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Abstract

Federated Learning (FL) aims to infer a shared model from private and decentralized data
stored by multiple clients. Personalized FL (PFL) enhances the model’s fit for each client
by adapting the global model to the clients. A significant level of personalization is required
for highly heterogeneous clients but can be challenging to achieve, especially when clients’
datasets are small. To address this issue, we introduce the PAC-PFL framework for PFL
of probabilistic models. PAC-PFL infers a shared hyper-posterior and treats each client’s
posterior inference as the personalization step. Unlike previous PFL algorithms, PAC-PFL
does not regularize all personalized models towards a single shared model, thereby greatly
enhancing its personalization flexibility. By establishing and minimizing a PAC-Bayesian
generalization bound on the average true loss of clients, PAC-PFL effectively mitigates over-
fitting even in data-poor scenarios. Additionally, PAC-PFL provides generalization bounds
for new clients joining later. PAC-PFL achieves accurate and well-calibrated predictions, as
supported by our experimentsﬂ

1 Introduction

Federated Learning (FL) enables collaborative learning across decentralized datasets stored on end-devices,
known as clients, without requiring raw data to be shared (Konecny et al. |2015). The primary objective
of FL is to train a global model that performs well across all clients. The training process is orchestrated
by a trusted server, which iteratively distributes the current model to a subset of clients, aggregates their
locally computed updates, and refines the model for subsequent rounds. By restricting access to only the
communicated updates rather than the raw data itself, FL enhances privacy and reduces communication
overhead compared to traditional centralized approaches.

A key challenge in FL is the heterogeneity of clients’ datasets, which violates the i.i.d. assumption required
for training a global model (Kairouz et al., 2021} |Li et al., 2020a). This often leads to convergence difficulties
or suboptimal performance (Li et al., 2020b). To address this issue, Personalized FL (PFL) introduces a
personalization step to adapt the global model to the specific data of individual clients. This step is critical
in many real-world federated datasets, as they typically involve heterogeneous clients (Wen et al., |2022).

1The codebase for our algorithm is available on https://sites.google.com/view/pac-pflh
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The growing impact of PFL has been highlighted in diverse applications, including image classification,
regression, text analysis, and recommendation systems (Chen et al., [2024)).

Despite significant advancements, several critical issues remain underexplored. First, (¢1) most PFL ap-
proaches yield point estimates, limiting their ability to quantify epistemic uncertainty, which is essential in
safety-critical applications (Guo et al., [2017}; |Achituve et al., |2021). Second, (¢2) personalized models are
often closely tied to the global model, making them less effective in highly heterogeneous or multimodal
scenarios. Third, (¢3) many methods suffer from performance degradation when client datasets are small.
Finally, (¢4) few approaches account for the progressive collection of new data over time. In this paper, we
propose the PAC-PFL framework to tackle these challenges (c1-c4).

Our proposed framework leverages probabilistic models to address (c1) by accounting for uncertainty. In the
considered setup, each client places a prior distribution over models and updates it based on its local data to
derive a posterior distribution. A naive PFL approach is to collaboratively learn a shared prior distribution
and treat posterior inference as the personalization step. However, this method conflicts with the Bayesian
framework since the learned prior depends on each client’s data (Box & Tiao, 1992), as demonstrated in
Figure [ We overcome this by leveraging PAC-Bayesian inference, which accommodates data-dependent
priors (Rivasplata et all 2020). Additionally, to address heterogeneity (¢2), we introduce a novel inference
approach: instead of relying on a single shared prior, we learn a hyper-posterior distribution over prior
distributions from which clients sample their priors. By decoupling clients’ posterior distributions from a
single shared prior, our framework enhances adaptability to diverse data distributions.

Low-data scenarios (¢3) are prone to overfitting, where models exhibit strong performance on training data
but generalize poorly to unseen samples. PAC-PFL addresses this challenge by selecting a hyper-posterior
that minimizes a bound on the generalization error. As shown in Section [4 this approach introduces a
principled regularization mechanism for the hyper-posterior, enabling the framework to learn complex models
while mitigating the risk of overfitting. Regarding (¢4), PAC-PFL accommodates collecting new data over
time. In practice, only a subset of clients may communicate with the server during any given iteration,
and these clients may gather new data locally before communicating again with the server. Such data can
be utilized for personalization but not for updating the shared hyper-posterior. Furthermore, PAC-PFL
supports new clients—devices joining the system later that have never communicated with the server. A
distinct generalization bound applies to this group, underscoring the importance of differentiating between
existing and new clients. Table [l| summarizes the introduced challenges (¢1-c4) and how they are addressed
both in theory and through experimental validation.

We evaluate PAC-PFL on Gaussian Process (GP) regression and Bayesian Neural Network (BNN) classi-
fication as representative examples of probabilistic models. Our experiments demonstrate that PAC-PFL
yields accurate and well-calibrated predictions (c1), even in highly heterogeneous (¢2) and data-poor (¢3)
scenarios. Furthermore, we illustrate that PAC-PFL facilitates positive transfer learning from existing to
new clients (c4). We empirically showcase the effectiveness of learning a hyper-posterior, instead of a single
prior, in highly heterogeneous cases. Lastly, we provide an interpretation of our method through Jaynes’
principle of maximum entropy (Jaynes, |1957) in Appendix

2 Related work and novel contributions

Meta-PFL. PAC-PFL belongs to the meta-PFL category (Kulkarni et al., [2020). Meta-learning, developed
independently of FL, involves training a global model on various related learning problems (tasks), which can
be efficiently fine-tuned for a new task. The link between meta-learning and PFL was first explored in [Jiang
et al.| (2019), where they proposed simultaneously learning the global model and its personalization. Other
approaches have investigated learning a global model initialization that performs well after being personalized
by individual clients (Khodak et al., [2019; |[Fallah et al. 2020; [Chen et al., |2018). In |Fallah et al|(2020), a
scalable algorithm, called MAML, is proposed that limits the personalization step to one or a few gradient
descent steps. However, when clients have small datasets, the personalized models tend to remain close
to the shared initialization, resulting in a strong resemblance between them. Consequently, these methods
may lack the necessary personalization capability in highly heterogeneous cases with small client datasets.
Additionally, all these methods are frequentist, specific to parametric models, and lack generalization bounds.
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Figure 1: Illustration of the proposed PAC-PFL framework. For a given hyper-prior distribution P, the server
computes the optimal hyper-posterior Q* as per Corollary [£:4] through communication with clients owning
datasets Sy, ...,S,. During personalization, each client ¢ draws a prior distribution P from Q*, combining
it with its local dataset S; and potentially new data S; to derive the optimal posterior distribution Q7
according to Corollary The client then samples a model from @} for making predictions. Note that the
prior P depends on each client’s data, S;, conflicting with the Bayesian framework and necessitating proper
consideration, as discussed in Section [3]

Table 1: Challenges, solutions proposed by PAC-PFL, and datasets representing them. The number after
each dataset name indicates the number of data samples per client. Detailed descriptions of these datasets
can be found in Appendix

Challenge Solution Dataset

(¢1) quantify uncertainty probabilistic modeling all

(¢2) high heterogeneity formulate a hyper-posterior PV-EW (150), PV-EW (610)

(¢3) overfitting minimize a generalization bound PV-EW (150), PV-S (150), FEMNIST (20)

(c4) new data incorporate it in personalization ~PV-EW (150), PV-EW (610), PV-S (150), PV-S (610)

FL for probabilistic models. Several FL. methods aim to learn a global posterior without personaliza-
tion (Bui et al., |2018; |Al-Shedivat et all 2020; Kassab & Simeone, [2022). Learning personalized posteriors
is studied in |Corinzia & Buhmann| (2019), where the posterior for each client is decomposed into global
and per-client variational factors. However, this method encounters scalability challenges in systems with
numerous clients, as personalized models are refined sequentially. As mentioned in Section [l an alternative
approach is to learn a shared prior and consider posterior inference as the personalization step. This idea is
adopted in methods like pFedBayes (Zhang et al., 2022)) and pFed GP (Achituve et al.,2021). In pFedBayes,
clients compute personalized posteriors by optimizing their data likelihood while adding regularization to-
wards the global prior. The server calculates the prior by minimizing the average client loss. Due to relying
on bi-level optimization, pFedBayes imposes a significant computational burden.

The closest work to our approach is pFedGP which learns a global GP prior by maximizing the average
Log Marginal Likelihood (LML) across all clients. Consequently, clients perform posterior inference for
personalization. However, pFedGP only focuses on learning the covariance of the prior and sets the prior
mean to zero. The reason for ignoring the mean may be that the LML implicitly regularizes the covariance,
while the mean can quickly overfit (Fortuin et al, 2020). Both pFedBayes and pFedGP may exhibit limited
personalization flexibility, as they utilize the same prior distribution for all clients. Additionally, their
inference procedures are heuristic due to deviating from the Bayesian setup by using data-dependent priors.

PAC-Bayesian meta-learning. The setup described in Section [1] is related to meta-learning within the
PAC-Bayesian framework (Amit & Meir} [2018; [Pentina & Lampert], 2014; Rothfuss et al.| |2021)). In this
scheme, a meta-learner is presented with a sequence of heterogeneous learning tasks, corresponding to existing
clients in PFL, and aims to facilitate posterior inference for an unseen task, corresponding to a new client.
The meta-learner employs the previous tasks’ data to learn a hyper-posterior distribution that leads to good
generalization to the new task, establishing a data flow from previous tasks to the new task.
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PAC-Bayesian federated-learning. A PAC-Bayesian PFL algorithm introduced by |[Jobic et al.| (2023])
optimizes both the parameters of a shared prior distribution and personalized posterior distributions by
minimizing non-vacuous generalization bounds from [McAllester| (2003). While PAC-PFL accommodates
arbitrary distributions, this method assumes Gaussian prior and posterior distributions. To avoid data-
dependent priors, it splits each client’s dataset: one half to learn the prior and the other to learn the
posterior, sacrificing data efficiency. This approach evaluates the prior based on the loss incurred when
sampling models directly from it. However, an alternative strategy would be to evaluate the loss of models
drawn from the posterior distribution corresponding to this prior, potentially enhancing performance by
directly optimizing the effectiveness of personalized posteriors.

Novelties We propose PAC-PFL, a probabilistic PFL framework that addresses challenges (¢1)-(c4) while
introducing two significant advancements over existing methods. First, PAC-PFL improves upon Bayesian
and PAC-Bayesian PFL approaches by offering a theoretically rigorous and data-efficient inference pipeline
that eliminates the need for data splitting. This is achieved through PAC-Bayesian methods allowing for
data-dependent priors that are differentially private (Dziugaite & Roy, [2018), along with an analysis of
the proposed method’s privacy properties. Second, unlike PAC-Bayesian meta-learning approaches that
primarily benefit new clients (tasks), PAC-PFL incentivizes existing clients to collaborate in the framework
by learning a hyper-posterior distribution tailored for their data. To achieve this, we define a novel loss
function that evaluates the hyper-posterior based on the accuracy of models derived via the pipeline in
Figure [T} for existing clients. We then derive a generalization bound for this loss function, focusing on unseen
data from existing clients rather than new clients, as in meta-learning. With these advancements, PAC-PFL
provides a principled solution for addressing existing challenges in PFL.

3 Preliminaries and notation

We start by presenting the notation and key concepts. A summary of the introduced notation is provided
in Table[dl Consider a set of n € N clients, referred to as existing clients, each observing samples of feature-
target pairs (x,y), where x € R, C R? represents the features and y € R, denotes the target values. The
feature space Rx and the target space R, are identical across clients, and for simplicity, we assume the target
y is scalar, i.e., R, C R. Each client has access to two distinct i.i.d. datasets: S; ~ D;"", containing m; € N
samples, and S; ~ Dlﬁ”, containing 7; € NU {0} samples. The first dataset, S;, is non-empty and is used
by client ¢ during both FL and personalization phases. The second dataset, S;, consists of samples acquired
later, which are used exclusively for the personalization phase and may be empty. We assume that m; < m;
for all clients ¢, and we denote the number of clients for which m; > 0 as ny € {0,...,n}.

The data held by each client 7 is sampled from an unknown data distribution D; over the support
R, = Rx x Ry. To account for client heterogeneity, we allow both the distributions and the number of
samples to vary across clients, i.e., D; # D; and m; # m;. We capture the relatedness among clients through
a distribution T over the data distributions and sample sizes, such that (D;,m;) ~ T. For convenience, we
introduce the following notations: & == {S;}_;, D = {D;}";, m = [my, -+ ,my], and /= [my,- -, My)].

