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ABSTRACT

Devising deep latent variable models for multi-modal data has been a long-
standing theme in machine learning research. Multi-modal Variational Autoen-
coders (VAEs) have been a popular generative model class that learns latent rep-
resentations which jointly explain multiple modalities. Various objective func-
tions for such models have been suggested, often motivated as lower bounds
on the multi-modal data log-likelihood or from information-theoretic consid-
erations. In order to encode latent variables from different modality subsets,
Product-of-Experts (PoE) or Mixture-of-Experts (MoE) aggregation schemes have
been routinely used and shown to yield different trade-offs, for instance, regard-
ing their generative quality or consistency across multiple modalities. In this
work, we consider a variational bound that can tightly approximate the data log-
likelihood. We develop more flexible aggregation schemes that generalise PoE or
MoE approaches by combining encoded features from different modalities based
on permutation-invariant neural networks. Our numerical experiments illustrate
trade-offs for multi-modal variational bounds and various aggregation schemes.
We show that tighter variational bounds and more flexible aggregation models can
become beneficial when one wants to approximate the true joint distribution over
observed modalities and latent variables in identifiable models.

1 INTRODUCTION

Multi-modal data sets where each sample has features from distinct sources have grown in re-
cent years. For example, multi-omics data such as genomics, epigenomics, transcriptomics and
metabolomics can provide a more comprehensive understanding of biological systems if multi-
ple modalities are analysed in an integrative framework (Argelaguet et al., 2018; Lee and van der
Schaar, 2021; Minoura et al., 2021). In neuroscience, multi-modal integration of neural activity
and behavioral data can help to learn latent neural dynamics (Zhou and Wei, 2020; Schneider et al.,
2023). However, annotations or labels in such data sets are often rare, making unsupervised or
semi-supervised generative approaches particularly attractive as such methods can be used in these
settings to (i) generate data, such as missing modalities, and (ii) learn latent representations that
are useful for down-stream analyses or that are of scientific interest themselves. The availability
of heterogenous data for different modalities promises to learn generalizable representations that
can capture shared content across multiple modalities in addition to modality-specific information.
A promising class of weakly-supervised generative models is multi-modal VAEs (Suzuki et al.,
2016; Wu and Goodman, 2019; Shi et al., 2019; Sutter et al., 2021) that combine information across
modalities in an often-shared low-dimensional latent representation. A common route for learning
the parameters of latent variable models is via maximization of the marginal data likelihood with
various lower bounds thereof suggested in previous work.

Setup. We consider a set of M random variables {X1, . . . , XM} with empirical density pd, where
each random variable Xs, s ∈ M = {1, . . . ,M}, can be used to model a different data modality
taking values in Xs. With some abuse of notation, we write X = {X1, . . . , XM} and for any subset
S ⊂ M, we set X = (XS , X\S) for two partitions of the random variables into XS = {Xs}s∈S
and X\S = {Xs}s∈M\S . We pursue a latent variable model setup, analogous to uni-modal VAEs
(Kingma and Ba, 2014; Rezende et al., 2014). For a latent variable Z ∈ Z with prior density pθ(z),
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we posit a joint generative model1 pθ(z, x) = pθ(z)
∏M

s=1 pθ(xs|z), where pθ(xs|z) is commonly
referred to as the decoding distribution for modality s. Observe that all modalities are independent
given the latent variable z shared across all modalities. However, one can introduce modality-
specific latent variables by making sparsity assumptions for the decoding distribution.

Multi-modal variational bounds and mutual information. Popular approaches to train multi-
modal models are based on a mixture-based variational bound (Daunhawer et al., 2022; Shi et al.,
2019) given by LMix(θ, ϕ, β) =

∫
ρ(S)LMix

S (x, θ, ϕ, β)dS, where

LMix
S (x, θ, ϕ, β) =

∫
qϕ(z|xS) [log pθ(x|z)] dz − βKL(qϕ(z|xS)|pθ(z)) (1)

and ρ is some distribution on the power set P(M) of M and β > 0. For β = 1, one obtains the
bound LMix

S (x, θ, ϕ, β) ≤ log pθ(x). Variations of (1) have been suggested (Sutter et al., 2020), such
as by replacing the prior density pθ in the KL-term by a weighted product of the prior density pθ
and the uni-modal encoding distributions qϕ(z|xs), for all s ∈ M. Maximizing LMix

S can be seen as

minimizing
{
H(X|ZS) + β Iqϕ(XS , ZS) = H(X)− Iqϕ(X,ZS) + β Iqϕ(XS , ZS)

}
, (2)

where Iq(X,Y ) =
∫
q(x, y) log q(x,y)

q(x)q(y) is the mutual information of random variables X and Y

having marginal and joint densities q, whilst H(X|Y ) = −
∫
q(x, y) log q(x|y)]dxdy is the con-

ditional entropy of X given Y . We occasionally write ZS instead of Z to emphasize that Z is
conditional on XS under the encoding density qϕ. Likewise, the multi-view variational information
bottleneck approach developed in Lee and van der Schaar (2021) for predicting x\S given xS can be
interpreted as minimizing − Iqϕ(X\S , Z) + β Iqϕ(XS , Z). Hwang et al. (2021) suggested a related
bound that aims to maximize the reduction of total correlation of X when conditioned on Z. Similar
bounds have been suggested in Sutter et al. (2020) and Suzuki et al. (2016) by considering different
KL-regularisation terms, see also Suzuki and Matsuo (2022). Shi et al. (2020) add a contrastive term
to the maximum likelihood objective and minimize − log pθ(x)− β Ipθ

(XS , X\S).

Multi-modal aggregation schemes. In order to optimize the variational bounds above or to allow
for flexible conditioning at test time, we need to learn encoding distributions qϕ(z|xS) for any
S ∈ P(M). The typical aggregation schemes that are scalable to a large number of modalities are
based on a choice of uni-modal encoding distributions qϕs

(z|xs) for any s ∈ M, which are then
used to define the multi-modal encoding distributions as follows:

• Mixture of Experts (MoE), see Shi et al. (2019), qMoE
ϕ (z|xS) =

1
|S|
∑

s∈S qϕs
(z|xs).

• Product of Experts (PoE), see Wu and Goodman (2018), qPoE
ϕ (z|xS) ∝ pθ(z)

∏
s∈S qϕs(z|xs).

Contributions. This paper contributes (i) a new variational bound as an approximate lower bound
on the multi-modal log-likelihood (LLH). We avoid a limitation of mixture-based bounds (1) which
may not provide tight lower bounds on the joint LLH if there is considerable modality-specific vari-
ation (Daunhawer et al., 2022), even for flexible encoding distributions. The novel variational bound
contains a lower bound of the marginal LLH log pθ(xS) and a term approximating the conditional
log pθ(x\S |xS) for any choice of S ∈ P(M), provided that we can learn a flexible multi-modal
encoding distribution. This paper then contributes (ii) new multi-modal aggregation schemes that
yield more expressive multi-modal encoding distributions when compared to MoEs or PoEs. These
schemes are motivated by the flexibility of permutation-invariant (PI) architectures such as DeepSets
(Zaheer et al., 2017) or attention models (Vaswani et al., 2017; Lee et al., 2019). We illustrate that
these innovations (iii) are beneficial when learning identifiable models, aided by using flexible prior
and encoding distributions consisting of mixtures and (iv) yield higher LLH in experiments.

Further related work. Canonical Correlation Analysis (Hotelling, 1936; Bach and Jordan, 2005)
is a classical approach for multi-modal data that aims to find projections of two modalities by max-
imally correlating, and has been extended to include more than two modalities (Archambeau and

1We usually denote random variables using upper-case letters, and their realizations by the corresponding
lower-case letter. We assume throughout that Z = RD , and that pθ(z) is a Lebesgue density, although the results
can be extended to more general settings such as discrete random variables Z with appropriate adjustments, for
instance, regarding the gradient estimators.
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Bach, 2008; Tenenhaus and Tenenhaus, 2011) or to allow for non-linear transformations (Akaho,
2001; Hardoon et al., 2004; Wang et al., 2015; Karami and Schuurmans, 2021). Probabilistic CCA
can also be seen as multi-battery factor analysis (MBFA) (Browne, 1980; Klami et al., 2013),
wherein a shared latent variable models the variation common to all modalities with modality-
specific latent variables capturing the remaining variation. Likewise, latent factor regression or
classification models (Stock and Watson, 2002) assume that observed features and response are
driven jointly by a latent variable. Vedantam et al. (2018) considered a tiple-ELBO for two modali-
ties, while Sutter et al. (2021) introduced a generalised variational bound that involves a summation
over all modality subsets. A series of work has developed multi-modal VAEs based on shared and
private latent variables (Wang et al., 2016; Lee and Pavlovic, 2021; Lyu and Fu, 2022; Lyu et al.,
2021; Vasco et al., 2022; Palumbo et al., 2023). Tsai et al. (2019) proposed a hybrid generative-
discriminative objective and minimized an approximation of the Wasserstein distance between the
generated and observed multi-modal data. Joy et al. (2021) consider a semi-supervised setup of
two modalities that requires no explicit multi-modal aggregation function, while Bounoua et al.
(2023) considered a score-based diffusion on auto-encoded latents. Extending the Info-Max princi-
ple (Linsker, 1988), maximizing mutual information Iq(g1(X1), g(X2)) ≤ Iq((X1, X2), (Z1, Z2))
based on representations Zs = gs(Xs) for modality-specific encoders gs from two modalities has
been a motivation for approaches based on (symmetrised) contrastive objectives (Tian et al., 2020;
Zhang et al., 2022c; Daunhawer et al., 2023) such as InfoNCE (Oord et al., 2018; Poole et al., 2019;
Wang and Isola, 2020) as a variational lower bound on the mutual information between Z1 and Z2.

2 A TIGHTER VARIATIONAL BOUND WITH ARBITRARY MODALITY MASKING

For S ⊂ M and β > 0, we define

LS(xS , θ, ϕ, β) =

∫
qϕ(z|xS) [log pθ(xS |z)] dz − βKL(qϕ(z|xS)|pθ(z)). (3)

This is simply a standard variational lower bound (Jordan et al., 1999; Blei et al., 2017) restricted to
the subset S for β = 1, and therefore LS(xS , θ, ϕ, 1) ≤ log pθ(xS). To obtain a lower bound on the
log-likelihood of all modalities, we introduce an (approximate) conditional lower bound

L\S(x, θ, ϕ, β) =

∫
qϕ(z|x)

[
log pθ(x\S |z)

]
dz − βKL(qϕ(z|x)|qϕ(z|xS)). (4)

For some fixed density ρ on P(M), we suggest the overall bound

L(x, θ, ϕ, β) =
∫

ρ(S)
[
LS(xS , θ, ϕ, β) + L\S(x, θ, ϕ, β)

]
dS,

which is a generalisation of the bound suggested in Wu and Goodman (2019) to an arbitrary number
of modalities. This bound can be optimised using standard Monte Carlo techniques, for example,
by computing unbiased pathwise gradients (Kingma and Ba, 2014; Rezende et al., 2014; Titsias and
Lázaro-Gredilla, 2014) using the reparameterisation trick. For variational families such as Gaussian
mixtures2, one can employ implicit reparameterisation (Figurnov et al., 2018). It is straightforward
to adapt variance reduction techniques such as ignoring the score term of the multi-modal encoding
densities for pathwise gradients (Roeder et al., 2017), see Algorithm 1 in Appendix K for pseudo-
code. Nevertheless, a scalable approach requires an encoding technique that allows to condition on
any masked modalities with a computational complexity that does not increase exponentially in M .

Multi-modal distribution matching. Likelihood-based learning approaches aim to match the
model distribution pθ(x) to the true data distribution pd(x). Variational approaches achieve this
by matching in the latent space the encoding distribution to the true posterior as well as maximizing
a tight lower bound on log pθ(x), see Rosca et al. (2018). We show similar results for the multi-
modal variational bound. Consider therefore the densities pθ(z, x) = pθ(z)pθ(xS |z)pθ(x\S |z) and
qϕ(zS , x) = pd(xS)qϕ(zS |xS). The latter is the encoding path comprising the encoding density qϕ
conditioned on xS and the empirical density pd. We set qagg

ϕ,\S(z|xS) =
∫
pd(x\S |xS)qϕ(z|x)dx\S

2For MoE aggregation schemes, Shi et al. (2019) considered a stratified ELBO estimator as well as a tighter
bound based on importance sampling, see also Morningstar et al. (2021), that we do not pursue here for consis-
tency with other aggregation schemes that can likewise be optimised based on importance sampling ideas.
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for an aggregated encoder conditioned on xS . We provide a multi-model ELBO surgery in Appendix
A, summarized in Proposition 9. In particular, we show that maximizing

∫
pd(xS)LS(xS , θ, ϕ)dxS

drives (i) the joint inference distribution qϕ(z, xS) = pd(xS)qϕ(z|xS) of the S submodalities to the
joint generative distribution pθ(z, xS) = pθ(z)pθ(xS |z) and (ii) the generative marginal pθ(xS) to
its empirical counterpart pd(xS). Analogously, maximizing

∫
pd(x\S |xS)L\S(x, θ, ϕ)dx\S drives

(i) the distribution pd(x\S |xS)qϕ(z|x) to the distribution pθ(x\S |z)qϕ(z|xS) and (ii) the conditional
pθ(x\S |xS) to its empirical counterpart pd(x\S |xS), provided that qϕ(z|xS) approximates pθ(z|xS)
exactly. In this case, Proposition 9 implies that L\S(x, θ, ϕ) is a lower bound of log pθ(x\S |xS).
Furthermore, it shows that maximizing L\S(x, θ, ϕ) minimizes a Bayes-consistency matching term
KL(qagg

ϕ,\S(z|xS)|qϕ(z|xS)) for the multi-modal encoders where a mismatch can yield poor cross-
generation, as an analogue of the prior not matching the aggregated posterior (Makhzani et al., 2016)
leading to poor unconditional generation, see Remark 10. Our approach recovers meta-learning with
(latent) Neural processes (Garnelo et al., 2018b) when one optimizes only L\S with S determined
by context-target splits, cf. Appendix B. Our analysis implies that LS + L\L is an approximate
lower bound on the multi-modal log-likelihood that becomes tight for infinite-capacity encoders and
is a true lower bound if KL(qagg

ϕ,\S(z|xS)|qϕ(z|xS)) = 0, see Remarks 12 and 13 for details.

Corollary 1 (Multi-modal log-likelihood approximation). For any modality mask S, we have∫
pd(x)

[
LS(xS , θ, ϕ, 1) + L\S(x, θ, ϕ, 1)

]
dx−

∫
pd(x) [log pθ(x)] dx

=−
∫

pd(xS) [KL(qϕ(z|xS)|pθ(z|xS))] dx−
∫

pd(x) [KL(qϕ(z|x)|pθ(z|x))] dx

+

∫
pd(x)qϕ(z|x)

[
log

qϕ(z|xS)

pθ(z|xS)

]
dzdx.

Information-theoretic perspective. Beyond generative modelling, β-VAEs (Higgins et al., 2017)
have been popular for representation learning and data reconstruction. Alemi et al. (2018) suggest
learning a latent representation that achieves certain mutual information with the data based on
upper and lower variational bounds of the mutual information. A Legendre transformation thereof
recovers the β-VAE objective and allows a trade-off between information content or rate versus
reconstruction quality or distortion. We show that the proposed variational objective gives rise to an
analogous perspective for multiple modalities. Recall that mutual information Iqϕ(XS , Z) can be
bounded by standard (Barber and Agakov, 2004; Alemi et al., 2016; 2018) lower and upper bounds:

HS −DS ≤ HS −DS +∆1 = Iqϕ(XS , Z) = RS −∆2 ≤ RS , (5)

with ∆1,∆2 ≥ 0 for the rate RS =
∫
pd(xS)KL(qϕ(z|xS)|pθ(z))dxS measuring the

information content that is encoded by qϕ into the latents, and the distortion DS =
−
∫
qϕ(xS , z) log pθ(xS |z)dzdxS given as the negative reconstruction log-likelihood. Observe

that −
∫
pd(xS)L(xS)dxS = DS + βRS and for any β > 0, it holds that HS ≤

RS + DS . To arrive at a similar interpretation for the conditional bound L\S , we set
R\S =

∫
pd(x)KL(qϕ(z|x)|qϕ(z|xS))dx for a conditional or cross rate. Similarly, set D\S =

−
∫
pd(x)qϕ(z|x) log pθ(x\S |z)dzdx. One obtains the following bounds, see Appendix A.

Lemma 2 (Variational bounds on the conditional mutual information). It holds that
−
∫
L\S(x, θ, ϕ, β)pd(dx) = D\S + βR\S and for ∆\S,1,∆\S,2 ≥ 0,

H\S −D\S +∆\S,1 = Iqϕ(X\S , ZM|XS) = R\S −∆\S,2.

Using the chain rules for entropy, we obtain that the suggested bound can be seen as a relaxation of
bounds on marginal and conditional mutual information.
Corollary 3 (Lagrangian relaxation). It holds that

H−DS −D\S ≤ Iqϕ(XS , ZS) + Iqϕ(X\S , ZM|XS) ≤ RS +R\S

and minimizing L for fixed β =
∂(DS+D\S)

∂(RS+R\S) minimizes the rates RS+R\S and distortions DS+D\S .

