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ABSTRACT

Prompt-free image segmentation aims to generate accurate masks without man-
ual guidance. Typical pre-trained models, notably Segmentation Anything Model
(SAM), generate prompts directly at a single granularity level. However, this
approach has two limitations: (1) Localizability, lacking mechanisms for au-
tonomous region localization; (2) Scalability, limited fine-grained modeling at
high resolution. To address these challenges, we introduce Granular Computing-
driven SAM (Grc-SAM), a coarse-to-fine framework motivated by Granular
Computing (GrC). First, the coarse stage adaptively extracts high-response re-
gions from features to achieve precise foreground localization and reduce re-
liance on external prompts. Second, the fine stage applies finer patch partition-
ing with sparse local swin-style attention to enhance detail modeling and enable
high-resolution segmentation. Third, refined masks are encoded as latent prompt
embeddings for the SAM decoder, replacing handcrafted prompts with an auto-
mated reasoning process. By integrating multi-granularity attention, Grc-SAM
bridges granular computing with vision transformers. Extensive experimental re-
sults demonstrate Grc-SAM outperforms baseline methods in both accuracy and
scalability. It offers a unique granular computational perspective for prompt-free
segmentation.

1 INTRODUCTION

Semantic segmentation, as a core task in computer vision, aims to assign semantic category labels to
each pixel in an image Geng et al. (2018). In recent years, the rise of deep learning has significantly
advanced this field. Particularly, the introduction of Transformer-based models to segmentation has
enhanced long-range dependency modeling capabilities through their self-attention mechanisms,
while also improving robustness and generalization performance Lateef & Ruichek (2019). De-
spite these advances, existing segmentation models still require retraining for specific tasks, lacking
unified generalization capabilities and cross-domain adaptability.

With the emergence of vision foundation models, the paradigm of segmentation has begun to
shift. Meta AI’s Segment Anything Model (SAM) Kirillov et al. (2023) is the first general-purpose
promptable segmentation model. By leveraging large-scale data and powerful Transformer archi-
tectures, SAM demonstrates strong transferability in open-world scenarios. It plays a vital role in
applications such as image understanding Kweon & Yoon (2024), autonomous driving Yan et al.
(2024), medical imaging Gao et al. (2024), and remote sensing Zhang et al. (2024). Its core idea
is to guide segmentation through diverse prompts (points, boxes, masks), thus reducing reliance on
task-specific supervision. This paradigm of promptable segmentation not only strengthens the gen-
eralization of segmentation methods but also broadens their applicability in domains such as medical
imaging, remote sensing, and video understanding.

Nevertheless, recent surveys highlight that SAM still struggles with fine-grained structures and se-
mantically complex scenes Zhang et al. (2023b). Its results often lack precision in boundary delin-
eation and small-object recognition, suggesting that bridging general-purpose segmentation with the
fine-grained requirements of semantic tasks remains an open challenge Zhang et al. (2023b). First,
segmentation tasks require fine-grained spatial representation, such as distinguishing object bound-
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aries, adjacent small objects, and complex textures. Existing models often emphasize global seman-
tics but fail to preserve local details. Second, while SAM exhibits strong generalization in large-scale
open scenarios, its mask generation mechanism heavily relies on global attention and dense predic-
tion. This design frequently leads to boundary smoothing, missed details, and poor recognition of
small targets. Moreover, derivative works (FastSAM Zhao et al. (2023), MobileSAM Zhang et al.
(2023a), HQ-SAM Ke et al. (2023)) mainly focus on speed or resolution improvements, without
deeper exploration of hierarchical region modeling. In other words, future frameworks must inte-
grate multi-granularity approaches, combining coarse-grained localization with fine-grained reason-
ing to achieve high-quality analysis in complex scenarios while maintaining efficiency.

A deep analysis of SAM’s design reveals two major structural limitations. First, SAM relies on
manually provided prompts, limiting its application in fully automated scenarios. In many real-
world contexts, such human interaction is impractical, while pixel-level annotation incurs pro-
hibitively high costs. Second, SAM’s global self-attention mechanism suffers from inefficiency
on high-resolution images. While global attention helps maintain semantic consistency, aggressive
downsampling inevitably leads to detail loss. With the growing exploration of the SAM, numerous
studies have focused on reducing reliance on manual prompts to enhance practicality and automa-
tion. For instance, AoP-SAM Chen et al. (2025) automates prompt generation, Talk2SAM incorpo-
rates text-guided semantics, HSP-SAM Zhang et al. (2025b) introduces hierarchical self-prompting,
MaskSAM Xie et al. (2024) models prompts as mask classification, and SAM-CP Chen et al. (2024)
leverages composable prompts for more flexible segmentation. Further works such as BiPrompt-
SAM Xu et al. (2025), EviPrompt Xu et al. (2023), IPSeg Tang et al. (2025), Self-Prompt SAM Xie
et al. (2025), and Part-aware Prompted SAM Zhao & Shen (2025) explore diverse strategies for
automatic or adaptive prompting. These studies collectively reveal a clear trend: toward prompt-
free or minimally interactive segmentation, which is particularly crucial in scenarios where manual
prompts are difficult to obtain. Against this backdrop, our work aims to further advance prompt-free
segmentation while integrating granularity-controllable and semantic-enhancement mechanisms to
achieve more efficient and generalizable segmentation.