Each client ¢ aims to learn a hypothesis function h; : Ry — R, for predicting the label 3. of an unseen input
x.. The error incurred by h; at (X, y.) is measured by a loss function which we assume to be bounded, ¢ :
H x R, — [a,b]. Since the data distribution, D;, is unknown, standard methods select the best hypothesis ac-
cording to the set of observed samples, S;US;; for instance, by minimizing the empirical risk associated with .

Using a single hypothesis based on limited observations leads to epistemic uncertainty (Draper} [1995]) and
overconfident target estimation (Kass & Rafteryl |1995). To address this issue, the PAC-Bayesian framework
(McAllester}, (1999) places probability distributions over the hypothesis space, H, and combines all possible
hypotheses sampled from these distributions for making inferences. Two such distributions are enlisted:
a prior distribution P, and a posterior distribution (); which depends on the prior and the observations
through a mapping, @Q; = Q(P,S; U 51) While the prior and posterior terms resemble the Bayesian
terminology, the posterior mapping, @Q, is not (necessarily) obtained through Bayes’ theorem. Additionally,
recent advances in PAC-Bayesian analysis enable employing priors that slightly depend on the data to make
the learning pipeline more data-driven, which is contrary to the Bayesian formalism (Rivasplata et al., |2020)).
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Client-level PAC-Bayesian bounds. The flexibility in choosing the mapping Q can be exploited to
achieve desired characteristics. Ideally, clients aim to choose a @ that minimizes the true risk,

LY(Q(P,SiUS),D;) =E; _qp.s,us, Bz, [((h.2)], (1)

where superscript C' indicates that is calculated by a client. In most cases, D; is unknown and the true
loss is approximated by its empirical counterpart,

R . . 1
LY(Q(P,S;US),SiUS) ::EhNQ(P,siusi)[m > Uh,2)]. (2)
z€8,US;

PAC-Bayes theory (McAllester, [1999) provides a guarantee on the worst loss clients may suffer by upper
bounding the unknown true risk in based on the empirical risk in . The original PAC bound by
McAllester| (1999) assumes that the prior, P, is independent of the data. However, in our setup, the prior
is obtained from the FL algorithm acting on the data subset S;, hence, is data-dependent. [Dziugaite & Roy
(2018)) propose a recipe for adapting any PAC bound with data-free prior to a data-dependent prior that is
stable to slight changes in the data, formalized by the notion of Differential Privacy (DP) defined below.

Definition 3.1 ((Dwork & Roth| [2014)). Let ¢; € Ry and A be a randomized algorithm that generates a
stochastic output given an input dataset. The algorithm A preserves €;-DP if for all datasets S; and S; that
differ in a single data sample and all subsets O of possible outcomes of A,

e < PT[A( 2) € O]

= Prias) o = “

where the probability is w.r.t the algorithm’s randomness.

Intuitively, (3)) bounds the stability of A to changing a single sample of § (Dwork et al. 2015). The
privacy /stability level is controlled by e: for a smaller €, A is more private/stable.

To state a PAC bound for client i, we regard the federated pipeline as a randomized algorithm that takes
S; as input and outputs P = Ag\s,(S;). The subscript S\S; contains samples from all clients except ¢
and emphasizes that P depends on data from other clients likewise. However, DP is only studied for the
argument, ;. Randomization in Ag\s, arises from sampling the prior from the hyper-posterior.

Assume the prior is obtained by A preserving e-DP. We apply the method of Dziugaite & Roy| (2018) on a
bound due to |Alquier et al.| (2016 to derive the following theorem.

Theorem 3.2. Fiz a data-dependent prior P obtained by an €;-DP algorithm, a data distribution D;, and
a bounded loss function ((-,-) € [a,b]. For every B > 0, confidence level § € (0,1], and posterior Q; =
Q(P,S; US;), the inequality

B2(b—a)®

Clo. DY < 70 s L&) o L .
£(Qi, D) < L (Qz,slusz)+5(KL(Qz||P)+g(mi+mi)

1
+ I(ei:mi,8) +1n(5)) @)
holds with probability at least 1 — & over S; ~ D" and S; ~ Dzﬁ In the above, I(e;,m;,d) = 0.5miez2 +
0.5m; In(4/8) +1n(2), and does not depend on the posterior. It is assumed that the KL divergence between
Q; and P exists and is denoted by KL(Q;|P).

Remark 3.3. The term I(e;,m;,d) is the only difference with the bound of |Alquier et al.| (2016]) with a
data-free prior.

We refer to Theorem as the client-level bound.

Optimal posterior. The bound in holds for all ); and thus can be minimized w.r.t J; to obtain the
tightest upper bound. Since ¢; only reflects through the term I in , the optimal posterior is the same as
the minimizer of the bound with a data-free prior derived in [Catoni| (2007)).
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Corollary 3.4 ((Catoni, [2007)). Given a prior, P, obtained through an €;-DP algorithm and observations,
S; US;, the optimal posterior minimizing the right-hand side of is the Gibbs distribution:

P(h) e(ﬁﬁm Ezesiuéi t(h.2))
Z§(P,8;US))

; (5)

. -8 ”
Z;?(P, S; U Si) Z:Ehwpe(m”ﬁ” Zzesw& b, ))v

where ZBC(P, S; uSi) s a mormalization constant. We denote the dependence of the optimal posterior on the
prior and data using the operator Q*: QF = Q*(P,S; U Si).

With 8 = m; + m; and the negative log-likelihood loss, ¢(h,z) = — InPr[z|h], ZﬁC and Q7 simplify to the
LML and the Bayes posterior respectively (Guedj, |2019)).

Plugging in the closed-form formula of the optimal posterior into the client-level bound obtains:

- _ 200 \2
£E(Q*(P,SiUS), Dy) < (anB(P,SiUSi)er+I(ei,mi,5)+ln((1s)>, (6)

| =

holding with probability at least 1 — ¢ over S; ~ D™, S; ~ Df’ The simplified bound @ removes the
explicit dependence on @); and is tighter than the generic bound per .

In the rest of this paper, we assume that clients utilize ()] whenever the privacy requirement of Theorem
is satisfied. To highlight the generality of our approach, we note that Bayesian inference is a subcase of
the assumed setup.

4 Theoretical framework for PAC-Bayesian federated learning

In this section, we present a data-driven approach for obtaining a prior distribution. Rather than focusing on
a single prior, we propose learning distributions over priors, enabling a more flexible and robust framework.
To formalize this, we introduce the following key concepts:

Definition 4.1 (Hyper-distributions). A hyper-prior, P, is a distribution over prior distributions that is
independent of clients’ datasets. Conversely, a hyper-posterior, Q, is a distribution over priors that can rely
on the data of existing clients, Sy, -+ ,Sp.

A trusted server communicates with the existing clients to extract common knowledge in the form of a hyper-
posterior distribution without directly accessing their datasets (as enforced by FL). At each communication
round, the server sends the hyper-posterior to the clients. The clients proceed by repeatedly drawing a
prior from the received hyper-posterior and using it to calculate the optimal posterior per , involving any
potential additional samples, S; in the inference procedure. The goal is to find the optimal hyper-posterior,
Q*, such that the posterior obtained through the described pipeline has an average low true risk for all

clients. An overview of the setup is depicted in Figure [T}

In the sequel, we consider hyper-posteriors, Q, that satisfy the condition that for a finite ¢ € R, sampling
P from Q preserves e-DP for all clients. This assumption enables us to use Corollary and is rather weak
as € can be arbitrarily, albeit not infinitely, large. Analogous to the procedure in Section [3] we establish
PAC bounds for the pair P and Q. Next, we derive the closed-form formula for the optimal hyper-posterior,
Q*, which minimizes the PAC bound, and verify that Q* satisfies the privacy assumption outlined above.
Finally, we establish a PAC bound for new clients who sample their priors from Q* without participating in
the federated learning process. An interpretation through the principle of maximum entropy (Jaynes, |1957)
and all proofs are provided in Appendices and [8:2] respectively.
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Server-level PAC-Bayesian bound. Following the introduced inference setup, we evaluate the quality
of a hyper-posterior distribution Q using the server-level true risk, defined as:

1 & .
£5(Q,D,S,m) = - ZEPNQE&ND? LE(Q*(P,S;US;),D;). (7)

This metric computes the average true loss across all clients, considering all possible sets of additional
samples, S, of size m. However, the server-level true risk is intractable due to its reliance on expectations
over the underlying data distributions D. To address this, we approximate it with an empirical estimate:

= %ZEPNQ[:C(Q*(‘R SZ)vSZ)’ (8)

where observed samples replace the unobserved future data. We refer to as the server-level empirical loss.

Below, we present our first main contribution, which is a PAC bound on server-level loss.

Theorem 4.2. Let £(-,-) € [a,b] be a bounded loss. Define:

2Bm; (b—a) —2Bm;

L _ 2 (b—a) _ 7222 (b-a)
A; = nmm{b ab(e it em™it )},

for alli € {1,--- ,n}. Assume clients employ the optimal posterior with parameter > 1/n. Let Q be
a hyper-posterior such that sampling P from Q preserves e-DP for all clients. For every hyper-prior P
independent from S, v > 0, A > ng + v, and confidence level § € (0,1),

1 ng + v
(?64_ A

—a2 2
Po-aiy LA &y Lyl )

£5(Q,D,S,m) 3;—; Z]EPNanZBC(P,Si) + JKL(Q|P)

AP S Rl A
m; ng—&-v)Jr\/ﬁn

holds with probability at least 1 — 0 over S; ~ D;"" and Si ~ Df”, fori=1,--- n. The constant v is chosen
to be very small and avoids numerical issues when ny = 0.

The first term on the right-hand side of (9 falls within [a,b] due to our bounded loss assumption. The
summand —1/81n Zg(P, S;) in this expression decreases when the prior P “aligns better” with the dataset
S;, favoring hypotheses with lower empirical costs over S;. Consequently, the first term on the right-hand
side decreases if Q assigns higher probability to priors that are, on average, “better aligned” with all clients’
data. The KL-divergence term in @ regularizes the hyper-posterior towards the hyper-prior and avoids
overfitting to the existing clients when n is small. The bound depends on the number of clients and the
available dataset sizes, n and m. The bound in @ tightens with increasing the number of samples involved
in calculating the empirical loss, m;, demonstrating consistency with the PAC-Bayes framework. Finally, the
bound relies on predictions for the number of clients with new samples and the corresponding new sample
sizes, ny and m. While the server knows n and m, the estimates for ny and m might be coarse. The next
lemma states that a pessimistic forecast leads to a looser upper bound.

Lemma 4.3. If the number of new samples of client i, m; > 0, is unknown, Theorem [[.3 holds when
replacing A; with (b — a)/n and counting client i in no, i.e., as if m; > 0.

The asymptotic behavior and non-vacuousness of the client and server-level bounds are addressed in Ap-
pendix 8.3.1

Optimal hyper-posterior. Our algorithm picks the optimal hyper-posterior, Q*, leading to the lowest
upper bound on the server-level true risk per . Inspecting the structural similarity between the server
and client-level bounds in (4) and (9], we arrive at a closed-form formula for Q*.
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Corollary 4.4. When clients use the optimal posterior, QF, the optimal hyper-posterior is a Gibbs distribu-
tion with parameter 7 = A/ (XA + Bn(ng + v)):

Q' (P) = P(P)-exp(r Yo In (25 (P.S) ) /25 (P, S),
i=1

where Z3(P,S) :=Ep.pexp (131, In (Zﬁc (P,S;))) is a normalization constant.

The parameter 7 depends on the number of clients, n and ns, but not on the number of samples, m and m.
If no is unknown, it can be replaced consistently with Lemma In this case, a looser upper bound would
be minimized.

The privacy of sampling a prior from Q* is crucial to obtain ¢; for plugging it into the client-level bound @
and for employing Theorem We rely on a result by [Mir| (2012) that proves the DP of sampling from the
Gibbs distribution.

Lemma 4.5. A prior sampled from Q* preserves ¢;-DP for client i, where ¢; = 287(b —a)/m; .