Remark 4 (Mixture based variational bound). The arguments in Daunhawer et al. (2022) imply that
−
∫
pd(dx)LMix

S (x) = DS +Dc
\S +βRS , where Dc

\S = −
∫
pd(xS)qϕ(z|xS) log pθ(x\S |z)dzdxS

is a cross-distortion term. Due to H(XM|ZS) = −H(XM) + Iqϕ(XM, ZS) ≤ DS +Dc
\S , we can

view minimizing LMix
S as minimizing H(XM)− Iqϕ(XM, ZS) + β Iqϕ(XS , ZS), see (2).
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Optimal variational distributions. Consider the annealed likelihood p̃β,θ(xS |z) ∝ pθ(xS |z)1/β
as well as the adjusted posterior p̃β,θ(z|xS) ∝ p̃β,θ(xS |z)pθ(z). The minimum of the bound∫
pd(dx)LS(x) is attained at any xS for the variational density

q⋆(z|xS) ∝ exp

(
1

β
[log pθ(xS |z) + β log pθ(z)]

)
∝ p̃β,θ(z|xS), (6)

see also Huang et al. (2020). Similarly, if (6) holds, then it is readily seen that the minimum of
the bound

∫
pd(dx)L\S(x) is attained at any x for the variational density q⋆(z|x) = p̃β,θ(z|x). In

contrast, as shown in Appendix D, the optimal variational density for the mixture-based (1) multi-
modal objective is attained at q⋆(z|xS) ∝ p̃β,θ(z|xS) exp

(∫
pd(x\S |xS) log p̃β,θ(x\S |z)dx\S

)
.

3 PERMUTATION-INVARIANT MODALITY ENCODING

Fixed multi-modal aggregation schemes. Optimizing these multi-modal bounds requires learn-
ing variational densities with different conditioning sets. We write hs,φ : Xs 7→ RDE for some
modality-specific feature function. We recall the following multi-modal encoding functions sug-
gested in previous work where usually hs,φ(xs) =

[
µs,φ(xs)

⊤, vec(Σs,φ(xs))
⊤]⊤ with µs,φ and

Σs,φ being the mean, respectively the (often diagonal) covariance, of a uni-modal encoder of modal-
ity s. Accommodating more complex variational families, such as mixture distributions for the
uni-modal encoding distributions, can be more challenging for these approaches.

• MoE: qMoE
φ (z|xS) =

1
|S|
∑

s∈S qN (z|µs,φ(xs),Σs,φ(xs)), where qN (z|µ,Σ) is a Gaussian den-
sity with mean µ and covariance Σ.

• PoE: qPoE
φ (z|xS) = 1

Z pθ(z)
∏

s∈S qN (z|µs,φ(xs),Σs,φ(xs)), for some Z ∈ R. For Gaus-
sian priors pθ(z) = qN (z|µθ,Σθ) with mean µθ and covariance Σθ, the multi-modal
distribution qPoE

φ (z|xS) is Gaussian with mean (µθΣθ +
∑

s∈S µs,φ(xs)Σs,φ(xs))(Σ
−1
1,θ +∑

s∈S Σs,φ(xs)
−1)−1 and covariance (Σ−1

1,θ +
∑

s∈S Σs,φ(xs)
−1)−1.

Learnable multi-modal aggregation schemes. We aim to learn a more flexible aggregation
scheme under the constraint that the encoding distribution is invariant (Bloem-Reddy and Teh,
2020) with respect to the ordering of encoded features of each modality. Put differently, for all
(Hs)s∈S ∈ R|S|×DE and all permutations π ∈ SS of S, we assume that the conditional distribu-
tion is SS -invariant, i.e. q′ϑ(z|h) = q′ϑ(z|π · h) for all z ∈ RD, where π acts on H = (Hs)s∈S
via π · H = (Hπ(s))s∈S . We set qϕ(z|xS) = q′ϑ(z|hs,φ(xs)s∈S), ϕ = (φ, ϑ) and remark that the
encoding distribution is not invariant with respect to the modalities, but becomes only invariant after
applying modality-specific encoder functions hs,φ. Observe that such a constraint is satisfied by the
aggregation schemes above for hs,φ being the uni-modal encoders.

A variety of invariant (or equivariant) functions along with their approximation properties have been
considered previously, see for instance Santoro et al. (2017); Zaheer et al. (2017); Qi et al. (2017);
Lee et al. (2019); Segol and Lipman (2019); Murphy et al. (2019); Maron et al. (2019); Sannai et al.
(2019); Yun et al. (2019); Bruno et al. (2021); Wagstaff et al. (2022); Zhang et al. (2022b); Li et al.
(2022); Bartunov et al. (2022), and applied in different contexts such as meta-learning (Edwards and
Storkey, 2016; Garnelo et al., 2018b; Kim et al., 2018; Hewitt et al., 2018; Giannone and Winther,
2022), reinforcement learning (Tang and Ha, 2021; Zhang et al., 2022a) or generative modeling
of (uni-modal) sets (Li et al., 2018; 2020; Kim et al., 2021; Biloš and Günnemann, 2021; Li and
Oliva, 2021). We can use such constructions to parameterise more flexible encoding distributions.
Indeed, the results from Bloem-Reddy and Teh (2020) imply that for an exchangable sequence
HS = (Hs)s∈S ∈ R|S|×DE and random variable Z, the distribution q′(z|hS) is SS -invariant if and
only if there is a measurable function3 f⋆ : [0, 1]×M(RDE ) → RD such that

(HS , Z)
a.s.
= (HS , f

⋆(Ξ,MHS )), where Ξ ∼ U [0, 1] and Ξ ⊥⊥ HS

with MHS (·) =
∑

s∈S δHs(·) being the empirical measure of hS , which retains the values of hS ,
but discards their order. For variational densities from a location-scale family such as a Gaussian

3The function f⋆ generally depends on the cardinality of S. Finite-length exchangeable sequences imply a
de Finetti latent variable representation only up to approximation errors (Diaconis and Freedman, 1980).
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or Laplace distribution, we find it more practical to consider a different reparameterisation in the
form Z = µ(hS) + σ(hS) ⊙ Ξ, where Ξ is a sample from a parameter-free density p such as a
standard Gaussian and Laplace distribution, while [µ(hS), log σ(hS)] = f(hS) for a PI function
f : R|S|×DE → R2D. Likewise, for mixture distributions thereof, assume that for a PI function f ,

[µ1(hS), log σ1(hS), . . . , µK(hS), log σK(hS), logω(hS)] = f(hS) ∈ R2DK+K

and Z = µL(hS) + σL(hS) ⊙ Ξ with L ∼ Cat(ω(hS)) denoting the sampled mixture component
out of K mixtures. For simplicity, we consider here only two examples of PI functions f that
have representations with parameter ϑ in the form fϑ(hS) = ρϑ

(∑
s∈S gϑ(hS)s

)
for a function

ρϑ : RDP → RDO and permutation-equivariant function gϑ : RN×DE → RN×DP .

Example 5 (Sum Pooling Encoders). The Deep Set (Zaheer et al., 2017) construction fϑ(hS) =
ρϑ
(∑

s∈S χϑ(hs)
)

applies the same neural network χϑ : RDE → RDP to each encoded feature
hs. We assume that χϑ is a feed-forward neural network, and remark that pre-activation ResNets
(He et al., 2016) have been advocated in for deeper χϑ. For exponential family models, the optimal
natural parameters of the posterior solve an optimisation problem where the dependence on the
generative parameters from the different modalities decomposes as a sum, see Appendix G.

Example 6 (Set Transformer Encoders). Let MTBϑ be a multi-head pre-layer-norm transformer
block (Wang et al., 2019; Xiong et al., 2020), see Appendix E for precise definitions. For some neu-
ral network χϑ : RDE → RDP , set g0S = χϑ(hS) and for k ∈ {1, . . . , L}, set gkS = MTBϑ(g

k−1
S ).

We then consider fϑ(hS) = ρϑ
(∑

s∈S gLs
)
. This can be seen as a Set Transformer (Lee et al.,

2019; Zhang et al., 2022a) model without any inducing points as for most applications, a compu-
tational complexity that scales quadratically in the number of modalities can be acceptable. In our
experiments, we use layer normalisation (Ba et al., 2016) within the transformer model, although,
for example, set normalisation (Zhang et al., 2022a) could be used alternatively.

Remark 7 (Pooling expert opinions). Combining expert distributions has a long tradition in decision
theory and Bayesian inference, see Genest and Zidek (1986) for early works, with popular schemes
being linear pooling (i.e., MoE) or log-linear pooling (i.e., PoE with tempered densities). These are
optimal schemes for minimizing different objectives, namely a weighted (forward or reverse) KL-
divergence between the pooled distribution and the inidividual experts (Abbas, 2009). Log-linear
pooling operators are externally Bayesian, that is, they allow for consistent Bayesian belief updates
when each expert updates her belief with the same likelihood function (Genest et al., 1986).

Permutation-equivariance and private latent variables. Suppose that the generative model fac-
torises as pθ(z, x) = p(z)

∏
s∈M pθ(xs|z′, z̃s) with z = (z′, z̃1, . . . , z̃M ), where Z ′ and Z̃s, s ∈ M

are shared, resp., private latent variables. For s ̸= t ∈ [M ], we have hφ,s(Xs) ⊥⊥ Z̃t | Z ′, Z̃s.
Assuming that the modality-specific feature functions hφ,s are such that {Hs = hφ,s(Xs)}s∈S
is exchangeable, the results from Bloem-Reddy and Teh (2020) imply a permutation-equivariant
(PE) representation of the private latent variables, conditional on the shared latent variables. This
suggests to consider encoders for the private latent variables that satisfy q′ϕ(z̃S |π · hφ(xS), z

′) =

q′ϕ(π · z̃S |hφ(xS), z
′) for any permutation π ∈ SS . Details are given in Appendix F, including PE

versions of PoEs, SumPooling and SelfAttention aggregations.

4 IDENTIFIABILITY AND MODEL EXTENSIONS

Identifiability. Non-linear generative models are generally unidentifiable without imposing some
structure (Hyvärinen and Pajunen, 1999; Xi and Bloem-Reddy, 2022). Yet, identifiability up to some
ambiguity can be achieved in some conditional models based on observed auxiliary variables and
injective decoder functions wherein the prior density is conditional on auxiliary variables. Observa-
tions from different modalities can act as auxiliary variables to obtain identifiability of conditional
distributions given some modality subset under analogous assumptions, see Appendix H.

Example 8 (Auxiliary variable as a modality). In the iVAE model (Khemakhem et al., 2020a), the
latent variable distribution pθ(z|x1) is independently modulated via an auxiliary variable X1 = U .
Instead of interpreting this distribution as a (conditional) prior density, we view it as a posterior den-
sity given the first modality X1. Khemakhem et al. (2020a) estimate a model for another modality
X2 by lower bounding log pθ(x2|x1) via L\{1} under the assumption that qϕ(z|x1) is given by the
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prior density pθ(z|x1). Similarly, Mita et al. (2021) optimise log pθ(x1, x2) by a double VAE bound
that reduces to L for a masking distribution ρ(s1, s2) = (δ1 ⊗ δ0)(s1, s2) that always masks the
modality X2 and choosing to parameterise separate encoding functions for different conditioning
sets. Our bound thus generalises these procedures to multiple modalities in a scalable way.

Mixture models. An alternative to the choice of uni-modal prior densities pθ has been to use
Gaussian mixture priors (Johnson et al., 2016; Jiang et al., 2017; Dilokthanakul et al., 2016) or
more flexible mixture models (Falck et al., 2021). Following previous work, we include a latent
cluster indicator variable c ∈ [K] that indicates the mixture component out of K possible mixtures
with augmented prior pθ(c, z) = pθ(c)pθ(z|c). The classic example is pθ(c) being a categorical
distribution and pθ(z|c) a Gaussian with mean µc and covariance matrix Σc. Similar to Falck et al.
(2021) that use an optimal variational factor in a mean-field model, we use an optimal factor of
the cluster indicator in a structured variational density qϕ(c, z|xS) = qϕ(z|xS)qϕ(c|z, xS) with
qϕ(c|z, xS) = pθ(c|z). Appendix J details how one can optimize an augmented multi-modal bound.

5 EXPERIMENTS

5.1 LINEAR MULTI-MODAL VAES

Table 1: Gaussian model: Relative difference of true
LLH to the learned LLH. MCC to true latent.

Our bound Mixture bound

Aggregation LLH Gap MCC LLH Gap MCC

PoE 0.03 (0.058) 0.75 (0.20) 0.04 (0.074) 0.77 (0.21)
MoE 0.01 (0.005) 0.82 (0.04) 0.02 (0.006) 0.67 (0.03)
SumPooling 0.00 (0.000) 0.84 (0.00) 0.00 (0.002) 0.84 (0.02)
SelfAttention 0.00 (0.003) 0.84 (0.00) 0.02 (0.007) 0.83 (0.00)

The relationship between uni-modal
VAEs and probabilistic PCA (Tipping
and Bishop, 1999) has been studied in
previous work (Dai et al., 2018; Lu-
cas et al., 2019; Rolinek et al., 2019;
Huang et al., 2020; Mathieu et al.,
2019). We analyse how different multi-
modal fusion schemes and multi-modal
variational bounds affect (a) the learned
generative model in terms of its true
marginal log-likelihood (LLH) and (b)
the latent representations. In order to evaluate the (weak) identifiability of the method, we follow
Khemakhem et al. (2020a;b) to compute the mean correlation co-efficient (MCC) between the true
latent variables Z and samples from the variational distribution qϕ(·|xM) after an affine transfor-
mation using CCA. Our simulation study uses M = 5 modalities, see Appendix M for details about
the data generation mechanisms4 with results given in Table 1. Our results suggest that first, more
flexible aggregation schemes improve the LLH and the identifiability for both variational objectives.
Second, our new bound yields higher LLH for given aggregation scheme.

5.2 NON-LINEAR IDENTIFIABLE MODELS

(a) Data X (b) True Z (c) Our bound
+SumPooling

(d) Our bound
+PoE

(e) Mixt. bound
+SumPooling

(f) Mixt. bound
+PoE

Figure 1: Continuous modality in (a), true latent variables in (b) and inferred latent variables in
(c)-(f) with a linear transformation inditerminancy. Labels are colour coded.

4We present here results when all latent variables are shared across all modalities. We also consider in
Appendix M the generative setting where only parts of the latent variables are shared across all modalities
with the remaining latent variables being modality specific. The latter setting can be incorporated by imposing
sparsity structures on the decoders and allows us to analyse scenarios with considerable modality-specific
variation described through private latent variables with results given in Table 4.
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Auxiliary labels as modalities. We construct artificial data following Khemakhem et al. (2020a),
with the latent variables Z ∈ RD being conditionally Gaussian having means and variances that
depend on an observed index value X2 ∈ [K]. More precisely, pθ(z|x2) = N (µx2

,Σx2
), where

µc ∼ ⊗ U(−5, 5) and Σc = diag(Λc), Λc ∼ ⊗ U(0.5, 3) iid for c ∈ [K]. The marginal distribution
over the labels is uniform U([K]) so that the prior density pθ(z) =

∫
[K]

pθ(z|x2)pθ(x2)dx2 becomes
a Gaussian mixture. We choose an injective decoding function f1 : RD → RD1 , D ≤ D1, as
a composition of MLPs with LeakyReLUs and full rank weight matrices having monotonically
increasing row dimensions (Khemakhem et al., 2020b), with iid randomly sampled entries. We
assume X1|Z ∼ N (f1(Z), σ2 I) and set σ = 0.1, D = D1 = 2. f1 has a single hidden layer of size
D1 = 2. One realisation of bi-modal data X , the true latent variable Z, as well as inferred latent
variables for a selection of different bounds and aggregation schemes, are shown in Figure 1, with
more examples given in Figures 6 and 7. Table 6 indicate that both a tighter variational bound and
more flexible aggregation schemes improve the identifiability of the latent variables and the LLH.

Table 2: Partially observed (η = 0.5) non-linear identifiable
model with 5 modalities: The first four rows use a fixed standard
Gaussian prior, while the last four rows use a Gaussian mixture
prior.