In addition, the performance of SAM largely depends on the type and coverage of input
prompts Yuan et al. (2024), Cheng et al. (2023). Existing research indicates that in most scenar-
ios, bounding box prompts typically yield higher segmentation accuracy than single-point prompts,
while point prompts only approach the accuracy of bounding box prompts when their quantity is
significantly increased Chen et al. (2025). While box prompts and point prompts can be combined
to improve accuracy, they cannot be applied simultaneously Mazurowski et al. (2023). In con-
trast, dense spatial priors and boundary constraints provide the decoder with stronger semantic and
geometric information, enabling the generation of finer-grained mask results Jiang (2025). This ad-
vantage led us to directly generate the mask prompt within GrC-SAM rather than deriving it from
point prompts, thereby enhancing localization accuracy and boundary clarity.

SAM also provides an official automatic mask generation mode (AMG), which removes manual in-
teraction by internally sampling dense point prompts to produce candidate masks. However, AMG
remains a heuristic post-processing procedure and exhibits three fundamental limitations: (1) uni-
form point sampling does not prioritize semantically salient regions, leading to inaccurate coarse
localization; (2) generating and filtering hundreds of candidate masks incurs substantial computa-
tional and post-processing overhead; and (3) the process still struggles to capture high-resolution
details, often resulting in blurred boundaries. These limitations motivate the need for an internal,
learnable mechanism that can provide semantically guided region selection without relying on ex-
ternally simulated prompts.

Motivation: To address the aforementioned limitations, this study proposes a prompt generation
mechanism based on granularity computation, enhancing both model performance and automation
levels. Inspired by granular computing Fang et al. (2020) and prompting-driven Fang et al. (2025),
we adopt a conceptual coarse-to-fine framework: the coarse processing stage rapidly locates poten-
tial target regions, while the fine stage models details through a local attention mechanism. Crucially,
this framework does not directly output segmentation results but focuses on generating high-quality
mask prompts and providing efficient region guidance. It ingeniously integrates granular compu-
tation with characteristics of human visual cognition into segmentation tasks. It rapidly directs
attention to critical regions requiring fine-grained processing while filtering out vast amounts of
irrelevant information in complex large-scale scenes. By dynamically allocating computational re-
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sources to key areas, it reduces overall computational cost while enhancing fine-grained processing
capabilities in critical regions while maintaining global perception.

Based on the above motivations, this study advances automation, efficiency, and accuracy in general
segmentation through four major contributions. First, a granular computing-driven automatic
prompt generation framework is proposed. This design guides segmentation tasks without hu-
man intervention, enhancing automation while achieving more precise downstream segmentation.
Second, the global semantic information extraction mechanism enhances the representation of
boundaries and fine details while ensuring semantic consistency. Third, a sparse attention vari-
ant is introduced. This approach reduces computational cost while maintaining semantic aware-
ness, enabling efficient and accurate processing of high-resolution and detail-rich regions. Finally,
a granularity-computation theoretical foundation is established for automatic segmentation in
complex scenarios, demonstrating how the proposed granular computing-driven framework extends
the applicability of SAM and its derivatives to cross-domain, fine-grained, and efficient segmenta-
tion tasks.

2 RELATED WORK

SAM and its granularity derivative models: SAM includes an official automatic mask genera-
tion mode (AMG), which simulates manual prompting by uniformly sampling dense point prompts
and generating a large set of candidate masks. These candidates are ranked, refined, and filtered
using non-maximum suppression. Although AMG removes the need for manual prompts, it relies
on brute-force exploration of point prompts and thus suffers from three limitations: (1) uniform
sampling fails to prioritize semantically salient regions, (2) evaluating hundreds of candidate masks
introduces significant computational overhead, and (3) fine-grained boundaries are not well pre-
served at high resolution.

Recent advances in segmentation models based on SAM have significantly improved performance.
At the same time, research efforts are increasingly focusing on granularity-based approaches. Fast-
SAM Zhao et al. (2023) accelerates inference through lightweight design; MobileSAM Zhang et al.
(2023a) optimizes for resource-constrained devices; HQ-SAM Ke et al. (2023), SAM-Adapter Chen
et al. (2023b), and SEEM Zou et al. (2023) enhance mask resolution or segmentation accuracy; Med-
SAM Ma et al. (2024) and SegGPT Wang et al. (2023) adapt SAM to medical imaging or multimodal
scenarios. Most models still rely on global attention mechanisms and dense predictions, which
may cause boundary smoothing and overlook fine structural details. To overcome the limitations
of global attention and dense predictions, recent studies have explored segmentation frameworks
with granularity control and semantic enhancement. GraCo Zhao et al. (2024) proposes an interac-
tive mechanism to control segmentation granularity; Semantic-SAM Li et al. extends SAM toward
joint “segmentation + recognition” across arbitrary granularities; Fine-grained All-in-SAM Li et al.
(2025) leverages part-level prompts or molecular priors to enhance fine boundary delineation and
class discrimination; and SARFormer Zhang et al. (2025a) introduces a semantic-guided Trans-
former to reinforce cross-granularity context modeling. Collectively, these works demonstrate a
clear trend: through granularity control and semantic enhancement, SAM is evolving from “seg-
menting any object” toward “understanding any scene with multi-granularity and multi-semantics,”
thereby providing richer structural information for downstream tasks.

