiS
T
l A(1− Sl)

(ST
l α+ αi)ST

l α
− ST

l Aei − eTi A(1− Sl)

ST
l α+ αi

.

(14)

Now, if we instead consider the gradient approximation
∆̃(x) = ⟨∇f(x), y − x⟩ where y is the matrix after the flip,

we obtain:

∆̃(x) =
αiS

T
k A(1− Sk)

ST
k αS

T
k α

+
ST
k Aei − eTi A(1− Sk)

ST
k α

−

αiS
T
l A(1− Sl)

ST
l αS

T
l α

− ST
l Aei − eTi A(1− Sl)

ST
l α

.

(15)

Comparing (14) and (15), one can see that the only differ-
ence is the ST

l α + αi versus ST
l α and ST

k α − αi versus
ST
k α in the denominators. When each cluster has a sufficient

number of nodes, this difference is negligible.

In summary, for many CO problems, one can leverage the
ML infrastructure for gradient backpropagation to efficiently
approximate the probability ratio in a generic way without
too much manual engineering.

3.2.2. PARALLELIZABLE SAMPLING

Eq. (6) shows that it is possible to modify multiple dimen-
sions of x at each step (Zanella, 2020; Sun et al., 2021;
Zhang et al., 2022; Sun et al., 2022a), depending on the
resolution of simulation time. This can greatly improve the
efficiency of sampling for CO. In this paper, we employ the
Path Auxiliary Sampler (PAS) (Sun et al., 2021) to simulate
the Langevin dynamics as it is numerically more stable in
the low temperature regime. However, the original PAS
only applies to binary variables, so we need to generalize
the approach to categorical variables to meet the needs of
many CO problems.

Given a current state x and ∆(x) as computed (or approx-
imated) in the previous section, a new state y is proposed
via the following steps:

1. Sample indices J ⊆ {1..d} from the categorical distri-
bution {wj}dj=1 without replacement, where

wj ∝
∑
s̸=xj

g
(
exp

(
−∆(x)(j,s)

))
. (16)

2. For j /∈ J , set yj = xj . For j ∈ J , sample yj ∼ qjx(s),
for s ̸= xj where

qjx(s) =
g
(
exp(−∆(x)(j,s))

)∑
s′ ̸=xj

g
(
exp(−∆(x)(j,s′))

) . (17)

3. Finally, apply M-H to correct the proposal.

The hyperparamter L = |J | determines the scale of the
neighborhood. We follow Sun et al. (2022b) to tune L so
that the average M-H acceptance rate is 0.574. In particular,
we sample L ∼ Poisson(µ), which is adaptively updated:

µt+1 ← clip(µt+0.001∗(Āt−0.574),min=1,max=d),

4

Revisiting Sampling for Combinatorial Optimization

where Āt is the empirical average acceptance rate in each
step t. We summarize the algorithm in Algorithm 1. More
details are given in Appendix C.

Algorithm 1 Sampling for Combinatorial Optimization
1: Input: initial state x0, initial temperature τ = τ0, outer

loop size m, inner loop size n.
2: for i = 0, ..., m-1 do
3: for j = 0, ..., n-1 do
4: xin+j+1, Ā← PAS-MH-Step(xin+j , πτ , µ)
5: µ← Update-µ-Step(µ, Ā)
6: end for
7: zi+1 ← Post-Processing(x(i+1)n) in Section A
8: Update temperature τ = τ0(1− i+1

m)
9: end for

Connection to Gibbs: The relationship between PAS and
Gibbs is analogous to that between gradient descent and co-
ordinate descent. In scenarios where computing the full gra-
dient is expensive, coordinate descent is preferable. When
efficient parallel computation of the gradient is available
(e.g., in typical CO problems), gradient descent will be
more efficient. In our iSCO method, the parallel computa-
tion of the ratio π(y)

π(x) in Section 3.2.1 allows us to efficiently
perform PAS, a full coordinate update, in every MH step.

4. Related work
Sampling based methods (Metropolis et al., 1953; Hastings,
1970; Neal, 1996; Iba, 2001) have been widely used for CO
problems, including, for example, TSP (Kirkpatrick et al.,
1983; Černỳ, 1985; Wang et al., 2009), VLSI design (Sechen
et al., 1988; Chandy & Banerjee, 1996; Wong et al., 2012),
planning (Chen & Ke, 2004; Jwo et al., 1995), scheduling
(Seçkiner & Kurt, 2007; Thompson & Dowsland, 1998), and
routing (Tavakkoli-Moghaddam et al., 2007; Van Breedam,
1995). However, these previous methods rely on Gibbs sam-
pling, which is too slow for high dimensional CO problems.

Learning based methods for combinatorial optimization also
has a long history. In initial attempts, Hopfield & Tank
(1985) and Ramanujam & Sadayappan (1995) transformed
CO problems into neural network optimization problems
with differentible objectives. Due to hardware limitations
however, these approaches are not competitive against care-
fully designed message passing algorithms, such as mean-
field annealing (Bilbro et al., 1988), perturbed belief propa-
gation (Ravanbakhsh & Greiner, 2015), and survey propaga-
tion (Braunstein et al., 2005). Recently, with the rise of the
modern accelerators like GPUs and TPUs, the reconsidera-
tion of learning based methods has been significantly stimu-
lated (see our introduction section). However, by contrast,
sampling based methods, which also significantly benefit
from accelerators, have not been as vigorously explored.

5. Experiment
In this section we experimentally verify the efficiency and
effectiveness of iSCO through five combinatorial optimiza-
tion problems: max independent set (MIS) and max clique
in Section 5.1, maxcut and graph balanced partition in Sec-
tion 5.2, and the Traveling Salesman Problem (tsp) in Sec-
tion 5.3. For each set of the problems we run on both syn-
thetic and real-world benchmark datasets commonly used
in the literature, and compare against existing generic or
specialized solvers, heuristics, and learning based methods.

Setup: By default we approximate the evaluation of the
energy functions through the first-order Taylor expansion,
use the variant of the PAFS sampler in Section 3.2 to simu-
late the Langevin dynamics, and report the runtime of iSCO
on a machine with a single Nvidia 1080Ti GPU (unless
otherwise noted), in alignment with existing data-driven
approaches. We find the runtime can be easily improved
with more powerful GPUs that have more cores, or simply
by adding more GPUs and running multiple Markov chains
in parallel. We run iSCO with different initial temperatures,
and use an exponential temperature decay schedule by de-
fault. Since more steps or more Markov chains for iSCO
would always result in better solution quality, we halt the
sampling procedure when the solution quality is sufficient
or the gain plateaus. In Section 5.4 we provide an ablation
study to isolate the impact of different hyper-parameters,
and to also show the efficiency gains over classical samplers.