Our bound Mixture

Aggregation LLH MCC LLH MCC

PoE -250.9 (5.19) 0.94 (0.015) -288.4 (8.53) 0.93 (0.018)
MoE -250.1 (4.77) 0.92 (0.022) -286.2 (7.63) 0.90 (0.019)
SumPooling -249.6 (4.85) 0.95 (0.016) -275.6 (7.35) 0.92 (0.031)
SelfAttention -249.7 (4.83) 0.95 (0.014) -275.5 (7.45) 0.93 (0.022)

SumPooling -247.3 (4.23) 0.95 (0.009) -269.6 (7.42) 0.94 (0.018)
SelfAttention -247.5 (4.22) 0.95 (0.013) -269.9 (6.06) 0.93 (0.022)
SumPoolingMixture -244.8 (4.44) 0.95 (0.011) -271.9 (6.54) 0.93 (0.021)
SelfAttentionMixture -245.4 (4.55) 0.96 (0.010) -270.3 (5.96) 0.94 (0.016)

Multiple modalities. Consid-
ering the same generative model
for Z with a Gaussian mix-
ture prior, suppose now that
instead of observing the aux-
iliary label, we observe mul-
tiple modalities Xs ∈ RDs ,
Xs|Z ∼ N (fs(Z), σ2 I), for in-
jective MLPs fs constructed as
above, with D = 10, Ds = 25,
σ = 0.5 and K = M = 5. We
consider a semi-supervised set-
ting where modalities are miss-
ing completely at random, as in
Zhang et al. (2019), with a miss-
ing rate η as the sample average
of 1

|M|
∑

s∈M(1 − Ms). Our
bound and the suggested PI aggregation schemes can naturally accommodate this partially observed
setting, see Appendix I. Table 2 shows that using the new variational bound improves the LLH and
the identifiability of the latent representation. Furthermore, using learnable aggregation schemes
benefits both variational bounds.

5.3 MNIST-SVHN-TEXT

Following previous work (Sutter et al., 2020; 2021; Javaloy et al., 2022), we consider a tri-modal
dataset based on augmenting the MNIST-SVHN dataset (Shi et al., 2019) with a text-based modality.
Herein, SVHN consists of relatively noisy images, whilst MNIST and text are clearer modalities.
Multi-modal VAEs have been shown to exhibit differing performances relative to their multi-modal
coherence, latent classification accuracy or test LLH, see Appendix L for definitions. Previous works
often differ in their hyperparameters, from neural network architectures, latent space dimensions,
priors and likelihood families, likelihood weightings, decoder variances, etc. We have chosen the
same hyperparameters for all models, thereby providing a clearer disentanglement of how either the
variational objective or the aggregation scheme affect different multi-modal evaluation measures.
In particular, we consider multi-modal generative models with (i) shared latent variables and (ii)
private and shared latent variables. We also consider PoE or MoE schemes (denoted PoE+, resp.,
MoE+) with additional neural network layers in their modality-specific encoding functions so that
the number of parameters matches or exceeds those of the introduced PI models, see Appendix P.5
for details. For models without private latent variables, estimates of the test LLHs in Table 3 sug-
gest that our bound improves the LLH across different aggregation schemes for all modalities and
different βs (Table 8), with similar results for PE schemes, except for a Self-Attention model. More
flexible fusion schemes yield higher LLHs for both bounds. Qualitative results for the reconstructed
modalities are given in Figures 10-12. Realistic cross-generation of the SVHN modality is challeng-
ing for the mixture-based bound with all aggregation schemes. In contrast, our bound, particularly
when combined with learnable aggregation schemes, improves the cross-generation of SVHN. No
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bound or aggregation scheme performs best across all modalities by the generative coherence mea-
sures (see Table 9 for uni-modal inputs, Table 10 for bi-modal ones and Tables 11- 14 for models
with private latent variables and different βs), along with reported results from external baselines
(MVAE, MMVAE, MoPoE, MMJSD, MVTCAE). Overall, our bound is slightly more coherent for
cross-generating SVHN or Text, but less coherent for MNIST. Mixture based bounds tend to im-
prove the unsupervised latent classification accuracy across different fusion approaches and modal-
ities, see Table 15. To provide complementary insights into the trade-offs for the different bounds
and fusion schemes, we consider a multi-modal rate-distortion evaluation in Figure 2. Ignoring MoE
where reconstructions are similar, our bound improves the full reconstruction, with higher full rates,
and across various fusion schemes. Mixture-based bounds yield improved cross-reconstructions for
all aggregation models, with increased cross-rates terms. Flexible PI architectures for our bound
improve the full reconstruction, even at lower full rates.

(a) Full Reconstr. −DM (b) Cross Reconstr. −Dc
\S (c) Full Rates RM (d) Cross Rates R\S

Figure 2: Rate and distortion terms for MNIST-SVHN-Text with shared latent variables (β = 1).

Table 3: Test LLH estimates for the joint data (M+S+T) and marginal data (importance sampling
with 512 particles). The first part of the table is based on the same generative model with shared
latent variable Z ∈ R40, while the second part of the table is based on a restrictive generative model
with a shared latent variable Z ′ ∈ R10 and modality-specific latent variables Z̃s ∈ R10.

Our bound Mixture bound

Aggregation M+S+T M S T M+S+T M S T

PoE+ 6872 (9.62) 2599 (5.6) 4317 (1.1) -9 (0.2) 5900 (10) 2449 (10.4) 3443 (11.7) -19 (0.4)
PoE 6775 (54.9) 2585 (18.7) 4250 (8.1) -10 (2.2) 5813 (1.2) 2432 (11.6) 3390 (17.5) -19 (0.1)
MoE+ 5428 (73.5) 2391 (104) 3378 (92.9) -74 (88.7) 5420 (60.1) 2364 (33.5) 3350 (58.1) -112 (133.4)
MoE 5597 (26.7) 2449 (7.6) 3557 (26.4) -11 (0.1) 5485 (4.6) 2343 (1.8) 3415 (5.0) -17 (0.4)
SumPooling 7056 (124) 2478 (9.3) 4640 (114) -6 (0.0) 6130 (4.4) 2470 (10.3) 3660 (1.5) -16 (1.6)
SelfAttention 7011 (57.9) 2508 (18.2) 4555 (38.1) -7 (0.5) 6127 (26.1) 2510 (12.7) 3621 (8.5) -13 (0.2)

PoE+ 6549 (33.2) 2509 (7.8) 4095 (37.2) -7 (0.2) 5869 (29.6) 2465 (4.3) 3431 (8.3) -19 (1.7)
SumPooling 6337 (24.0) 2483 (9.8) 3965 (16.9) -6 (0.2) 5930 (23.8) 2468 (16.8) 3491 (18.3) -7 (0.1)
SelfAttention 6662 (20.0) 2516 (8.8) 4247 (31.2) -6 (0.4) 6716 (21.8) 2430 (26.9) 4282 (49.7) -27 (1.1)

6 CONCLUSION

Limitations. A drawback of our bound is that computing a gradient step is more expensive as it
requires drawing samples from two encoding distributions. Similarly, learning aggregation functions
is more computationally expensive compared to fixed schemes. Mixture-based bounds might be
preferred if one is interested primarily in cross-modal reconstructions.

Outlook. Using modality-specific encoders to learn features and aggregating them with a PI func-
tion is clearly not the only choice for building multi-modal encoding distributions. However, it
allows us to utilize modality-specific architectures for the encoding functions. Alternatively, our
bounds could also be used, e.g., when multi-modal transformer architectures (Xu et al., 2022) en-
code a distribution on a shared latent space. Our approach applies to general prior densities if we can
compute its cross-entropy relative to the multi-modal encoding distributions. An extension would be
to apply it with more flexible prior distributions, e.g., as specified via score-based generative mod-
els (Vahdat et al., 2021). The ideas in this work might also be of interest for other approaches that
require flexible modeling of conditional distributions, such as in meta-learning via Neural processes.
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A MULTI-MODAL DISTRIBUTION MATCHING

Proposition 9 (Marginal and conditional distribution matching). For any S ∈ P(M), we have∫
pd(xS)LS(xS , θ, ϕ)dxS +H(pd(xS))

=− KL(qϕ(z, xS)|pθ(z, xS)) (ZXmarginal)

=− KL(pd(xS)|pθ(xS))−
∫

pd(xS)KL(qϕ(z|xS)|pθ(z|xS))dxS (Xmarginal)

=− KL(qagg
ϕ,S(z)|pθ(z))−

∫
qagg
ϕ,S(z)KL(q

⋆(xS |z)|pθ(xS |z))dxS , (Zmarginal)

where qagg
ϕ,S(z) =

∫
pd(xS)qϕ(z|xS)dxS is the aggregated prior (Makhzani et al., 2016) restricted

on modalities from S and q⋆(xS |z) = qϕ(xS , z)/q
agg
ϕ (z). Moreover, for fixed xS ,∫

pd(x\S |xS)L\S(x, θ, ϕ)dx\S +H(pd(x\S |xS))

=− KL
(
qϕ(z|x)pd(x\S |xS)

∣∣pθ(x\S |z)qϕ(z|xS)
)

(ZXconditional)

=− KL(pd(x\S |xS)|pθ(x\S |xS)) (Xconditional)

−
∫

pd(x\S |xS)

(
KL(qϕ(z|x)|pθ(z|x)) +

∫
qϕ(z|x) log

qϕ(z|xS)

pθ(z|xS)
dz

)
dx\S

=− KL(qagg
ϕ,\S(z|xS)|qϕ(z|xS))−

∫
qagg
ϕ,\S(z|xS)

(
KL(q⋆(x\S |z, xS)|pθ(x\S |z))

)
dz,

(Zconditional)

where qagg
ϕ,\S(z|xS) =

∫
pd(x\S |xS)qϕ(z|x)dx\S can be seen as an aggregated encoder conditioned

on xS and q⋆(x\S |z, xS) = qϕ(z, x\S |xS)/q
agg
ϕ,\S(z|xS) = pd(x\S |xS)qϕ(z|x)/qagg

ϕ,\S(z|xS).

Proof of Proposition 9. The equations for LS(xS) are well known for uni-modal VAEs, see for
example Zhao et al. (2019). To derive similar representations for the conditional bound, note that the
first equation (ZXconditional) for matching the joint distribution of the latent and the missing modalities
conditional on a modality subset follows from the definition of L\S ,∫

pd(x\S |xS)L\S(x, θ, ϕ)dx\S

=

∫
pd(x\S |xS)

∫
qϕ(z|x)

[
log pθ(x\S |z)− log qϕ(z|x) + log qϕ(z|xS))

]
dzdx\S

=

∫
pd(x\S |xS) log pd(x\S |xS)dx\S +

∫
pd(x\S |xS)

∫
qϕ(z|x)

[
log

pθ(x\S |z)qϕ(z|xS))

qϕ(z|x)pd(x\S |xS)

]
dzdx\S

=−H(pd(x\S |xS))− KL
(
qϕ(z|x)pd(x\S |xS)

∣∣pθ(x\S |z)qϕ(z|xS)
)
.

To obtain the second representation (Xconditional) for matching the conditional distributions in the data
space, observe that pθ(x\S |xS , z) = pθ(x\S |z) and consequently,

19



−
∫

pd(x\S |xS)L\S(x, θ, ϕ)dx\S −H(pd(x\S |xS))

=

∫
pd(x\S |xS)qϕ(z|x) log

pd(x\S |xS)qϕ(z|x)
pθ(x\S |z)qϕ(z|xS)

dzdx\S

=

∫
pd(x\S |xS)qϕ(z|x) log

pd(x\S |xS)qϕ(z|x)pθ(z|xS)

pθ(x\S |z)pθ(z|xS)qϕ(z|xS)
dzdx\S

=

∫
pd(x\S |xS)qϕ(z|x) log

pd(x\S |xS)qϕ(z|x)pθ(z|xS)

pθ(x\S |z, xS)pθ(z|xS)qϕ(z|xS)
dzdx\S

=

∫
pd(x\S |xS)qϕ(z|x) log

pd(x\S |xS)qϕ(z|x)pθ(z|xS)

pθ(x\S |xS)pθ(z|xS , x\S)qϕ(z|xS)
dzdx\S

=KL(pd(x\S |xS)|pθ(x\S |xS)) +

∫
pd(x\S |xS)

∫
qϕ(z|x)

[
log

qϕ(z|x)
pθ(z|x)

+ log
pθ(z|xS)

qϕ(z|xS)

]
dzdx\S .

Lastly, the representation (Zconditional) for matching the distributions in the latent space given a modal-
ity subset follows by recalling that

pd(x\S |xS)qϕ(z|x) = qagg
ϕ,\S(z|xS)q

⋆(x\S |z, xS)

and consequently,

−
∫

pd(x\S |xS)L\S(x, θ, ϕ)dx\S −H(pd(x\S |xS))

=

∫
pd(x\S |xS)qϕ(z|x) log

pd(x\S |xS)qϕ(z|x)
pθ(x\S |z)qϕ(z|xS)

dzdx\S

=

∫
qagg
ϕ,\S(z|xS)q

⋆(x\S |z, xS) log
qagg
ϕ,\S(z|xS)q

⋆(x\S |z, xS)

pθ(x\S |z)qϕ(z|xS)
dzdx\S

=KL(qagg
ϕ,\S(z|xS)|qϕ(z|xS))−

∫
qagg
ϕ,\S(z|xS)

(
KL(q⋆(x\S |z, xS)|pθ(x\S |z))

)
dz.

Remark 10 (Prior-hole problem and Bayes or conditional consistency). In the uni-modal setting, the
mismatch between the prior and the aggregated prior can be large and can lead to poor unconditional
generative performance, because this would lead to high-probability regions under the prior that have
not been trained due to their small mass under the aggregated prior (Hoffman and Johnson, 2016;
Rosca et al., 2018). Equation (Zmarginal) extents this to the multi-modal case and we expect that
unconditional generation can be poor if this mismatch is large. Moreover, (Zconditional) extends this
conditioned on some modality subset and we expect that cross-generation for x\S conditional on xS
can be poor if the mismatch between qagg

ϕ,\S(z|xS) and qϕ(z|xS) is large for xS ∼ pd, because high-
probability regions under qϕ(z|xS) will not have been trained - via optimizing L\S(x) - to model
x\S conditional on xS , due to their small mass under qagg

ϕ,\S(z|xS). The mismatch will vanish when
the encoders are consistent and correspond to a single Bayesian model where they approximate the
true posterior distributions.

Corollary 11 (Multi-modal log-likelihood approximation). For any modality mask S, we have∫
pd(x)

[
LS(xS , θ, ϕ, 1) + L\S(x, θ, ϕ, 1)

]
dx−

∫
pd(x) [log pθ(x)] dx

=−
∫

pd(xS) [KL(qϕ(z|xS)|pθ(z|xS))] dx−
∫

pd(x) [KL(qϕ(z|x)|pθ(z|x))] dx

+

∫
pd(x)qϕ(z|x)

[
log

qϕ(z|xS)

pθ(z|xS)

]
dzdx.
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Proof. This follows from (Xmarginal) and (Xconditional).

Remark 12. Corollary 11 shows that the variational bound can become tight in the limiting case
where the encoding distributions approximates the true posterior distributions. A similar result does
not hold for the mixture-based multi-modal bound. Indeed, as shown in Daunhawer et al. (2022),
there is a gap between the variational bound and the log-likelihood given by the conditional entropies
that cannot be reduced even for flexible encoding distributions. More precisely, it holds that∫

pd(x) log pθ(x)dx ≥
∫

pd(x)LMix(x, θ, ϕ, 1)dx+H(pd(X\S |XS)).

Moreover, our bound can be tight for an arbitrary number of modalities in the limiting case of
infinite-capacity encoders. In contrast, Daunhawer et al. (2022) show that for mixture-based bounds,
this variational gap increases with each additional modality, if the new modality is ’sufficiently
diverse’, even for infinite-capacity encoders. Note that in practice, we optimize over the objective
where the mask S is not fixed but random, which induces a Jensen gap as in other any-order methods
(Hoogeboom et al., 2021; Shih et al., 2022).

Remark 13. The term
∫
pd(x)qϕ(z|x)

[
log

qϕ(z|xS)
pθ(z|xS)

]
dzdx arising in Corollary 11 and in

(Xconditional) is not necessarily negative. Analogous to other variational approach for learning con-
ditional distributions such as latent Neural processes, our bound becomes an approximately lower
bound. Note that LS is maximized when qϕ(z|xS) = pθ(z|xS), see (Xmarginal), while L\S is max-
imized when qϕ(z|xS) =

∫
pd(x\S |xS)qϕ(z|x)dx\S = qagg

ϕ,\S(z|xS), see (Zconditional). The latter
condition implies a lower bound in Corollary 11 of∫

pd(x)
[
LS(xS , θ, ϕ, 1) + L\S(x, θ, ϕ, 1)

]
dx =

∫
pd(x) [log pθ(x)− KL(qϕ(z|x)|pθ(z|x))] dx.

Remark 14 (Optimization, multi-task learning and the choice of ρ). For simplicity, we have chosen
to sample S ∼ ρ in our experiments via the hierarchical construction γ ∼ U(0, 1), mj ∼ Bern(γ)
iid for all j ∈ [M ] and setting S = {s ∈ [M ] : mj = 1}. The distribution ρ for masking the
modalities can be adjusted to accommodate various weights for different modality subsets. Indeed,
(2) can be seen as a linear scalarisation of a multi-task learning problem (Fliege and Svaiter, 2000;
Sener and Koltun, 2018). We aim to optimise a loss vector (LS + L\S)S⊂M, where the gradients
for each S ⊂ M can point in different directions, making it challenging to minimise the loss for all
modalities simultaneously. Consequently, Javaloy et al. (2022) used multi-task learning techniques
(e.g., as suggested in Chen et al. (2018); Yu et al. (2020)) for adjusting the gradients in mixture
based VAEs. Such improved optimisation routines are orthogonal to our approach. Similarly, we do
not analyse optimisation issues such as initialisations and training dynamics that have been found
challenging for multi-modal learning (Wang et al., 2020; Huang et al., 2022).