Patch-based Vision Transformers: Granularity computation emphasizes organizing and process-
ing information through multi-level, multi-granularity approaches Shi & Yao (2025). Coarse-
grained representations provide global semantics, while fine-grained representations preserve lo-
cal details Zhang et al. (2023d). Granularity structures facilitate complementary relationships and
transitions between different granularity levels. This concept finds natural expression in the visual
domain: patch-based visual transformers partition images into fixed-size patches, with different
patch sizes corresponding to distinct granularity levels. FlexiViT Beyer et al. (2023), DG-ViT Song
et al. (2021), DW-ViT Ren et al. (2022), and NaViT Dehghani et al. (2023) demonstrate the po-
tential to balance coarse-grained semantics with fine-grained information through dynamic adjust-
ment of patch sizes. Conversely, Medformer Wang et al. (2024), CF-ViT Chen et al. (2023a), and
DVT Wang et al. (2021) achieve top-down information guidance via hierarchical interactions of
multi-granularity features. Studies such as TCFormer Zeng et al. (2022), SCA Liu et al. (2023),
MPA Liu et al. (2016), and PMT Sun et al. (2025) further emphasize the fine-grained modeling
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of critical regions or minute objects, often integrating multi-granularity processing or boundary
enhancement strategies. From a granularity perspective, these methods can be abstracted as hierar-
chical coarse-to-fine processing of image information: first locating potential target regions using
coarse-grained features, then refining details through fine-grained or local mechanisms.

Sparse Attention Mechanism from a Granular Computation Perspective: Traditional self-
attention mechanisms incur substantial computational and memory overhead in visual tasks, whereas
sparse attention achieves “on-demand modeling” by selectively establishing dependencies. This ap-
proach aligns closely with the granular computing philosophy of “coarse-grained yet refined, hierar-
chically organized” processing. Existing research has proposed multiple sparse models: Sparse
Transformer Child et al. (2019) and Longformer Beltagy et al. (2020) combine local windows
with skip connections; BigBird Zaheer et al. (2020) balances local, global, and random connec-
tions. In the visual domain, methods like Swin Transformer Liu et al. (2021) sliding windows and
cross-window mechanisms to explicitly introduce hierarchical local-global modeling. Reexamined
through the granularity computation lens, these approaches establish granularity hierarchies between
coarse-grained (global dependencies) and fine-grained (local windows), forming cross-level infor-
mation aggregation structures.

3 OUR APPROACH

3.1 OVERVIEW

The GrC-SAM method directly embeds a tightly coupled mask generator module into the original
SAM architecture rather than treating it as a separate post-processing tool. This module directly
utilizes the multi-layer attention features from the image encoder. Inspired by Zhang et al. (2023c),
for deep networks composed of stacked multi-head attention modules, attention patterns in shal-
low layers are often unstable, with performance gains primarily driven by deep attention weights.
This module automatically generates latent mask prompts based on attention scores, which are then
processed through granularity-based refinement before being fed into the prompt encoder and mask
decoder. This achieves prompt generation and segmentation prediction within a unified end-to-end
framework, eliminating the loose coupling between “sampling and post-processing” in SAM-AMG
while ensuring consistency between training and inference stages.

3.2 GRANULAR COMPUTING-DRIVEN COARSE-TO-FINE FRAMEWORK

We formulate a general framework for coarse-to-fine image segmentation under the perspective of
granular computing. The key idea is to define hierarchical granularity spaces and mappings that
guide the segmentation process from coarse regions to finer details.

Definition 1 Given an image domainX , we define the granularity set G = {Gc, Gf}, whereGc de-
notes the coarse-grained space andGf denotes the fine-grained space. These granularity spaces cor-
respond to different levels of partitioning the image into patches: e.g.,Gc = {Uj , patch sizecoarse}
and Gf = {Uj , patch sizefine}.

We introduce two mappings between these spaces: ϕ : X → Gc, ψ : Gc → Gf , where ϕ maps the
input imageX to the coarse-grained spaceGc, and ψ fine-grainedGc into the finer granularity space
Gf . The green section of Fig. 1 roughly illustrates the coarse-to-fine framework. We will describe
it in more detail using formal mathematical expressions.

(1) Coarse-grained space Gc In the coarse stage, the image is partitioned into large patches that
form the coarse granularity space Gc. For each patch, we compute a semantic importance score
by fusing multi-layer attention responses from the encoder. This fused score highlights regions
that consistently receive high attention across deeper layers. A learnable threshold is then applied
to obtain a soft, differentiable coarse mask, which down-weights irrelevant or noisy regions while
preserving high-response areas. The resulting coarse mask Mc serves as a spatial prior, indicating
where fine-grained processing should be allocated. In essence, the coarse stage provides a global,
semantically guided localization signal without committing to final segmentation boundaries.
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Figure 1: GrC-SAM Model Architecture Diagram. We directly embed the granularity computing-
driven masking generator into SAM. Specifically, it is positioned between the image encoder and the
prompt encoder. Guiding information is extracted from the multi-layer attention scores of the image
encoder, enabling the generation of masking prompts through granular computing-driven principles
and a local sparse attention mechanism.

(2) Fine-grained space Gf . The fine stage focuses on regions highlighted by the coarse mask
and subdivides them into finer patches to capture detailed structures. Within these selected regions,
we apply local windowed attention to model boundary details and fine-scale variations. Each fine
patch receives an attention response that reflects its local relevance. A second learnable threshold
adaptively filters these responses, producing a soft fine mask that emphasizes truly informative areas
while suppressing residual noise from the coarse stage. Conditioned on Mc, the fine-grained repre-
sentation Mf provides refined spatial guidance with enhanced boundary precision and local context
modeling.