We follow standard convention and use the approximation
ratio α—the ratio between the found solution and the opti-
mal solution—to measure the solution quality. This means
that for a maximization problem, α ⩽ 1 and the solution
is optimal when α = 1. Note that for hard problems there
is no optimality guarantee for a solution, so we either com-
pare objective values directly, or report the ratio against the
solution found by a commercial solver with the best effort
(which means α can be larger than 1).

Please refer to Appendix A for more details on the imple-
mentation, including the specific energy functions used and
practical implementation details for accelerators. Also see
Appendix B for more experimental details and results.

5.1. Max independent set and max clique

MIS: We use the MIS benchmark from the recent work (Qiu
et al., 2022), which consists of graphs from SATLIB (Hoos
& Stützle, 2000) and also Erdős–Rényi (ER) random graphs
(Erdős et al., 1960) of different sizes. Since iSCO does
not require training, we directly report the results on the
test dataset provided at 1. In the end, we have 500 test
graphs from SATLIB with 403 to 449 clauses each (which

1https://github.com/dimesteam/dimes

5

Revisiting Sampling for Combinatorial Optimization

Table 1. Results of MIS on three benchmarks provided by DIMES (Qiu et al., 2022). The runtime and solution quality of baselines are
from DIMES, since exactly the same test graphs are used on the same type of GPU. Baselines involve solvers from the Operation Research
(OR) community, and data-driven approaches using Reinforcement Learning (RL), Supervised Learning (SL) equipped with Tree Search
(TS), Greedy decoding (G) or sampling (S). Methods that cannot produce results in 10x time limit of DIMES are labeled as N/A.

Method Type SATLIB ER-[700-800] ER-[9000-11000]
Size↑ Drop↓ Time↓ Size↑ Drop↓ Time↓ Size↑ Drop↓ Time↓

KaMIS OR 425.96* − 37.58m 44.87* − 52.13m 381.31* − 7.6h
Gurobi OR 425.95 0.00% 26.00m 41.38 7.78% 50.00m N/A N/A N/A

Intel (Li et al., 2018) SL+TS N/A N/A N/A 38.80 13.43% 20.00m N/A N/A N/A
SL+G 420.66 1.48% 23.05m 34.86 22.31% 6.06m 284.63 25.35% 5.02m

DGL (Böther et al., 2022) SL+TS N/A N/A N/A 37.26 16.96% 22.71m N/A N/A N/A
LwD (Ahn et al., 2020) RL+S 422.22 0.88% 18.83m 41.17 8.25% 6.33m 345.88 9.29% 7.56m

DIMES (Qiu et al., 2022) RL+G 421.24 1.11% 24.17m 38.24 14.78% 6.12m 320.50 15.95% 5.21m
RL+S 423.28 0.63% 20.26m 42.06 6.26% 12.01m 332.80 12.72% 12.51m

iSCO (Ours) fewer steps 423.66 0.54% 5.85m 44.77 0.2% 1.38m 377.5 1.00% 9.38m
more steps 424.16 0.42% 15.72m 45.15 -0.6% 5.56m 384.20 -0.7% 1.25h

* indicates the baseline for computing the performance drop.

translates to at most 1,347 nodes and 5,978 edges), 128 test
graphs for ER graphs with 700 to 800 nodes each, and 16
test graphs for ER graphs with 9000 to 11000 nodes each.
Following Qiu et al. (2022) we report runtime on a single
A100 GPU. For each dataset we run iSCO with two settings:
a smaller number of steps T that can be more efficient than
most learning based methods while achieving better results,
and a larger number of steps that can attain solution quality
comparable to or even better than the best solvers. See
Appendix B.1 for more details on the setup.

We report solution quality and runtime in Table 1. Here
we can see that iSCO is very effective, producing the best
solution compared to existing learning based methods (in-
cluding specially designed ones like LwD for MIS) within a
comparable or even shorter runtime. Notably, iSCO outper-
forms KaMIS (Lamm et al., 2017; Hespe et al., 2019) – the
winner of PACE 2019 and probably the best solver for MIS
right now, on both ER graphs with a much smaller runtime.

We also conduct experiments to measure how iSCO per-
forms on graphs with different densities. We consider den-
sities {0.05, 0.10, 0.15, 0.20, 0.25}. For each density, we
generate 128 ER graphs with 700 to 800 nodes each. We
run iSCO for 1 minute and compare it with Gurobi and
Gurobi-clique running for 1 hour. The Gurobi-clique defines
each constraint on a clique, which gives a stronger linear
relaxation, hence a better performance. See Appendix B.1
for more details. In Table 2, one can observe that, over all
densities, iSCO has set size around 8% larger than Gurobi
with a much shorter running time.

Max clique: Theoretically the MIS and max clique prob-
lems can easily be reduced to one another, though some
existing algorithms like RUN-CSP (Toenshoff et al., 2021)
can only handle one formulation and not the other (Kar-
alias & Loukas, 2020). We include the results on the max

Table 2. Results of MIS on ER-[800-800] with different densities
Density 0.05 0.10 0.15 0.20 0.25

iSCO (1m) 105.00 62.50 44.77 34.81 28.38
Gurobi-edge(1h) 97.78 57.28 41.38 31.12 26.15

Gurobi-clique(1h) 98.59 57.40 41.68 31.56 26.25

clique benchmarks mainly for completeness, with an ad-
ditional goal to show the flexibility of iSCO on handling
both problem formulations directly. We follow the setting
in Karalias & Loukas (2020) and Wang et al. (2022) and
report the approximation ratio on synthetic graphs generated
with RB model (Xu et al., 2007) and a real-world Twitter
graph (Leskovec & Krevl, 2014).

Table 3. Approximation ratio ↑ comparison on max clique tasks.
Method Twitter RBtest

EPM (Karalias & Loukas, 2020) 0.924 ± 0.133 (0.17s/g) 0.788 ± 0.065 (0.23s/g)
AFF (Wang et al., 2022) 0.926 ± 0.113 (0.17s/g) 0.787 ± 0.065 (0.33s/g)

RUN-CSP (Toenshoff et al., 2021) 0.987 ± 0.063 (0.39s/g) 0.789 ± 0.053 (0.47s/g)
iSCO (ours) 1.000 ± 0.000 (1.67s/g) 0.857 ± 0.062 (1.67s/g)

Table 3 shows the results of iSCO run with 1k steps on each
test graph instance from scratch, compared to other learning
based methods which are trained on the same distribution
of graphs. iSCO achieves significantly better quality while
taking a negligible amount of additional time, considering
that iSCO requires no prior training.

