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ABSTRACT

Topological Data Analysis (TDA) is a rapidly growing field, which studies meth-
ods for learning underlying topological structures present in complex data repre-
sentations. TDA methods have found recent success in extracting useful geometric
structures for a wide range of applications, including protein classification, neu-
roscience, and time-series analysis. However, in many such applications, one is
also interested in sequentially detecting changes in this topological structure. We
propose a new method called Persistence Diagram based Change-Point (PD-CP),
which tackles this problem by integrating the widely-used persistence diagrams
in TDA with recent developments in nonparametric change-point detection. The
key novelty in PD-CP is that it leverages the distribution of points on persistence
diagrams for online detection of topological changes. We demonstrate the effec-
tiveness of PD-CP in an application to solar flare monitoring.

1 INTRODUCTION

Topological Data Analysis (TDA) is a thriving field that uses topological tools to study complex
datasets’ shapes and structures. In the modern era of big data, TDA provides an attractive frame-
work for extracting low-dimensional geometric structures from such data, which are oftentimes
high-dimensional and noisy. TDA methods have found recent success in a wide range of applica-
tions, including protein structure (Cang et al., 2015), time-series data (Seversky et al., 2016), and
neuroscience (Sizemore et al., 2019).

Despite such developments, there has been little work on integrating topological structure for
change-point detection. Here, change-point detection refers to the detection of a possible change
in the probability distribution of a stochastic process or time series. The need for change-point de-
tection arises in many areas, from solar imaging to neuroscience, and the data in such applications
exhibit topological structure as well. A recent work, Islambekov et al. (2019), proposes an approach
for time series data, by converting such data to a sequence of Betti numbers prior to estimating
change-points. However, Betti numbers can only capture the number of features at pre-specified
scales, while a persistence diagram (introduced in Section 2) preserves more topological informa-
tion from the data. Persistence diagrams also enjoy a stability property (Cohen-Steiner et al., 2007),
which provides robustness under small perturbations of the data. This robustness is crucial for
change-point detection, since a model needs to learn topological structure from noisy data prior to a
change, before such structure can be used for identifying potential changes.

We propose a new method called Persistence Diagram based Change-Point (PD-CP), which in-
tegrates persistence diagrams and a recently proposed non-parametric change-point detection ap-
proach in Xie & Xie (2020). Section 2 provides background on persistent homology. Section 3
outlines the PD-CP methodology. Section 4 demonstrates the effectiveness of this method on a solar
flare monitoring application.
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Figure 1: An illustration of the persistent homology pipeline, from point cloud data to a filtration of
simplicial complexes to a (tilted) persistence diagram. The Rips complex with radius ε in the left
plot corresponds to the second simplicial complex in the filtration.

2 BACKGROUND

We first review a primary tool in TDA called persistent homology, which extracts topological fea-
tures (e.g., connected components, holes, and their higher-dimensional analogs) from point cloud
data. Further details can be found in Ghrist (2008) and Edelsbrunner & Harer (2008).

For a given point cloud dataset, persistent homology represents this point cloud as a simplicial com-
plex, defined as a set of vertices, edges, triangles, and their n-dimensional counterparts. A common
simplicial complex built from point cloud data is the so-called Rips complex, which depends on a
single scale parameter ε. At any ε > 0, the Rips complex contains all edges between any two points
whose distance is at most ε, and contains triangular faces for any three points whose pairwise dis-
tance is at most ε. Figure 1 illustrates this for a toy dataset, adapted from Han et al. (2018). Clearly, a
single scale parameter ε cannot capture all geometric structures of the data. Thus a sequence of scale
parameters is used to build a filtration of simplicial complexes. This filtration provides a means for
extracting key topological structures from the data, such as the number of zero-dimensional holes
(connected components) and one-dimensional holes.

Under this framework, a topological feature appears in the filtration at some ε and disappears at
some ε′ > ε. The pair (ε, ε′) then gives the so-called persistence of the feature, with ε and ε′ being
its birth and death, respectively. A large topological feature in the point cloud data would have
long persistence, whereas a small or noisy topological feature would have short persistence. The
collection of features can then be summarized by a barcode, where each bar has endpoints that
correspond to the birth (i.e., ε) and death (i.e., ε′) of a feature. The information in a barcode can also
be captured in a “tilted” persistence diagram, in which a bar (representing a feature) is plotted as a
point (a, b), with a = ε is its birth time and b = ε′ − ε is its persistence time. Figure 1 illustrates
this tilted persistence diagram for the earlier toy dataset. This is slightly different from standard
persistence diagrams, where a and b are taken to be the birth and death times, respectively.

