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Abstract—In recent years, the field of distributed deep learning
within the Internet of Things (IoT) or the edge has experienced
exponential growth. Federated meta-learning has emerged as a
significant advancement, enabling collaborative learning among
source nodes to establish a global model initialization. This
approach allows for optimal performance while necessitating
minimal data samples for updating model parameters at the
target node. Federated meta-learning has gained increased at-
tention due to its capacity to provide real-time edge intelligence.
However, a critical aspect that remains inadequately explored
is the recovery of interim meta knowledge’s failure, which
constitutes a pivotal key for adapting to new tasks. In this
paper, we introduce FMRec, a novel platform designed to offer
a fast and flexible recovery mechanism for failed interim meta
knowledge in various federated meta-learning scenarios. FMRec
serves as a complementary system compatible with different
types of federated models and is adaptable to diverse tasks. We
present a demonstration of its design and assess its efficiency and
reliability through real-world applications.

Index Terms—Federated Meta-Learning; Failure Recovery;
IoT.

I. INTRODUCTION

Federated meta-learning (FML) is an advanced machine
learning approach that combines federated learning and meta-
learning [13]. Federated meta-learning allows source nodes
collaboratively learn a global model initialization, so that max-
imal performance can be obtained with the model parameters
updated with only a few data samples at the target node [3]. In
FML, a central model is initially trained using meta-learning
principles to quickly adapt to new tasks. This model is then
distributed to a network of decentralized devices or servers,
each with its own dataset and tasks. These devices/servers
fine-tune the model using their local data, allowing them to
specialize for their specific tasks while retaining the ability to
adapt to new tasks efficiently. Aggregating the updated models
from these devices refines the central model, ensuring that the
collective knowledge gained from various devices enhances
the model’s generalization capabilities [12].

Federated meta-learning are applicable to numerous do-
mains such as healthcare, finance, and Internet of Things
(IoT) [5, 6, 14]. For instance, in healthcare areas, medical
institutions can collaborate without sharing sensitive patient
data. Instead, they share their model updates, which benefits
from the diverse patient populations encountered across dif-
ferent hospitals. Models in FML become increasingly adept at
rapid adaptation to evolving tasks, thereby achieving real-time
intelligence in IoT/edge devices or servers.

The “meta” in federated meta-learning addresses the chal-
lenge of adapting a model across different tasks within a
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Fig. 1. The performance degradation with different number of nodes losing
their meta knowledge (RMSE is the root mean square error).

federated network. The underlying rationale behind the meta
knowledge is to train the model’s initial parameters over many
tasks, such that the pre-trained model can achieve maximal
performance on a new task after quick adaptation using only a
small amount of data corresponding to that new task. In FML,
this meta-learning component ensures that the model becomes
proficient not only in adapting to tasks within individual
devices but also in generalizing its knowledge to tasks across
the entire federated network.

However, FML encounters significant challenges associated
with the potential failure of meta knowledge.

Meta knowledge can fail due to many circumstances, such
as communication errors (e.g., network errors or transmission
issues), and loss of control or node unavailability (e.g., tem-
porary network issues, device shutdown or restart) [15]. Meta
knowledge failure in FML encompasses challenges pertain-
ing to the higher-level learning process. This includes risks
of catastrophic forgetting as the model fine-tunes for new
tasks, potential instability in the aggregated model due to
conflicting device updates, variable performance across tasks
with different complexities, and optimization difficulties in
fast convergence [5, 14]. Figure 1 shows the performance
degradation when facing with multiple meta failures in a real-
world application for small-sample parking occupancy predic-
tion [16]. The Root Mean Square Error (RMSE) quantifies
the disparity between predicted and actual model outcomes. In
the “meta failures” scenario, meta data from multiple nodes is
intentionally removed, and the initial model does not possess
a mechanism for restoring this lost meta knowledge. Notably,
we observe a pronounced decline in accuracy, with errors
accumulating considerably in this situation (resulting in an
RMSE as high as 45). In contrast, during independent runs
with no such failures, the RMSE values consistently averaged
around ten.

In this paper, we propose a robust platform that can supports



fast and flexible meta failure recovery in various federated
meta-learning diagrams. By designing a platform that is easily
implementable across different federated meta-learning mod-
els, we aim to facilitate the adoption of our solution in a wide
variety of use cases, making it accessible to researchers and
practitioners regardless of their specific model preferences.

We make the following contributions:

e« We propose a novel platform that addresses the meta
data failure problem. This platform is designed to handle
the intricate process of managing meta data and ensures
that the model’s adaptability and generalization are main-
tained, thereby mitigating the adverse impacts of meta
failure.

o Our proposed platform offers a universal solution that can
seamlessly integrate with various types of federated meta-
learning models. This flexibility is vital for accommodat-
ing the diverse range of models employed in real-world
applications.