5.2. Maxcut and balanced graph partition

Maxcut: We follow the same maxcut experiment setup
as in Dai et al. (2020), where the benchmark contains
random graphs and corresponding solutions obtained by
running Gurobi for 1 hour. We run on both Erdős–Rényi
(ER) graphs and Barabási–Albert (BA) graphs on all graph
sizes ranging from 16 to 1,100 nodes and up to 91,239

6

Revisiting Sampling for Combinatorial Optimization

16-20 32-40 64-75 128-150 256-300 512-600 1024-1100
nodes in train/test graphs

0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02

Ap
pr

ox
im

at
io

n
ra

tio

iSCO
LAG
LAG-U
SDP
2Approx-Greedy

Figure 1. Maxcut results on BA graphs. The ratio is calculated
against a reference solution obtained by running Gurobi for 1 hour,
and the larger the better.

edges. We report the ratio against the solutions provided by
Gurobi, and compare against the LAG (Dai et al., 2020) with
either supervised learning via Li et al. (2018) (denoted as
LAG) or unsupervised learning through Karalias & Loukas
(2020)(denoted as LAG-U), and classical approaches like
semidefinite programming and approximated heuristics.

Figure 1 shows the results on BA graphs, while the results on
ER graphs are included in the appendix as they show similar
trends. From the plot we can see iSCO achieves an optimal
solution in all cases (where the error bar is barely visible),
and obtains much better results than Gurobi on the large
instances, where the ratio α is above 1. Note that this result
improves the quality of many specially designed baselines
for maxcut problems, such as LAG (Dai et al., 2020), which
leverages greedy and spanning tree features for augmented
expressiveness. On the largest graph iSCO runs for 10,000
steps for roughly 12s on a single GPU, which also achieves
the best time-quality trade-off.

Following Khalil et al. (2017), we also include results on
realistic instances, which are ten graphs from the Optsicom
project 2. The edge weights are in {−1, 0, 1}.

Table 4. Maxcut results on Optsicom.

Method SDP Approx S2V-DQN iSCO
Approximation ratio 0.526 0.780 0.978 1.00

The results above show that iSCO is able to achieve the
optimal solution in only 1,000 steps, which translates to less
than 1 second runtime on 1080Ti.

Balanced graph partition We further evaluate iSCO on
graph cuts that also consider cluster balance. We follow the
experiments in Nazi et al. (2019) and report the results on
five different computation graphs compiled from commonly
used deep neural networks. The largest graph is Inception-
v3 (Szegedy et al., 2017), which contains 27,144 operations
(nodes) and 40,875 edges. We compare the results with

2https://grafo.etsii.urjc.es/optsicom

Table 5. Graph partition.
Metric Methods VGG MNIST-conv ResNet AlexNet Inception-v3

Edge cut ratio ↓
hMETIS 0.05 0.05 0.04 0.05 0.04

GAP 0.04 0.05 0.04 0.05 0.04
iSCO 0.05 0.04 0.05 0.04 0.05

Balanceness ↑
hMETIS 0.99 0.99 0.99 0.99 0.99

GAP 0.99 0.99 0.99 0.99 0.99
iSCO 0.99 0.99 0.99 0.99 0.99

GAP (Nazi et al., 2019), a specially designed learning archi-
tecture for graph partition, together with hMETIS (Karypis
& Kumar, 1999), a widely used framework for this problem.
Overall iSCO achieves comparable results against alterna-
tives in Table 5, with almost perfect balance and a low cut
ratio. Though in this case iSCO needs more sampling steps
and used 30 minutes for the largest graph, the fastest GAP
takes around 2 minutes. We discuss the potential limitation
of iSCO in Section 6.

5.3. Traveling salesman problem

Finally we evaluate iSCO on 2D-TSP, where the solution
space S is a permutation of integers in {0, 1, . . . , n− 1} for
a problem with n nodes in the 2D plane. We follow the set-
ting in Qiu et al. (2022) and evaluate against the same set of
test graphs with n ∈ {500, 1000, 10000}. In this scenario,
we define the neighborhood relationship between two states
if they can be reached by a single 2-opt operator (Croes,
1958). We use the same k-nn graph as in Qiu et al. (2022)
where k equals to 50. To make the Markov chain reversible
we also allow existence of edges between random pair of
nodes with 1/(k + 1) probability. All other baseline results
are obtained from Qiu et al. (2022) directly, as the same test
set and hardware environment are used.

We report the best results of the variants of each baseline in
Table 6 and the full results in Table 10 in appendix. Overall
we can see that within the same amount of time, iSCO
yields a superior result to all the learning based methods
considered. Many of these methods are not able to produce
solutions within a reasonable amount of time for TSP-10000.
Note that iSCO is highly parallelizable where the speed is
mainly limited by the number of cores in GTX 1080Ti,
and can benefit from more cores. For example, the same
configuration of iSCO for TSP-10000 would only take 26.8
minutes on a single Nvidia V100. Nevertheless, none of the
generic methods including iSCO would be able to compare
against specialized solvers yet.

5.4. Ablation study

5.4.1. COMPARED WITH GIBBS SAMPLING

We provide a comparison to using Gibbs sampling with
annealing, or equivalently the classical SA for CO. We draw
the curves of solution quality with respect to the number

7

Revisiting Sampling for Combinatorial Optimization

Table 6. Results of TSP, where the numbers of baselines are taken from Qiu et al. (2022). In addition to the approaches mentioned in
Table 1, some are implemented with Beam Search (BS), Active Search (AS) or Monte Carlo Tree Search (MCTS).

Method Type TSP-500 TSP-1000 TSP-10000
Length↓ Increase↓ Time↓ Length↓ Increase↓ Time↓ Length↓ Increase↓ Time↓

Concorde OR 16.55* - 37.66m 23.12* - 6.65h N/A N/A N/A
Gurobi OR 16.55 0.00% 45.63h N/A N/A N/A N/A N/A N/A
LKH-3 OR 16.55 0.00% 46.28m 23.12 0.00% 2.57h 71.77* - 8.8h

Farthest Insertion OR 18.30 10.57% 0s 25.72 11.25% 0s 80.59 12.29% 6s
EAN (Deudon et al., 2018) RL+S+2-OPT 23.75 43.57% 57.76m 47.73 106.46% 5.39h N/A N/A N/A

AM (Kool et al., 2018) RL+BS 19.53 18.03% 21.99m 29.90 29.23% 1.64h 129.40 80.28% 1.81h
GCN (Joshi et al., 2019) SL+G 29.72 79.61% 6.67m 48.62 110.29% 28.52m N/A N/A N/A