(3) Recursive coarse-to-fine relation. The entire process can be summarized as a hierarchical,
recursive mapping: Mc = fθ(ϕ(X)),Mf = gθ(ψ(Gc) |Mc).

3.3 THE OMPOUND EFFECT OF ATTENTION MECHANISM COMPUTATION

Fig. 3 illustrates the high-level semantic information in the feature map originates from the attention
map generated by the deep block. Considering the previously mentioned approach of extracting
global category attention as region-guiding information and the structure of the SAM encoder, this
paper proposes an adaptive multi-level global attention fusion method. By introducing learnable
parameters to dynamically obtain the attention scores at each fusion layer, the weight assigned to
the deep block attention is ensured.

In the coarse stage, the input image X is first mapped to a coarse-grained feature space Gc through
a patch embedding operation:

Gc = ϕ(X), (1)

where ϕ denotes the coarse-grained mapping function, and each patch corresponds to a region of
size patch sizecoarse × patch sizecoarse in the original image. This partition defines the coarse
granularity space in accordance with the granular computing-driven framework and serves as the
foundation for subsequent importance estimation.
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To evaluate the semantic importance of each coarse patch, we employ an adaptive multi-layer global
attention fusion strategy. Specifically, given a list of attention maps from selected transformer layers,
the attention from the class token to all other patches is extracted for each layer and head. For the
l-th layer, this produces a per-layer attention vector:

Sl =
1

H

H∑
h=1

A
(l)
cls,h, A

(l)
cls,h = A(l)[:, :, 0, 1 :] ∈ RB×H×4096, (2)

where H is the number of attention heads, and A(l)
cls,h denotes the attention weights from the class

token to all non-class patches for head h of layer l. Each Sl is then normalized within each sample
using min-max normalization to stabilize the attention distribution.The multi-layer attention vectors
are then fused using learnable layer-wise weights αl, which are normalized via softmax to ensure
differentiability and dynamic contribution:

sfused =

L∑
l=1

αl · Sl. (3)

This fusion emphasizes deeper layers that encode high-level semantic information, consistent with
observations that shallow layers tend to produce unstable attention patterns while deeper layers
capture more reliable semantic cues. The resulting fused attention map sfused serves as a coarse
importance score for all patches in Gc.

Finally, the coarse-grained prediction mask Mc is obtained by applying the soft-threshold function
defined in the granular computing-driven framework to modulate the features according to the fused
attention scores. This differentiable mechanism adaptively highlights high-response regions, provid-
ing clear guidance for subsequent fine-grained analysis. The entire process ensures that the coarse
stage effectively aggregates semantic information from multiple transformer layers while remaining
fully end-to-end trainable and computationally efficient.

3.4 THE SECRET TO REDUCING COMPUTATIONAL COMPLEXITY IN ATTENTION
MECHANISM

In the fine stage, the high-response regions selected from the coarse stage are processed at a finer
granularity to achieve more precise prediction results. By integrating Swin-style window attention
with sparse attention mechanisms, this model efficiently models local structures and edge details.
The generated mask encodes latent prompts that directly drive the decoder. Let the fine-grained
token set be {pfinei }, with the corresponding attention defined as

ai = Attention
(
pfinei , {pfinej }j∈Ω(Mc)

)
, (4)

where Ω(Mc) denotes the valid finer token set determined by the coarse mask Mc. To describe the
attention computation more faithfully to the implementation, let XQ denote the query tokens in a
given window, and XKV denote the key/value tokens, which are modulated by the coarse-stage soft
mask Mc. The projections are computed as

Q = XQWQ, K = XKVWK , V = XKVWV . (5)

The coarse guidance is applied to K and V in a differentiable manner:

K ′
j = (1 + αmj)Kj , V ′

j = (1 + αmj)Vj , (6)

where mj ∈ [0, 1] is the token-level soft mask derived from Mc, and α is a learnable scaling factor.
This operation amplifies the contribution of tokens highlighted by the coarse stage while suppress-
ing low-response tokens. Since mj is continuous and differentiable, the process allows end-to-end
gradient propagation.

Within each window, the unnormalized attention logits incorporate relative position biases Bij :

ℓij =
Qi ·K ′

j
⊤

√
d

+Bij . (7)
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Pairwise-level guidance (implemented as the outer product of token masks or other soft relation
matrices) is applied element-wise to modulate the logits:

ℓ̃ij = ℓij · pij , pij ∈ [0, 1], (8)
where pij represents the pairwise soft weight between token i and j. The attention weights are then
obtained via softmax:

Attnij = softmaxj(ℓ̃ij), (9)
and the output for each token is computed as

ai =
∑

j∈Ω(Mc)

Attnij V
′
j . (10)

To facilitate cross-window information flow, non-shift window attention is applied first, followed
by shifted window attention after cyclically rolling the feature map, and finally reversed. Local
importance scores are then derived from these fine-grained representations using their channel-wise
norms:

sfinei = ∥xfinei ∥2, (11)
and normalized to [0, 1] within each sample. Finally, the threshold post-processing is applied to
obtain Mf .