While the above pipeline is presented for point cloud data, there are analogous approaches in the
literature for building simplicial complexes and filtrations of more complex data types, e.g., time
series (Seversky et al., 2016) and image data (Bendich et al., 2011). The detection methodology
presented next, which relies on the extracted persistence diagrams, can therefore be applied for
these data types as well (see Section 4 for a solar flare monitoring application).

3 PERSISTENCE DIAGRAM BASED CHANGE-POINT DETECTION

Next, we introduce the proposed Persistence Diagram based Change-Point (PD-CP) method, which
utilizes the extracted persistence diagrams over time for online detection of abrupt topological
changes. We assume that the persistence diagrams outlined earlier are obtained for the data at each
time t = 1, · · · , T . PD-CP involves two key steps: (i) a histogram representation is constructed for
each persistence diagram over time, and (ii) an online non-parametric hypothesis test is performed
on these histograms to detect abrupt changes sequentially.

Consider the first step (i). To construct a histogram that captures topological information from a
persistence diagram, we split the domain for birth times into M different bins, then sum up the
persistence of features within each bin. This histogram binning serves two purposes: it provides
a robust way for reducing noise in the persistent diagram data, and allows us to leverage recent
developments in empirical distribution based change-point methods. Figure 2(a) visualizes this
construction. The breakpoints for these bins (denoted as b1, · · · , bM ) are trained using the “pre-
change” persistence diagrams (i.e., the diagrams before the abrupt change) and are kept the same
throughout the procedure. Figure 2(a) (left) shows this for a solar flare image (see Section 4) prior
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(a) (b)

Figure 2: (a) Histograms for the persistence diagram of a pre-change and post-change solar flare
image. (b) Visualizing the intervals used for the weighted `2 detection statistic.

to an abrupt change. After a change-point, the “post-change” persistence diagrams are binned using
the same breakpoints. These post-change histograms are then expected to be significantly different
from the pre-change histograms. Figure 2(a) (right) shows the histogram for a post-change solar
flare image.

Consider the second step (ii). To detect differences between pre-change and post-change histograms,
we make use of a non-parametric detection statistic recently proposed in Xie & Xie (2020), which
uses a weighted `2 divergence between the two histograms (representing empirical distributions) to
detect changes sequentially. Our approach is as follows. At a given time t, we search for all possible
change-points at time k < t. To investigate whether time k is a change-point, we will consider four
consecutive time intervals (see Figure 2(b)): the first two intervals are immediately before time k and
the last two are immediately after k, with all intervals having the same length. We call the former
intervals “group 1” and the latter “group 2”, representing potentially pre-change and post-change
times. Let ωt,k, ω

′
t,k ∈ RM be the empirical distributions of persistence diagrams from the two

intervals in group 1 (binned using breakpoints b1, · · · , bM ), and ξt,k, ξ′t,k ∈ RM be the empirical
distributions of observations from the two intervals in group 2. Let Σ = Diag{σ1. · · · , σM} be a
weight matrix, where σm ≥ 0,m = 1, · · · ,M . The weighted `2 statistic can then be defined as

χt,k = (ωt,k − ξt,k)T Σ(ω′t,k − ξ′t,k).

A larger value of χt,k gives greater evidence of a change-point at time k, using data up to time t.

An online detection procedure is then given by the stopping time:

T = inf{t : χmax
t ≥ b}, χmax

t = max
0≤k≤t

χk,t,

where b is a pre-specified threshold parameter. Here, T is the time at which the procedure raises an
alarm indicating a change-point has occurred before time t, by taking the maximum statistic χmax

t
over all possible change-points k < t. The threshold b is typically set by controlling the false alarm
rate to be below a certain pre-specified level (see Xie & Xie, 2020).