The rest of this paper is organized as follows: Section II
discuss the latest relevant research work of federated meta-
learning. Section III describes the details of our design and
methodology. Section IV shows the evaluation results. We
discuss the challenges, opportunities, and future work of this
research problem in Section V.

II. RELATED WORK

Federated learning has seen widespread adoption in various
domains, including healthcare, smart cities, [oT, recommen-
dation systems, and Industry 4.0 [8, 9, 19]. Federated meta-
learning, a relatively novel model, is gaining increasing atten-
tion across diverse domains such as cyberspace security [13],
privacy preservation [4], and addressing multitask challenges
on mobile devices [10].

The concept of a federated meta-learning framework
was originally introduced in [3], where the authors cre-
atively merged two powerful meta-learning techniques, namely
MAML (Model-Agnostic Meta-Learning) and Meta-SGD
(Meta Stochastic Gradient Descent) [11], within the frame-
work of federated learning. This algorithm’s core objective
is to engage in collaborative meta-training by leveraging
datasets from decentralized devices. In [12], a pioneering
collaborative learning framework was introduced, wherein
a model undergoes initial training on specific edge nodes-
Following this initial training, the model swiftly adapts to
become proficient in new tasks at designated target edge nodes,
even when supplied with a limited quantity of data samples.
This approach effectively addresses challenges associated with
constrained computing resources and the inherent scarcity of
local data resources at individual edge nodes. The ADMM-
FedMeta method [17] strategically decomposes the initial
optimization problem into multiple subproblems, enabling
efficient parallel processing across both edge nodes and the
platform. Additionally, NUFM [18] combines a non-uniform
device selection scheme with a resource allocation strategy to
jointly enhance convergence rates, minimize wall-clock time,
and reduce energy costs in multi-access wireless systems.
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Fig. 2. The overview of FMRec.

III. DESIGN

In this section, we introduce the design of FMRec system,
outline its workflow details, and discuss the functional com-
ponents.

A. Overview

FMRec acts as a complementary system that is built upon
existing federated meta-learning models, as illustrated in Fig-
ure 2. It consists of a large set of distributed agents, which
can handle the meta knowledge dispatcher and retriever for
dealing with the meta failure:

e FMRec Manager: It orchestrates the architecture of all
working agents, starts to retrieve the meta knowledge
when facing with failures, and manages the distribution
of local meta knowledge.

o Dispatcher: It is located inside each agent and responsible
for the distribution of replica of meta knowledge. At
runtime, it periodically handles the replica of local trained
meta knowledge and saves the meta knowledge into
decentralized storage for failure recovery.

e Retriever: It resides along with the dispatcher to fulfill the
retrieve process of failure meta knowledge when FMRec
manager triggers the recovery when it figures out the
occurence of failures.

B. Federated Meta-Learning Model

Followed by [3, 12], the general federated meta-learning
model is defined as follows: consider a general supervised
learning setting, assume tasks across edge nodes follow
a meta-model, represented by a parametrized function fg
with parameters 6 € R¢, where each node i € S (S is
the entire set of agents) has a local labeled dataset D; =
(D) (xyD) o (P P, here Dyl is the
size of dataset and (x?,y’) € X x ) is a sample/data
point with (x7,y7) follows an unknown distribution P;. The
experimental loss function, denoted as L for the node, is



defined as L(0,D;) = 1/|D; \Z7ED1 108, (27, y7)), where
1(0,(x],y])) is the loss function. Moreover, L, (@) is the
overall loss function across all nodes in S:

9) = Z%L(97 D;),
i€s

where w; = |D;| /> ;cs|Di| and the weight w; of each
edge node depends on its own local data size. In federated
setting, the server maintains 6, and updates it by collecting
test losses from a mini batch of nodes.

Similar to MAML [7], the designated target edge node,
denoted as t € S, when adapts to a new task, the model
weights will be updated to @' and is computed by using
gradient descent as

0 =6 —aVoL (6,D),

with « is the learning rate, D% is the support set (training
set) of node ¢, and then evaluates the loss L (0', D} ) for the
updated model parameter 8’ based on the query set (test set)
Dt . Therefore, the overall objective of the federated meta-
learning is presented as
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C. Management of FMRec Agents

FMRec employs a DHT-based hierarchical tree management
system, leveraging Scribe [2] and the proximity-aware Pastry
overlay [1]. This architecture efficiently organizes a substantial
number of agents in real-time. To cater to diverse tasks with
varying requirements and configurations, multiple trees are
dynamically created within the system. Each tree facilitates
application-level group communication and upholds a span-
ning tree comprising agents. This flexibility allows agents to
seamlessly join or depart from the tree, accommodating sizes
ranging from hundreds to millions. Following the principles
of Scribe [2], a pseudorandom key, referred to as the treeld,
is utilized to designate each tree. Typically, the treeld is
generated by hashing the textual name of the tree concatenated
with the name of its associated task. Agents can route JOIN
messages towards the treeld, ensuring that messages reliably
reach the intended agent within the tree. This approach adeptly
supports a large number of agents with dynamically changing
memberships, guided by the routing policy established by
Scribe.