POMO (Kwon et al., 2020) RL+AS 24.54 48.22% 11.61h 49.56 114.36% 63.45h N/A N/A N/A
Att-GCN (Fu et al., 2021) SL+MCTS 16.97 2.54% 2.20m 23.86 3.22% 4.10m 74.93 4.39% 21.49m
DIMES (Qiu et al., 2022) RL+AS+MCTS 16.84 1.76% 2.15h 23.69 2.46% 4.62h 74.06 3.19% 3.57h

iSCO (Ours) Sampling 16.64 0.54% 6.94m 23.33 0.91 % 7.94m 74.02 3.14% 1.01h

M
IS

0 50000 100000150000200000250000300000350000400000
Steps

0

100

200

300

400

Si
ze

 o
f I

nd
ep

en
de

nt
 S

et

The effect of total number of steps

total # steps=25000
total # steps=50000
total # steps=100000
total # steps=200000
total # steps=300000
total # steps=400000

0 50000 100000150000200000250000300000350000400000
Steps

0

100

200

300

400

Si
ze

 o
f I

nd
ep

en
de

nt
 S

et

The effect of number of chains

chains=1
chains=8
chains=64

T
SP

0 100000 200000 300000 400000 500000
Steps

200

180

160

140

120

100

80

60

Ne
ga

tiv
e

To
ur

 L
en

gt
h

The effect of total number of steps

total # steps=50000
total # steps=100000
total # steps=200000
total # steps=300000
total # steps=400000
total # steps=500000

250000 300000 350000 400000 450000 500000
Steps

82

80

78

76

74

72

Ne
ga

tiv
e

To
ur

 L
en

gt
h

The effect of number of chains

chains=1
chains=8
chains=64

Figure 2. Ablation study on (left) number of steps T and (right) number of chain.

of sampling steps in Figure 4, on the largest graphs of MIS
and maxcut problems. We can see using our variant of
PAFS this can be 100x more sample efficient to achieve
similar quality under a best tuned τ -scheduling, making the
sampling for CO efficient enough to compare against many
modern data-driven methods.

103 104 105 106 107

Steps

0

100

200

300

400

Si
ze

 o
f I

n

sampler=Gibbs
sampler=PAFS

Comparison of Gibbs and PAS on MIS

100 101 102 103 104 105 106

Steps

0.70

0.75

0.80

0.85

0.90

0.95

1.00

sampler=Gibbs
sampler=PAFS

Comparison of Gibbs and PAS on MAXCUT

MIS MAXCUT

Figure 4. Sample efficiency comparison using different samplers.

5.4.2. τ SCHEDULE, MORE CHAINS/LONGER CHAINS

We provide the ablation studies on different hyper-
parameters for iSCO. Results in Figure 2 and 3 are obtained
after we run MIS and TSP tasks on the largest graphs.

Chain length and # chains. In general the more the total
steps T the better the results should be, so as the number
of Markov chains that run in parallel. We mainly study to
what extent can we reduce the number of steps or number
of chains required to get a reasonably good result. We can
see from the first column of Figure 2, under the same an-
nealing schedule for different T , the chain with 10x shorter
length is still performing competitively compared to the
other baselines in previous studies. This means one can fur-
ther improve the speed-quality trade-off of iSCO. Also note
that 1 chain is usually good enough to obtain reasonably

8

Revisiting Sampling for Combinatorial Optimization

M
IS

0 50000 100000150000200000250000300000350000400000
Steps

200

225

250

275

300

325

350

375

400

Si
ze

 o
f I

nd
ep

en
de

nt
 S

et

The effect of Initial Temperature

_0=0.1
_0=0.5
_0=1.0
_0=2.0
_0=5.0

0 50000 100000150000200000250000300000350000400000
Steps

0

100

200

300

400

Si
ze

 o
f I

nd
ep

en
de

nt
 S

et

The effect of annealing schedule type

 schedule: ='constant'
 schedule: ='exp_decay'
 schedule: ='linear'

T
SP

0 100000 200000 300000 400000 500000
Steps

200

180

160

140

120

100

80

60

Ne
ga

tiv
e

To
ur

 L
en

gt
h

The effect of Initial Temperature

_0=0.0001
_0=0.005
_0=0.01
_0=0.05
_0=0.1

0 100000 200000 300000 400000 500000
Steps

200

180

160

140

120

100

80

60

Ne
ga

tiv
e

To
ur

 L
en

gt
h

The effect of annealing schedule type

 schedule: ='constant'
 schedule: ='exp_decay'
 schedule: ='linear'

Figure 3. Ablation study on (left) initial temperature and (right) temperature annealing schedule.

good results. However despite the fact that more chains
would help, the gains becomes marginal. One possible so-
lution is to increase the diversity between different chains,
which we will further investigate in future works.

τ schedule One potential headache in using iSCO is the
setup of the initial temperature and the annealing schedule.
As in Figure 3, we can see that overall the results would be
dependent on the initial temperature, but the sampler is able
to achieve good results in a range of initial temperatures.
In practice we only did 2-3 binary search to identify a rea-
sonably good temperature range. For annealing schedule,
we find that generally the schedule has a major impact on
the convergence speed, but after sufficiently many steps the
final solution is not that different.

6. Limitation
Despite the effectiveness of iSCO on the problems we have
considered, there are still many limitations of the current
treatment. Specifically in the following situations:

• Black-box optimization: Currently the approximated gra-
dient based samplers rely on the known form of objective
function. When this becomes a black-box function, iSCO
reduces to the vanilla SA which can be inefficient. One
potential workaround is to learn a surrogate function and
optimize on it, as inspired by (Wang et al., 2022).

• Difficult constraints: The current EBM formulation relies
on the penalty form of the original problem. When it
becomes nontrivial to find even just a feasible solution,
the generic formulation of iSCO would probably fail.

Nevertheless, due to the appealing properties of iSCO, the
surge of new sampling algorithms in discrete spaces and the
ability of leveraging modern accelerators, we hope to bring
the attention on sampling approaches back to this topic and
improve further in future works.

7. Conclusion
We have shown that combining recently improved MCMC
methods for discrete spaces with parallel neighborhood ex-
ploration on accelerators makes the generic sampling ap-
proach highly competitive on a wide range of CO problems.
In fact, we find that the sampling approach often yields a
superior speed-quality trade-off compared to the recent data-
driven approaches. As a results, we encourage the future
works on learning for CO to carefully calibrate the efficiency
against this simple, generic and light-weight approach.

Meanwhile, the generic sampling approach also leaves inter-
faces for problem specific design. The discrete Langvein dy-
namics (6) allows for customized neighborhoods N(x) and
edge weights c(x, y). In this work, we only considered the
1-Hamming ball neighborhood and a uniform edge weight.
We believe that more sophisticated choices grounded in a
theoretical analysis, or via learning based approaches, can
further improve the solving effectiveness.