As a result, Q* satisfies the privacy assumption of Theoremwith € = MaX;e(1,... n} €i- Additional insights
into the role of DP in our framework are provided in Appendix

PAC-Bayesian bound for new clients. So far, we considered a fixed set of existing clients who partic-
ipate in training the optimal hyper-posterior. In a realistic FL setup, there might be new clients (see c4)
who join the system later and hence, do not engage in federated training. A new client holds a presumably
small set of samples which leads to overfitting. Assuming the existing and new clients are similar, it is
constructive for the new clients to readily employ Q* without having contributed to training it. In this
section, we establish a PAC bound for such new clients.

Section [3] introduced the distribution 7 to capture the similarity among existing clients. Consistently, we
expect that a new client ¢ is sampled from the same distribution, (D,,m,) ~ 7. In line with previous
notation, S, ~ D™ is a dataset of size 1, employed by client ¢ for personalization but excluded from FL.
Our second PAC-Bayesian bound applies to new clients and is presented below.

Lemma 4.6. For a new client v sampled from T adopting Q* and Q* as per Corollaries [44, it holds
with probability at least 1 — § over (D,,m,) ~ T and S, ~ D™ that:
1 ng + v

E(DL,mL)~TE5LN’DZﬁL]EPNQ*LC (Q*(P’ SL),'DL) < - (@ + h\

+M(62i+ A )+ (L),

&n
i=1

YInZ5(P,S)

Since Q* is tailored to minimize the server-level bound for existing clients, the bound in Lemma [4.6]is looser
than that of Theorem with @ = Q* (proof in Appendix [8.2.5). This motivates the clients to actively
engage in training Q* rather than readily employing the learned hyper-posterior.

5 Practical federated implementation

Section [3] justified learning a distribution over priors for heterogeneous clients, recognizing that selecting a
single best prior may not be accurate or feasible. Consequently, Corollary provided the optimal hyper-
posterior. This section tackles computational constraints at both the client and server levels and introduces
a practical PFL algorithm.

Calculating the LML at the client level. The formula for Q* in Corollary relies on ZﬂC(P, Si)

for i € {0,--- ,n}. As per Corollary calculating ZBC(R S;) entails computing the expectation over all
hypotheses sampled from the prior, which is generally intractable. For the negative log-likelihood loss, we
set B = m; + m; , making Z3 align with the LML, as discussed in Section @ We calculate the LML for two
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Algorithm 1 PAC-PFL executed by the server

1: Input: number of SVGD priors k, hyper-prior P, parameter 7, number of iterations 7', number of clients
per iteration ¢, mini-batch size b, learning rate n

2: Initialize priors Py, ,..., Py, st ph > Initialize
3: fort=1to T do

4: Select a random subset C; of ¢ clients

5 for each selected client i in C; in parallel do

6 G « Client_Update(b, ¢1, . .., d) > Collect client updates
7 G %Ziect G; > Aggregate client updates
8: for k =1 to k do

9: . V. InQ*(¢y) < Ve, InP(¢,) +7GL, > Grx 15 the k-th row of G
10: for k =1to k do X

1m: L G — D+ 3D (kSVGD(¢l, éx)Ve, In Q" (p1) + Vg, ksvap(@r, ¢H)) > SVGD update

12: return Py ,..., Py > SVGD approzimation of QF

k

Algorithm 2 Client Update for client ¢ with dataset S;

1: Input: mini-batch size b, current particles ¢1,--- , Pk

2: Sample mini-batch Si(b) of size b from S; > Data subsampling

3: for k =1 to k do
: | Compute Vg, In z5 (P, Si(b)) through automatic differentiation of the LML given by and

W~

5. G [V¢1 In ZTCni(quUSi(b)), ... ’V¢k angi(PcﬁkaSi(b))]T

6: return G; > Update from client i

scenarios: clients using GPs or BNNs. The LML is available in closed form for GPs but is intractable for
BNNs. To address this, we use the approximation method described by [Rothfuss et al.| (2021). The formulas
for calculating the LML are provided in Appendices [8.3.2 and [8:3.3]

SVGD at the server level. Given ZBC(P7 Si), Q* is computable up to the constant Z2(P,S), which
leaves sampling from Q* intractable. Following [Rothfuss et al. (2021), we use Stein Variational Gradient
Descent (SVGD) (Liu & Wang, [2016) that approximates Q* as a set of particles, Py, ,- - , Py, . Each particle
P, is a prior parameterized by ¢,.. SVGD is initialized with a set of priors and then iteratively transports
them to match Q*. This is achieved through a form of functional gradient descent on the SVGD loss (see
Appendix , making it suitable for being integrated into an FL scheme.

As SVGD is deterministic (Liu, 2017)), the inherent privacy of Q* established in Lemma is compromised.
To reintroduce privacy, a conventional approach involves injecting noise into the SVGD gradients (Geyer
et all [2017)). We propose a privacy-preserving variant of PAC-PFL in Appendix

Federated algorithm. The pseudocode of our algorithm is presented in Algorithm [I] Initially, the server

samples Py, ,--- , Py, from P, defined as a zero-mean multivariate Gaussian distribution with a diagonal
covariance matrix. At each iteration, the server randomly selects a subset of existing clients and sends
them ¢4, ,¢r. The selected clients perform the Client_Update sub-routine to compute the gradient

of the LML with respect to the particles on a mini-batch of size b of their data and send it back to the
server. The server updates the particles based on the aggregated gradients, G, and the learning rate, 7.
The particle update formula also depends on the SVGD kernel, ksyap, as discussed in Appendix
For a comprehensive list of parameters used in our theoretical results and algorithm, along with selection
guidelines, please refer to Appendix 8:3.5
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Table 2: Summary of the employed datasets. The number of samples is the dataset size per client.

Dataset Num samples (m) Num clients (n) Task
PV-EW (150 / 610) 150 / 610 24 regression
PV-S (150 / 610) 150 / 610 24 regression
FEMNIST (20 / 500) 20 / ~ 500 40 10-way classification
EMNIST € [516, 1954] 80 62-way classification
Polynomial 10 24 regression

6 Experiments

We evaluate PAC-PFL on four datasets: photovoltaic (PV) panels and Polynomial datasets for regression,
alongside FEMNIST (Caldas et al., |2019)) and EMNIST (Cohen et al. |2017) datasets for classification. Our
algorithm consistently outperforms federated and data-centric baselines, improving the prediction accuracy
and the calibration of uncertainty estimates simultaneously. These enhancements are evident in reducing
the variance and mean of these metrics across existing and new clients. Our experiments demonstrate the
effectiveness of the solutions proposed in Table [I] for mitigating the identified challenges.

Datasets. The PV dataset comprises PV generation time-series data from multiple houses within a city,
with each house treated as a client. The clients exhibit heterogeneity due to variations in location, shadows,
and orientation relative to the sun (¢2). We explore two scenarios: PV-EW, featuring a bimodal distribution
over clients, where half are oriented almost eastward and half almost westward, and PV-S, with all clients
oriented almost southward. In both scenarios, we consider 24 existing clients and 24 new clients (¢4) and
examine m; = 150 or m; = 610 training samples per client. We specify m; in front of the dataset name,
such as PV-EW (150). The case with m; = 150 imposes (¢3). More information about the PV dataset and
the description of the Polynomial dataset are available in Appendix [8.5]

The FEMNIST dataset consists of handwritten characters from various writers, treated as clients, and we
employ it for 10-way digit classification. Heterogeneity arises from distinct handwriting (¢2). We select
40 clients and examine two scenarios: FEMNIST (20) with 20 and FEMNIST (500) with an average of
500 samples per client. In the low-data case (¢3), we demonstrate PAC-PFL’s superior performance over
all baselines. In the full-data case, we highlight the scalability of our algorithm with large datasets. The
EMNIST dataset is detailed in Appendix 8.5} Table [2] provides a summary of the employed datasets.

Baselines. We examine two probabilistic PFL methods, pFedGP (Achituve et al., 2021) and pFedBayes
(Zhang et al 2022), and two frequentist PFL methods, MAML (Fallah et all|2020) and MTL (Evgeniou &
Pontil, [2004). Additionally, we consider two non-federated approaches: Vanilla, where each client trains a
model individually, and Pooled, where a single model is trained in a data-centric manner on a pooled dataset
comprising all clients’ data. The Pooled approach is expected to perform poorly for heterogeneous clients
due to the lack of personalization. Hyper-parameters for each method are tuned using cross-validation.
Further baseline details can be found in Appendix

Model configuration For the PV experiment, we train a Neural Network (NN) using the MAML and
MTL methods, and a GP using the PAC-PFL, pFedGP, Vanilla, and Pooled methods. Inspired by |[Fortuin
et al.[(2020)); Rothfuss et al.| (2021)), we parameterize the GP mean and kernel with two deep NNs and consider
a Gaussian likelihood. This model enhances the expressive power and scalability of GPs to high-dimensional
data (Wilson et al.;|2016)). Further details are provided in Appendix m

For all classification experiments, we utilize a Bayesian Convolutional Neural Network (BCNN) (Gal &
Ghahramanil [2016) for the Bayesian approaches and a Convolutional Neural Network (CNN) for the fre-
quentist methods. All BCNNs and CNNs share the same architecture proposed by [Zhang et al.| (2023).
Specifically, the network consists of two convolutional layers with 5 x 5 kernels, ReLLU activation functions,
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Figure 2: Box plots of test RSMSE and CE for existing and new clients in the PV-EW (150) dataset. The
line within each box is the median. PAC-PFL excels in CE median, CE spread, and RSMSE median over
baselines. RSMSE spread is comparable to MTL and pFedGP. Pooled GP results are not plotted due to
poor performance but are reported in Appendix [8.6]

max pooling, and 10 and 62 output channels, respectively. These convolutional layers are followed by two
dense layers with ReLLU and SoftMax activation functions.

Metrics. We assess prediction accuracy and calibration for each client. For regression, we use root
standardized mean squared error (RSMSE) that normalizes RMSE by the standard deviation of targets.
For classification, we measure the percentage of correctly classified samples. Additionally, we compute
the calibration error (CE), which quantifies the deviation of predicted confidence intervals from actual
proportions of test data within those intervals (Kuleshov et all [2018), using the formula in Rothfuss et al|
(2021) (see . CE applies exclusively to probabilistic models and is irrelevant to frequentist baselines,
such as MAML and MTL. In evaluating FL methods, the sample mean of a metric is often a biased estimate
due to correlations across clients. We employ box plots to analyze the distribution of a metric across clients,
offering a more comprehensive understanding.

Results. Figure [2| presents the results for PV-EW (150), highlighting several observations. The limited
sample size adversely impacts the local Vanilla GP (¢3). MAML does not perform well, likely because a
single gradient descent step lacks the necessary personalization (¢2). Notably, PAC-PFL outperforms all
baselines in terms of prediction accuracy and calibration (see c1) due to its strong personalization capability,
addressing (¢2), and inherent regularization, resolving (¢3). Moreover, it exhibits the best generalization to
new clients, overcoming (c4). The results for other regression datasets are available in Appendix

Test accuracy and CE for existing clients in the classification datasets are reported in Table[3] Remarkably,
PAC-PFL outperforms other baselines on the FEMNIST (20) and EMNIST datasets. On FEMNIST (500),
pFedGP demonstrates a slight advantage in terms of the mean, albeit with a considerably higher standard
deviation, indicating sensitivity to initialization. Given the closely aligned means for pFedGP and PAC-PFL
and the fact that the confidence interval of PAC-PFL is encompassed within that of pFedGP, PAC-PFL is a
more reliable method. Additionally, pFedGP has a substantially higher computational cost than PAC—PF[EI
Therefore, we conclude that PAC-PFL is the superior choice for all datasets.

JAchituve et all (2021) propose alternative variants of pFedGP that trade off accuracy for reduced computational cost.
However, we employ the original algorithm.

4CE is not calculated for pFedBayes as the available software only provides prediction means and lacks variances required
for CE computation.
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Table 3: Comparison of probabilistic ( ) and non-probabilistic () FL approaches along with probabilistic
non-federated baselines () on classification tasks. Average test accuracy (%) for all baselines ( , , )
and calibration error (CE) for probabilistic approaches ( , ) over 5 trials are reported, where + captures
a 95% confidence interval. EIBest results () in each column are marked.