B META-LEARNING AND NEURAL PROCESSES

Meta-learning. We consider a standard meta-learning setup but use slightly non-standard nota-
tions to remain consistent with notations used in other parts of this work. We consider a compact
input or covariate space A and output space X . Let D = ∪∞

M=1(A × X )M be the collection of all
input-output pairs. In meta-learning, we are given a meta-dataset, i.e., a collection of elements from
D. Each individual data set D = (a, x) = Dc ∪Dt ∈ D is called a task and split into a context set
Dc = (ac, xc), and target set Dt = (at, xt). We aim to predict the target set from the context set.
Consider, therefore, the prediction map

π : Dc = (ac, xc) 7→ p(xt|at, Dc) = p(xt, xc|at, ac)/p(xc|ac),

mapping each context data set to the predictive stochastic process conditioned on Dc.

Variational lower bounds for Neural processes. Latent Neural processes (Garnelo et al., 2018b;
Foong et al., 2020) approximate this prediction map by using a latent variable model with parameters
θ in the form of

z ∼ pθ, pθ(xt|at, z) =
∏

(a,x)∈Dt

pϵ(x− fθ(a, z))
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for a prior pθ, decoder fθ and a parameter free density pϵ. The model is then trained by (approxi-
mately) maximizing a lower bound on log pθ(xt|at, ac, xc). Note that for an encoding density qϕ,
we have that

log pθ(xt|at, ac, xx) =

∫
qϕ(z|x, a) log pθ(xt|at, z)dz − KL(qϕ(z|a, x)|pθ(z|ac, xc)).

Since the posterior distribution pθ(z|ac, xc) is generally intractable, one instead replaces it with
a variational approximation or learned conditional prior qϕ(z|ac, xc), and optimizes the following
objective

LLNP
\C (x, a) =

∫
qϕ(z|x, a) log pθ(xt|at, z)dz − KL(qϕ(z|a, x)|qϕ(z|ac, xc)).

Note that this objective coincides with L\C conditioned on the covariate values a and where C
comprises the indices of the data points that are part of the context set.

Using this variational lower bound can yield subpar performance compared to other biased log-
likelihood objectives (Kim et al., 2018; Foong et al., 2020), possibly because the variational approx-
imation qϕ(z|ac, xc) needs not to be close the posterior distribution pθ(z|ac, xc). It would therefore
be interesting to analyze in future work if one can alleviate such issues if one optimizes additionally
the variational objective corresponding to LC , i.e.,

LLNP
C (xc, ac) =

∫
qϕ(z|xc, ac) log pθ(xc|ac, z)dz − KL(qϕ(z|ac, xc)|pθ(z)),

as we do in this work for multi-modal generative models. Note that the objective LLNP
C alone can

be seen as a form of a neural statistician model (Edwards and Storkey, 2016) where C coincides
with the indices of the target set, while a form of the mixture-based bound corresponds to a neural
process bound similar to variational homoencoders (Hewitt et al., 2018), see also the discussion in
Le et al. (2018).

C INFORMATION-THEORETIC PERSPECTIVE

We recall first that the mutual information on the inference path5 is given by

Iqϕ(XS , ZS) =

∫
qϕ(xS , z) log

qϕ(xS , z)

pd(xS)q
agg
ϕ,S(z)

dzdxS ,

where qagg
ϕ,S(z) =

∫
pd(xS)qϕ(z|xS)dxS is the aggregated prior (Makhzani et al., 2016). It can be

bounded by standard (Barber and Agakov, 2004; Alemi et al., 2016; 2018) lower and upper bounds
using the rate and distortion:

HS −DS ≤ HS −DS +∆1 = Iqϕ(XS , ZS) = RS −∆2 ≤ RS ,

with ∆1 =
∫
qagg
ϕ (z)KL(q⋆(xS |z)|pθ(xS |z))dz > 0, ∆2 = KL(qagg

ϕ,S(z)|pθ(z)) > 0 and
q⋆(xS |z) = qϕ(xS , z)/q

agg
ϕ (z).

Moreover, if the bounds in (5) become tight with ∆1 = ∆2 = 0 in the hypothetical scenario of
infinite-capacity decoders and encoders, one obtains

∫
pdLS = (1 − β) Iqϕ(XS , ZS) + HS . For

β > 1, maximizing LS yields an auto-decoding limit that minimizes Iqϕ(xS , z) for which the latent
representations do not encode any information about the data, whilst β < 1 yields an auto-encoding
limit that maximizes Iqϕ(XS , Z) and for which the data is perfectly encoded and decoded.

To arrive at a similar interpretation for the conditional bound L\S , recall that we have de-
fined R\S =

∫
pd(x)KL(qϕ(z|x)|qϕ(z|xS)dx for a conditional or cross rate term and D\S =

−
∫
pd(x)qϕ(z|x) log pθ(x\S |z)dzdx for the distortion term. Bounds on the conditional mutual

information

Iqϕ(X\S , ZM|XS) =

∫
pd(xS)KL(pd(x\S , z|xS))|pd(x\S |xS)q

agg
ϕ,\S(z|xS))dxS

with qagg
ϕ,\S(z|xS) =

∫
pd(x\S |xS)qϕ(z|x)dx\S can be established as follows.

5We include the conditioning modalities as an index for the latent variable Z when the condtitioning set is
unclear.
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Proof of Lemma 2. The proof follows by adapting the arguments in Alemi et al. (2018). The law of
X\S and Z conditional on XS on the encoder path can be written as

qϕ(z, x\S |xS) = pd(x\S |xS)qϕ(z|x) = qagg
ϕ,\S(z|xS)q

⋆(x\S |z, xS)

with q⋆(x\S |z, xS) = qϕ(z, x\S |xS)/q
agg
ϕ,\S(z|xS). To prove a lower bound on the conditional

mutual information, note that
Iqϕ(X\S , ZM|XS)

=

∫
pd(xS)

∫
qagg
ϕ,\S(z|xS)

∫
q⋆(x\S |z, xS) log

qagg
ϕ,\S(z|xS)q

⋆(x\S |z, xS)

qagg
ϕ,\S(z|xS)pd(x\S |x\S)

dzdx\SdxS

=

∫
pd(xS)

∫
qagg
ϕ,\S(z|xS)

[
q⋆(x\S |z, xS) log pθ(x\S |z)) + KL(q⋆(x\S |z, xS)|pθ(x\S |z))

]
dzdxS

−
∫

pd(xS)

∫
pd(x\S |xS) log pd(x\S |xS)dx

=

∫
pd(x)

∫
qϕ(z|x) log pθ(x\S |z)dzdx−

∫
pd(xS)

∫
pd(x\S |xS) log pd(x\S |xS)dx︸ ︷︷ ︸

=−H\S=−H(X\S |XS)

+

∫
pd(xS)

∫
qagg
ϕ,\S(z|xS)KL(q

⋆(x\S |z, xS)|pθ(x\S |z))dxS︸ ︷︷ ︸
=∆\S,1≥0

=∆\S,1 +D\S +H\S .

The upper bound follows by observing that
Iqϕ(X\S , ZM|XS)

=

∫
pd(xS)

∫
pd(x\S |x\) log

qϕ(z|x)pd(x\S |xS)

qagg
ϕ,\S(z|xS)pd(x\S |xS)

dzdx

=

∫
pd(x)KL(qϕ(z|x)|qϕ(z|xS))dx−

∫
pd(xS)KL(q

agg
ϕ,\S(z|xS)|qϕ(z|xS))dxS︸ ︷︷ ︸
=∆\S,2≥0

=R\S −∆\S,2.

Remark 15 (Total correlation based objectives). The objective suggested in Hwang et al. (2021) is
motivated by a conditional variational bottleneck perspective that aims to maximize the reduction of
total correlation of X when conditioned on Z, as measured by the conditional total correlation, see
Watanabe (1960); Ver Steeg and Galstyan (2015); Gao et al. (2019), i.e.,

minimizing
{

TC(X|Z) = TC(X)− TC(X,Z) = TC(X) + Iqϕ(X,Z)−
M∑
s=1

Iqϕ(Xs, Z)
}
, (7)

where TC(X) = KL(p(x)|
∏d

i=1 p(xi)) for d-dimensional X . Resorting to variational lower bounds
and using a constant β > 0 that weights the contributions of the mutual information terms, approxi-
mations of (7) can be optimized by maximizing

LTC(θ, ϕ, β) =

∫
ρ(S)

∫
{qϕ(z|x) [log pθ(x|z)] dz − βKL(qϕ(z|x)|qϕ(z|xS))} dS,

where ρ is concentrated on the uni-modal subsets of M.

D OPTIMAL VARIATIONAL DISTRIBUTIONS

The optimal variational density for the mixture-based (1) multi-modal objective,∫
pd(dx)LMix

S (x) =

∫
pd(xS)

∫
qϕ(z|xS)

∫
pd(x\S |xS)[

log pθ(xS |z) + log pθ(x\S |z)− β log pθ(z)− β log qϕ(z|xS)
]
dx\SdzdxS
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is attained at

q⋆(z|xS) ∝ exp

(
1

β

∫
pd(x\S |xS)

[
log pθ(xS |z) + log pθ(x\S |z)− β log pθ(z)

]
dx\S

)
∝ p̃β,θ(z|xS) exp

(∫
pd(x\S |xS) log p̃β,θ(x\S |z)dx\S

)
.

E PERMUTATION-INVARIANT ARCHITECTURES

Multi-head attention and masking. We introduce here a standard multi-head attention (Bah-
danau et al., 2014; Vaswani et al., 2017) mapping MHAϑ : RI×DX × RS×DY → RI×DY given
by

MHAϑ(X,Y ) = WO
[
Head1(X,Y, Y ), . . . ,HeadH(X,Y, Y )

]
, ϑ = (WQ,WK ,WV ,WO),

with output matrix WO ∈ RDA×DY , projection matrices WQ,WK ,WV ∈ RDY ×DA and

Headh(Q,K, V ) = Att(QWh
Q,KWh

K , V Wh
V ) ∈ RI×D (8)

where we assume that D = DA/H ∈ N is the head size. Here, the dot-product attention function is

Att(Q,K, V ) = σ(QK⊤)V,

where σ is the softmax function applied to each column of Q and K⊤, respectively.

Masked multi-head attention. In practice, it is convenient to consider masked multi-head atten-
tion models MMHAϑ,M : RI×DX × RT×DY → RI×DY for mask matrix M ∈ {0, 1}I×T that
operate on key or value sequences of fixed length T where the h-th head (8) is given by

Headh(Q,K, V ) =
[
M ⊙ σ(QWh

Q(KWh
K)⊤)

]
Vt′W

h
V ∈ RT×D.

Using the softmax kernel function SMD(q, k) = exp(q⊤k/
√
D), we set

MMHAϑ,M (X,Y )i =

T∑
t=1

H∑
h=1

MitSMD(WQ
h Xi,W

K
h Yt)∑T

t′=1 Mit′SMD(XiW
Q
h , Yt′WK

h )
YtW

V
h WO

h (9)

which does not depend on Yt if M·t = 0.

Masked self-attention. For mask matrix M = mm⊤ with m = (1{s∈S})s∈M, we write

MHAϑ(YS , YS) = MMHAϑ,M (i(YS), i(YS))S .

where MMHAϑ,M operates on sequences with fixed length and i(YS))t = Yt if t ∈ S and 0 other-
wise.

LayerNorm and SetNorm. Let h ∈ RT×D and consider the normalisation

N(h) =
h− µ(h)

σ(h)
⊙ γ + β

where µ and σ standardise the input h by computing the mean, and the variance, respectively, over
some axis of h, whilst γ and β define a transformation. LayerNorm (Ba et al., 2016) standardises in-
puts over the last axis, e.g., µ(h) = 1

D

∑D
d=1 µ·,d, i.e., separately for each element. In contrast, Set-

Norm (Zhang et al., 2022b) standardises inputs over both axes, e.g., µ(h) = 1
TD

∑T
t=1

∑D
d=1 µt,d,

thereby losing the global mean and variance only. In both cases, γ and β share their values across
the first axis. Both normalisations are permutation-equivariant.

Transformer. We consider a masked pre-layer-norm (Wang et al., 2019; Xiong et al., 2020) multi-
head transformer block

(MMTBϑ,M (iS(YS)))S = (Z + σReLU(LN(Z)))S

with σReLU being a ReLU non-linearity and
Z = iS(YS) + MMHAϑ,M (LN(iS(YS)),LN(iS(YS)))

where M = mm⊤ for m = (1{s∈S})s∈M.
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Set-Attention Encoders. Set g0 = iS(χϑ(hS)) and for k ∈ {1, . . . , L}, let gk =

MMTBϑ,M (gk−1
S ). Then, we can express the self-attention multi-modal aggregation mapping via

fϑ(hS) = ρϑ
(∑

s∈S gLs
)
.

Remark 16 (Mixture-of-Product-of-Experts or MoPoEs). Sutter et al. (2021) introduced a MoPoE
aggregation scheme that extends MoE or PoE schemes by considering a mixture distribution of all
2M modality subsets, where each mixture component consists of a PoE model, i.e.,

qMoPoE
ϕ (z|xM) =

1

2M

∑
xS∈P(xM)

qPoE
ϕ (z|xS).

This can also be seen as another PI model. While it does not require learning separate encoding
models for all modality subsets, it however becomes computationally expensive to evaluation for
large M . Our mixture models using components with a SumPooling or SelfAttention aggregation
can be seen as an alternative that allows one to choose the number of mixture components K to
be smaller than 2M , with non-uniform weights, while the individual mixture components are not
constrained to have a PoE form.
Remark 17 (Multi-modal time series models). We have introduced our generative model in a gen-
eral form that also applies to the time-series setup, such as when a latent Markov process drives mul-
tiple time series. For example, consider a latent Markov process Z = (Zt)t∈N with prior dynamics
pθ(z1, . . . , zT ) = pθ(z1)

∏T
t=2 pθ(zt|zt−1) for an initial density pθ(z1) and homogeneous Markov

kernels pθ(zt|zt−1). Conditional on Z, suppose that the time-series (Xs,t)t∈N follows the dynamics
pθ(xs,1, . . . , xs,T |z1, . . . , zT ) =

∏T
t=2 pθ(xs,t|zt) for decoding densities pθ(xs,t|zt). A common

choice (Chung et al., 2015) for modeling the encoding distribution for such sequential (uni-modal)
VAEs is to assume the factorisation qϕ(z1, . . . zT |x1, . . . xT ) = qϕ(z1|x1)

∏T
t=2 qϕ(zt|zt−1, xt)

for xt = (xs,t)s∈M, with initial encoding densities qϕ(z1|x1) and encoding Markov kernels
qϕ(zt|zt−1, xt). One can again consider modality-specific encodings hs = (hs,1, . . . , hs,T ), hs,t =
hs,φ(xs,t), now applied separately at each time step that are then used to construct Markov ker-
nels that are permutation-invariant in the form of q′ϕ(zt|zt−1, πhφ(xt,S)) = q′ϕ(zt|zt−1, hφ(xt,S))
for permutations π ∈ SS . Alternatively, in absence of the auto-regressive encoding structure with
Markov kernels, one could also use transformer models that use absolute or relative positional em-
beddings across the last temporal axis, but no positional embeddings across the first modality axis,
followed by a sum-pooling operation across the modality axis. Note that previous works using
multi-modal time series such as Kramer et al. (2022) use a non-amortized encoding distribution for
the full multi-modal posterior only. A numerical evaluation of permutation-invariant schemes for
time series models is however outside the scope of this work.

F PERMUTATION-EQUIVARIANCE AND PRIVATE LATENT VARIABLES

In principle, the general permutation invariant aggregation schemes that have been introduced could
also be used for learning multi-modal models with private latent variables. For example, suppose
that the generative model factorises as

pθ(z, x) = p(z)
∏
s∈M

pθ(xs|z′, z̃s) (10)

for z = (z′, z̃1, . . . , z̃M ) ∈ Z, for shared latent variables Z ′ and private latent variable Z̃s for each
s ∈ M. Note that for s ̸= t ∈ [M ],

Xs ⊥⊥ Z̃t | Z ′, Z̃s. (11)
Consequently,

pθ(z
′, z̃S , z̃\S |xS) = pθ(z

′, z̃S , |xS)pθ(z̃\S |z′, z̃S , xS) = pθ(z
′, z̃S , |xS)pθ(z̃\S |z′, z̃S). (12)

An encoding distribution qϕ(z|xS) that approximates pθ(z|xS) should thus be unaffected by the
inputs xS when encoding z̃s for s /∈ S, provided that, a priori, all private and shared latent variables
are independent. Observe that for fϑ with the representation

fϑ(hS) = ρϑ

(∑
s∈S

gϑ(hS)s

)
,
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where ρϑ has aggregated inputs y, and that parameterises the encoding distribution of z =
(z′, z̃S , z̃\S), the gradients of its i-th dimension with respect to the modality values xs is

∂

∂xs
[fϑ(hS(xS))i] =

∂ρϑ,i
∂y

(∑
t∈S

gϑ(hS(xS)t)

)
∂

∂xs

(∑
t∈S

gϑ(hS(xS))t

)
.