Why tree structure? Tasks naturally exhibit a distributed
nature and considerable variability across different situations
and environments. The selection of grouped agents for a given
task showcases flexibility, contingent upon factors such as
data volume, model training requirements, and the dynamic
network environment. Consequently, the design philosophy
behind FMRec is anchored in delivering adaptability and
accessibility across a spectrum of runtime distributed models
and tasks. FMRec adopts a functional tree structure that
seamlessly aligns with the dynamic composition of FMRec
agents, allowing for the straightforward adjustment of group
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Fig. 3. The DHT-based overlay routing and meta knowledge recovery in the
functional tree.

memberships. Furthermore, the versatility of routing, guided
by the treeld, facilitates the smooth transition of agents to
specific task groups in response to the dynamic evolution of
tasks.

Within the functional trees, agents engage in a periodic
exchange of alive messages with their upper-tier agents along
the tree structure. These messages are systematically routed
upwards through the tree until they ultimately reach the root
node (manager). Notably, this message routing process is
accomplished with a depth of O(log V), ensuring efficiency
of communications. Consequently, the root agent, situated on
the global server, can swiftly aggregate real-time performance
data from each participating agent within the tree.

D. Management of Meta Knowledge

One of major novel design of FMRec is the arrangement
and management of meta knowledge (i.e., model parameters
and test loss) at runtime. All agents are organized by a
Distributed Hashtable (DHT)-based consistent ring overlay.
Within this overlay, all agents assume equivalent roles, with
the capacity to both provide and request services as needed.
Each agent possesses a functional leaf set, comprising a
predetermined number of neighboring agents whose agentlds
are numerically closest to that agent. This arrangement serves
as a dual purpose: aiding in the efficient routing of messages
and facilitating the reconstruction of routing tables in the
event of agent failures. Importantly, the leaf set functions as a
repository for storing meta knowledge and serves as a recovery
mechanism for meta knowledge that may encounter failures.

The left side of Figure 3 illustrates the functionality of
dispatcher which includes the process of message routing and
communication among agents within the DHT-based overlay
ring. In this context, the application manager (Agent_k) for
a specific application k (App_k), takes on the role of the root
agent responsible for coordinating all agents affiliated with that
particular application. During application runtime, Agent_k
efficiently forwards all control messages to its subsequent
agents in the tree via its routing table, achieving this in just
O(log N) steps.

Meanwhile, worker agents such as Agent_m and Agent_n
actively utilize their locally available datasets to train their re-



spective local models and compute local meta knowledge. Ad-
ditionally, these worker agents perform periodic checkpoints,
storing their local meta knowledge within their neighboring
agents found in their designated leaf sets. This strategic use
of the agent’s leaf set has two reasons: (i) these neighboring
agents are geographically closest to the agent, ensuring the
highest bandwidth availability for efficient communication,
thereby reducing network latency related to bandwidth fluc-
tuations; (ii) the agents within the leaf set consistently belong
to the local cluster or rack, which not only enhance the security
of the agent’s local meta knowledge but also minimize the risk
of local privacy breaches and violations.

The right side of Figure 3 outlines the workflow of retriever
that mainly refers to the process of meta knowledge look up
and recovery. In case where an agent experiences a failure
or becomes a straggler, impeding the immediate upload of its
meta knowledge to the global manager (as exemplified by the
scenario where Agent_m encounters an issue in the figure),
the manager agent Agent_k can promptly initiate a routing
operation to Agent_m’s designated leaf set. It can search the
agents in the leaf set and figure out which agent has the
replica of failed meta knowledge. Here, Agent_k can request
the neighbor agent that possesses a replica of Agent_m’s
meta knowledge to upload to the manager and accelerate the
convergence.

In future research, our focus will delve into the deployment
of meta knowledge replicas and explore various strategies
to fortify data privacy, curtail data leakage risks, and fortify
defenses against potential external cyber threats.

IV. INITIAL EVALUATION RESULTS

Experiments are conducted on 6 Google Cloud T4 GPUs
instances, each with 1 GPU and 16GB GDDR6, 12 vCPUs
with 85 GB memory. We use Pastry 2.1 [1] build up to 500
virtual nodes and are configured with leafset size of 12 and
transport buffer size of 6MB.