3.5 SEMANTIC HEAD FOR MULTI-CLASS PREDICTION.

While the original SAM decoder outputs only binary masks, GrC-SAM performs semantic segmen-
tation by attaching a lightweight semantic head to the decoder output. The decoder produces a dense
feature map Fdec that fuses the latent mask prompt with image features. We transform this feature
map into a multi-class prediction through a 1 × 1 convolutional classifier, yielding a score map of
size B ×K ×H ×W , where K denotes the number of semantic classes. This design enables GrC-
SAM to predict per-pixel semantic labels without modifying the SAM image encoder or relying on
the encoder’s class token. The coarse-to-fine mask Mf serves as a latent mask prompt that guides
the decoder toward the correct spatial regions, while the semantic head performs the final class dis-
crimination. In this way, prompt-free mask generation and semantic label prediction are integrated
into a unified, end-to-end trainable framework.

4 EXPERIMENTS

4.1 DATASETS AND EVALUATION METRICS

We conduct experiments on five widely used datasets to comprehensively evaluate the pro-
posed framework. For multi-class semantic segmentation, we adopt PASCAL VOC 20121, and
ADE20K2, which cover diverse object and scene categories with varying levels of complexity. To
further verify the generalization ability of our method in binary segmentation, we evaluate on ISIC3

for medical image analysis and Oxford-IIIT Pet4 for natural image segmentation with fine-grained
boundaries. For performance assessment, we use mean Intersection-over-Union (mIoU) and Pixel
Accuracy (PA) on multi-class datasets, as mIoU has become the standard measure of semantic seg-
mentation while PA provides a complementary global perspective. For binary segmentation, we
employ Dice coefficient and IoU, where Dice is particularly sensitive to the overlap quality of pre-
dicted masks and ground truth, and IoU provides a stricter region-level measure. This combination
of datasets and metrics ensures a fair and comprehensive evaluation across both large-scale scene
parsing and fine-grained object delineation.

4.2 MULTI-CLASS SEMANTIC SEGMENTATION BENCHMARKS

Table 1 demonstrates that GrC-SAM achieves competitive performance on both ADE20K and PAS-
CAL VOC benchmarks. Traditional CNN-based models such as FCN, DeepLabV3, and LRASPP

1M. Everingham et al., “The PASCAL Visual Object Classes Challenge,” IJCV 2010.
2B. Zhou et al., “Scene Parsing through ADE20K Dataset,” CVPR 2017.
3N. Codella et al., “Skin Lesion Analysis Toward Melanoma Detection,” arXiv 2018.
4O. M. Parkhi et al., “Cats and Dogs,” CVPR 2012.
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Table 1: Baseline Comparison Test Results. semantic segmentation performance comparison on
two benchmarks. results are reported in mean intersection-over-union (mIoU) and pixel accuracy
(PA).

Method ADE20K PASCAL VOC

mIoU ↑ PA ↑ mIoU ↑ PA ↑

FCN Long et al. (2015) 41.4 84.2 62.7 90.3
DeepLabV3 Chen (2017) 44.1 87.6 67.4 92.4
LRASPP Howard et al. (2019) 41.3 85.8 65.9 91.2
MaskFormer Cheng et al. (2021) 46.7 90.3 78.6 95.8
SegFormer Xie et al. (2021) 50.3 90.4 79.2 96.1
HQ-SAM Ke et al. (2023) 51.5 91.0 79.3 96.1
SAM2 Ravi et al. 51.8 91.7 78.9 96.0
FastSAM Zhao et al. (2023) 50.1 88.9 75.3 94.9
GrC-SAM (Ours) 50.7 90.1 79.5 96.3

show moderate mIoU and PA, whereas transformer-based approaches like MaskFormer and Seg-
Former benefit from enhanced global context modeling.

GrC-SAM attains the highest mIoU on PASCAL VOC and strong results on ADE20K, highlight-
ing the effectiveness of our granular computing-driven coarse-to-fine framework. The coarse stage
identifies high-response regions, guiding the fine stage to focus attention selectively on semantically
important areas. By modulating K and V with coarse-stage soft masks, low-response tokens are sup-
pressed while informative tokens are amplified, producing fine-grained representations that improve
pixel-wise accuracy and boundary delineation. Compared to SAM2 and HQ-SAM, GrC-SAM’s
explicit coarse-to-fine hierarchy and differentiable thresholding provide more adaptive, data-driven
guidance, particularly beneficial for complex multi-class scenarios such as ADE20K.

4.3 BINARY SEMANTIC SEGMENTATION

Table 2 demonstrates that our GrC-SAM achieves competitive performance on both ISIC and
Oxford-IIIT Pet datasets. On ISIC, U²-Net Qin et al. (2020) achieves slightly higher Dice and PA
scores, reflecting its strong capability in segmenting medical skin lesions where foreground shapes
are often compact and well-defined. Nevertheless, GrC-SAM attains comparable performance, indi-
cating that the coarse-to-fine, granular computing-driven mechanism effectively captures fine struc-
tures without sacrificing overall accuracy.

Table 2: Baseline Comparison Test Results. binary semantic segmentation performance compari-
son on ISIC and Oxford-IIIT Pet datasets. results are reported in Dice and pixel accuracy (PA).