In the case of a SumPooling aggregation, the gradient simplifies to

∂ρϑ,i
∂y

(∑
t∈S

χϑ(ht(xt))

)
∂χϑ

∂h
(hs(xs))

∂hs(xs)

∂xs
.

Suppose that the i-th component of ρϑ maps to the the mean or log-standard deviation of some
component of Z̃s for some s ∈ M \ S. Notice that only the first factor depends on i so that for
this gradient to be zero, ρϑ,i has to be locally constant around y =

∑
s∈S χϑ(hs(xs)) if some other

components have a non-zero gradient with respect to Xs. It it thus very likely that inputs Xs for
s ∈ S can impact the distribution of the private latent variables z̃\S .

However, the specific generative model also lends itself to an alternative parameterisation which
guarantees that cross-modal reconstruction likelihoods from X\S do not affect the encoding distri-
bution of Z̃S under our new variational bound. The assumption of private latent variables suggests an
additional permutation-equivariance into the encoding distribution that approximates the posterior
in (12), in the sense that for any permutation π ∈ SS , it holds that

q′ϕ(z̃S |π · hφ(xS), z
′) = q′ϕ(π · z̃S |hφ(xS), z

′),

assuming that all private latent variables are of the same dimension D.6 Indeed, suppose we have
modality-specific feature functions hφ,s such that {Hs = hφ,s(Xs)}s∈S is exchangeable. Clearly,
(11) implies for any s ̸= t that

hφ,s(Xs) ⊥⊥ Z̃t | Z ′, Z̃s.

The results from Bloem-Reddy and Teh (2020) then imply, for fixed |S|, the existence of a function
f⋆ such that for all s ∈ S, almost surely,

(HS , Z̃s) = (HS , f
⋆(Ξs, Z

′, Hs,MHS )), where Ξs ∼ U [0, 1] iid and Ξs ⊥⊥ HS . (13)

This fact suggests an alternative route to approximate the posterior distribution in (12): First,
pθ(z̃\S |z′, z̃S) can often be computed analytically based on the learned or fixed prior distribu-
tion. Second, a permutation-invariant scheme can be used to approximate pθ(z

′|xS). Finally, a
permutation-equivariant scheme can be employed to approximate pθ(z̃S |xS , z

′) with a reparame-
terisation in the form of (13). Three examples of such permutation-equivariant schemes are given
below with pseudocode for optimising the variational bound given in Algorithm 2.
Example 18 (Permutation-equivariant PoE). Similar to previous work Wang et al. (2016); Lee and
Pavlovic (2021); Sutter et al. (2020), we consider an encoding density of the form

qϕ(z
′, z̃M|xS) = qPoE

φ (z′|xS)
∏
s∈S

qN (z̃s|µ̃s,φ(xs), Σ̃s,φ(xs))
∏

s∈M\S

pθ(z̃s),

where
qPoE
φ (z′|xS) =

1

Z
pθ(z

′)
∏
s∈S

qN (z′|µ′
s,φ(xs),Σ

′
s,φ(xs))

is a (permutation-invariant) PoE aggregation, and we assumed that the prior density factorises over
the shared and different private variables. For each modality s, we encode different features h′

s,φ =

(µ′
s,φ,Σ

′
s,φ) and h̃s,φ = (µ̃s,φ, Σ̃s,φ) for the shared, respectively, private, latent variables.

Example 19 (Permutation-equivariant Sum-Pooling). We consider an encoding density that writes
as

qϕ(z
′, z̃M|xS) = qSumP

ϕ (z′|xS)q
Equiv-SumP
ϕ (z̃S |z′, xS)

∏
s∈M\S

pθ(z̃s|z′).

6The effective dimension can vary across modalities in practice if the decoders are set to mask redundant
latent dimensions.

26



Here, we use a (permutation-invariant) Sum-Pooling aggregation scheme for constructing the shared
latent variable Z ′ = µ′(hS)+σ′(hS)⊙Ξ′ ∼ qSumP

ϕ (z′|xS), where Ξ′ ∼ p and fϑ : R|S|×DE → RD

given as in Example (5) with [µ′(h), log σ′(h)] = fϑ(h). To sample Z̃S ∼ qEquiv-SumP
ϕ (z̃S |z′, xS),

consider functions χj,ϑ : RDE → RDP , j ∈ [3], and ρϑ : RDP → RDO , e.g., fully-connected neural
networks. We define fEquiv-SumP

ϑ : Z× R|S|×DE → R|S|×DO via

fEquiv-SumP
ϑ (z′, hS)s = ρϑ

([∑
t∈S

χ0,ϑ(ht)

]
+ χ1,ϑ(z

′) + χ2,ϑ(hs)

)
.

With
[
µ̃(hS)

⊤, log σ̃(hS)
⊤]⊤ = fEquiv-SumP

ϑ (z′, hS), we then set Z̃s = µ̃(hS)s + σ̃(hS)s ⊙ Ξ̃s for
Ξ̃s ∼ p iid, hs = hφ,s(xs) for modality-specific feature functions hφ,s : Xs → RDE .

Example 20 (Permutation-equivariant Self-Attention). Similar to a Sum-Pooling approach, we con-
sider an encoding density that writes as

qϕ(z
′, z̃M|xS) = q SA

ϕ (z′|xS)q
Equiv-SA
ϕ (z̃S |z′, xS)

∏
s∈M\S

pθ(z̃s|z′).

Here, the shared latent variable Z ′ is sampled via the permutation-invariant aggregation above by
summing the elements of a permutation-equivariant transformer model of depth L′. For encoding
the private latent variables, we follow the example above but set[

µ̃(hS)
⊤, log σ̃(hS)

⊤]⊤ = fEquiv-SA
ϑ (z′, hS)s = gLS ,

with gkS = MTBϑ(g
k−1
S ) an g0 = (χ1,ϑ(hs) + χ2,ϑ(z

′))s∈S .

Remark 21 (Cross-modal context variables). In contrast to the PoE model, where the private encod-
ings are independent, the private encodings are dependent in the Sum-Pooling model by conditioning
on a sample from the shared latent space. The shared latent variable Z ′ can be seen as a shared cross-
modal context variable, and similar probabilistic constructions to encode such context variables via
permutation-invariant models have been suggested in few-shot learning algorithms (Edwards and
Storkey, 2016; Giannone and Winther, 2022) or, particularly, for neural process models (Garnelo
et al., 2018b;a; Kim et al., 2018).

Remark 22 (Variational bounds with private latent variables). To compute the multi-modal varia-
tional bounds, notice that the required KL-divergences can be written as follows:

KL(qϕ(z
′, z̃|xS)|pθ(z′, z̃)) = KL(qϕ(z

′|xS)|pθ(z′))+
∫

qϕ(z
′|xS)KL(qϕ(z̃S|z′, xS)|pθ(z̃S |z′))dz′

and

KL(qϕ(z
′, z̃|xM)|qϕ(z′, z̃|xS))

=KL(qϕ(z
′|xM)|(qϕ(z′|xS)) +

∫
qϕ(z

′|xM)KL(qϕ(PS z̃|z′, xM)|qϕ(PS z̃|z′, xS))dz
′

+

∫
qϕ(z

′|xM)KL(qϕ(P\S z̃|z′, xS)|pθ(P\S z̃|z′))dz′

where PS : (z̃1, . . . z̃M ) 7→ (z̃s)s∈S projects all private latent variables to those contained in S.

These expressions can be used to compute our overall variational bound LS + L\S via∫
qϕ(z

′|xS)qϕ(z̃S |z′, xS)] log pθ(xS |z′, z̃S)dz′dz̃S

− KL
(
qϕ(z

′|xS)qϕ(z̃S |z′, xS)
∣∣∣pθ(z′)pθ(z̃S |z′))

+

∫
qϕ(z

′|xM)qϕ(z̃\S |z′, xM)] log pθ(xS |z′, z̃\S)dz′dz̃S

− KL
(
qϕ(z

′, z̃S , z̃\S |xM)
∣∣∣qϕ(z′, z̃S , z̃\S |xS)

)
.
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Remark 23 (Comparison with MMVAE+ variational bound). It is instructive to compare our bound
with the MMVAE+ approach suggested in Palumbo et al. (2023). Assuming a uniform masking
distribution restricted to uni-modal sets so that S = {s} for some s ∈ M, we can write the bound
from Palumbo et al. (2023) as 1

M

∑M
s=1 LMMVAE+

{s} (x) with

LMMVAE+
{s} (x) =

∫
qϕ(z

′|x{s})qϕ(z̃{s}|x{s})
[
log pθ(x{s}|z′, z̃{s})

]
dz′dz̃{s}

+

∫
qϕ(z

′|x{s})rϕ(z̃\{s})
[
log pθ(x\{s}|z′, z̃\{s})

]
dz′dz̃\{s}

− KL
(
qMoE
ϕ (z′, z̃M|xM)

∣∣∣pθ(z′)pθ(z̃M)
)
.

Here, it is assumed that the multi-modal encoding distribution for computing the KL-divergence is
of the form

qMoE
ϕ (z′, z̃M|xM) =

1

M

∑
s∈M

(qϕ(z
′|xs)qϕ(z̃s|xs))

and rϕ(z̃A) =
∏

s∈A rϕ(z̃s) are additional trainable prior distributions.

G MULTI-MODAL POSTERIOR IN EXPONENTIAL FAMILY MODELS

Consider the setting where the decoding and encoding distributions are of the exponential family
form, that is

pθ(xs|z) = µs(xs) exp [⟨Ts(xs), fs,θ(z)⟩ − logZs(fs,θ(z))]

for all s ∈ M, while for all S ⊂ M,

qϕ(z|xS) = µ(z) exp [⟨V (z), λϕ,S(xS)⟩ − log ΓS(λϕ,S(xS))]

where µs and µ are base measures, Ts(xs) and V (z) are sufficient statistics, while the natural pa-
rameters λϕ,S(xS) and fs,θ(z) are parameterised by the decoder or encoder networks, respectively,
with Zs and ΓS being normalising functions. Note that we made a standard assumption that the
multi-modal encoding distribution has a fixed base measure and sufficient statistics for any modality
subset. For fixed generative parameters θ, we want to learn a multi-modal encoding distribution that
minimises, see Remark 4, over xS ∼ pd,

KL(qϕ(z|xS)|pθ(z|xS))

=

∫
qϕ(z|xS)

[
log qϕ(z|xS)− log pθ(z)−

∑
s∈S

log pθ(xs|z)
]
dz − log pθ(xS)

=

∫
qϕ(z|xS)

[
⟨V (z), λϕ,S(xS)⟩ − log ΓS(λϕ,S(xS))−

∑
s∈S

logµs(xs)

−
{∑

s∈S
⟨Ts,θ(xs), fs,θ(z)⟩+ log pθ(z)−

∑
s∈S

Zs(fs,θ(z))
}]

dz − log pθ(xS)

=

∫
qϕ,ϑ(z|xS)

[〈 [
V (z)
1

]
,

[
λϕ,ϑ,S(xS)

− log ΓS(λϕ,ϑ,S(xS))

]〉
−
∑
s∈S

〈[
Ts(xs)

1

]
,

[
fθ,s(z)
bθ,s(z)

]〉]
dz,

with bθ,s(z) =
1
|S|pθ(z)− logZs(fs,θ(z)).

H IDENTIFIABILITY

Identifiability of parameters and latent variables in latent structure models is a classic problem
(Koopmans and Reiersol, 1950; Kruskal, 1976; Allman et al., 2009), that has been studied increas-
ingly for non-linear latent variable models, e.g., for ICA (Hyvarinen and Morioka, 2016; Hälvä and
Hyvarinen, 2020; Hälvä et al., 2021), VAEs (Khemakhem et al., 2020a; Zhou and Wei, 2020; Wang
et al., 2021; Moran et al., 2021; Lu et al., 2022), EBMs (Khemakhem et al., 2020b), flow-based
(Sorrenson et al., 2020) or mixture models (Kivva et al., 2022).
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We are interested in identifiability, conditional on having observed some non-empty modality subset
S ⊂ M. For illustration, we translate an identifiability result from the uni-modal iVAE setting in Lu
et al. (2022), which does not require the conditional independence assumption from Khemakhem
et al. (2020a). We assume that the encoding distribution qϕ(z|xS) approximates the true posterior
pθ(z|xS) and belongs to a strongly exponential family, i.e.,

pθ(z|xS) = qϕ(z|xS) = pEF
Vϕ,S ,λϕ,S

(z|xS), (14)

with
pEF
VS ,λS

(z|xS) = µ(z) exp [⟨VS(z), λ(xS)⟩ − log ΓS(λS(xS))] ,

where µ is a base measure, VS : Z → Rk is the sufficient statistics, λS(xS) ∈ Rk the natural param-
eters and ΓS a normalising term. Furthermore, one can only reduce the exponential component to
the base measure on sets having measure zero. In this section, we assume that

pθ(xs|z) = ps,ϵ(xs − fθ,s(z)) (15)

for some fixed noise distribution ps,ϵ with a Lebesgue density, which excludes observation models
for discrete modalities. Let ΘS be the domain of the parameters θS = (f\S , VS , λS) with f\S : Z ∋
z 7→ (fs(z))s∈M\S ∈ ×s∈M\SXs = X\S . Assuming (14), note that

pθS (x\S |xS) =

∫
pVS ,λS (z|xS)p\S,ϵ(x\S − f\S(z))dz,

with p\S,ϵ = ⊗s∈M\Sps,ϵ. We define an equivalence relation on ΘS by (f\S , VS , λS) ∼AS

(f̃\S , ṼS , λ̃S) iff there exist invertible AS ∈ Rk×k and cS ∈ Rk such that

VS(f
−1
\S (x\S)) = AS ṼS(f̃

−1
\S (x\S)) + cS

for all x\S ∈ X\S .

Proposition 24 (Weak identifiability). Consider the data generation mechanism pθ(z, x) =
pθ(z)

∏
s∈M pθ(xs|z) where the observation model satisfies (15) for an injective f\S . Sup-

pose further that pθ(z|xS) is strongly exponential and (14) holds. Assume that the set {x\S ∈
X\S |φ\S,ϵ(x\S) = 0} has measure zero, where φ\S,ϵ is the characteristic function of the density
p\S,ϵ. Furthermore, suppose that there exist k + 1 points x0

S , . . . , x
k
S ∈ XS such that

L =
[
λS(x

1
S)− λS(x

0
S), . . . , λS(x

k
S)− λS(x

0
S)
]
∈ Rk×k

is invertible. Then pθS (x\S |xS) = pθ̃S (x\S |xS) for all x ∈ X implies θ ∼AS θ̃.

This result follows from Theorem 4 in Lu et al. (2022). Note that pθS (x\S |xS) = pθ̃S (x\S |xS)
for all x ∈ X implies with the regularity assumption on φ\S,ϵ that the transformed variables Z =

f−1
\S (X\S) and Z̃ = f̃−1

\S (X\S) have the same density function conditional on XS .

Remark 25. The joint decoder function f\S can be injective, even if the individual modality-specific
decoder functions are not, suggesting that the identifiability of latent variables can be improved when
training a multi-modal model compared to separate uni-modal models.

Remark 26. The identifiability result above is about conditional models and does not contradict the
un-identifiability of VAEs: When S = ∅ and we view x = xM as one modality, then the parameters
of pθ∅(x) characterised by the parameters V∅ and λ∅ of the prior pθ∅(z|x∅) and the encoders fM
will not be identifiable as the invertibility condition will not be satisfied.

Remark 27. Note that the identifiablity concerns parameters of the multi-modal posterior distri-
bution. We believe that our inference approach is beneficial for this type of identifiability because
(a) unlike some other variational bounds, the posterior is the optimal variational distribution with
L\S(x) being a lower bound on log pθ(x\S |xS) for flexible encoders, and (b) the trainable aggrega-
tion schemes can be more flexible for approximating the optimal encoding distribution.

Remark 28. For models with private latent variables, we might not expect that conditioning on XS
helps to identify Z̃\S as pθ(z′, z̃S , z̃\S |xS) = pθ(z

′, z̃S |xS)pθ(z̃\S |z′, z̃\S). Indeed, Proposition 24
will not apply in such models as f\S will not be injective.
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I MISSING MODALITIES

In practical applications, modalities can be missing for different data points. We describe this
missingness pattern by missingness mask variables ms ∈ {0, 1} where ms = 1 indicates that
observe modality s, while ms = 0 means it is missing. The joint generative model that ex-
tends (16) will be of the form pθ(z, x,m) = pθ(z)

∏
s∈M pθ(xs|z)pθ(m|x) for some distribu-

tion pθ(m|x) over the mask variables m = (ms)s∈M. For S ⊂ M, we denote by xo
S =

{xs : ms = 1, s ∈ S} and xm
S = {xs : ms = 0, s ∈ S} the set of observed, respectively

missing, modalities. The full likelihood of the observed and missingness masks becomes then
pθ(x

o
S ,m) =

∫
pθ(z)

∏
s∈S pθ(xs|z)pθ(m|x)dxm

s dz. If pθ(m|x) does not depend on the obser-
vations, that is, observations are missing completely at random (Rubin, 1976), then the missing-
ness mechanisms pθ(m|x) for inference approaches maximizing pθ(x

o,m) can be ignored. Conse-
quently, one can instead concentrate on maximizing log pθ(x

o) only, based on the joint generative
model pθ(z, xo) = pθ(z)

∏
{s∈M : ms=1} pθ(xs|z). In particular, one can employ the variational

bounds above by considering only the observed modalities. Since masking operations are readily
supported for the considered permutation-invariant models, appropriate imputation strategies (Naza-
bal et al., 2020; Ma et al., 2019) for the encoded features of the missing modalities are not necessarily
required. Settings allowing for not (completely) at random missingness have been considered in the
uni-modal case, for instance, in Ipsen et al. (2021); Ghalebikesabi et al. (2021); Gong et al. (2021),
and we leave multi-modal extensions thereof for future work.