The experimental evaluation is conducted on a dataset
from [16] that focuses on small-sample parking occupancy
prediction. To meet the criteria for federated meta-learning,
we partition the training and target tasks into four temporal
segments. We employ a two-tier architecture, comprising an
encoder layer (with a sequence length of 6) designed to
extract time-series features and a decoder layer responsible for
generating predicted values. The input is (256, 6, 1), output is
(256, 1), learning rate is 0.02, max epoch is 400, and the loss
function is the cross-entropy error between the predicted and
true class.

We use the predictive accuracy of the model as an indicator
of its performance across various data volumes, for example,
Root Mean Squared Error (RMSE) that is calculated by

+ ZZV:I (y; — yi)Q, where y; and 7; represent the actual and
predicted value at time 7; and N is the number of samples.
Additionally, we analyze the convergence speed to gauge how
quickly the model stabilizes during the training process. This
evaluation helps us understand the model’s scalability and
efficiency in making future predictions.
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Fig. 4. The training time of adaption for the baseline model, FMRec, and
baseline model with meta knowledge failures.

The evaluated model completes 400 iterations, accumulating
a total metadata file size of 10.396 MB. Figure 4 illustrates
the performance comparison. In the ”Baseline,” the optimal
scenario is depicted, where meta knowledge remains constant
throughout task adaptation. In Baseline_failure, nodes experi-
encing meta knowledge loss require restarting the meta com-
putation. FMRec periodically snapshots the meta knowledge
every 50 iterations. The results reveal that FMRec introduces
only approximately one additional minute to the baseline exe-
cution time while significantly outperforming Baseline_failure,
which progressively extends computation time as the file size
grows. Notably, when the file size reaches 10 MB, the tra-
ditional method employed by Baseline_failure nearly doubles
the execution time compared to both the baseline and FMRec.
The analysis underscores FMRec’s superior efficiency across
observable file sizes.

V. CHALLENGES, OPPORTUNITIES, AND FUTURE WORK

Scalability and Compatibility: As the scale of federated
networks expands with a growing number of devices or clients,
the intricacy of managing model updates and aggregations
escalates significantly. Furthermore, the increasing diversity
of applications demanding a multitude of distributed models
poses a pivotal challenge. Efficiently accommodating these
heterogeneous models within a unified platform emerges as a
critical research challenge within the field. The need to develop
mechanisms and frameworks that can seamlessly handle a
wide array of model variations, while ensuring scalability,
compatibility, and effective knowledge sharing, remains a focal
point in this research domain.

Communication Overhead: Within federated settings, the
transmission of model updates between devices and a central
server is a fundamental operation. In the context of meta-
learning, which requires rapid adaptation based on prior meta-
knowledge, this process places an added load on communica-
tion resources. In scenarios characterized by limited bandwidth
or high latency, the exchange of information among a large
set of nodes can become a bottleneck. Consequently, the opti-
mization challenge lies in the delicate balance of minimizing
communication overhead while upholding model accuracy,
a complex endeavor that demands careful consideration and
innovative solutions.

Privacy and Security: Federated meta-learning is often
used in settings where data privacy is paramount, such as



healthcare and finance. Ensuring that sensitive data remains
secure and private during the federated learning process is
a challenge. Techniques like differential privacy and secure
aggregation need to be incorporated. Additionally, a critical
focus in our forthcoming research will be the development
of innovative tools designed to effectively counter backdoor
attacks and malicious control on meta knowledge, addressing
a pivotal aspect of data protection in federated meta-learning
environments.

Task Complexity Variation: In federated environments,
the tasks often exhibit considerable variations in complexity.
The adaptation of a single model to effectively address tasks
with diverse levels of complexity poses a considerable chal-
lenge, necessitating the development of robust meta-learning
strategies. In our forthcoming research endeavors, we intend
to investigate the feasibility of a unified platform. Such a plat-
form would offer a flexible and adaptable system infrastructure
capable of accommodating a wide array of task complexities,
thereby providing a versatile solution to the challenge of task
heterogeneity in federated settings.

Lack of Standardization: The field of federated learning,
including federated meta-learning, lacks standardized proto-
cols and frameworks. Developing standards is crucial for
fostering interoperability and facilitating meaningful compar-
isons among various implementations. In our current research,
FMRec serves as a complementary system built upon existing
federated meta-learning models. Our overarching aim is to
transform this system into a standard framework capable of
accommodating diverse federated meta-learning models and
tasks. By doing so, we anticipate streamlining the process,
reducing the need for labor-intensive platform reorganization
or re-standardization efforts, and enhancing the efficiency and
consistency of federated meta-learning practices.
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