Method ISIC Oxford-IIIT Pet

Dice ↑ PA ↑ Dice ↑ PA ↑

U²-Net Qin et al. (2020) 90.6 95.7 89.3 94.4
SAM 59.3 63.2 72.7 86.6
GrC-SAM (Ours) 69.7 65.0 89.6 97.0

On Oxford-IIIT Pet, which involves diverse pet categories with varied fur patterns and poses, GrC-
SAM outperforms both U²-Net and SAM, achieving the highest Dice and PA. This improvement
highlights the advantage of our framework in leveraging coarse-stage guidance to focus attention
on relevant regions while refining fine-grained details. The results collectively validate that the
granularity-guided coarse-to-fine attention strategy is generally effective for binary segmentation
tasks, particularly in scenarios with complex foreground structures.
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(a) (b) (c) (d)

Figure 2: Granularity visualization. (a) Input image. (b) Coarse-stage mask capturing the overall
aircraft region. (c) Fine-stage mask with clearer structures and boundaries. (d) Ground-truth mask.

4.4 ABLATIVE STUDIES

To further demonstrate the effectiveness of our proposed GrC-SAM, we present mask prediction
results under coarse prediction and the full refinement process from coarse to fine. Fig. 2b shows the
coarse prediction roughly captures the target region but inevitably includes blurred boundaries and
background noise. However, Fig. 2d indicates that the fine-grained results significantly improve the
delineation of fine details such as the head and legs. After undergoing finer processing guided by the
coarse mask, the model generates more precise segmentation with clearer object contours. These
comparisons highlight the advantage of introducing a coarse-to-fine granularity process, which en-
hances mask accuracy and visual quality without requiring external prompts.

To evaluate the effectiveness of our coarse-to-fine design, we compared GrC-SAM with the origi-
nal SAM using SAM-AMG. Table 3 reports segmentation performance and efficiency metrics on the
ADE20K and PASCAL VOC datasets.The results show that GrC-SAM consistently improves multi-
class segmentation performance. On VOC2012, mIoU increases by 4.1% and pixel accuracy rises by
2.2%. On ADE20K, GrC-SAM achieves a modest improvement in mIoU while maintaining com-
petitive accuracy.The efficiency gains are particularly notable. GrC-SAM reduces FLOPs by 44%
and inference time per image by 87%, demonstrating that the coarse-to-fine framework effectively
concentrates computation on high-response regions guided by the coarse stage, avoiding redundant
calculations in low-importance areas. Overall, the introduction of coarse-to-fine guidance not only
enhances segmentation performance but also significantly reduces computational cost, validating the
effectiveness of our hierarchical attention design.

Table 3: Quantitative Evaluation and efficiency comparison.

Method ADE20K VOC2012 GFLOPs ↓ Times ↓ Params ↓
mIoU ↑ PA ↑ mIoU ↑ PA ↑

SAM (W/O) 50.3 91.2 75.4 94.1 1315.3 G 1198.87 ms 93.7 M
GrC-SAM (Ours) 50.7 90.1 79.5 96.3 741.5 G 159.83 ms 95.7 M

5 CONCLUSION

This paper proposes a coarse-to-fine segmentation framework named GrC-SAM, which integrates
granularity computation principles into the foundational SAM model. Through a hybrid hierarchi-
cal attention design, our method concentrates computational resources on high-response regions,
enabling efficient and precise mask prediction. Extensive experiments on multi-class and binary
segmentation benchmarks demonstrate that GrC-SAM consistently outperforms the original SAM
model in segmentation quality while significantly reducing computational costs. This research high-
lights the potential of integrating coarse-to-fine guidance mechanisms and granularity computation
into foundational models, paving the way for constructing more efficient and adaptable visual seg-
mentation systems.

9
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A APPENDIX

A.1 PATCH-LEVEL SEGMENTATION AS AN INTERMEDIATE PARADIGM

Existing semantic segmentation methods can be broadly categorized into two paradigms: mask-level
segmentation and pixel-level segmentation. The main distinction lies in the granularity of classifi-
cation. Mask-level approaches treat each candidate region or proposal as a basic unit, assigning a
semantic label to an entire maskM, fmask :M 7→ y ∈ C, whereM ⊂ Ω is a set of pixels within
the image domain Ω, and C denotes the semantic category set. In contrast, pixel-level approaches
predict a label for each pixel p ∈ Ω: fpixel : p 7→ yp ∈ C.

However, natural images exhibit two structural properties: (1) semantic sparsity, as only a small
fraction of regions carry discriminative information; and (2) spatial locality, as neighboring pixels
tend to share similar semantics. Direct pixel-level modeling ignores the spatial redundancy, while
mask-level modeling may overlook fine-grained local details. To strike a balance, we propose to seg-
ment at the patch-level. Specifically, we partition the image into non-overlapping patches {Pi}Ni=1,
where each patch Pi ⊂ Ω consists of a group of pixels. The segmentation task is then formulated as
fpatch : Pi 7→ yi ∈ C, with the prediction shared across all pixels p ∈ Pi. This formulation can be
interpreted as a middle ground between pixel- and mask-level segmentation: fpixel ≺ fpatch ≺ fmask,
where the notation a ≺ b indicates that b captures a coarser granularity than a.

From a computational perspective, patch-level segmentation reduces the number of classification
units from |Ω| (all pixels) to N (number of patches), while still retaining sufficient spatial resolution
to preserve local details. From a theoretical perspective, if we denote the entropy of semantic labels
as H(C), the expected redundancy reduction can be expressed as

R = 1− H({yi}Ni=1)

H({yp}p∈Ω)
, (12)

which quantifies how patch-level grouping leverages spatial correlation to reduce redundant labeling
complexity.