J MIXTURE MODEL EXTENSIONS FOR DIFFERENT VARIATIONAL BOUNDS

We consider the optimization of an augmented variational bound

L(x, θ, ϕ) =
∫

ρ(S)
[ ∫

qϕ(c, z|xS) [log pθ(c, xS |z)] dzdc− KL(qϕ(c, z|xS)|pθ(c, z))

+

∫
qϕ(c, z|xS)

[
log pθ(x\S |z)

]
dzdc− KL(qϕ(c, z|x)|qϕ(c, z|xS))

]
dS.

We will pursue here an encoding approach that does not require modelling the encoding distribution
over the discrete latent variables explicitly, thus avoiding large variances in score-based Monte Carlo
estimators or resorting to advanced variance reduction techniques or alternatives such as continuous
relaxation approaches.

Assuming a structured variational density of the form

qϕ(c, z|xS) = qϕ(z|xS)qϕ(c|z, xS),

we can express the augmented version of (3) via

LS(xS , θ, ϕ) =

∫
qϕ(c, z|xS) [log pθ(c, xS |z)] dz − βKL(qϕ(c, z|xS)|pθ(c, z))

=

∫
qϕ(z|xS) [fx(z, xS) + fc(z, xS)] dz,

where fx(z, xS) = log pθ(xS |z)− β log qϕ(z|xS)) and

fc(z, xS) =

∫
qϕ(c|z, xS) [−β log qϕ(c|z, xS) + β log pθ(c, z)] dc. (16)

We can also write the augmented version of (4) in the form of

L\S(x, θ, ϕ) =

∫
qϕ(c, z|xS)

[
log pθ(x\S |z)

]
dz − βKL(qϕ(c, z|x)|qϕ(c, z|xS))

=

∫
qϕ(z|x)gx(z, x)dz

where

gx(z, x) = log pθ(x\S |z)− β log qϕ(z|x) + β log qϕ(z|xS)
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which does not depend on the encoding density of the cluster variable. To optimize the variational
bound with respect to the cluster density, we can thus optimize (16), which attains its maximum
value of

f⋆
c (z, xS) = β log

∫
pθ(c)pθ(z|c)dc = β log pθ(z)

at qϕ(c|z, xS) = pθ(c|z) due to Remark 29 below with g(c) = β log pθ(c, z).

Remark 29 (Entropy regularised optimization). Let q be a density over C, exp(g) be integrable with
respect to q and τ > 0. The maximum of

f(q) =

∫
C

q(c) [g(c)− τ log q(c)] dc

that is attained at q⋆(c) = 1
Z eg(c)/τ with normalising constant Z =

∫
C
eg(c)/τ dc is

f⋆ = f(q⋆) = τ log

∫
C

eg(c)/τ dc

We can derive an analogous optimal structured variational density for the mixture-based and total-
correlation-based variational bounds. First, we can write the mixture-based bound (1) as

LMix
S (x, θ, ϕ) =

∫
qϕ(z|xS) [log pθ(c, x|z)] dz − βKL(qϕ(c, z|xS)|pθ(c, z))

=

∫
qϕ(z|xS)

[
fMix
x (z, x) + fc(z, x)

]
dz,

where fMix
x (z, x) = log pθ(x|z)− β log qϕ(z|xS) and fc(z, x) has a maximum value of f⋆

c (z, x) =
β log pθ(z). Second, we can express the corresponding terms from the total-correlation-based bound
as

LTC
S (θ, ϕ) =

∫
qϕ(z|x) [log pθ(x|z)] dz − βKL(qϕ(c, z|x)|qϕ(c, z|xS))

=

∫
qϕ(z|x)

[
fTC
x (z, x)

]
dz,

where fTC
x (z, x) = log pθ(x|z)− β log qϕ(z|x) + β log qϕ(z|xS).

K ALGORITHM AND STL-GRADIENT ESTIMATORS

We consider a multi-modal extension of the sticking-the-landing (STL) gradient estimator (Roeder
et al., 2017) that has also been used in previous multi-modal bounds (Shi et al., 2019). The
gradient estimator ignores the score function terms when sampling qϕ(z|xS) for variance re-
duction purposes due to the fact that it has a zero expectation. For the bounds (2) that in-
volves sampling from qϕ(z|xS) and qϕ(z|xM), we thus ignore the score terms for both inte-
grals. Consider the reparameterisation with noise variables ϵS , ϵM ∼ p and transformations zS =
tS(ϕ, ϵS , xS) = finvariant-agg(ϑ, ϵS ,S, hS), for hS = hφ,s(xs)s∈S and zM = tM(ϕ, ϵM, xM) =
finvariant-agg(ϑ, ϵM,M, hM), for hM = hφ,s(xs)s∈M . We need to learn only a single aggregation
function that applies that masks the modalities appropriately. Pseudo-code for computing the gra-
dients are given in Algorithm 1. If the encoding distribution is a mixture distribution, we apply the
stop-gradient operation also to the mixture weights. Notice that in the case of a mixture prior and an
encoding distribution that includes the mixture component, the optimal encoding density over the
mixture variable has no variational parameters and is given as the posterior density of the mixture
component under the generative parameters of the prior.

In the case of private latent variables, we proceed analogously and rely on reparameterisations z′S =
t′S(ϕ, ϵ

′
S , xS) for the shared latent variable z′S ∼ qϕ(z

′|xS) as above and z̃S = t̃S(ϕ, z
′, ϵS , xS) =

fequivariant-agg(ϑ, ϵ̃S , z
′,S, hS) for the private latent variables z̃S ∼ qϕ(z̃S |z′, xS). Moreover, we

write PS for a projection on the S-coordinates. Pseudo-code for computing unbiased gradient esti-
mates for our bound is given in Algorithm 2.
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Algorithm 1 Single training step for computing unbiased gradients of L(x).
Input: Multi-modal data point x, generative parameter θ, variational parameters ϕ = (φ, ϑ).
Sample S ∼ ρ.
Sample ϵS , ϵM ∼ p.
Set zS = tS(ϕ, ϵS , xM) and zM = tM(ϕ, ϵM, xM).
Stop gradients of variational parameters ϕ′ = stop grad(ϕ).
Set L̂S(θ, ϕ) = log pθ(xS |zS) + β log pθ(zS)− β log qϕ′(zS |xS).
Set L̂\S(θ, ϕ) = log pθ(x\S |zM) + β log qϕ(zM|xS)− β log qϕ′(zM|xM).

Output: ∇θ,ϕ

[
L̂S(θ, ϕ) + L̂\S(θ, ϕ)

]
Algorithm 2 Single training step for computing unbiased gradients of L(x) with private latent vari-
ables.
Input: Multi-modal data point x, generative parameter θ, variational parameters ϕ = (φ, ϑ).
Sample S ∼ ρ.
Sample ϵ′S , ϵS , ϵ\S , ϵ′M, ϵM, ϵ\M ∼ p.
Set z′S = t′S(ϕ, ϵ

′
S , xS), z̃S = t̃S(ϕ, z

′
S , ϵS , xS).

Set z′M = t′M(ϕ, ϵ′M, xM), z̃M = t̃M(ϕ, z′M, ϵM, xM).
Stop gradients of variational parameters ϕ′ = stop grad(ϕ).
Set L̂S(θ, ϕ) = log pθ(xS |z′S , z̃S) + β log pθ(z

′
S) − β log qϕ′(z′S |xS) + β log pθ(z̃S |z′S) −

β log qϕ′(z̃S |z′S , xS).
Set L̂\S(θ, ϕ) = log pθ(x\S |z′M) + β log qϕ(z

′
M|xS) − β log qϕ′(z̃M|z′M, xM) +

β log qϕ(PS(z̃M)|z′M, xS) + β log pθ(P\S(z̃M)|z′M, z̃M)− β log qϕ′(z̃M|z′M, xM).

Output: ∇θ,ϕ

[
L̂S(θ, ϕ) + L̂\S(θ, ϕ)

]

L EVALUATION OF MULTI-MODAL GENERATIVE MODELS

We evaluate models using different metrics suggested previously for multi-modal learning, see for
example Shi et al. (2019); Wu and Goodman (2019); Sutter et al. (2021).

Marginal, conditional and joint log-likelihoods. We can estimate the marginal log-likelihood
using classic importance sampling

log pθ(xS) ≈ log
1

K

K∑
k=1

pθ(z
k, xS)

qϕ(zk|xS)

for zk ∼ qϕ(·|xS). This also allows to approximate the joint log-likelihood log pθ(x), and conse-
quently also the conditional log pθ(x\S |xS) = log pθ(x)− log pθ(xS).

Generative coherence with joint auxiliary labels. Following previous work (Shi et al., 2019;
Sutter et al., 2021; Daunhawer et al., 2022; Javaloy et al., 2022), we assess whether the generated
data share the same information in the form of the class labels across different modalities. To do
so, we use pre-trained classifiers clfs : Xs → [K] that classify values from modality s to K possible
classes. More precisely, for S ⊂ M and m ∈ M, we compute the self- (m ∈ S) or cross- (m /∈ S)
coherence CS→m as the empirical average of

1{clfm(x̂m)=y},

over test samples x with label y where ẑS ∼ qϕ(z|xS) and x̂m ∼ pθ(xm|ẑS). The case S =
M\ {m} corresponds to a leave-one-out conditional coherence.

Linear classification accuracy of latent representations. To evaluate how the latent represen-
tation can be used to predict the shared information contained in the modality subset S based on
a linear model, we consider the accuracy AccS of a linear classifier clfz : Z → [K] that is trained
to predict the label based on latent samples zS ∼ qϕ(zS |xtrain

S ) from the training values xtrain
S and

evaluated on latent samples zS ∼ qϕ(z|xtest
S ) from the test values xtest

S .
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M LINEAR MODELS

Generative model. Suppose that a latent variable Z taking values in RD is sampled from a
standard Gaussian prior pθ(z) = N (0, I) generates M data modalities Xs ∈ RDs , D ≤ Ds,
based on a linear decoding model pθ(xs|z) = N (Wsz + bs, σ

2 I) for a factor loading matrix
Ws ∈ RDs×D, bias bs ∈ RDs and observation scale σ > 0. Note that the annealed likelihood
function p̃β,θ(xs|z) = N (Wsz + bs, βσ

2 I) corresponds to a scaling of the observation noise, so
that we consider only the choice σ = 1, set σβ = σβ1/2 and vary β > 0. It is obvious that
for any S ⊂ M, it holds that p̃β,θ(xS |z) = N (WSz + bS , σ

2
β IS), where WS and bS are given

by concatenating row-wise the emission or bias matrices for modalities in S, while σ2
β IS is the

diagonal matrix of the variances of the corresponding observations. By standard properties of
Gaussian distributions, it follows that p̃β,θ(xS) = N (bS , CS) where CS = WSW

⊤
S + σ2

β IS is
the data covariance matrix. Furthermore, with KS = W⊤

S WS + σ2
β Id, the adjusted posterior is

p̃β,θ(z|xS) = N (K−1
S W⊤

S (xS − bS), σ
2
β Id K

−1
S ). We sample orthogonal rows of W so that the

posterior covariance becomes diagonal so that it can – in principle – be well approximated by an
encoding distribution with a diagonal covariance matrix. Indeed, the inverse of the posterior co-
variance matrix is only a function of the generative parameters of the modalities within S and can
be written as the sum σ2

β I+W⊤
S WS = σ2

β I+
∑

s∈S W⊤
s Ws, while the posterior mean function is

xS 7→ (σ2
β I+

∑
s∈S W⊤

s Ws)
−1
∑

s∈S Ws(xs − bs).

Data generation. We generate 5 data sets of N = 5000 samples, each with M = 5 modalities. We
set the latent dimension to D = 30, while the dimension Ds of modality s is drawn from U(30, 60).
We set the observation noise to σ = 1, shared across all modalities, as is standard for a PCA model.
We sample the components of bs independently from N (0, 1). For the setting without modality-
specific latent variables, Ws is the orthonormal matrix from a QR algorithm applied to a matrix with
elements sampled iid from U(−1, 1). The bias coefficients Wb are sampled independently from
N (0, 1/d). Conversely, the setting with private latent variables in the ground truth model allows us
to describe modality-specific variation by considering the sparse loading matrix

WM =


W ′

1 W̃1 0 . . . 0

W ′
2 0 W̃2 . . . 0

...
...

. . . . . .
...

W ′
M 0 . . . 0 W̃M

 .

Here, W ′
s, W̃s ∈ RDs×D′

with D′ = D/(M + 1) = 5, Furthermore, the latent variable Z can be
written as Z = (Z ′, Z̃1, . . . , Z̃M ) for private and shared latent variables Z̃s, resp. Z ′. We similarly
generate orthonormal

[
W ′

s, W̃s

]
from a QR decomposition. Observe that the general generative

model with latent variable Z corresponds to the generative model (10) with shared Z ′ and private
latent variables Z̃ with straightforward adjustments for the decoding functions. Similar models
have been considered previously, particularly from a Bayesian standpoint with different sparsity
assumptions on the generative parameters (Archambeau and Bach, 2008; Virtanen et al., 2012; Zhao
et al., 2016).

Maximum likelihood estimation. Assume now that we observe N data points {xn}n∈[N ], con-
sisting of stacking the views xn = (xs,n)s∈S for each modality in S and let S = 1

N

∑N
n=1(xn −

b)(xn − b)⊤ ∈ RDx×Dx , Dx =
∑M

s=1 Ds, be the sample covariance matrix across all modalities.
Let Ud ∈ RDx×D be the matrix of the first D eigenvectors of S with corresponding eigenvalues
λ1, . . . λD stored in the diagonal matrix ΛD ∈ RD×D. The maximum likelihood estimates are then
given by bML = 1

N

∑N
n=1 xn, σ2

ML = 1
N−D

∑N
j=D+1 λj and WML = UD(ΛD − σ2

ML I)
1/2 with the

loading matrix identifiable up to rotations.

Model architectures. We estimate the observation noise scale σ based on the maximum likelihood
estimate σML. We assume linear decoder functions pθ(xs|z) = N (W θ

s z + bθ, σ2
ML), fixed standard

Gaussian prior p(z) = N (0, I) and generative parameters θ = (W θ
1 , b

θ
1, . . . ,W

θ
M , bθM ). Details

about the various encoding architectures are given in Table 17. The modality-specific encoding
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functions for the PoE and MoE schemes have a hidden size of 512, whilst they are of size 256 for
the learnable aggregation schemes having additional aggregation parameters φ.

Simulation results. We show different rate-distortion terms for the learned models where the true
data generation mechanism does not contain private latent variables (see Figure 3) or does contain
private latent variables (see Figure 4 ). In both settings, we use the general multi-modal model
without private latent variables in order to compare different aggregation schemes and bounds. We
find that our bound yields encoding distributions that are closer to the true posterior distribution
across various aggregation schemes. Note that in the case of the mixture-based bound, the posterior
distribution is only optimal as an encoding distribution that uses all modalities (Sub-figures (c)).
The trade-offs between full reconstruction quality and full rates vary across ground truth models,
bounds and aggregation. Cross-reconstruction terms are usually better for the mixture-based bound.
Moreover, the mixture-based bound has lower cross-modal rates, i.e., the encoding distribution does
not change as much if additional modalities are included. Table 4 shows the log-likelihood of the
generative model and the value of the lower bound when the true data has private latent variables.
Compared to the results in Table 1 with full decoder matrices, there appear to be smaller differences
across different bounds and fusion schemes.

Finally, we consider permutation-equivariant schemes for learning models with private latent vari-
ables as detailed in Appendix F, applied to the setting with sparse variables in the data genera-
tion mechanism. Figure 5 shows different rate-distortion terms for β ∈ {0.1, 1, 4.} for PoE and
SumPooling and SelfAttention aggregation models. We find that our variational bound tends to
obtain higher full reconstruction terms, while the full rates vary for different configurations. Con-
versely, the mixture-based bound obtains better cross-model reconstruction, with less clear patterns
in the cross-rate terms. Table 5 shows the log-likelihood values for the learned generative model that
is similar across different configurations, apart from a PoE scheme that achieves lower log-likelihood
for a mixture-based bound.