Dataset FEMNIST (20) FEMNIST (500) EMNIST

Metric Accuracy CE Accuracy CE Accuracy CE

PAC-PFL  942+26 0.08+0.01 971+16 0.05+0.01 871+1.1 0.04+0.01
pFedGP 83.6+20 0.10+£0.04 977£6.6 0.02£0.01 824+1.0 0.06=+0.02

pFedBayes 87.0 + 2.0 - 88.3+24 - 79.0+1.3 -
FedAvg 88.1+ 1.7 - 96.7+0.5 - 79.9+£1.0 -
MTL 75.8 + 3.7 - 87.5+0.1 - 78.24+1.0 -
MAML 82.0 £ 6.7 - 88.1+2.6 - 81.5+2.8 -
Vanilla 81.9+1.3 0.12+0.01 925+1.8 0.33+£0.06 71.0+1.2 0.094+0.01
Pooled 89.44+43 0.114+0.05 943+2.1 0.07+£0.03 63.84+29 0.044+0.02
PV-EW (150) PV-S (150)
043
7
7]
&
041

1 2 4 8 16 1 2 4 8 16
number of particles number of particles

Figure 3: Ablation study on the impact of the number of SVGD particles, k, on RSMSE of the existing clients
in PV-EW (150) and PV-S (150) datasets. Each experiment is repeated over 5 random seeds. The error bars
correspond to the mean + standard deviation. Computational cost scales linearly with &k (see Appendix|8.3.6)).

Ablation study on k. Figure[J]illustrates the impact of the number of SVGD particles, k, on RSMSE for
existing clients in the PV-EW (150) and PV-S (150) datasets. In both datasets, increasing k enhances the
SVGD approximation and the overall performance. The improvement is particularly pronounced in PV-EW
due to its higher heterogeneity level and bimodal nature. Notably, transitioning from one to two particles
leads to a significant performance boost, as a single particle fails to capture patterns in both modes. This
highlights the efficacy of learning a hyper-posterior instead of a global prior, corresponding to k = 1.

7 Conclusion

This paper presents PAC-PFL, a novel PFL algorithm that enables the learning of probabilistic models. The
proposed approach learns a shared hyper-posterior in a federated manner, which clients use to sample their
priors for personalized posterior inference. To prevent overfitting, PAC-PFL minimizes an upper bound on
the true risk of the clients participating in federated training. Moreover, the learned hyper-posterior can
be applied to new clients who did not participate in the training, resulting in positive transfer. Conducting
experiments on several heterogeneous datasets for regression and classification, we empirically demonstrate
that PAC-PFL produces accurate and well-calibrated predictions.
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There are two main directions for future research: improving client-level computational complexity (detailed
in Appendix and addressing the privacy-utility trade-off more effectively. Our framework leverages
DP to derive valid generalization bounds despite having data-dependent priors and to avoid data leakage,
as typical in FL. While our theoretical results in Section [4] show that our ideal pipeline provides DP, we
forfeit this property due to the SVGD approximation technique. DP can be reintroduced to prevent data
leakage using the common method of injecting noise during training (Geyer et all, [2017), as demonstrated
in Appendix but this may compromise accuracy (Bagdasaryan et al., 2019). Exploring alternative
privacy techniques is an avenue for future research.
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8 Appendix

Reproducibility statement

For all theorems and theoretical results, we present detailed assumptions and proofs in Appendix [8:2] More-
over, we provide a comprehensive table containing all parameters utilized throughout the paper in Appendix
[8:3.5] This table highlights the interconnections between these parameters and marks the free parameters
that can be tuned for optimal utilization of our algorithm.

Regarding the datasets, we employ the FEMNIST dataset, which is curated and maintained by the LEAF
project (Caldas et al., |2019)). We utilize the original train-test split provided with the data, without any
additional preprocessing. The PV dataset can be accessed via the following link: https://drive.google.
com/drive/folders/153MeAlntN4VORHdgY(Q3wG30ylWOS1Bf97usp=sharing,

The source code for our PAC-PFL implementation using GP is accessible within the same Google Drive
repository. Upon acceptance, we intend to make the source code for BNN publicly available. To facilitate the
use of our software, we have incorporated a demonstration Jupyter Notebook in the source code repository.
Furthermore, we have included pre-trained models for PAC-PFL and other baseline models for the PV
dataset. Finally, we provide a notebook that generates the figures featured in the paper.

8.1 Interpretation through the principle of maximum entropy

In this section, we provide additional justification for the optimal hyper-posterior derived in Corollary [£.4]
based on the principle of maximum entropy (Jaynes, |1957)). The principle of maximum entropy suggests that
when only the class of a distribution is known, the distribution with the highest entropy should be chosen
as the least-informative default. The distribution class can be specified by certain moment constraints.This
principle is motivated by two key reasons: first, maximizing entropy minimizes the amount of prior infor-
mation embedded in the distribution, allowing for a more agnostic representation; second, it aligns with
the observation that many physical systems tend to evolve towards configurations of maximal entropy over
time. While the principle of maximum entropy is commonly employed to derive prior probability distribu-
tions in Bayesian inference (Merwe & Skilling| 2010), we utilize it in the context of obtaining the optimal
hyper-posterior distribution.

Consider the following constrained maximum entropy problem:

max Hp(Q) (10a)
s.t. —Epog hlZg(P, S,) +I(e,;,mi,5) < —Ep.pln ZB(P, 87) Vi € {1,~ - ,TL}. (IOb)

In Equation , Hp(Q) = —KL(Q||P) represents Jaynes’ entropy with the hyper-prior P serving as the
invariant measure (Jaynes| |1957)). The objective is to maximize this entropy subject to n constraints on the
expectations of In Zg(P,S;) under the distribution Q, as given in . The constants ¢; and I(e;, m;,0)
are determined by Lemma [£.5] and Theorem [3.2] respectively. Below, we establish a connection between the
maximum entropy problem and our approach in Section

Proposition 8.1. The minimizer of the server-level upper bound, Q*, derived in Corollary[{.4) coincides
with the maximizer of the constrained maximum entropy problem presented in —, when the maxi-
mum entropy problem is solved by optimizing the Lagrange function:

argmax Hp(Q) +7 Z(EPNQ In Z3(P,S;) — I(es,mi,8) — EpopIn Zs(P, si)), (11)
=1

where the Lagrange multiplier T is used for all constraints. The constant T is as per Corollary[{-4)
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Proof. Let Q* denote the maximizer of the Lagrange function in . By removing the terms in that
are constant with respect to Q, we obtain:

o = arg max Hp(Q) + TZEPNQ InZ3(P,S;). (12)
i=1

According to the definition of Jaynes’ entropy,

5 0 L N .
Q" =argmin —KL(Q|P) > Ep.olnZs(P,S)), (13)

i=1

where we have multiplied the objective in by —1/7 and changed maximization into minimization. By
substituting the formula for 7, one can verify that is equivalent to the server-level upper bound, except
for some constant values. Hence, Q" = Q*. O

The maximum entropy interpretation of Q* allows us to analyze the effect of sampling P from Q* on client-
level bounds. If client ¢ chooses not to participate in FL. and decides not to use Q*, the best alternative
approach is to sample P from P. The following corollary provides a comparison between sampling P from
Q* and sampling P from P.

Corollary 8.2. The i-th constraint in imposes that the expected upper bound for client i is tighter
when sampling the prior P from the optimal hyper-posterior, Q*, compared to sampling from the hyper-prior,

P.

Proof. Since a prior which is sampled from the hyper-prior is no longer data-dependent, we utilize the result
from [Alquier et al.| (2016) to derive a bound for client i:

c AC 1 B2(b— a)? 1
£9(QuDi) < £9(Qi, ) + 5 (KL@QilP) + == +1n(5)), (14)
which holds with probability at least 1 — d over S; ~ D;*. The upper bound in is equal to the upper
bound in with S; = 0, except for the constant term I. Therefore, the posterior that minimizes the
right-hand side of is the same as Q*(P,S;) derived in Corollary with §; = 0. By plugging Q*(P, S;)
into , we obtain the counterpart of @:

1 B%(b—a)? 1
£C(Q*(P.S,), D <7(—1 Z5(P.S) + 0" 7), 15
(@ (P.85).D) <5 (- Z5(P.S) + ="+ 1n(3) (15)
holding with probability at least 1 —§ over S; ~ D;"*. The i-th constraint in (10b]) is obtained by taking the
expectation of the upper bounds in @ and when P ~ Q* and P ~ P, respectively, and enforcing that
the former is smaller than the latter. O

According to Corollary [8:2] participating in FL is beneficial for client ¢ if the i-th constraint is satisfied.
However, since we solved the constrained problem per — using the Lagrange method with a single
multiplier, the constraints might be violated. The constraints are more likely to be satisfied when 7 is large,
which can be achieved by having small n, no, and 3, while simultaneously having a large value for Ag. In
other words, when there are fewer clients participating in FL, the hyper-posterior is more likely to provide
improvements for those clients.

Remark 8.3. In a similar manner, we can avoid any PAC arguments and use the principle of minimum cross
entropy for calculating the posterior. With these two rules, the optimal posterior and hyper-posterior are
the same as those obtained by minimizing client-level and server-level PAC bounds.

8.2 Proofs and derivations

We first mention without proof a powerful lemma, called the change of measure inequality, that is the basis
of proving PAC bounds in most papers. The statement below is adapted from the Appendix of [Pentina &
Lampert| (2014).
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Lemma 8.4 ((Pentina & Lampert| [2014)). Let f be a random wvariable taking values in a set A and let
X1, , Xy be l independent random variables with each Xy, distributed according to uy over the set Ay. For
functions g, : Ax Ay = R, k=1,--- 1, let &(f) = Ex,mpn 9k (f, X&) denote the expectation of gi under
Xk ~ pg as a function of f. Then, for any fived distributions 7, p over A and any v > 0, we have that

!
Ef~p[2(§k(f) — g (f, Xk))} < %KL(PHW) + %1/)(7)7

k=1
e ( X))
where Y(y) =InEsr [67 2 (&N =0 (1 X) } is referred to as the log moment-generating function.

When & — g, is bounded, we bound the expectation of the log moment-generating function in Corollary
which uses the Hoeffding’s lemma stated below.

Lemma 8.5 ((Hoeffding), 1963)). Let Y be a zero-mean real-valued random wvariable such that Y € |a, b
almost surely, i.e. with probability one. Then for any v > 0:

E[e”y} < e%(b_“)z.
Corollary 8.6. If &,(f) — gx(f, Xk) € [ak, bi] almost surely for all f and Xy, it holds for every v > 1 that

1 v l _ 2
]EXle e .]EXZNMe?w('Y) <es Zk:l(bk ax) .

Proof of Corollary[8.6 By taking the expectation of the moment-generating function w.r.t every X,

l
IEX1~#1 to EXzN,uz ew(’Y) = EXlN,ul e ]EXlN#zIE:f"‘Tr [ H e’ (5k(f)*9k(f1xk))}
k=1

l
—EfnEx, o Exion, [ 1 (sk<f>fgk(f,xk>)} ,
k=1

where in the last line we have changed the order of expectations. For a given f, the terms & (f) — gr(f, Xx)
for k € {1,--- ,1} are independent from each other which allows applying Lemma

l
IE:X1~,u1 e EXlNM ew(V) = EfNﬂ { H EXkNHk e (gk(f)igk(f’xk))}
k=1

: 22 (b —ap)? ﬁzl (br—ap)?
SEfNﬂ[Hef}:es e=10 RO
k=1

Since 1/v < ~, we can use Jensen’s inequality (Jensen, |1906) to write:
1
EXlNltl T 'EXI,NMG%Q’[}(V) < 6% Zk:l(bkiakﬁ.

O

One can utilize Markov’s inequalit to remove the expectation in Corollary and obtain a probabilistic
bound on (). We will use Corollary multiple times, and thus, postpone applying Markov’s inequality
to avoid simultaneous stochastic inequalities which must be combined with a union bound argument.

8.2.1 Proof of Theorem

The proof of Theorem is carried out in three steps. The first two steps bound the true risk of clients
with §; = @ and clients with enlarged datasets, respectively. By merging these two, we will obtain a bound

5 According to Markov’s inequality, if X is a nonnegative random variable and a > 0, then Pr[X > a] < E[X]/a.
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on the server-level true risk. In the last step, the closed-form formula of the optimal posterior is exploited to
make some simplifications. The main assumptions are independence of clients (guaranteeing independence
of X} in Lemma , boundedness of the loss function (needed to apply Corollary , adoption of the
optimal posterior (yielding the bound per (@), and existence of a finite € € Ry such that sampling P from
Q preserves e-DP for all clients (required to use Corollary .