Relation to superpixels. The idea of grouping pixels into meaningful units resembles the clas-
sical notion of superpixels, which aggregate pixels with similar low-level properties (e.g., color
or texture). However, unlike superpixels that are typically handcrafted and data-independent, our
patch-level grouping is learned in a task-driven manner and is integrated into the attention-based
mask generator. This makes our patches not only compact structural units but also semantically
adaptive.

Role in our framework. It is worth noting that in our approach, patch-level representations are not
directly used to output the final segmentation maps. Instead, they serve as mask prompts that guide
the mask decoder towards accurate region delineation. This design choice allows us to benefit from
the efficiency and structural alignment of patch-level reasoning, while still leveraging the powerful
pixel-level refinement in the final prediction stage. How to directly apply patch-level information to
the segmentation process constitutes both a continuation of the work presented in this paper and a
direction for our future research.

In summary, by positioning the segmentation unit at the patch-level, we align with the intrinsic
semantic sparsity and locality of images, connect naturally with the intuition of superpixels, and
enable a principled balance between efficiency and fine-grained accuracy through prompt-based
mask generation.

A.2 TITLE

Figure 3 provides a supplemental analysis supporting our design decision in the main paper. As
shown, shallow layers exhibit large fluctuations across samples and fail to form reliable attention
patterns, whereas deeper layers demonstrate significantly more consistent and semantically mean-
ingful behavior. This aligns with our empirical finding that deep-layer attention contributes more
stable global semantic cues. Therefore, in GrC-SAM, we fuse attention primarily from the deeper
encoder layers to obtain a more reliable coarse-level semantic importance map.
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Figure 3: Attention Variance Display. Most samples exhibit low variance in the average attention
maps across blocks within the standard ViT, indicating that the model has learned stable attention
patterns. Some outliers show high variance in deeper layers, suggesting that inter-block information
is no longer required at these depths. In deeper ViT architectures, nearly all samples demonstrate
significantly higher variance in shallow-layer attention maps, indicating that these layers fail to learn
reliable attention patterns Zhang et al. (2023c).

A.3 MODEL DETAILS

Our Mask Generator is designed to implement a coarse-to-fine segmentation framework, which ef-
fectively guides the SAM backbone to focus on high-response regions while preserving fine details.
Below we provide a detailed description of the internal feature transformations, patch settings, and
the flow of information through the coarse and fine stages.

Coarse Stage. The coarse stage operates on the encoded image features F ∈ RB×C×H×W . Typ-
ically, for input images of size 1024 × 1024, after the image encoder, we obtain a feature map of
size F ∈ RB×256×64×64. The coarse stage divides this feature map into non-overlapping patches
of size 16 × 16 pixels in the original image space, resulting in a 64 × 64 grid of coarse tokens. A
global-guided attention mechanism then uses a fused score map to weigh each patch, generating
a soft coarse mask Mc ∈ RB×1×64×64 and updated features F ′

c ∈ RB×256×64×64. This mecha-
nism allows the model to allocate attention and computation resources preferentially to semantically
significant regions.

Fine Stage. In the fine stage, the coarse feature map F ′
c and the soft coarse mask Mc are first

upsampled by a factor of 4, yielding finer features Ffiner ∈ RB×256×256×256 and a sparse guid-
ance mask Mfiner ∈ RB×1×256×256. Each coarse patch now corresponds to a 4 × 4 patch in
the finer feature map. A small learnable convolution is applied to Ffiner to improve interpolation
adaptivity. Next, the features are reshaped into tokens of shape [B,H,W,C] and processed by the
RefinedSwinBlock, which applies local attention within non-overlapping windows, optionally
with shift, guided by the sparse mask. The output attention scores are normalized and passed through
a learnable threshold selector to produce a soft fined mask, which is finally upsampled to the original
resolution 1024× 1024 to generate fined logits for segmentation.

Patch Settings and Attention Windows.

• Coarse patches: 16× 16 pixels in image space (64× 64 coarse grid).

• Fine patches: 4× 4 pixels per coarse patch (256× 256 fine grid).

• Local attention window size in the fine stage: 6 × 6 tokens (Swin-style), sliding to allow
cross-window information flow.

Summary of Feature Shapes.

• Input image: B × 3× 1024× 1024

• Encoder output: B × 256× 64× 64
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• Coarse patch tokens: B × 256× 64× 64

• Soft coarse mask: B × 1× 64× 64

• Upsampled fine tokens: B × 256× 256× 256

• Sparse guidance mask: B × 1× 256× 256

• Final fine logits: B × 1× 1024× 1024

This hierarchical patch design and attention-guided mechanism ensure that computation is focused
on semantically important regions while preserving fine-grained spatial details. By explicitly defin-
ing patch sizes and feature transformations at each stage, the Mask Generator efficiently supports
our coarse-to-fine framework.

A.4 TRAIN DETAILS

All images are resized to 1024 × 1024 for both training and validation. For training, we apply
standard data augmentations including random horizontal flipping (probability 0.5), random resized
cropping with scale range (0.5, 2.0), and color jittering in brightness, contrast, saturation, and hue.
Validation only involves resizing and normalization.