4 DETECTING SOLAR FLARE CHANGES

Solar flares are sudden flashes of brightness on the sun. Such flares are closely related to geomag-
netic storms, which can cause large-scale power-grid failures. In recent years (Fox & Tran, 2020),
the sun has entered a phase of intense activity, which makes monitoring solar flares an important
task (Xie et al., 2012). However, these flashes are hardly visible and can be missed by a baseline de-
tection statistic, thus making monitoring a difficult task. We demonstrate the effectiveness of PD-CP
in detecting changes in a sequence of solar images (232× 292 pixels) at times t = 1, · · · , T = 300;
this data is obtained from the Solar Dynamics Observatory1 at NASA.

To begin, however, we would need to define an appropriate filtration for capturing topological fea-
tures in images. We make use of the lower star filtration, which has been used for topological
analysis of images (Bendich et al., 2011). For a real-valued function f : X → R, define the sublevel
set of f as:

X(ε) = {x ∈ X |f(x) ≤ ε}. (1)

1See https://sdo.gsfc.nasa.gov/mission/instruments.php.
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(a) (b)

Figure 3: (a) Visualizing a regular point (left) and a saddle point (right) in the lower star filtration. (b)
The detection statistic χmax

t at each time t, with red dashed lines indicating the true change-points.

Figure 4: Snapshots of the solar flare at two change-points t∗1 = 50 and t∗2 = 218.
For a finite set of ε1, ε2, · · · , εn > 0, a sublevel set filtration of X is then defined as the sequence of
simplicial complexes X1 ⊂ · · · ⊂ Xn, where Xi = X(εi), i = 1, · · · , n. The filtration provides a
characterization of topological structure on f .

Sublevel set filtrations provide a natural persistent homology for images, by viewing an image as a
function mapping each pixel location to its intensity value. Considering the image pixels as vertices
on a grid, we first triangulate this grid by placing an edge between two points that are horizon-
tally, vertically, or diagonally adjacent, and a triangular face for any three adjacent points forming
a triangle. Using image intensity values as the response for f in (1), the sublevel set filtration
X1 ⊂ · · · ⊂ Xn then forms a sequence of simplicial complexes.

When a new vertex is added in the sublevel set, the topological change depends on whether the vertex
is a maximum, minimum, regular, or a saddle of the function. Figure 3(a) visualizes a regular point
and saddle point (in yellow), and the edges and faces in the sublevel sets (in blue). The topological
features do not change after introducing a regular point, but the number of connected components
decreases by one after introducing a saddle point. This filtration provides a means for extract image
topological features as persistence diagrams.

We then integrate this sublevel set filtration within the detection framework in Section 3, to de-
tect topological changes for the aforementioned solar flare problem. The histogram breakpoints
b1, · · · , bM are chosen such that there is (roughly) an equal sum of persistences within each bin for
the first solar flare image. Figure 3(b) shows the detection statistic χmax

t as a function of time t,
using M = 10 bins for histograms. We see two sudden increases in the statistic χmax

t , one after
time t∗1 = 50, and another after t∗2 = 218. These are dotted in red in the figure, and suggests a
change-point in topological structure. To investigate further, Figure 4 shows snapshots of the solar
flare immediately before and after t∗1 and t∗2. For both times, we see a clear change-point in the
images: at t∗1 = 50, the flare bursts become more pronounced and bright, whereas at t∗2 = 218,
certain flares become noticeably more subtle and subdued. The proposed PD-CP approach appears
to nicely capture this change with little detection delay, given an appropriately set threshold.

We also note that the PD-CP is quite computationally efficient in this experiment. Using the Python
package Ripser (Tralie et al., 2018), the computation time for building the lower star filtration of
both connected components and holes on all T = 300 images is approximately 90 seconds on a
standard desktop computer. Given this filtration, the detection statistic χmax

t can be then evaluated
with minimal additional computation, which allows for efficient online detection.

5 CONCLUSION

We have proposed a Persistence Diagram based Change-Point (PD-CP) method, which integrating
the persistence diagrams from TDA with a nonparametric change-point detection approach. The
idea is to first learn topological structure via persistence diagrams, and use a weighted `2 divergence
on a histogram representation of these diagrams to sequentially detect topological change. There
are several interesting directions of future research. First, we are aiming to utilize the persistence
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diagrams on both connected components and holes, and integrate this within PD-CP. Second, we are
exploring a more localized detection approach, which can better identify local changes (e.g., local
translation / rotation shifts) in images.
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