The current work represents only a tentative first step to de-
veloping efficient sampling based algorithms for discrete op-
timization. Future work involves extending this line of work
to constrained programming problems, as well as tighter
integration with learning approaches or search strategies.

9

Revisiting Sampling for Combinatorial Optimization

References
Ahn, S., Seo, Y., and Shin, J. Learning what to defer for

maximum independent sets. In International Conference
on Machine Learning, pp. 134–144. PMLR, 2020.

Bilbro, G., Mann, R., Miller, T., Snyder, W., van den Bout,
D., and White, M. Optimization by mean field annealing.
Advances in neural information processing systems, 1,
1988.

Böther, M., Kißig, O., Taraz, M., Cohen, S., Seidel, K., and
Friedrich, T. What’s wrong with deep learning in tree
search for combinatorial optimization. arXiv preprint
arXiv:2201.10494, 2022.

Braunstein, A., Mézard, M., and Zecchina, R. Survey propa-
gation: An algorithm for satisfiability. Random Structures
& Algorithms, 27(2):201–226, 2005.

Černỳ, V. Thermodynamical approach to the traveling sales-
man problem: An efficient simulation algorithm. Journal
of optimization theory and applications, 45(1):41–51,
1985.

Chandy, J. A. and Banerjee, P. Parallel simulated annealing
strategies for vlsi cell placement. In Proceedings of 9th
International Conference on VLSI Design, pp. 37–42.
IEEE, 1996.

Chen, X. and Tian, Y. Learning to perform local rewrit-
ing for combinatorial optimization. Advances in Neural
Information Processing Systems, 32, 2019.

Chen, Y.-L. and Ke, Y. Multi-objective VAr planning for
large-scale power systems using projection-based two-
layer simulated annealing algorithms. IEE Proceedings-
Generation, Transmission and Distribution, 151(4):555–
560, 2004.

Croes, G. A. A method for solving traveling-salesman
problems. Operations research, 6(6):791–812, 1958.

Dai, H., Chen, X., Li, Y., Gao, X., and Song, L. A frame-
work for differentiable discovery of graph algorithms.
2020.

Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., and
Rousseau, L.-M. Learning heuristics for the tsp by pol-
icy gradient. In Integration of Constraint Programming,
Artificial Intelligence, and Operations Research: 15th In-
ternational Conference, CPAIOR 2018, Delft, The Nether-
lands, June 26–29, 2018, Proceedings 15, pp. 170–181.
Springer, 2018.

Dong, J. and Tong, X. T. Replica exchange for non-convex
optimization. J. Mach. Learn. Res., 22:173–1, 2021.

Dowsland, K. A. and Thompson, J. Simulated annealing.
Handbook of natural computing, pp. 1623–1655, 2012.

Earl, D. J. and Deem, M. W. Parallel tempering: Theory,
applications, and new perspectives. Physical Chemistry
Chemical Physics, 7(23):3910–3916, 2005.

Erdős, P., Rényi, A., et al. On the evolution of random
graphs. Publ. Math. Inst. Hung. Acad. Sci, 5(1):17–60,
1960.

Fu, Z.-H., Qiu, K.-B., and Zha, H. Generalize a small
pre-trained model to arbitrarily large tsp instances. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 35, pp. 7474–7482, 2021.

Gasse, M., Chételat, D., Ferroni, N., Charlin, L., and Lodi,
A. Exact combinatorial optimization with graph convolu-
tional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Grathwohl, W., Swersky, K., Hashemi, M., Duvenaud, D.,
and Maddison, C. J. Oops I took a gradient: Scal-
able sampling for discrete distributions. arXiv preprint
arXiv:2102.04509, 2021.

Gumbel, E. J. Statistical theory of extreme values and some
practical applications: a series of lectures, volume 33.
US Government Printing Office, 1954.

Gupta, P., Gasse, M., Khalil, E., Mudigonda, P., Lodi, A.,
and Bengio, Y. Hybrid models for learning to branch.
Advances in neural information processing systems, 33:
18087–18097, 2020.

Hamze, F. and de Freitas, N. From fields to trees. arXiv
preprint arXiv:1207.4149, 2012.

Hastings, W. K. Monte Carlo sampling methods using
Markov chains and their applications. 1970.

Hespe, D., Schulz, C., and Strash, D. Scalable kernelization
for maximum independent sets. ACM Journal of Experi-
mental Algorithmics, 24(1):1.16:1–1.16:22, 2019. doi: 10.
1145/3355502. URL https://doi.org/10.1145/3355502.

Hoos, H. H. and Stützle, T. Satlib: An online resource for
research on SAT. Sat, 2000:283–292, 2000.

Hopfield, J. J. and Tank, D. W. “neural” computation of de-
cisions in optimization problems. Biological cybernetics,
52(3):141–152, 1985.

Iba, Y. Extended ensemble Monte Carlo. International
Journal of Modern Physics C, 12(05):623–656, 2001.

Johnson, D. S., Aragon, C. R., McGeoch, L. A., and
Schevon, C. Optimization by simulated annealing: An
experimental evaluation; part I, graph partitioning. Oper-
ations research, 37(6):865–892, 1989.

10

Revisiting Sampling for Combinatorial Optimization

Johnson, D. S., Aragon, C. R., McGeoch, L. A., and
Schevon, C. Optimization by simulated annealing: an ex-
perimental evaluation; part II, graph coloring and number
partitioning. Operations research, 39(3):378–406, 1991.

Joshi, C. K., Laurent, T., and Bresson, X. An efficient
graph convolutional network technique for the travelling
salesman problem. arXiv preprint arXiv:1906.01227,
2019.

Jwo, W.-S., Liu, C.-W., Liu, C.-C., and Hsiao, Y.-T. Hy-
brid expert system and simulated annealing approach
to optimal reactive power planning. IEE Proceedings-
Generation, Transmission and Distribution, 142(4):381–
385, 1995.

Karalias, N. and Loukas, A. Erdos goes neural: an unsuper-
vised learning framework for combinatorial optimization
on graphs. Advances in Neural Information Processing
Systems, 33:6659–6672, 2020.

Karypis, G. and Kumar, V. Multilevel k-way hypergraph par-
titioning. In Proceedings of the 36th annual ACM/IEEE
design automation conference, pp. 343–348, 1999.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song,
L. Learning combinatorial optimization algorithms over
graphs. Advances in neural information processing sys-
tems, 30, 2017.

Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P. Opti-
mization by simulated annealing. science, 220(4598):
671–680, 1983.

Kool, W., Van Hoof, H., and Welling, M. Attention,
learn to solve routing problems! arXiv preprint
arXiv:1803.08475, 2018.