Step 1. We apply Lemma |8.4| with the following instances: take I = > m; and assign a random variable
i=1
to each observed sample by clients, X = z;;, where z;; is the j'th sample of S;. Let a : {1,---,l} —
{1,---,n} be a mapping from each random variable X}, to the corresponding client, a(k) = i if X; = z;;
for some j. Correspondingly, we take pp = Do) to be the respective distribution. Further, we set f =
(P,hy,--- ,hy) to be a tuple of one prior and n hypotheses and consider distributions 7 = (P, P,--- , P) and
p=(2,Q"(P,&), - ,Q*(P,S,)) over it. Each function gj, is designated to be one of the summands in the
empirical server-level risk, gx(f, Xi) = mé(ha(k),Xk). By invoking Lemma with v = A > 1, we

have:

1 - 1 LN
E]EPNQ ; rc (Q*(P, Sl), Di) SEEPNQ ; Vs (Q*(P, Si)78i) (*)
FEKLQIP) + 1 Y EroKL@ (PSIIP) (D
i=1
+ /\i%()q)' (16)
1

Line (f) is equal to K L(p||7) due to (13-15) in|[Rothfuss et al.|(2021), and 11 (A1) is a log moment-generating
function defined as:

2\t z)— -1 z
Y1(A\1) = InEp_pEype 5 (B tlhia) - 2 Des, L )).

For ¢ € [a, b], we apply Corollary acknowledging that |§x — gx| < (b — a)/nmq 1), hence, obtaining:
Eg, oy - Es, ooy e300 < (20— S, (a7)

The right-hand side of @ matches the server-level empirical loss per 7 but the left-hand side is different
from the true risk in , as new clients and new samples are missing.

Step 2. In the second step, we use I = n and assign one random variable Xj to each client. To maintain
a cohesive notation, we will use subscript i instead of k£ for elements of Lemma We substitute each
X; with a subset of m; samples from S; drawn without replacement, which is possible as m; < m;. Set
f=P,m=P,p=0,and g;(f, X;) = -L£°(Q*(f,S; U X;),D;). Notice that S; and D; are embedded in the
definition of g; and not given as function arguments. Let Ay = \/(ng + v) > 1, where ng is the number of
clients with m; > 0 and v is a small positive number. By applying Lemma with parameter v = Ay, we

obtain:

1 > : 1 -
E]EPNQ ZE«§¢~DZ7Li EC (Q*(P; SU Si)a Di) SEEPNQ Z ‘CC (Q* (Pa Si)? Di) (0)
i=1 i=1
1 1
2 2
25" (B, £9(Q (PSiUS)D) £ (Q(P.S),D:))

5
$;~D]

@/12()\2) =1In EPNPG " =t

When m; = 0 for all clients, the two sides of @ are equal, (A2) is zero, and the weight of the KL term
in goes to zero as v — 0. Thus, by setting Ay proportional to ny + v, and are consistent.
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It is evident from the definition of & and g; that |§; — ¢;] < (b — a)/n. Still, we can exploit the explicit
formula of Q* per (5)) to obtain a potentially smaller range by controlling the effect of a new sample of size
mm; on the optimal posterlor Let QF = Q*(P,S;) and QF = Q*(P,S; US;) for some fixed P and S;. From
the closed form formula of Q* per (5), for every h € H:

Q*(h) o™i :rimi Zzes.ug_ £(h,z) E), emlj es; 4(h,z)

Qf(h) a _ﬁ ZZES é(h2) .Eh,\,Pem;ﬁhi Ezesiugi bh.2)

From the bounded loss assumption, we have:

=L S ta) - LS e < i) (20)

m; + my; _ m; m; +m;

z€S,;US; z€S;

—2Bmy (b—a) 28 (b—a) . .

From l 9) and 1 , 1 e"w+"w ,emitig ], which obtains a bound on &;(f) — ¢:(f, X5):
1 * S 1 *
§i(f) —ai(f, Xi) = ﬁEg. mﬁc(Q (P,S;US;),D;) — Eﬁc (Q*(P,S:), Dy)

1 *

_ EES D™ Epp, / 0(h,2)(QF(h) — QF(h))dy

28m,;
€ f/;C(Q*(Rgi), ). [emml (-0 _ 1 g2 ) _1}
n

b1 72 (b-a) _ 280 (p—a) }
< n[(e o 1), (™7 1)|. (21)

Comparing and the naive inequality |§; — g;| < (b — a)/n, it can be verified that |§; — g;| < A;, where:

287 —2Bm;

; 1 — o (b—a) ot (b—a)
A; = nmln{b a, b(e T et )}

It is possible to obtain a tighter range, A; < (b — a)/n, when m; is large, m,; is small, or 8 is small.
Particularly, for m; = 0, A; = 0 but b — a provides a vacuous bound.

By applying Corollary one obtains:

n

A2
ES}NDﬁ”l .. ES‘ NDmnel/kzwz(kz) <e® i A < eSn 2 (b— a) (22)
1 n~Dn

Note that S; # @ is required for defining X;. Hence, new clients are not added to the analysis yet.

Merging steps 1 and 2. Bringing and together, we get:

1

£5(QD.5,10) <£5(Q.8) + (- + 1) KL(QIP) + - Y- ErnoKL(Q'(P.S)|1P)
i=1

)\2
! A ! A 23
+)\T¢1( 1)+/\*21/12( 2). (23)

Equation provides a bound on the server-level true loss and incorporates various components such as
the empirical loss, complexity penalty terms (represented by KL divergences between the posterior and the
prior, and between the hyper-posterior and the hyper-prior), and two log moment-generating functions.

Next, we bound the weighted sum of the log moment-generating functions in when ¢ € [a,b]. One
obtains from Markov’s inequality that:

1 1 1 Me-a? g Ay N\ 2
Pr erldjl()‘l)Jrsz()‘z) < —e sn? i=1 mz+ 8 i= 1A1} >
L, 1,
]ESIND{“ "'EsnvaZlL"ESINDml Eg _pmaeX 1(An)+x579%2(A2) o)
1-— L - 24
A1 (b—a)2 n 1 Ao n 2 ’
% e 8n2 Zi:l mr TE Qi B
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where the probability is taken over S; ~ D" and Si ~ Dzh fori=1,---,nand ¢ € (0,1) is the confidence
level given in Theorem To bound the right-hand side, we multiply and , which is possible as
they involve expectations over independent random variables, resulting in:

1 1 A (b—a)? n N
ES}NDT” .. 'ES,,LND,T’" E51~’Dm1 o Eg _pmae™ P1( A1)+ x5 %2(X2) <e sa? - L4 i1 5 (25)
1 n~Dp

By putting together and , we derive:
1 1 MOb—a)P K1 5 1
P[—)\—)\<7——Alf}:
r )\11/11( 1) + )\21/)2( 2) < 52 ; + Z +1n(5
Pr[erri o yva0n < 1 S L AR L A 214 (26)
— 6 — )

where the probability is taken over S; ~ D™ and S; ~ DT fori=1,---,n
One obtains from and that:

A 1 1
Pr(£°(Q,D,8,m) <£°(0.8) + (- + 1) KL(Q|[P) +fZEPNQKL(Q*(P7S¢)IIP)
Mb—a g~ 1 Aoyt el
+ e ;mi-i- ; ;Ai+ln(6)] >1-4. (27)

Step 3. In the final step, we utilize the closed-form expression of the optimal posterior for each client,
Q*, based on Corollary to simplify (27). By substituting the definition of the server-level empirical loss
given in into and refactoring some terms, one obtains:

1<~ 4
Pr [gs(g,p,s,m) <Epvo ;(EC(Q*(p,si),s,-) n )%KL(Q*(P, S)|P)) (1)
11
+ (/\*1 + E)KL(QIIP)
Mb—a)? =1 o w— 1
+18n?;w+82;A$Hn(6)]215'

When we set \; = nf, each term in the summation in becomes equivalent to the upper bound for client
i in Theorem up to a constant. This choice of A\; enables us to simplify similar to @, resulting in:

Pr(cs(Q.p,8.m) g% Y EpeolnZ§(P,S) + (% %)KL(QHP)
i=1

+Mi;+%iA?+ln(%)} >1-0.

8n m
i=1 " i=1

Note that the selection of A\ = nf is only feasible when 5 > 1/n because the first step of this proof requires
A1 > 1. This is the reason behind the assumption 8 > 1/n in Theorem [£.2] By substituting Ay = A/(ns+v),
which was motivated in the second step, we get the desired bound. Finally, we use the factorization proposed
in [Rothfuss et al.| (2021)) to convert In(1/4) into In(1/8)/1/n.

8.2.2 Proof of Lemma[4.3]

Assume m; is only known when i € A, where A C {1,--- ,n} is a subset of clients, but is unknown for the
rest of the clients, i € B = {1,--- ,n}\A. In an extreme case, A = @ means that /m; is unknown for all
clients. Let p(A) and p(B) denote the number of clients with m; > 0 in sets A and B respectively. It is
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clear from the definition that p(A) + p(B) = ng, where p(A) is known but p(B) and ng are unknown. Also,
p(A) < |A| and p(B) < |B|, where |A| and | B| stand for the cardinality of the respective set.

We prove that the upper bound in Theorem is looser when replacing A; with (b—a)/n for i € B and ns
with p(A) + |B|. It is enough to show:

Dica AF + g A <
8(p(A) +p(B)+v) "~
Yiea A7 +|B|(52)?
8(p(A) + |B| +v)

p(4) + p(B) + v
A

p(A) +)\|B| + Vol

KL(Q|[P) +

(QIIP) +

Since p(B) < |B| and KL divergence is non-negative, we will prove that:

Dica D7+ X5 A7 < Dica A7 + |B|(ZFTa)2
p(A)+p(B)+v = p(A)+|B|+v

(28)

For clients in B with m; = 0, A; = 0, and for the rest, A; < (b—a)/n. Hence, 3, 5 A? < p(B)((b— a)/n)2
and a stronger condition than is:

b—a
n

Siead2 (B2 _ Fiea A+ |BI(E2)?
pA) TpB) v pA)+ B+

)

= Y A7 < (p(A) + ) (

i€EA
which holds since ;. 4 A < p(A)((b— a)/n)2 and v > 0.

8.2.3 Proof of Corollary 4.4

The optimal hyper-posterior minimizes the upper bound on the true server-level risk established in[9] By uti-
lizing the structural similarity between the server-level and client-level upper-bounds, equations @D and ,
we employ Corollary [3.4] to obtain Q*.

8.2.4 Proof of Lemma

We invoke Lemma by defining X; = (D;,m;,S;) and using X; = (X;[D], X;[m], X;[S]) to distinguish
between components in X;. The distribution over X; is u; = (7, X;[D]¥[™]). Additionally, I = n, f = P,
T="P,p= 0% and g;(f, X;) = 2L£(Q*(f, X;[S]), Xi[D]) are used. While g; defined above resembles
the one from the second step of Proposition B.2.1] the difference lies in considering S; and D; as part of
the random variable X;, giving rise to their presence in the expectation. By applying Lemma with
v = A > 1, one obtains:

- 1 n
E(p, i )~TEs, i Epngs L9(Q*(P,8,), D,) gﬁ]EPNQ* Z £°(Q*(P,S:), D)

i=1

+ %KL(Q*IIP) + =h(N). (29)

> =

The left-hand side of is the true loss for a generic new client, ¢, sampled from 7. The moment generating
function and the bound on its expectation due to Corollary are:

B(3) == mEppe (Ems 72, o £° (@ (PS)D) 4 S, 9 (@' (PS) 1)) :

n

LH(R X (p_q)?
E(p, mi)~T 'E(Dn,mn)NTEslMD“l"l - Eg, pmn ex¥N) < egn(b-a)” (30)
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Merging (6] and the result of Step 1 in the proof of Proposition when Ay = 1/(np) and Q* is the
optimal posterior mapping in. |5, we rewrite as:

- 1 &
Ep,~7Eg pm Epvo-LY(Q"(P,S,),D.) S Y Epeg-InZ4(P,S))
=1

11 Loy L
+ (5 + 7P KL(QIP) + 5900 + o541 ().

Plugging in the formula of Q* given in Corollary (4.4) and setting A = \/(ny + v),

" = 1 ng + v
EDLNTIESWDZ;“EPNQ*LC (Q (P, SL),DL) < - (% + QT) In ZTS(Pas)

+7%wmm+ )

Using a similar technique to the proof of Proposition along with and 7 we obtain the desired
result.

no + v ~ A
A w(ng—l—v

8.2.5 Looser upper bound for new clients

We consider Theorem [£.2] when Q = Q* and simplify the terms in the upper bound that involve Q*:

-1 & 1
o8 ZEPNQ* In Z§ (P,S;) + (@ n nQ; U)KL(Q*HP)
=1
1 - Q" (P)
_ %EPNQ*(—T;mZg(P,Si) 55 ) (31)
L 1 S _ i No + v s
= —nﬂTanT(”P,S)— (nﬁ+ 3 YInZ2 (P, S). (32)

Equation follows from the KL divergence definition and is obtained by substituting the closed-form
formula of Q* derived in Corollary [£4] into the expression. To compare the bound in Theorem with
Lemma [4.6] we can substitute the first two terms in Theorem with . In order for the bound in
Lemma [4.6 to be looser than this substituted bound, it is sufficient to show that > .- A? < (b— a)?/n,
which is true based on the definition of A; in Theorem |4.2

8.3 Details of the algorithm
8.3.1 Asymptotic behavior and non-vacuousness of bounds

We analyze the asymptotic behavior of the client-level and server-level bounds as the number of samples
per client and the number of existing clients approach infinity, i.e., m; — oo and n — co. A PAC bound is
considered consistent when the gap between the true and empirical risks goes to zero. The client-level and
server-level bounds are consistent if and only if: a) 8 € (1), b) 8 € o(m;), ¢) A € Q(n2), d) A € o(n(ng+v)).
Here, 0 and ) represent the small-oh and big-omega notations for function growth rate (Cormen et al., |2022)).