(a) Full Reconstruction −DM (b) Full Rates RM (c) Full Posterior Approximation

(d) Cross Reconstruction −Dc
\S (e) Cross Rates R\S (f) Uni-Modal Posterior Approxima-

tion

Figure 3: Linear Gaussian models with dense decoder matrix: Rate and distortion terms and KL-
divergence of encoding distributions to posterior distribution from learned generative model.
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(a) Full Reconstruction −DM (b) Full Rates RM (c) Full Posterior Approximation

(d) Cross Reconstruction −Dc
\S (e) Cross Rates R\S (f) Uni-Modal Posterior Approxima-

tion

Figure 4: Linear Gaussian models with sparse decoder matrix: Rate and distortion terms and KL-
divergence of encoding distributions to posterior distribution from learned generative model.

Table 4: Multi-modal Gaussian model with sparse decoders in the ground truth model: LLH Gap is
the relative difference of the log-likelihood of the learned model relative to the log-likelihood based
on the exact MLE.

Our bound Mixture bound

Aggregation LLH Gap MCC LLH Gap MCC

PoE 0.00 (0.000) 0.84 (0.004) 0.00 (0.007) 0.87 (0.004)
MoE 0.01 (0.001) 0.81 (0.001) 0.01 (0.002) 0.83 (0.003)
SumPooling 0.00 (0.000) 0.84 (0.015) 0.01 (0.001) 0.84 (0.013)
SelfAttention 0.00 (0.001) 0.84 (0.005) 0.01 (0.002) 0.83 (0.004)

Table 5: Multi-modal Gaussian model with sparse decoders in the ground truth model and
permutation-equivariant encoders: LLH Gap is the relative difference of the log-likelihood of the
learned model relative to the log-likelihood based on the exact MLE.

Our bound Mixture bound

Aggregation LLH Gap MCC LLH Gap MCC

PoE (equivariant) 0.00 (0.000) 0.91 (0.016) 0.01 (0.001) 0.88 (0.011)
SumPooling (equivariant) 0.00 (0.000) 0.85 (0.004) 0.00 (0.000) 0.82 (0.003)
SelfAttention (equivariant) 0.00 (0.000) 0.83 (0.006) 0.00 (0.000) 0.83 (0.003)

35



(a) Full Reconstruction −DM (b) Full Rates RM

(c) Cross Reconstruction −Dc
\S (d) Cross Rates R\S

Figure 5: Linear Gaussian models with sparse decoder matrix and permutation-equivariant aggrega-
tion: Rate and distortion terms for varying β.
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N NON-LINEAR IDENTIFIABLE MODELS

N.1 AUXILIARY LABELS

Table 19 illustrates first the benefits of our bound that obtain better log-likelihood estimates for
different fusion schemes. Second, it demonstrates the advantages of our new fusion schemes that
achieve better log-likelihoods for both bounds. Third, it shows the benefit of using aggregation
schemes that have the capacity to accommodate prior distributions different from a single Gaussian.
Observe also that MoE schemes lead to low MCC values, while PoE schemes had high MCC values.
We also show in Figure 6 the reconstructed modality values and inferred latent variables for one
realisation with our bound, with the corresponding results for a mixture-based bound in Figure 7.

Table 6: Non-linear identifiable model with one real-valued modality and an auxiliary label acting as
a second modality: The first four rows use a fixed standard Gaussian prior, while the last four rows
use a Gaussian mixture prior with 5 components. Mean and standard deviation over 4 repetitions.
Log-likelihoods are estimated using importance sampling with 64 particles.

Our bound Mixture bound

Aggregation LLH (β = 1) MCC (β = 1) MCC (β = 0.1) LLH (β = 1) MCC (β = 1) MCC (β = 0.1)

PoE -43.4 (10.74) 0.98 (0.006) 0.99 (0.003) -318 (361.2) 0.97 (0.012) 0.98 (0.007)
MoE -20.5 (6.18) 0.94 (0.013) 0.93 (0.022) -57.9 (6.23) 0.93 (0.017) 0.93 (0.025)
SumPooling -17.9 (3.92) 0.99 (0.004) 0.99 (0.002) -18.9 (4.09) 0.99 (0.005) 0.99 (0.008)
SelfAttention -18.2 (4.17) 0.99 (0.004) 0.99 (0.003) -18.6 (3.73) 0.99 (0.004) 0.99 (0.007)

SumPooling -15.4 (2.12) 1.00 (0.001) 0.99 (0.004) -18.6 (2.36) 0.98 (0.008) 0.99 (0.006)
SelfAttention -15.2 (2.05) 1.00 (0.001) 1.00 (0.004) -18.6 (2.27) 0.98 (0.014) 0.98 (0.006)
SumPoolingMixture -15.1 (2.15) 1.00 (0.001) 0.99 (0.012) -18.2 (2.80) 0.98 (0.010) 0.99 (0.005)
SelfAttentionMixture -15.3 (2.35) 0.99 (0.005) 0.99 (0.004) -18.4 (2.63) 0.99 (0.007) 0.99 (0.007)

N.2 FIVE CONTINUOUS MODALITIES

Table 7 demonstrates that our bound can yield to higher log-likelihoods and tigher bounds compared
to a mixture-based bound, as do more flexible fusion schemes. Similar results for the partially
observed case (η = 0.5) have been illustrated in the main text in Table 2.

Table 7: Fully observed (η = 0) non-linear identifiable model with 5 modalities: The first four rows
use a fixed standard Gaussian prior, while the last four rows use a Gaussian mixture prior with 5
components. Mean and standard deviation over 4 repetitions.

Our bound Mixture bound

Aggregation LLH MCC LLH MCC

PoE -473.6 (9.04) 0.98 (0.005) -497.7 (11.26) 0.97 (0.008)
MoE -477.9 (8.50) 0.91 (0.014) -494.6 (9.20) 0.92 (0.004)
SumPooling -471.4 (8.29) 0.99 (0.004) -480.5 (8.84) 0.98 (0.005)
SelfAttention -471.4 (8.97) 0.99 (0.002) -482.8 (10.51) 0.98 (0.004)

SumPooling -465.4 (8.16) 0.98 (0.002) -475.1 (7.54) 0.98 (0.003)
SelfAttention -469.3 (4.76) 0.98 (0.003) -474.7 (8.20) 0.98 (0.002)
SumPoolingMixture -464.5 (8.16) 0.99 (0.003) -474.2 (7.61) 0.98 (0.004)
SelfAttentionMixture -464.4 (8.50) 0.99 (0.003) -473.6 (8.24) 0.98 (0.002)
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(a) Observed data x (b) True latents z (c) PoE (x) (d) PoE (z)

(e) MoE (x) (f) MoE (z) (g) SumP, K = 1 (x) (h) SumP, K = 1 (z)

(i) SumP, K = 5 (x) (j) SumP, K = 5 (z) (k) SumPM, K = 5 (z) (l) SumPM, K = 5 (z)

Figure 6: Bi-modal non-linear model with label and continuous modality based on our bound.

38



(a) Observed data x (b) True latents z (c) PoE (x) (d) PoE (z)

(e) MoE (x) (f) MoE (z) (g) SumP, K = 1 (x) (h) SumP, K = 1 (z)

(i) SumP, K = 5 (x) (j) SumP, K = 5 (z) (k) SumPM, K = 5 (z) (l) SumPM, K = 5 (z)

Figure 7: Bi-modal non-linear model with label and continuous modality based on mixture bound.
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O MNIST-SVHN-TEXT

O.1 TRAINING HYPERPARAMTERS

The MNIST-SVHN-Text data set is taken from the code accompanying Sutter et al. (2021) with
around 1.1 million train and 200k test samples. All models are trained for 100 epochs with a batch
size of 250 using Adam (Kingma and Ba, 2014) and a cosine decay schedule from 0.0005 to 0.0001.

O.2 MULTI-MODAL RATES AND DISTORTIONS

(a) Full Reconstr. −DM (b) Cross Reconstr. −Dc
\S (c) Full Rates RM (d) Cross Rates R\S

Figure 8: Rate and distortion terms for MNIST-SVHN-Text with shared and private latent variables.

(a) Full Reconstr. −DM (b) Cross Reconstr. −Dc
\S (c) Full Rates RM (d) Cross Rates R\S

Figure 9: Rate and distortion terms for MNIST-SVHN-Text with shared latent variables and different
β.

O.3 LOG-LIKELIHOOD ESTIMATES

O.4 GENERATED MODALITIES

O.5 CONDITIONAL COHERENCE

Latent classification accuracy.
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Table 8: Test log-likelihood estimates for varying β choices for the joint data (M+S+T) as well
as for the marginal data of each modality based on importance sampling (512 particles). Multi-
modal generative model with a 40-dimensional shared latent variable. The second part of the Table
contains reported log-likelihood values from baseline methods that however impose more restrictive
assumptions on the decoder variances which likely contributes to much lower log-likelihood values
reported in previous works, irrespective of variational objectives and aggregation schemes.

Our bound Mixture bound

(β, Aggregation) M+S+T M S T M+S+T M S T

(0.1, PoE+) 5433 (24.5) 1786 (41.6) 3578 (63.5) -29 (2.4) 5481 (18.4) 2207 (19.8) 3180 (33.7) -39 (1.0)
(0.1, SumPooling) 7067 (78.0) 2455 (3.3) 4701 (83.5) -9 (0.4) 6061 (15.7) 2398 (9.3) 3552 (7.4) -50 (1.9)
(1.0, PoE+) 6872 (9.6) 2599 (5.6) 4317 (1.1) -9 (0.2) 5900 (10.0) 2449 (10.4) 3443 (11.7) -19 (0.4)
(1.0, SumPooling) 7056 (124.4) 2478 (9.3) 4640 (113.9) -6 (0.0) 6130 (4.4) 2470 (10.3) 3660 (1.5) -16 (1.6)
(4.0, PoE+) 7021 (13.3) 2673 (13.2) 4413 (30.5) -5 (0.1) 5895 (6.2) 2484 (5.5) 3434 (2.2) -13 (0.4)
(4.0, SumPooling) 6690 (113.4) 2483 (9.9) 4259 (117.2) -5 (0.0) 5659 (48.3) 2448 (10.5) 3233 (27.7) -10 (0.2)

Results from Sutter et al. (2021) and Sutter et al. (2020)

MVAE -1790 (3.3) NA NA NA
MMVAE -1941 (5.7) NA NA NA
MoPoE -1819 (5.7) NA NA NA
MMJSD -1961 (NA) NA NA NA

(a) Our bound (b) Mixture-based bound

Figure 10: Conditional generation for different aggergation schemes and bounds and shared latent
variables. The first column is the conditioned modality. The next three columns are the generated
modalities using a SumPooling aggregation, followed by the three columns for a SelfAttention ag-
gregation, followed by PoE+ and lastly MoE+.

Table 9: Conditional coherence with shared latent variables and uni-modal inputs. The letters on the
second line represent the generated modality based on the input modalities on the line below it.

Our bound Mixture bound

M S T M S T

Aggregation M S T M S T M S T M S T M S T M S T

PoE 0.97 0.22 0.56 0.29 0.60 0.36 0.78 0.43 1.00 0.96 0.83 0.99 0.11 0.57 0.10 0.44 0.39 1.00
PoE+ 0.97 0.15 0.63 0.24 0.63 0.42 0.79 0.35 1.00 0.96 0.83 0.99 0.11 0.59 0.11 0.45 0.39 1.00
MoE 0.96 0.80 0.99 0.11 0.59 0.11 0.44 0.37 1.00 0.94 0.81 0.97 0.10 0.54 0.10 0.45 0.39 1.00
MoE+ 0.93 0.77 0.95 0.11 0.54 0.10 0.44 0.37 0.98 0.94 0.80 0.98 0.10 0.53 0.10 0.45 0.39 1.00
SumPooling 0.97 0.48 0.87 0.25 0.72 0.36 0.73 0.48 1.00 0.97 0.86 0.99 0.10 0.63 0.10 0.45 0.40 1.00
SelfAttention 0.97 0.44 0.79 0.20 0.71 0.36 0.61 0.43 1.00 0.97 0.86 0.99 0.10 0.63 0.11 0.45 0.40 1.00

Results from Sutter et al. (2021), Sutter et al. (2020) and Hwang et al. (2021)

MVAE NA 0.24 0.20 0.43 NA 0.30 0.28 0.17 NA
MMVAE NA 0.75 0.99 0.31 NA 0.30 0.96 0.76 NA
MoPoE NA 0.74 0.99 0.36 NA 0.34 0.96 0.76 NA
MMJSD NA 0.82 0.99 0.37 NA 0.36 0.97 0.83 NA
MVTCAE (w/o T) NA 0.60 NA 0.82 NA NA NA NA NA
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(a) Our bound, β = 0.1 (b) Our bound, β = 4 (c) Mixture-based bound,
β = 0.1

(d) Mixture-based bound,
β = 4

Figure 11: Conditional generation for different β parameters. The first column is the conditioned
modality. The next three columns are the generated modalities using a SumPooling aggregation,
followed by the three columns for a PoE+ scheme.

(a) Our bound (b) Mixture-based bound

Figure 12: Conditional generation for permutation-equivariant schemes and private latent variable
constraints. The first column is the conditioned modality. The next three columns are the gener-
ated modalities using a SumPooling aggregation, followed by the three columns for a SelfAttention
scheme and a PoE model.
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Table 10: Conditional coherence for models with shared latent variables and bi-modal condition-
als. The letters on the second line represent the modality which is generated based on the sets of
modalities on the line below it.

Our bound Mixture bound

M S T M S T

Aggregation M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T

PoE 0.98 0.98 0.60 0.75 0.58 0.77 0.82 1.00 1.00 0.96 0.97 0.95 0.61 0.11 0.61 0.45 0.99 0.98
PoE+ 0.97 0.98 0.55 0.73 0.52 0.75 0.83 1.00 0.99 0.97 0.97 0.96 0.64 0.11 0.63 0.45 0.99 0.97
MoE 0.88 0.97 0.90 0.35 0.11 0.35 0.41 0.72 0.69 0.88 0.96 0.89 0.32 0.10 0.33 0.42 0.72 0.69
MoE+ 0.85 0.94 0.86 0.32 0.10 0.32 0.40 0.71 0.67 0.87 0.96 0.89 0.32 0.10 0.32 0.42 0.72 0.69
SumPooling 0.97 0.97 0.86 0.78 0.30 0.80 0.76 0.99 1.00 0.97 0.97 0.95 0.65 0.10 0.65 0.45 0.99 0.97
SelfAttention 0.97 0.97 0.82 0.76 0.30 0.78 0.69 1.00 1.00 0.97 0.97 0.99 0.66 0.10 0.65 0.45 0.99 1.00

Results from Sutter et al. (2021), Sutter et al. (2020) and Hwang et al. (2021)

MVAE NA NA 0.32 NA 0.43 NA 0.29 NA NA
MMVAE NA NA 0.87 NA 0.31 NA 0.84 NA NA
MoPoE NA NA 0.94 NA 0.36 NA 0.93 NA NA
MMJSD NA NA 0.95 NA 0.48 NA 0.92 NA NA
MVTCAE (w/o T) NA NA NA NA NA NA NA NA NA

Table 11: Conditional coherence for models with private latent variables and uni-modal condition-
als. The letters on the second line represent the modality which is generated based on the sets of
modalities on the line below it.

Our bound Mixture bound

M S T M S T

Aggregation M S T M S T M S T M S T M S T M S T

PoE+ 0.97 0.12 0.13 0.20 0.62 0.24 0.16 0.15 1.00 0.96 0.83 0.99 0.11 0.58 0.11 0.44 0.39 1.00
SumPooling 0.97 0.42 0.59 0.44 0.67 0.40 0.65 0.45 1.00 0.97 0.86 0.99 0.11 0.62 0.11 0.45 0.40 1.00
SelfAttention 0.97 0.12 0.12 0.27 0.71 0.28 0.46 0.40 1.00 0.96 0.09 0.08 0.12 0.67 0.12 0.15 0.17 1.00

Table 12: Conditional coherence for models with private latent variables and bi-modal condition-
als. The letters on the second line represent the modality which is generated based on the sets of
modalities on the line below it.

Our bound Mixture bound

M S T M S T

Aggregation M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T

PoE+ 0.97 0.97 0.14 0.66 0.33 0.67 0.18 1.00 1.00 0.97 0.97 0.94 0.63 0.11 0.63 0.45 0.99 0.96
SumPooling 0.97 0.97 0.54 0.79 0.43 0.80 0.57 1.00 1.00 0.97 0.97 0.93 0.64 0.11 0.63 0.45 0.99 0.97
SelfAttention 0.97 0.97 0.12 0.80 0.29 0.81 0.49 1.00 1.00 0.96 0.96 0.08 0.70 0.12 0.70 0.15 1.00 1.00

Table 13: Conditional coherence for models with shared latent variables for different βs and uni-
modal conditionals. The letters on the second line represent the modality which is generated based
on the sets of modalities on the line below it.