Kwon, Y.-D., Choo, J., Kim, B., Yoon, I., Gwon, Y., and
Min, S. Pomo: Policy optimization with multiple optima
for reinforcement learning. Advances in Neural Informa-
tion Processing Systems, 33:21188–21198, 2020.

Lamm, S., Sanders, P., Schulz, C., Strash, D., and
Werneck, R. F. Finding near-optimal indepen-
dent sets at scale. J. Heuristics, 23(4):207–229,
2017. doi: 10.1007/s10732-017-9337-x. URL
https://doi.org/10.1007/s10732-017-9337-x.

LeCun, Y., Chopra, S., Hadsell, R., Ranzato, M., and Huang,
F. A tutorial on energy-based learning. Predicting struc-
tured data, 1(0), 2006.

Leskovec, J. and Krevl, A. SNAP Datasets:
Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

Li, Z., Chen, Q., and Koltun, V. Combinatorial optimization
with graph convolutional networks and guided tree search.
Advances in neural information processing systems, 31,
2018.

Ma, Y.-A., Chen, Y., Jin, C., Flammarion, N., and Jordan,
M. I. Sampling can be faster than optimization. Pro-
ceedings of the National Academy of Sciences, 116(42):
20881–20885, 2019.

Manchanda, S., Mittal, A., Dhawan, A., Medya, S., Ranu,
S., and Singh, A. Gcomb: Learning budget-constrained
combinatorial algorithms over billion-sized graphs. Ad-
vances in Neural Information Processing Systems, 33:
20000–20011, 2020.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H., and Teller, E. Equation of state calculations
by fast computing machines. The journal of chemical
physics, 21(6):1087–1092, 1953.

Nair, V., Bartunov, S., Gimeno, F., von Glehn, I., Li-
chocki, P., Lobov, I., O’Donoghue, B., Sonnerat, N.,
Tjandraatmadja, C., Wang, P., et al. Solving mixed in-
teger programs using neural networks. arXiv preprint
arXiv:2012.13349, 2020.

Nazi, A., Hang, W., Goldie, A., Ravi, S., and Mirhoseini,
A. Gap: Generalizable approximate graph partitioning
framework. arXiv preprint arXiv:1903.00614, 2019.

Neal, R. M. Sampling from multimodal distributions using
tempered transitions. Statistics and computing, 6(4):353–
366, 1996.

Qiu, R., Sun, Z., and Yang, Y. Dimes: A differentiable meta
solver for combinatorial optimization problems. In Ad-
vances in Neural Information Processing Systems, 2022.

Ramanujam, J. and Sadayappan, P. Mapping combinatorial
optimization problems onto neural networks. Information
sciences, 82(3-4):239–255, 1995.

Ravanbakhsh, S. and Greiner, R. Perturbed message pass-
ing for constraint satisfaction problems. The Journal of
Machine Learning Research, 16(1):1249–1274, 2015.

Sechen, C., Braun, D., and Sangiovanni-Vincentelli, A.
Thunderbird: A complete standard cell layout package.
IEEE Journal of Solid-State Circuits, 23(2):410–420,
1988.

Seçkiner, S. U. and Kurt, M. A simulated annealing ap-
proach to the solution of job rotation scheduling prob-
lems. Applied Mathematics and Computation, 188(1):
31–45, 2007.

11

Revisiting Sampling for Combinatorial Optimization

Song, Y. and Ermon, S. Improved techniques for train-
ing score-based generative models. Advances in neural
information processing systems, 33:12438–12448, 2020.

Sun, H., Dai, H., Xia, W., and Ramamurthy, A. Path aux-
iliary proposal for MCMC in discrete space. In Interna-
tional Conference on Learning Representations, 2021.

Sun, H., Dai, H., Dai, B., Zhou, H., and Schuurmans, D.
Discrete Langevin sampler via Wasserstein gradient flow.
arXiv preprint arXiv:2206.14897, 2022a.

Sun, H., Dai, H., and Schuurmans, D. Optimal scaling
for locally balanced proposals in discrete spaces. arXiv
preprint arXiv:2209.08183, 2022b.

Sun, H., Guha, E. K., and Dai, H. Annealed training for
combinatorial optimization on graphs. arXiv preprint
arXiv:2207.11542, 2022c.

Swendsen, R. H. and Wang, J.-S. Nonuniversal critical
dynamics in Monte Carlo simulations. Physical review
letters, 58(2):86, 1987.

Szegedy, C., Ioffe, S., Vanhoucke, V., and Alemi, A. A.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In Thirty-first AAAI conference
on artificial intelligence, 2017.

Tavakkoli-Moghaddam, R., Safaei, N., Kah, M., and Rab-
bani, M. A new capacitated vehicle routing problem with
split service for minimizing fleet cost by simulated anneal-
ing. Journal of the Franklin Institute, 344(5):406–425,
2007.

Thompson, J. M. and Dowsland, K. A. A robust simulated
annealing based examination timetabling system. Com-
puters & Operations Research, 25(7-8):637–648, 1998.

Toenshoff, J., Ritzert, M., Wolf, H., and Grohe, M. Graph
neural networks for maximum constraint satisfaction.
Frontiers in artificial intelligence, 3:580607, 2021.

Van Breedam, A. Improvement heuristics for the vehicle
routing problem based on simulated annealing. European
Journal of Operational Research, 86(3):480–490, 1995.

van Hemmen, J. L. Spin-glass models of a neural network.
Physical Review A, 34(4):3435, 1986.

Wang, C., Hyman, J. D., Percus, A., and Caflisch, R. Parallel
tempering for the traveling salesman problem. Interna-
tional Journal of Modern Physics C, 20(04):539–556,
2009.

Wang, H. P., Wu, N., Yang, H., Hao, C., and Li, P. Un-
supervised learning for combinatorial optimization with
principled objective relaxation. In Advances in Neural
Information Processing Systems, 2022.

Wong, D., Leong, H. W., and Liu, H. Simulated annealing
for VLSI design, volume 42. Springer Science & Business
Media, 2012.

Xu, K., Boussemart, F., Hemery, F., and Lecoutre, C. Ran-
dom constraint satisfaction: Easy generation of hard (sat-
isfiable) instances. Artificial intelligence, 171(8-9):514–
534, 2007.

Zanella, G. Informed proposals for local MCMC in discrete
spaces. Journal of the American Statistical Association,
115(530):852–865, 2020.

Zhang, R., Liu, X., and Liu, Q. A Langevin-like sampler
for discrete distributions. In International Conference on
Machine Learning, pp. 26375–26396. PMLR, 2022.