Non-vacuous bounds are essential, ensuring that the terms independent of the posterior or the hyper-posterior
are not excessively large such that the bound on the true loss holds regardless of the empirical loss. To achieve
a non-vacuous bound, it is necessary (but not sufficient) that b —a < 8 and that ¢; < \/2(b — a). The latter
condition can be converted into an upper bound on A based on the results from Lemma

In our experiments, we follow Rothfuss et al.| (2021)) and set 5 = m; + m;, leading to a non-vanishing gap
between the true and empirical risks at the client and server levels. However, this choice simplifies the
computations as discussed in Section [5] Moreover, this choice leads to faster decay of the KL term in both
the client-level and server-level bounds, which can be advantageous when m; is small (Rothfuss et al., [2021)).
We tune A\, while respecting the non-vacuousness condition, to manipulate the regularization strength of the
hyper-posterior towards the hyper-prior.
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8.3.2 Background on GP

Below, we provide additional details regarding the GP models we use. For a more comprehensive overview
of GPs, please refer to Rasmussen & Williams (2005). In the rest of this section, we express the dataset
of client i as S; = (Xy,y;), where X; € R™ C R™i*4 is a matrix with each data sample as a row. The
corresponding target values are stored in the vector y; € Ry** C R™:.

GP with a deep mean and a deep kernel (Wilson et al., 2016). Let Py(h) = GP(h|mg,kg) denote
a GP prior specified by a deep mean function, mg, a deep kernel function, k¢4, and a Gaussian likelihood with
noise standard deviation, o4 € Ry. The vector ¢p € R% concatenates all learnable hyper-parameters of the
GP prior, including the mean parameters, kernel parameters, and the likelihood noise. The mean function,
mg : Rx — R, is implemented as a multi-layer NN with weights given by ¢, hyperbolic tangent activation
functions in the hidden layers, and linear output functions in the output layer. The kernel function is a
squared-exponential (SE) kernel applied on top of an NN, defined as:

Fo( ) = ean( o)~ Fo)ID) € 0,1]  Yx € Ry, VX' € Ry

The function fg : Rx — R% represents an NN with weights given by ¢ that maps the typically high-
dimensional feature vector, x € Ry C R? to a lower-dimensional output vector in R?%, where in our
specific case, dy is two. Deep kernels serve as feature extractors and allow for learning more sophisticated
representations from the data (Ober et al., |2021)). The length scale of the SE kernel is set to 1 because the
weights of the output layer of fy can be freely chosen to compensate for it.

Computing the LML. As mentioned in Section [5} when client ¢ employs a GP prior, Py, the negative
log likelihood loss, and sets 8 = m;, the quantity In Zg(Pd,, S;) defined in Corollary corresponds to the
LML of the GP. The closed-form formula for the LML is as follows:

1 _
In Z§ (P, i) = W PrlyiXs, Py] = = 5 (ys — m.0) " (Kgi + 051" (yi — mg,)
1 i
5K + 031 - % In(27), (33)
where | - | denotes the determinant of a matrix. The vector mg ; € R™ contains the output of mg applied

on each data sample and the matrix Ky ; € R™*"™: is the kernel matrix associated with the kernel function
ke applied to X;.

The determinant term in is commonly viewed as a complexity penalty for the kernel (Rasmussen &
Williams|, [2005)). However, recent findings in [Rothfuss et al| (2021) suggest that this form of complexity reg-
ularization may be inadequate when dealing with expressive kernels that possess numerous hyperparameters,
such as deep kernels. Furthermore, there is no complexity penalty imposed on the prior mean, which can
lead to a higher risk of overfitting. In PAC-PFL, we address these limitations by using @ as the loss func-
tion, which includes a KL divergence term between the hyper-posterior and the hyper-prior. The KL term
penalizes hyper-posteriors that deviate significantly from the hyper-prior, thereby effectively regularizing
both the mean and the kernel of the GP prior.

Computing the predictive posterior. Given a set of priors Py, ,- -, Py, trained by PAC-PFL, our

objective is to compute the predictive posterior at a test point x,. We denote by Q a uniform distribution
over these priors, which serves as the SVGD approximation to the true optimal hyper-posterior, Q*. By
introducing a categorical random variable Z that is distributed uniformly over 1,--- , k and denotes which
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of the priors Py, ,- -+ , Py, is used for making inference, the predictive posterior can be expressed as follows:
k
Prly.|x., S, Q] = Z Prly.|x«, Si, Q, Z = k] Pr[Z = kx4, S;, Q]
k=1
k
= ZPr[y*|x*,Si,P¢K] Pr[Z = k|x4, S, 9]
k=1
~ Pr[Z = k|Q]
= Z Prly.|x«, Si, Pg, | Pr[xs, Si| Py, | ————— — (Bayes rule)
k=1 PI‘[X*,SAQ]
1/k k
= Prly.|x«, Si, Py, | Pr[x., Si| Py, Q is uniform). 34
b1 2 e S Pa ] Prl SR (Q s uniform). (34)

The first term in the summand of is the predictive posterior distribution for client i corresponding to
the GP prior Py, (h) = GP(h|mg, , ke, ), which is given by Rasmussen & Williams| (2005) as:

Pr[y*|x*,5i,P¢N] :N(y*mmzm)a (353)
—1

/’LN = m¢n (X*) + ktjﬁ;n,i,* (K¢h‘ai + 0-(21)1»]:) (yZ - m¢“’i)7 (35b)

S = kg (X, %) — K5 o (Kgi+ 03 1) kg i+ 03 1, (35¢)

where kg ; . € R™¢ is computed using the kernel function kg between X; and x,.

Based on the assumption that x, is independent of all samples in S;, we can expand the second term in
as follows:

Pr[x*7874|P¢~] = Pr[x*|P¢n] Pr[X7«|P¢KJ Pr[y1|X'L’ Pd)ﬁ]
= Prix,] Pr[X;] Prly;| X, P, ]
= Prx.] Pr[Xi] NV (yilme, (Xi), ke, (Xi, Xi) + 05, 1), (36)

where the last line is the predictive distribution of a GP before conditioning on the observed data.

By merging —, one obtains

k
Prly.x., Si, Q] = Z O‘KN(y*Lu'm k), (37a)
k=1
Prx.] Pr[X;] 5
o= ————= N(y; X)), ko, (X, X, I 0,1 37b
FPrx.. 5|0 (yilmg, (Xi). ko, ( ) +0g,1) €10,1] (37b)

It is straightforward to show that Zﬁzl a, = 1 in equation {) As a result, the predictive posterior in
equation (37a)) is a valid distribution over y,.

8.3.3 Background on BNN

In this section, we introduce Bayesian Neural Networks (BNNs) used for classification tasks. Let hg : Rx —
R, represent a neural network, with @ € © denoting its parameters. Utilizing this mapping, we establish
the conditional distribution as a Categorical distribution, derived as follows:

Pr [y|:c, 0} =Pr [y| Categorical (soﬂmax (hg(:l)))):| .

Computing the LML. Unlike for GPs, the LML,

-8 .
In ZﬁC(Pd)aSL) _ IHEBNP¢€mi Z2€8; L(he,z)

9
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is intractable for BNNs. Instead, we use the following formula, as proposed by Rothfuss et al.| (2021), to
approximate the LML:

- -8 ”
In 7§ (Py,Si) = In LSEX_, (e i Dnes, LMoy )) —InL, (38)

where LSE is the LogSumExp function. This formula involves drawing L samples 61, --,0r from Py to
approximate the LML. We utilize this formula for LML approximation in the context of BNNs.

8.3.4 Background on SVGD

SVGD approximates a target probability distribution using a discrete uniform distribution over a set of desig-
nated samples called particles (Liu & Wang} |2016]). Through an iterative process, the particles are updated
by minimizing the KL divergence between the estimated and the target distributions in the reproducing
kernel Hilbert space corresponding to a kernel function, ksyep. We utilize an RBF (Radial Basis Function)
kernel with a heuristically chosen length scale, as described in |Liu & Wang| (2016). In our framework, we aim
to obtain samples Py, ,-- -, Pg, from the target distribution Q*. To simplify the notation, we represent the
particles as ¢1, - - - , ¢, where each particle ¢, fully characterizes the corresponding prior, Py, . Accordingly,
we write P(¢,) and Q*(¢,) instead of P(Py, ) and Q*(Py,. ).

Initially, the particles are sampled independently from the hyper-prior. Then, at each iteration, each particle
¢ for k € {1, -+, k} is updated according to the following rule:

O < b +

>3

k
> (ksvap(@r ¢n)Ve, I Q (1) + Ve ksvan (i, dr)), (39)
=1

where 7 is the learning rate at the current iteration. By utilizing the formula for Q* provided in Corollary
when 8 = m;, we can derive the following expression for x € {1,--- ,k}:

Vo, 11 Q" () = Vg WP() + 73 Vo, M ZS, (P, ,S)), (40)

i=1

where 7 is defined in Corollary By comparing and , it becomes evident that the data of client 7 is
solely involved in the SVGD update through the term Vg4, In ZEL (Py,.,S;) for each particle ¢,.. As a result,
the clients only need to transmit the gradient vector, [V, In ZS (Pg,,S;), -, Vg, In ZS (Py,,S;)]|T, or an
approximation of it using a mini-batch approach, to the server. This observation is the intuition behind the
sub-routine Client_ Update in Algorithm [I] which we present in detail in the next subsection.