Our bound Mixture bound

M S T M S T

(β, Aggregation) M S T M S T M S T M S T M S T M S T

(0.1, PoE+) 0.98 0.11 0.12 0.12 0.62 0.14 0.61 0.25 1.00 0.96 0.83 0.99 0.11 0.58 0.11 0.45 0.39 1.00
(0.1, SumPooling) 0.97 0.48 0.81 0.30 0.72 0.33 0.86 0.55 1.00 0.97 0.86 0.99 0.11 0.64 0.11 0.45 0.40 1.00
(1.0, PoE+) 0.97 0.15 0.63 0.24 0.63 0.42 0.79 0.35 1.00 0.96 0.83 0.99 0.11 0.59 0.11 0.45 0.39 1.00
(1.0, SumPooling) 0.97 0.48 0.87 0.25 0.72 0.36 0.73 0.48 1.00 0.97 0.86 0.99 0.10 0.63 0.10 0.45 0.40 1.00
(4.0, PoE+) 0.97 0.29 0.83 0.41 0.60 0.58 0.76 0.38 1.00 0.96 0.82 0.99 0.10 0.57 0.10 0.44 0.38 1.00
(4.0, SumPooling) 0.97 0.48 0.88 0.35 0.66 0.44 0.83 0.53 1.00 0.96 0.85 0.99 0.11 0.57 0.10 0.45 0.39 1.00

Table 14: Conditional coherence for models with shared latent variables for different βs and bi-
modal conditionals. The letters on the second line represent the modality which is generated based
on the sets of modalities on the line below it.

Our bound Mixture bound

M S T M S T

(β, Aggregation) M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T M+S M+T S+T

(0.1, PoE+) 0.98 0.98 0.15 0.70 0.14 0.72 0.66 1.00 1.00 0.96 0.96 0.93 0.62 0.11 0.62 0.45 0.99 0.95
(0.1, SumPooling) 0.97 0.97 0.86 0.83 0.31 0.84 0.85 0.99 1.00 0.97 0.97 0.94 0.66 0.11 0.65 0.45 0.99 0.96
(1.0, PoE+) 0.97 0.98 0.55 0.73 0.52 0.75 0.83 1.00 0.99 0.97 0.97 0.96 0.64 0.11 0.63 0.45 0.99 0.97
(1.0, SumPooling) 0.97 0.97 0.86 0.78 0.30 0.80 0.76 0.99 1.00 0.97 0.97 0.95 0.65 0.10 0.65 0.45 0.99 0.97
(4.0, PoE+) 0.97 0.98 0.84 0.76 0.66 0.78 0.82 1.00 1.00 0.97 0.97 0.96 0.62 0.10 0.62 0.45 0.99 0.98
(4.0, SumPooling) 0.97 0.97 0.89 0.77 0.40 0.78 0.86 0.99 1.00 0.97 0.97 0.96 0.61 0.10 0.60 0.45 0.99 0.97
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Table 15: Unsupervised latent classification for β = 1 and models with shared latent variables only
(top half) and shared plus private latent variables (bottom half). Accuracy is computed with a linear
classifier (logistic regression) trained on multi-modal inputs (M+S+T) or uni-modal inputs (M, S or
T).

Our bound Mixture bound

Aggregation M+S+T M S T M+S+T M S T

PoE 0.988 (0.000) 0.940 (0.009) 0.649 (0.039) 0.998 (0.001) 0.991 (0.004) 0.977 (0.002) 0.845 (0.000) 1.000 (0.000)
PoE+ 0.978 (0.002) 0.934 (0.001) 0.624 (0.040) 0.999 (0.001) 0.998 (0.000) 0.981 (0.000) 0.851 (0.000) 1.000 (0.000)
MoE 0.841 (0.008) 0.974 (0.000) 0.609 (0.032) 1.000 (0.000) 0.940 (0.001) 0.980 (0.001) 0.843 (0.001) 1.000 (0.000)
MoE+ 0.850 (0.039) 0.967 (0.014) 0.708 (0.167) 0.983 (0.023) 0.928 (0.017) 0.983 (0.002) 0.846 (0.001) 1.000 (0.000)
SelfAttention 0.985 (0.001) 0.954 (0.002) 0.693 (0.037) 0.986 (0.006) 0.991 (0.000) 0.981 (0.001) 0.864 (0.003) 1.000 (0.000)
SumPooling 0.981 (0.000) 0.962 (0.000) 0.704 (0.014) 0.992 (0.008) 0.994 (0.000) 0.983 (0.000) 0.866 (0.002) 1.000 (0.000)
PoE+ 0.979 (0.009) 0.944 (0.000) 0.538 (0.032) 0.887 (0.07) 0.995 (0.002) 0.980 (0.002) 0.848 (0.006) 1.000 (0.000)
SumPooling 0.987 (0.004) 0.966 (0.004) 0.370 (0.348) 0.992 (0.002) 0.994 (0.001) 0.982 (0.000) 0.870 (0.001) 1.000 (0.000)
SelfAttention 0.990 (0.003) 0.968 (0.002) 0.744 (0.008) 0.985 (0.000) 0.997 (0.001) 0.974 (0.000) 0.681 (0.031) 1.000 (0.000)

Results from Sutter et al. (2021), Sutter et al. (2020) and Hwang et al. (2021)

MVAE 0.96 (0.02) 0.90 (0.01) 0.44 (0.01) 0.85 (0.10)
MMVAE 0.86 (0.03) 0.95 (0.01) 0.79 (0.05) 0.99 (0.01)
MoPoE 0.98 (0.01) 0.95 (0.01) 0.80 (0.03) 0.99 (0.01)
MMJSD 0.98 (NA) 0.97 (NA) 0.82 (NA) 0.99 (NA)
MVTCAE (w/o T) NA 0.93 (NA) 0.78 (NA) NA

Table 16: Unsupervised latent classification for different βs and models with shared latent variables
only. Accuracy is computed with a linear classifier (logistic regression) trained on multi-modal
inputs (M+S+T) or uni-modal inputs (M, S or T).

Our bound Mixture bound

(β, Aggregation) M+S+T M S T M+S+T M S T

(0.1, PoE+) 0.983 (0.006) 0.919 (0.001) 0.561 (0.048) 0.988 (0.014) 0.992 (0.002) 0.979 (0.002) 0.846 (0.004) 1.000 (0.000)
(0.1, SumPooling) 0.982 (0.004) 0.965 (0.002) 0.692 (0.047) 0.999 (0.001) 0.994 (0.000) 0.981 (0.002) 0.863 (0.005) 1.000 (0.000)
(1.0, PoE+) 0.978 (0.002) 0.934 (0.001) 0.624 (0.040) 0.999 (0.001) 0.998 (0.000) 0.981 (0.000) 0.851 (0.000) 1.000 (0.000)
(1.0, SumPooling) 0.981 (0.000) 0.962 (0.000) 0.704 (0.014) 0.992 (0.008) 0.994 (0.000) 0.983 (0.000) 0.866 (0.002) 1.000 (0.000)
(4.0, PoE+) 0.981 (0.006) 0.943 (0.007) 0.630 (0.008) 0.993 (0.001) 0.998 (0.000) 0.981 (0.000) 0.846 (0.001) 1.000 (0.000)
(4.0, SumPooling) 0.984 (0.004) 0.963 (0.001) 0.681 (0.009) 0.995 (0.000) 0.992 (0.002) 0.980 (0.001) 0.856 (0.001) 1.000 (0.000)

44



P ENCODER MODEL ARCHITECTURES

P.1 LINEAR MODELS

Table 17: Encoder architectures for Gaussian models.

(a) Modality-specific encoding functions hs(xs). Latent di-
mension D = 30, modality dimension Ds ∼ U(30, 60).

MoE/PoE SumPooling/SelfAttention

Input: Ds Input: Ds

Dense Ds × 512, ReLU Dense Ds × 256, ReLU
Dense 512× 512, ReLU Dense 256× 256, ReLU
Dense 512× 60 Dense 256× 60

(b) Model for outer aggregation function ρϑ
for SumPooling and SelfAttention schemes.

Outer Aggregation

Input: 256
Dense 256× 256, ReLU
Dense 256× 256, ReLU
Dense 256× 60

(c) Inner aggregation function χϑ.

SumPooling SelfAttention

Input: 256 Input: 256
Dense 256× 256, ReLU Dense 256× 256, ReLU
Dense 256× 256, ReLU Dense 256× 256
Dense 256× 256

(d) Transformer parameters.

SelfAttention (1 Layer)

Input: 256
Heads: 4
Attention size: 256
Hidden size FFN: 256

P.2 LINEAR MODELS WITH PRIVATE LATENT VARIABLES

Table 18: Encoder architectures for Gaussian models with private latent variables.

(a) Modality-specific encoding functions hs(xs). All private and
shared latent variables are of dimension 10. Modality dimension
Ds ∼ U(30, 60).

PoE (hshared
s and hprivate

s ) SumPooling/SelfAttention (one hs)

Input: Ds Input: Ds

Dense Ds × 512, ReLU Dense Ds × 128, ReLU
Dense 512× 512, ReLU Dense 128× 128, ReLU
Dense 512× 10 Dense 128× 10

(b) Model for outer aggregation func-
tion ρϑ for SumPooling scheme.

Outer Aggregation (ρϑ)

Input: 128
Dense 128× 128, ReLU
Dense 128× 128, ReLU
Dense 128× 10

(c) Inner aggregation functions.

SumPooling (χ0,ϑ, χ1,ϑ, χ2,ϑ) SelfAttention (χ1,ϑ, χ2,ϑ)

Input: 128 Input: 128
Dense 128× 128, ReLU Dense 128× 128, ReLU
Dense 128× 128, ReLU Dense 128× 128
Dense 128× 128

(d) Transformer parameters.

SelfAttention (1 Layer)

Input: 128
Heads: 4
Attention size: 128
Hidden size FFN: 128

P.3 NONLINEAR MODEL WITH AUXILIARY LABEL

P.4 NONLINEAR MODEL WITH FIVE MODALITIES

P.5 MNIST-SVHN-TEXT

For SVHN and and Text, we use 2d- or 1d-convolutional layers, respectively, denoted as
Conv(f, k, s) for feature dimension f , kernel-size k and stride s. We denote transposed convolu-
tions as tConv. We use the neural network architectures as implemented in Flax Heek et al. (2023).
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Table 19: Encoder architectures for nonlinear model with auxiliary label.

(a) Modality-specific encoding functions hs(xs). Modality
dimension D1 = 2 (continuous modality) and D2 = 5 (la-
bel). Embedding dimension DE = 4 for PoE and MoE and
DE = 128 otherwise.

Modality-specific encoders

Input: Ds

Dense Ds × 128, ReLU
Dense 128× 128, ReLU
Dense 128×DE

(b) Model for outer aggregation function ρϑ
for SumPooling and SelfAttention schemes
and mixtures thereof. Output dimension is
D0 = 25 for mixture densities and DO = 4
otherwise.

Outer Aggregation

Input: 128
Dense 128× 128, ReLU
Dense 128× 128, ReLU
Dense 128×DO

(c) Inner aggregation function χϑ.

SumPooling SelfAttention

Input: 128 Input: 128
Dense 128× 128, ReLU Dense 128× 128, ReLU
Dense 128× 128, ReLU Dense 128× 128
Dense 128× 128

(d) Transformer parameters.

SelfAttention

Input: 128
Heads: 4
Attention size: 128
Hidden size FFN: 128

Table 20: Encoder architectures for nonlinear model with five modalities.

(a) Modality-specific encoding functions hs(xs). Modality
dimensions Ds = 25. Latent dimension D = 25

MoE/PoE SumPooling/SelfAttention

Input: Ds Input: Ds

Dense Ds × 512, ReLU Dense Ds × 256, ReLU
Dense 512× 512, ReLU Dense 256× 256, ReLU
Dense 512× 50 Dense 256× 256

(b) Model for outer aggregation function ρϑ
for SumPooling and SelfAttention schemes
and mixtures thereof. Output dimension is
D0 = 50 for mixture densities and DO =
25 otherwise.

Outer Aggregation

Input: 256
Dense 256× 256, ReLU
Dense 256× 256, ReLU
Dense 256×DO

(c) Inner aggregation function χϑ.

SumPooling SelfAttention

Input: 256 Input: 256
Dense 256× 256, ReLU Dense 256× 256, ReLU
Dense 256× 256, ReLU Dense ×256
Dense 256× 256

(d) Transformer parameters.

SelfAttention

Input: 256
Heads: 4
Attention size: 256
Hidden size FFN: 256

P.6 MNIST-SVHN-TEXT WITH PRIVATE LATENT VARIABLES

Q MNIST-SVHN-TEXT DECODER MODEL ARCHITECTURES

For models with private latent variables, we concatenate the shared and private latent variables. We
use a Laplace likelihood as the decoding distribution for MNIST and SVHN, where the decoder
function learns both its mean as a function of the latent and a constant log-standard-deviation at
each pixel. Following previous works (Shi et al., 2019; Sutter et al., 2021), we re-weight the log-
likelihoods for different modalities relative to their dimensions.
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Table 21: Encoder architectures for MNIST-SVHN-Text.

(a) MNIST-specific encoding functions hs(xs).
Modality dimensions Ds = 28 × 28. Embed-
ding dimension is DE = 2D for PoE/MoE and
DE = 256 for SumPooling/SelfAttention. For
PoE+/MoE+, we add four times a Dense layer of
size 256 with ReLU layer before the last linear
layer.

MoE/PoE/SumPooling/SelfAttention

Input: Ds,
Dense Ds × 400, ReLU
Dense 400× 400, ReLU
Dense 400×DE

(b) SVHN-specific encoding functions hs(xs).
Modality dimensions Ds = 3× 32× 32. Embed-
ding dimension is DE = 2D for PoE/MoE and
DE = 256 for SumPooling/SelfAttention. For
PoE+/MoE+, we add four times a Dense layer of
size 256 with ReLU layer before the last linear
layer.

MoE/PoE/SumPooling/SelfAttention

Input: Ds

Conv(32, 4, 2), ReLU
Conv(64, 4, 2), ReLU
Conv(64, 4, 2), ReLU
Conv(128, 4, 2), ReLU, Flatten
Dense 2048×DE

(c) Text-specific encoding functions hs(xs).
Modality dimensions Ds = 8 × 71. Embed-
ding dimension is DE = 2D for PoE/MoE
and DE = 256 for permutation-invariant mod-
els (SumPooling/SelfAttention) and DE = 128
for permutation-equivariant models (SumPool-
ing/SelfAttention). For PoE+/MoE+, we add four
times a Dense layer of size 256 with ReLU layer
before the last linear layer.

MoE/PoE/SumPooling/SelfAttention

Input: Ds

Conv(128, 1, 1), ReLU
Conv(128, 4, 2), ReLU
Conv(128, 4, 2), ReLU, Flatten
Dense 128×DE

(d) Model for outer aggregation function ρϑ for
SumPooling and SelfAttention schemes. Output
dimension is D0 = 2D = 80 for models with
shared latent variables only and D0 = 10+10 for
models with private and shared latent variables.
DE = 256 for permutation-invariant and DI =
128 for permutation-invariant models.

Outer Aggregation

Input: DE

Dense DE ×DE , LReLU
Dense DE ×DE , LReLU
Dense DE ×DO

(e) Inner aggregation function χϑ for
permutation-invariant models (DE = 256)
and permutaion-equivariant models (DE = 128).

SumPooling SelfAttention

Input: DE Input: DE

Dense DE ×DE , LReLU Dense DE ×DE , LReLU
Dense DE ×DE , LReLU Dense ×DE

Dense DE ×DE

(f) Transformer parameters for permutation-
invariant models. DE = 256 for permutation-
invariant and DI = 128 for permutation-invariant
models.

SelfAttention (2 Layers)

Input: DE

Heads: 4
Attention size: DE

Hidden size FFN: DE

R COMPUTE RESOURCES AND EXISTING ASSETS

Our computations were performed on shared HPC systems. All experiments except Section 5.3 were
run on a CPU server using one or two CPU cores. The experiments in Section 5.3 were run a GPU
server using one NVIDIA A100.

Our implementation is based on JAX (Bradbury et al., 2018) and Flax (Heek et al., 2023). We
compute the mean correlation co-efficient (MCC) between true and inferred latent variables fol-
lowing Khemakhem et al. (2020b), as in https://github.com/ilkhem/icebeem and fol-
low the data and model generation from Khemakhem et al. (2020a), https://github.com/
ilkhem/iVAE in Section 5.2, as well as https://github.com/hanmenghan/CPM_Nets
from Zhang et al. (2019) for generating the missingness mechanism. In our MNIST-SVHN-Text
experiments, we use code from Sutter et al. (2021), https://github.com/thomassutter/
MoPoE.
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Table 22: Decoder architectures for MNIST-SVHN-Text.

(a) MNIST decoder. DI = 40 for models with
shared latent variables only, and DI = 10 + 10
otherwise.

MNIST

Input: DI

Dense 40× 400, ReLU
Dense 400× 400, ReLU
Dense 400×Ds, Sigmoid

(b) SVHN decoder. DI = 40 for models with
shared latent variables only, and DI = 10 + 10
otherwise.

SVHN

Input: DI

Dense DI × 128, ReLU
tConv(64, 4, 3), ReLU
tConv(64, 4, 2), ReLU
tConv(32, 4, 2), ReLU
tConv(3, 4, 2)

(c) Text decoder. DI = 40 for models with shared
latent variables only, and DI = 10+10 otherwise.

Text

Input: DI

Dense DI × 128, ReLU
tConv(128, 4, 3), ReLU
tConv(128, 4, 2), ReLU
tConv(71, 1, 1)
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