12

Revisiting Sampling for Combinatorial Optimization

A. Implementation details
In this section we provide the actual energy function we used for each of the problems we experimented in the main paper.
For a graph G = (V,E) we label the nodes in V from 1 to d. The adjacency matrix is represented as A. For a weighted
graph we simply let Aij denote the edge weight between node i and j. For constraint problems, we follow Sun et al. (2022c)
to select penalty coefficient λ as the minimum value of λ such that x∗ := argmin f(x) is achieved at x∗ satisfying the
original constraints. Such a choice of the coefficient guarantees the target distribution converges to the optimal solution of
the original CO problems while keeping the target distribution as smooth as possible.

MIS The MIS has the integer programming formulation as

min
x∈{0,1}d

−
d∑

i=1

cixi, s.t. xixj = 0, ∀(i, j) ∈ E (18)

We use the corresponding energy function in the following quadratic form:

f(x) := −cTx+ λ
xTAx

2
(19)

In our experiments c equals to 1 and we use λ = 1.0001. In post processing, we iteratively go through all nodes xi for
i = 1, ..., d. If there exists xj = 1 for (xi, xj) ∈ E, we flip its value xj = 0. After post processing, the state x is guaranteed
to be feasible in the original MIS problem.

Max clique The max clique problem is equivalent to MIS on the dual graph. In our experiments c equals to 1.

min
x∈{0,1}d

−
d∑

i=1

cixi, s.t. xixj = 0, ∀(i, j) /∈ E (20)

The energy function is

f(x) := −cTx+
λ

2

(
1⊤x · (1⊤x− 1)− xTAx

)
(21)

In our experiments c equals to 1 and we use λ = 1.0001. In post processing, we iteratively go through all nodes xi for
i = 1, ..., d. If there exists xj = 1 for (xi, xj) /∈ E, we flip its value xj = 0. After post processing, the state x is guaranteed
to be feasible in the original MIS problem.

Maxcut We optimize the following problem:

min
x∈{−1,1}d

−
∑

(i,j)∈E

Ai,j

(
1− xixj

2

)
(22)

Note that for simplicity each dimension of x is selected from {−1, 1}. To represent the corresponding energy function for
x ∈ {0, 1}d, we have

f(x) := −
∑

(i,j)∈E

Ai,j

(
1− (2xi − 1)(2xj − 1)

2

)
(23)

In our experiments Aij equals to 1. Since the problem is always feasible, the post processing is identity map.

Balanced graph partition We find the following objective for balanced graph partition gives the best result:

f(x) :=

k∑
s=1

∑
(i,j)∈E

I (xi ̸= xj&&(xi = s||xj = s)) +

k∑
s=1

(
d/k −

d∑
i=1

I(xi = s)

)2

(24)

where k is the number of partitions. Since the problem is always feasible, the post processing is identity map.

13

Revisiting Sampling for Combinatorial Optimization

TSP It is complicated to write TSP in a general integer programming form, but fortunately we only need to be able to
write the energy function for a given valid solution. For TSP in 2D space any permutation of visiting orders is a valid one,
so we simply use the energy function as

f(x) := −
d∑

i=1

L2(xi, xi+1) (25)

where x is a valid permutation and we overload the notation to let xd+1 = x1. L2(i, j) denotes the Euclidean distance
between node i and j. As long as we can guarantee that the sampler makes a valid jump from one state to another, we can
effectively explore the feasible space for the minimum tour length. Since the problem is always feasible, the post processing
is identity map.

B. More experimental details

Table 7. Synthetic data statistics.

Name MIS max clique maxcut TSP

ER-[700-800] ER-[9000-11000] RB ER BA TSP-500 TSP-1000 TSP-10000
Max # nodes 800 10,915 475 1,100 1,100 500 1,000 10,000
Max # edges 47,885 1,190,799 90,585 91,239 4,384 250,000* 1,000,000* 100,000,000*

Test instances 128 16 500 1,000 1,000 128 128 16
*conceptually fully connected

Table 8. Real-world data statistics.

Name MIS max clique maxcut balanced graph partition

SATLIB Twitter Optsicom MNIST VGG ALEXNET RESNET INCEPTION
Max # nodes 1,347 247 125 414 1,325 798 20,586 27,114
Max # edges 5,978 12,174 375 623 2,036 1,198 32,298 40,875

Test instances 500 196 10 1 1 1 1 1

Here we provide more details on the experiments. Firstly, the statistics of synthetic datasets, including the maximum number
of nodes/edges in a graph, and the number of test instances, are provided in Table 7. Corresponding statistics of real-world
graphs are in Table 8.

To get the quality metrics we run all the experiments on V100 GPUs. When reporting the runtime, we use either GTX
1080Ti or A100, depending on the actual device used in the benchmark. As the hardware keeps improving, we would favor
the approaches that would benefit more from the growth of the hardware. As we demonstrated, iSCO could be one of them.

B.1. MIS

For MIS on ER-9000-11000 graphs, we use 400k steps; for SATLIB graphs we use 1M steps; for ER-700-800 graphs
we use 200k steps. We use the penalty coefficient λ = 1.0001 that is slightly larger than 1, which is good enough to
guarantee the feasibility of the solution. This is inspired from the derivation of minimum required penalty from Sun et al.
(2022c). We further conduct experiments with different λ = {1.1, 1.01, 1.001, 1.0001, 1.00001} and we report the results
on ER-[9000-11000] in Table 9. Some randomness is expected as iSCO is a stochastic algorithm. Other than that we can see
that for MIS the solution is pretty robust to many choices of λ.

Table 9. Performance of iSCO with different hyperparameter λ

penalty coefficient λ 1.1 1.01 1.001 1.0001 1.00001

independent set size 383.8125 384.1212 384.2496 385.1249 384.3125

14

Revisiting Sampling for Combinatorial Optimization

Gurobi: For Gurobi, we reformulate the optimization problem for MIS in (18) as:

min
x∈{0,1}d

−
d∑

i=1

cixi, s.t. xi + xj ⩽ 1, ∀(i, j) ∈ E (26)

and for Gurobi-clique, we reformulate the problem as:

min
x∈{0,1}d

−
d∑

i=1

cixi, s.t.
∑
k∈C

xk ⩽ 1, ∀C ∈ C (27)

In (27), we use greedy clique partition to obtain a clique partition C = {C1, ..., Cm} of the nodes, such that, in each clique
Cj , at most one node can be selected in an independent set. The clique formulation provides a stronger linear relaxation
compared to the edge formulation in (26), hence has better performance. There

B.2. Maxcut and balanced graph partition

16-20 32-40 64-75 128-150 256-300 512-600 1024-1100
nodes in train/test graphs

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

Ap
pr

ox
im

at
io

n
ra

tio

iSCO
LAG
LAG-U
SDP
2Approx-Greedy

16-20 32-40 64-75 128-150 256-300 512-600 1024-1100
nodes in train/test graphs

0.94
0.95
0.96
0.97
0.98
0.99
1.00
1.01
1.02

Ap
pr

ox
im

at
io

n
ra

tio
iSCO
LAG
LAG-U
SDP
2Approx-Greedy

Figure 5. Results of maxcut on ER (left) and BA (right) graphs.