8.3.5 Table of parameters

We provide a comprehensive overview of the parameters relevant to our theoretical results and to our algo-
rithm, along with their interrelationships in Table[d] To enhance clarity, the parameters are categorized into
three groups, separated by horizontal lines. The first group describes the fundamental attributes of the FL
problem, such as the number of clients, and is set externally. In the second group, we list the parameters
central to our theoretical findings, elucidating their relations to other parameters. Lastly, the third group
encapsulates the parameters used in implementing Algorithm [1} explaining their role in the practical appli-
cation of our proposed methodology. Importantly, it should be noted that the constraints on the parameters
have been deliberately set to ensure non-vacuous bounds, as discussed in Appendix 8.3}

8.3.6 Computational complexity

In this section, we discuss the computational complexity of a single iteration in training PAC-PFL, specifically
when employing the log-likelihood loss and S = m;, as outlined in the paper. At the client level, the
computational complexity hinges on the calculation of the LML. For GPs, this complexity is O(km3), where
k is the number of SVGD particles, and m; denotes the size of the training dataset for the specific client 1.
For BNNs, the complexity is O(kLm;), where L corresponds to the number of samples used to approximate
the LML, as explained in Appendix [8:3.3]
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‘ Parameter Description Domain Selection in experiments
n number of clients eN given in the dataset
N9 number of clients with new samples €{0,---,n} n
& T distribution of clients - unknown
§ m; number of samples for client ¢ eN given in the dataset
g| D; data generating distribution of client ¢ (D;,m;) ~ T unknown
=| S dataset of client 1 ~ D" given in the dataset
% m; number of new samples for client ¢ € {O,~ .M} given in the dataset
Si new dataset of client ¢ ~ D given in the dataset
H model class - GP and BNN
§ 14 loss SG t['a’bbl 0 <8 negative log-likelihood
% P prior over H ~ QF
E Q7 optimal posterior for client ¢ over H Corollary
= 8 temperature of Qf e R, m; (Appendix
Lo confidence level € (0,1] see code
e DP parameter e Ry %b:“) (Lemma
° P hyper-prior - Gaussian (0,03 I)
S| o3 variance of P e Ry tuned by cross-validation
% o optimal hyper-posterior - Corollary
g v constant in Theorem e Ry 1074
= N . > ng +v S
4 constant in Theorem (4.2 tuned by cross-validation
= s.t. €, < y/2(b—a)
2T temperature of Q* eR, m (Corollary
n learning rate e Ry tuned by cross-validation
gk number of SVGD particles eN see code
S| T number of iterations €N see code
a c number of clients per iteration e{l,---,n} see code
=| b data batch size for each client e{1,---,m;} see code
number of samples for
= estimating the MLL of BNNs €N g2 ol

Table 4: Summary of the employed notation and their relations. The parameter domains are set such that
the bounds are non-vacuous. The parameters are categorized into four groups separated by horizontal lines:
the first group describes the characteristics of the PFL problem. The second and third groups enumerate
the notation used in our theoretical results. The final group encompasses the parameters in Algorithm

At the server level, the computational complexity varies based on the type of hyper-prior used. When
utilizing a hyper-prior with a diagonal covariance matrix, the complexity is O(ck + k?), where c represents
the number of clients selected per iteration. If a hyper-prior with a full covariance matrix is used, the
complexity increases to O(ck + k3).

The training time (in seconds) of PAC-PFL and some baselines (where we optimize the computation time
as much as possible without sacrificing the performance) for our classification experiments are provided in
Table As can be seen in the table, while the training time of PAC-PFL exceeds that of the simpler
baselines, it remains within the same order of magnitude.

8.4 Role of DP

We adopt DP in two key ways. Firstly, we utilize DP to ensure that when the server samples a prior
distribution from the hyper-posterior and releases it, this published prior distribution does not raise privacy
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ALGORITHM EMNIST FEMNIST (20) FEMNIST (500)

FedAvg 900 120 480
MTL 950 120 500
MAML 1100 540 605
PAC-PFL 1260 960 970

Table 5: Training time (in seconds) of PAC-PFL and some baselines. The training time of PAC-PFL is
slightly longer than that of more basic baselines but remains within the same order of magnitude.

concerns for the existing clients. This application is akin to typical scenarios in FL research where DP
is used to protect the model shared by the server from revealing information about clients’ data. Besides
addressing privacy concerns, we use DP to establish a PAC bound at the client level. As illustrated in
Figure |1 our setup involves prior distributions that depend on the data of existing clients. While most
PAC bounds assume the prior distribution was selected before observing any data, we leverage results from
Dziugaite & Roy| (2018) to derive a PAC bound that holds when a data-dependent prior is obtained through
a differentially private algorithm. To the best of our knowledge, DP has not been employed for this purpose
in previous FL methods. Below, we discuss the role of DP in our ideal setup (Section [4]) and our practical
algorithm (Section []).

Inherent privacy of the optimal hyper-posterior In Section[d] we considered a specific family of hyper-
posteriors, where sampling a prior from the hyper-posterior satisfies e-DP for a finite e. This assumption
simplifies computations and enables us to use the closed-form posterior provided in Corollary We then
established the server-level upper bound in Theorem [£.2] for hyper-posteriors meeting the privacy criterion.
Interestingly, the resulting upper bound does not contain the parameter e. This can be intuitively explained
by the fact that the hyper-prior is chosen independently of the data, making the server-level scheme akin to
typical PAC-Bayesian bounds that employ data-independent priors. Additional details can be found in the
proof presented in Appendix[8:2] In summary, the e-DP assumption facilitates the computations by allowing
us to use the optimal posterior formula without directly impacting the server-level bound.

By minimizing the server-level upper bound, we derived the closed-form formula for the optimal hyper-
posterior in Corollary [£:4] Subsequently, we ensured that the optimal hyper-posterior satisfies the privacy
assumption we started with. To achieve this, Lemma determined the value of € for which sampling the
prior from the optimal hyper-posterior meets e-DP. As this € is finite, it confirms that our optimal hyper-
posterior belongs to the family of hyper-posteriors we initially considered, thus completing the derivations.
While assuming a finite € is sufficient for deriving the intended results, it is worth noting that the client-level
bound becomes looser for larger values of €. Further discussion on providing non-vacuous bounds can be
found in Appendix [8.3.1

In the ideal setup, DP arises from the inherent randomness in sampling from the optimal hyper-posterior.
As a result, DP is achieved without the need for externally injecting noise, which is a common practice in
typical DP mechanisms. We refer to this property as the inherent DP of the optimal hyper-posterior.

Loss of inherent DP due to SVGD As discussed in Section [5] since SVGD is a deterministic sampling
algorithm, we forfeit the inherent privacy of @*. Consequently, the client-level and server-level bounds no
longer hold for the approximate hyper-posterior. Instead, we rely on the premise that if SVGD effectively
approximates the optimal hyper-posterior, the empirical and true risks of the approximated and optimal
hyper-posteriors should be closely aligned, suggesting the bound’s validity.

Differentially private PAC-PFL To reintroduce e-DP after SVGD approximation, Algorithm [1| can
be modified, drawing inspiration from differentially private FedAvg (Geyer et all |2017)). In this modified
version, the server clips the norm of the gradient sent by each client and introduces noise to the aggregated
gradient. For simplicity, we will illustrate the algorithm using only one SVGD particle. A pseudo-code for
this private version of PAC-PFL is provided in Algorithm [3]
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Algorithm 3 Differentially private PAC-PFL with 1 SVGD particle executed by the server

1: Input: privacy parameter €, gradient clipping norm -y, hyper-prior P, parameter 7, number of iterations
T, number of clients per iteration ¢, mini-batch size b, learning rate n

2: Initialize prior Py ~ P > Initialize

3: fort=1to T do

4: Select a random subset C; of ¢ clients

5: for each selected client i in C; in parallel do

6 L G; < Client_ Update(b, ¢)

7

g g el ) IGill2
Clip gradient norm: G < Gl/max(l, ¥ ) > Collect clipped client updates

8: Sample noise: v ~ Lap(0, %Idcp)

G+ % Eiect éz +v > Aggregate gradients and inject noise
10: for k =1to k do . . .
11: . Ve, InO*(¢y) « Vg, InP(p,) + 7 GL, > Gy 18 the k-th Tow of G
12: for k =1to k do
131 G be+ L0 (ksven (@i, @x)Ve, In QF (1) + Ve, ksvan (i, dr)) > SVGD update
14: return Py, > Differentially-private SVGD approximation of QF

As we are considering a single particle in Algorithm the Client_ Update function returns a vector g;
instead of a matrix G;, as is the case when using multiple SVGD particles. In Algorithm (3] the notation
Lap(0, %I d¢) represents a multivariate Laplace probability distribution. In this context, O denotes a zero
mean vector, and %I d¢ specifies the scale parameter applied across all dimensions. Both the particle, ¢,

and the noise vector, v, have dimension dg.

The noise scale in Algorithm [3]grows linearly with the number of iterations, 7. This can introduce significant
noise into the gradients, potentially impairing both convergence and the overall accuracy of the algorithm.
This challenge is intrinsic to differentially private gradient descent and is not unique to our model or FL in
general (Bagdasaryan et al., [2019). Investigating alternative strategies to achieve e-DP remains a promising
avenue for future research.

We assess the performance of Algorithm [3]using the Polynomial dataset, introduced in Appendix[8.5 Specif-
ically, we use 120 existing clients, each with 10 samples. We vary the privacy parameter ¢ and examine its
impact on the algorithm’s performance, measured by the average RSMSE metric. Figure [4] illustrates the
RSMSE across different values of e. Additionally, we plot the RSMSE of the non-private algorithm, Algo-
rithm [T} in red for reference. As anticipated, the model’s performance improves as € increases, signifying a
lower level of privacy and consequently reduced noise requirements.

8.5 Datasets

8.5.1 PV dataset

The transition to renewable energy sources, such as roof-top photovoltaic (PV) panels, is crucial to address
energy challenges; however, the intermittency of solar energy remains a challenge that requires accurate
prediction of solar panel power output. Predicting the time series of PV panel power outputs requires either
specific measurements or large amounts of data. A potential solution is to design a collaborative methodology
among multiple PV datasets collected at nearby locations for predictive modeling.

We work with an hourly simulated dataset of PV generation time series from rooftop panels in Lausanne,
Switzerland. Our objective is to predict the next-hour PV generation, utilizing 15 features encompassing
auto-regressors and weather data. We investigate four scenarios: PV-S (150), PV-S (610), PV-EW (150),
and PV-EW (610). In the PV-S variants, all houses face south, while the PV-EW variants involve houses
oriented either east or west. The PV-EW scenarios, being bimodal and highly heterogeneous, present
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Figure 4: Performance evaluation of differentially private PAC-PFL (Algorithm [3)) on the Polynomial dataset
introduced in Appendix[8:5] The RSMSE metric is plotted against varying values for the differential privacy
parameter, €. Lower e values correspond to lower privacy levels. The RSMSE of non-private PAC-PFL
(Algorithm is shown in red for reference. As expected, performance improves as the privacy level decreases
due to lower noise injection.

greater modeling challenges. To assess the impact of dataset sizes (denoted as m), we consider two settings:
clients with either 150 or 610 training samples, corresponding to two-week and two-month data windows,
respectively. The number in each dataset’s name indicates the training sample size.

Data generation. To generate simulated datasets for the PV-S and PV-EW experiments, we first obtained
a real dataset of hourly solar radiation and meteorological measurements in Lausanne from the Photovoltaic
Geographical Information System (PVGIS) online tool (PVG). We then used the pvlib Python library (Holm-
gren et al.| 2022)) to simulate the PV power output based on these measurements. To simulate the PV panels
in different houses, we sampled meteorological data and installation specifications from normal distributions
with specified means and standard deviations. For example, in the PV-EW experiment, the azimuths of the
PV panels were sampled from a bimodal normal distribution of 0.5(N(90°,15°) + N(270°,15°)), where N/
denotes the normal distribution. Figure [f] illustrates the power output profiles of 24 houses in the PV-EW
experiment over five days. This figure demonstrates that the curves have noticeable differences; however,
they show similar trends. As expected, the houses facing east or west are more similar to one another, while
the differences among different sub-populations are higher. For instance, the peak production of the houses
facing the east occurs in the morning, whereas the peak for those facing the west occurs in the afternoon.

To ensure that each client’s dataset is identically distributed, despite the variations in meteorological patterns
throughout the year, we filter the dataset down to the months of June and July. We employ two distinct
training datasets for our analysis. The first dataset comprises the initial two weeks of June 2018, which
provides a total of 150 samples for each client. The second dataset encompasses the data from both June
and July 2018, resulting in 610 training samples per client. For all experiments, the test dataset consists of
the data from June and July 2019. Furthermore, we exclude nighttime data points when the PV generation
is zero. To normalize the data, we standardize each house’s features and output, setting the mean to zero
and the standard deviation to one.

Features. The dataset contains various meteorological features, including solar beam and diffuse irra-
diances, temperature, wind speed, solar altitude, time, and date. Solar beam and diffuse irradiances are
particularly valuable in predicting PV generation, but their measurement can be costly. To reflect a realistic
scenario, we assume that all households have access to the irradiance data recorded at a specific location
in the city, such as a weather station. However, they are unaware of the specific irradiance values at their
own houses, which may differ from the weather station. The temperature and wind speed may vary slightly
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Figure 5: Power output profile of 24 houses in the PV-EW experiment over five days in June 2018, where
each line represents the PV generation of one house. Green and blue curves correspond to houses facing the
east and the west respectively. Although the curves have noticeable differences, there are consistent trends
present in the data.

among different houses in the dataset. Additionally, some houses may experience intermittent shadows
caused by nearby trees or buildings, which can appear and disappear at certain times of the day. These
shadows are considered as noise, and no recorded feature in the dataset provides explicit information about
their occurrence or characteristics.