For maxcut, in most cases a chain length around 50k would be good enough to obtain super-Gurobi results on both of the
random graph types. Since this is an unconstrained optimization problem, we find iSCO or classical sampling approaches in
general are very efficient. The full results on both types of random graphs are displayed in Figure 5.

Balanced graph partition is a challenging problem where iSCO requires 800k steps to match the performance of alternatives
on the largest computation graph instance. In this case we also tune the λ and find it achieves the best results when
λ = 0.001.

B.3. TSP

We leverage 2-OPT to define the neighborhood structureN (x) for the current tour solution x. The selection of a new sample
is done in the following conceptual process:

• Select a node x and its next node y in the tour;

• With probability k/(k+1), select a node a that is in the knn graph of x; or with probability 1/(k+1), select a random
node other than x. Denote the selected node as a and its neighbhor as b.

• Do the 2-OPT operation between edges x→ y and a→ b.

In practice the above process is converted into the unnormalized probability of each 2-OPT option, where the scoring of
each option is done in parallel.

We follow the baseline Qiu et al. (2022) to use k = 50, though to make the Markov chain reversible, conceptually we are
dealing with the entire fully (probabilistically) connected graph.

C. Discrete Sampler and Annealing Algorithm
Path Auxiliary Sampler

Given path length prior α(·) and current state x, a MH step is:

15

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.approximation.clique.clique_removal.html

Revisiting Sampling for Combinatorial Optimization

Table 10. Results of TSP, where the numbers of baselines are directly taken from Qiu et al. (2022) and runtime is calibrated on GTX
1080Ti. In addition to the approaches mentioned in Table 1, some are implemented with Beam Search (BS), Active Search (AS) or Monte
Carlo Tree Search (MCTS). aResults of POMO are obtained with different variants as detailed in Fu et al. (2021).

Method Type TSP-500 TSP-1000 TSP-10000
Length↓ Drop↓ Time↓ Length↓ Drop↓ Time↓ Length↓ Drop↓ Time↓

Concorde OR 16.55* - 37.66m 23.12* - 6.65h N/A N/A N/A
Gurobi OR 16.55 0.00% 45.63h N/A N/A N/A N/A N/A N/A

LKH-3 (default) OR 16.55 0.00% 46.28m 23.12 0.00% 2.57h 71.77* - 8.8h
Farthest Insertion OR 18.30 10.57% 0s 25.72 11.25% 0s 80.59 12.29% 6s

EAN (Deudon et al., 2018) RL+S+2-OPT 23.75 43.57% 57.76m 47.73 106.46% 5.39h N/A N/A N/A
AM (Kool et al., 2018) RL+BS 19.53 18.03% 21.99m 29.90 29.23% 1.64h 129.40 80.28% 1.81h

GCN (Joshi et al., 2019) SL+G 29.72 79.61% 6.67m 48.62 110.29% 28.52m N/A N/A N/A
SL+BS 30.37 83.55% 38.02m 51.26 121.73% 51.67m N/A N/A N/A

POMOa (Kwon et al., 2020)
RL+AS 19.24 16.25% 12.80h N/A N/A N/A N/A N/A N/A
RL+AS 19.35 16.92% 16.19h N/A N/A N/A N/A N/A N/A
RL+AS 24.54 48.22% 11.61h 49.56 114.36% 63.45h N/A N/A N/A

Att-GCN (Fu et al., 2021) SL+MCTS 16.97 2.54% 2.20m 23.86 3.22% 4.10m 74.93 4.39% 21.49m

DIMES (Qiu et al., 2022)

RL+G 18.93 14.38% 0.97m 26.58 14.97% 2.08m 86.44 20.44% 4.65m
RL+AS+G 17.81 7.61% 2.10h 24.91 7.74% 4.49h 80.45 12.09% 3.07h

RL+S 18.84 13.84% 1.06m 26.36 14.01% 2.38m 85.75 19.48% 4.80m
RL+AS+S 17.80 7.55% 2.11h 24.89 7.70% 4.53h 80.42 12.05% 3.12h
RL+MCTS 16.87 1.93% 2.92m 23.73 2.64% 6.87m 74.63 3.98% 29.83m

RL+AS+MCTS 16.84 1.76% 2.15h 23.69 2.46% 4.62h 74.06 3.19% 3.57h
iSCO (Ours) Sampling 16.64 0.54% 6.94m 23.33 0.91 % 7.94m 74.02 3.14% 1.01h

* indicates the baseline for computing the performance drop.

1. Sample a path length L ∼ α(L).

2. Sample indices J = {j1, ..., jL} from Categorical(wj) without replacement, where the weight

wj =
∑
s̸=xj

g

(
p(x−j , s)

p(x)

)
(28)

Denote the probability to choose J from x as qx(J).

3. For j /∈ J , set yj = xj . For j ∈ J , sample yj ∼ qjx(s), for s ̸= xj and

qjx(s) = g

(
p(x−j , s)

p(x)

)
/
∑
s̸=xj

g

(
p(x−j , s)

p(x)

)
(29)

4. Accept y with probabilty

A(x,J , y) = min

{
1,

p(y)qy(J)
∏

j∈J qjy(xs)

p(x)qx(J)
∏

j∈J qjx(ys)

}
(30)

The no-replacement categorical sampling for J and yj can be efficiently implemented via Gumbel-Max trick (Gumbel,
1954). In practice, we set α(·) as a Poisson like distribution α(L) ∝ µLe−µ

L! 1{L>0}. Following Sun et al. (2022b), we tune
the scale µ by

µ← clip(µ+ 0.001 ∗ (Ā− 0.574),min = 1,max = d) (31)

which makes the average acceptance rate being 0.574. Here, Ā is the batch average acceptance rate. When the average
acceptance rate is too large, we increase µ, hence increase the path length, and vice versa.

Annealing Algorithm

Combining the path auciliary sampler above and the standard annealing algorithm, we obtain our algorithm for solving
combinatorial optimization problems. Given an instance, we have the energy function f(x) as derived in Section A. For
temperature τ , the corresponding target distribution is πτ (x) ∝ exp(− f(x)

τ). The sampling algorithm is summarized in
Algorithm 1. The set {zi}mi=1 is the collected solutions.

16