In addition to the meteorological features, we also incorporate autoregressors in our analysis. Autoregressors
are advantageous in time-series prediction tasks and aim to capture the temporal dependencies in the data.
To determine the autoregressors to include in our analysis, we utilize the partial autocorrelation function
(PACF). The PACF measures the correlation between a time series and its lagged values while controlling
for the correlations with all shorter lags. We select autoregressors with the highest values of the PACF
among the lagged values up to two weeks ago. By focusing on these highly correlated autoregressors, we
aim to capture the most relevant information from the past time steps.

8.56.2 Polynomial dataset

We examine a bimodal dataset where the data for each client is generated by sampling a function from one
of two GP priors. Each GP prior is characterized by a polynomial mean function of order 7 and an SE kernel
function. The two modes have distinct polynomial means and length scales associated with the SE kernel.
Additionally, Gaussian noise is introduced into the generated data to account for measurement errors and
other sources of variability. Figure[f|illustrates the dataset for a total of 24 clients, with 12 clients belonging
to the first mode and another 12 clients belonging to the second mode, where each client has 10 training
samples.

8.5.3 FEMNIST and EMNIST Datasets

The FEMNIST (Federated Extended MNIST) (Caldas et al.2019) and EMNIST (Extended MNIST) (Cohen
datasets consist of 28 x 28 images of hand-written English characters. Both datasets are
used for handwritten character recognition. Specifically, the FEMNIST dataset is employed in a 10-way
classification task, focusing on the classification of digits. Meanwhile, the EMNIST dataset is utilized for a
more comprehensive 62-way classification task. This broader task encompasses the recognition of both lower
case and upper case English alphabet letters, in addition to digits.
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Figure 6: Polynomial dataset for 24 clients, where 12 clients belong to the first and the rest belong to the
second mode. The solid lines represent the unknown true data-generating distribution for each client. Each
client has a training dataset with 10 samples. The solid lines in the figure represent the true data-generating
distribution, which is unknown to us. The points on the graph represent the noisy samples in each client’s
training dataset.

FEMNIST identifies the writer for each character, allowing a natural partitioning strategy by assigning all
images from the same writer to a single client (Caldas et al., [2019). This dataset is heterogeneous due
to the inherent diversity in handwriting styles, resulting in skewness within the feature distribution (Tan
et al., 2021). For our analysis, we subsample 40 clients and explore two scenarios: FEMNIST (20), where
each client is allocated 20 samples and FEMNIST (500), where each client utilizes all available samples,
approximately 500 per client.

Following (Wang et al.l [2020; [Marfoq et al.l [2021]), we subsample 10% of the EMNIST dataset that amounts
to 81425 total samples. We distribute samples with the same label across 80 clients according to a symmetric
Dirichlet distribution with parameter o = 0.4. This approach introduces a skew in the label distribution (Tan
et al., 2021)), thereby synthesizing heterogeneity in the dataset.

8.6 Experiments details
8.6.1 Calibration error

Calibration error (CE) is an evaluation metric relevant to probabilistic models. It is based on the premise
that when provided with a test input x;, the model produces a probability distribution p(y;|x;) over the
predicted target y;. CE measures the disparity between the predicted confidence intervals and the actual
proportions of test data falling within those intervals (Kuleshov et al., [2018). CE is a nonnegative measure
and a smaller CE value is more desirable.

Calibration error for regression. In defining CE for regression, we follow the formula proposed
by (Rothfuss et al, |2021). Denote a predictor’s cumulative density function (CDF) as F(y;|x;) =

Yi A . _ m . .
f_oop(y|xj)dy. Given a dataset S = {(xj,yj)}j:1 with m samples, we compute the corresponding em-
pirical frequency for confidence levels 0 < ¢; < --- < gy < 1 as follows:

)

1 N .
dn ::E’{yj|F(yj|Xj)SQha j=1,-,m}
for h=1,-  H.

If the predictions are well-calibrated, we expect that ¢, — qn as m — co. We adopt the CE definition
proposed by [Rothfuss et al.| (2021)), which formulates CE as a function of residuals g, — qp:

H
1 X
CE :ZE;‘Qh_Qh|' (41)
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In our experiments, we evaluate by employing H = 20 equally spaced confidence levels ranging from 0
to 1.

Calibration error for classification. Given a test input x;, a probabilistic classifier outputs a categorical
probability distribution, p(y; = k|x;), where k =1,---,C, with C representing the number of classes. The
classifier’s prediction is the class label with the highest probability, denoted as §; = arg max, p(y; = k|x;).
Correspondingly, we define the classifier’s confidence in the prediction for the input x; as p; == p(y; = 9;]x;).

For a well-calibrated classifier, the confidence is expected to align with the probability of correct classification.
For example, with 100 predictions, each having a confidence of 0.8, one would anticipate approximately 80
correct classifications (Guo et all |2017). In an empirical comparison of calibration and accuracy on a
dataset S = { (%5,95) } followmg the methodology of |Guo et al.| (2017), data samples are grouped into

H = 20 intervals, each of length 1/H, based on their prediction confidence. Let B, = {]|pj (h;117 ;LI]}
for h =1,---, H be the set of indices of points in S whose prediction confidence falls within interval h. The

accuracy and average confidence of points in By, are defined as follows:

acc(By,) |B | Z =y;),

JEB

conf(By) |B ‘ Z Dj-

JEBK

To compare the accuracy and average confidence across all intervals, |(Guo et al.| (2017) calculates CE as
follows:

_ N\~ |Bil
CE:=)_ —“lace(By) = conf(By)|. (42)

h=1

This formula measures the deviation between accuracy and prediction confidence level, serving as a metric
for assessing the calibration of classification tasks.

8.6.2 Regression experiments details

Baselines details. In the Vanilla approach, the GP hyperparameters for each client are tuned by maxi-
mizing the LML of that specific client, without using FL. For pooled GP, we use inducing points to handle
computational issues due to the large number of samples involved in this approach. pFedGP optimizes the
average LML across clients to obtain the deep kernel hyper-parameters. We adapted pFedGP, originally
designed specifically for classification, to suit our regression task. With this adaptation, pFedGP is a special
case of our algorithm when using a single prior in SVGD and a very wide hyper-prior. We try pFedGP
with a zero GP mean, as originally done in |Achituve et al.[ (2021), and a NN mean and do not use inducing
points. We apply pFedBayes (Zhang et al., [2022)) only to the FEMNIST data as the authors only consider
classification tasks in their experiments.

Hyper-parameter tuning. We perform hyper-parameter tuning for all baselines and our method using
5-fold cross-validation. For all neural networks, we explore structures with the same number of neurons per
layer. The number of neurons per layer can take values of 2" for n € 1,--- ,6, and we consider 2 or 4 hidden
layers. For PAC-PFL, we employ 4 SVGD particles and set k = 4. The parameter 3 is set to the number of
samples for each client, 5 = m;. To determine the value of 7, we search for values greater than 1/(1 4+ np3),
ensuring that A > ns + v and thus, satisfying the assumption outlined in Theorem [£.2}

The employed hyper-prior is a multivariate Gaussian distribution with a diagonal covariance matrix. It
is a distribution over the weights and biases of the mean and kernel neural networks, as well as the noise
standard deviation of the likelihood. In all PV experiments, we set the hyper-prior mean for the neural
network weights and biases to 0 and the hyper-prior mean for the noise standard deviation to 0.4. These
choices help prevent overfitting.
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Table 6: Comparison of probabilistic () and non-probabilistic () FL approaches along with probabilistic

non-federated baselines () on regression tasks. Average RSMSE for all baselines ( , , ) and CE for
probabilistic approaches ( , ) over 5 trials, where & captures a 95% confidence interval are reported.
| Dataset PV-S (150) PV-EW (150) PV-S (610) PV-EW (610) Polynomial (10)
| Metric RSMSE CE RSMSE CE RSMSE CE RSMSE CE RSMSE CE
2| PAC-PFL  043+0.02 0.07+0.00 0414001 0044000 0424001 0.07+0.00 0404001 0.04+0.00 058005 0.14+0.02
E| pFedGP  0.48+0.04 0.07+0.02 045+0.01 0.06+001 0514003 0074000 046+001 0054001 0.80+0.15 0.12+0.01
S| MTL 0.45 % 0.00 - 0.43 £ 0.00 - 0.44 £ 0.01 f 041 % 0.00 B 0.85£0.15 -
2 MAML  0.570.02 - 0.52 +0.03 - 0.58 +0.02 - 0.52 +0.02 - 0.98 +0.13 -
Z| Vanilla ~ 0.68£002 0.12+001 063£003 012+001 049E004 0.04+0.00 046E0.02 0.03+0.00 0.73£0.07 0.18=0.01
(| Pooled 0.48+0.03 0.26+0.00 0474005 026+0.01 0494002 026+0.01 046+0.03 027+001 233+0.55 0.33+0.04
PACPFL 043+£0.02 0.07+£0.00 042+001 0.04+£0.00 043+£001 007+0.00 043+£001 004+0.00 0.65+002 0.16+0.01
pFedGP  0.46+0.04 0.07+0.02 045+0.02 0.06+0.01 051+0.05 0.06+0.01 0.46+0.01 0.06+0.01 0.87+0.41 0.15+0.02
MTL 0.44 £ 0.00 - 0.42 £ 0.00 - 0.45 £ 0.00 - 0.43 £0.00 B 088 £0.12 B

MAML 0.55 £ 0.03 - 0.52 £0.01 - 0.55 £0.01 - 0.53 £0.02 - 1.11+£0.28 -
Vanilla 0.69+0.02 0.124+0.01 0.63+0.05 0.12+0.01 0.69+0.02 0.12+£0.01 0.63+£0.52 0.12+£0.01 0.76 £0.05 0.24 £0.03
Pooled 0.48£0.03 0.264+0.00 0.47%£0.05 0.26+0.01 0.48+0.02 0.27£0.00 0.46£0.03 0.27£0.01 2.32£0.37 0.36£0.02

New clients

Results. In this section, we evaluate our algorithm and the introduced baselines based on the RSMSE
and CE error metrics for existing and new clients. For a given method, we calculate the RSMSE and CE,
where applicable, for each existing and new client using a fixed random seed. Then, we compute the average
RSMSE and average CE metrics across the existing and new client groups. We repeat this analysis five
times using different random seeds and calculate the 95% confidence interval for the sample mean of average
RSMSE and average CE.

The results are presented in Table [} In each column, the number after the dataset name represents the
number of training samples per client. As shown in Table [f] our method outperforms other approaches
in the majority of cases in terms of RSMSE for both existing and new clients. Furthermore, we observe
that our method’s performance improves with an increase in the number of training samples per client.
Concerning CE, PAC-PFL consistently exhibits low CE values across all scenarios, establishing itself as
the top-performing or closely competitive method. This observation aligns with findings in [Rothfuss et al.
(2021), where the authors noted that CE improvement is notable when the meta-learning tasks exhibit
greater similarity. In our experiments, given the high client heterogeneity present in both PV-EW and
PV-S, the improvements in CE are comparatively modest.

We believe there are three reasons why PAC-PFL outperforms other baselines. First, by learning the prior
with FL and treating posterior inference as personalization, PAC-PFL exhibits a high level of adaptability
to individual patterns. Second, PAC-PFL’s ability to learn multiple priors enables it to effectively model
clients with heterogeneous data distributions. Finally, the regularization of the hyper-posterior towards
the hyper-prior in PAC-PFL helps prevent overfitting and allows for learning more complex prior means
even with limited training data. For example, when selecting the GP prior mean structure through
cross-validation, it is observed that the best GP mean for pFedGP is a linear function, while for PAC-PFL
it is a 2-layer neural network with 32 neurons per layer. The use of a more complex prior mean in PAC-PFL
allows for the potential capture of more intricate patterns in the data.

8.6.3 Classification experiments details

Baselines implementations. We implemented pFedGP |Achituve et al. (2021) using the code provided
by the authors without utilizing inducing points. Since the source code for pFedBayes has not been publicly
released, we rely on an unofficial implementatiorﬁ Our implementations of FedAvg, MTL, and MAML are
based on the code provided in [Xie et al.| (2023).

Hyper-parameter tuning. Hyper-parameter tuning for all baselines and our method is conducted using
the cross-validation approach. In the case of PAC-PFL, we select 5 and 7 following the same procedure as
employed for the PV dataset. We use 3 SVGD particles and a multivariate Gaussian hyper-prior with a
diagonal covariance matrix.

6https://github.com/AllenBeau/pFedBayes
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