The model is trained end-to-end with a composite loss that supervises the coarse, fine, and final
predictions. Specifically, the coarse stage is optimized with focal loss to stabilize foreground esti-
mation, the fine stage combines binary cross-entropy and Dice loss to enhance mask quality, and
the final stage adopts cross-entropy loss with label smoothing for semantic prediction. The overall
objective is a weighted sum of these three components:

L = λc Lcoarse + λr Lfine + λf Lfinal,

where (λc, λr, λf ) = (0.05, 0.2, 1.0).

Optimization is performed using AdamW with an initial learning rate of 1 × 10−4, weight decay
1 × 10−4, and a cosine annealing schedule. The batch size is set to 4, and training is conducted
for 50 epochs. To stabilize convergence, the image encoder is frozen for the first 5 epochs and then
jointly fine-tuned with the rest of the network.All experiments are conducted on a single NVIDIA
A100 GPU with 48GB memory.

A.5 ALGORITHM PSEUDOCODE DETAILS

In the coarse stage, the input image is first encoded into feature maps by the SAM image encoder.
These feature maps are divided into coarse patches, and attention maps from selected encoder layers
are fused to highlight semantically important regions. A coarse probability map is then generated to
indicate the likelihood of foreground regions, serving as a spatial prior for the subsequent fine stage.
This stage effectively reduces the search space for refinement by focusing on high-response regions,
enabling efficient coarse-to-fine segmentation.

Algorithm 1 The coarse stage with guided attention

Require: Feature map F ∈ RB×C×H×W , fused score map S ∈ RB×1×H×W , alpha weights α
Ensure: Updated feature map F ′, soft coarse mask Mc, coarse threshold τc

1: X ← Flatten(F )
2: Sf ← Flatten(S)
3: αexp ← Interpolate(α,N)
4: τc ← CoarseThresholdSelector(S)
5: Wsoft ← σ((Sf − τc) · temp)⊙ αexp

6: KV ← X ⊙Wsoft

7: X ′ ← MHA(Q = X,K = KV, V = KV )
8: F ′

attn ← Reshape(X ′)
9: Mc ← mean(Wsoft, dim = −1)

10: F ′ ← ConvFuse(concat[F, F ′
attn])

11: return F ′,Mc, τc
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In the fine stage, high-response regions identified by the coarse stage are extracted and rescaled to a
higher resolution. The extracted patch features are further divided into finer sub-patches, which are
processed using window-based sparse attention. Within each window, query vectors are projected
from the fine-grained patches, while keys and values are modulated by the coarse-stage soft mask to
amplify high-response tokens. The resulting attention outputs are merged to reconstruct fine feature
maps, which are then passed through a lightweight feed-forward network with residual connections
to produce the final fine segmentation logits. This coarse-guided refinement ensures that fine-grained
details are recovered efficiently without processing the entire image at high resolution.

Algorithm 2 The fine stage with local guided attention

Require: Coarse feature map Fc ∈ RB×C×Hc×Wc , coarse soft mask Mc ∈ RB×1×Hc×Wc

Ensure: Fine logits Fr ∈ RB×1×Hf×Wf , fine threshold τr
1: Fup ← Upsample(Fc, scale = 4)
2: Mup ← Upsample(Mc, scale = 4)
3: Fref ← Conv(Fup)
4: tokens← Reshape(Fref )
5: sparse mask ← Reshape(Mup)
6: Xattn ← RefinedSwinBlock(tokens, sparse mask)
7: A← ∥Xattn∥2
8: A← Normalize(A)
9: τr ← fineThresholdSelector(A)

10: Mr ← σ((A− τr) · temp)
11: Fr ← Upsample(Mr, size = (Hf ,Wf ))
12: return Fr, τr

Algorithm 3 RefinedSwinBlock: sparse Swin-style Attention

Require: Fine-grained patch features X ∈ RB×C×H×W , coarse mask Mc, window size ws, num-
ber of heads η, scaling factor α

Ensure: fine patch features Xr

1: Xwin ←WindowPartition(X,ws)
2: for each window w in Xwin do
3: Q← LinearQ(w)
4: K ← LinearK(w)⊙ (1 + α ·Mc)
5: V ← LinearV (w)⊙ (1 + α ·Mc)
6: Q← Reshape(Q, [η,M,C/η])
7: K ← Reshape(K, [η,N,C/η])
8: V ← Reshape(V, [η,N,C/η])
9: A← Softmax

(
QK⊤√
C/η

+B
)
{Add relative position bias B}

10: wout ← AV {Compute attention output}
11: end for
12: Xr ←WindowReverse(wout, ws,H,W )
13: Xr ← MLP(LayerNorm(Xr)) +Xr

14: return Xr

The RefinedSwinBlock implements a window-based sparse Swin attention mechanism on fine-
grained patch features. Feature maps are partitioned into non-overlapping windows, and for each
window, queries are computed from the window features, while keys and values are modulated by
the coarse-stage soft mask with a learnable scaling factor. Multi-head attention is applied within
each window with relative position biases to capture local spatial dependencies. Attention outputs
are merged via window reversal, followed by layer normalization, a feed-forward network, and
residual connection, producing fine patch representations. This design allows the model to selec-
tively focus on salient tokens within each window, guided by coarse-level priors, while keeping
computation tractable.
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A.6 SELECTION OF THE FUSION ATTENTION LAYER

Table 4 and Fig. 4 present the ablation study on feature fusion using four non-consecutive layers
selected from a 12-layer encoder. Layers 2, 5, 8, and 11 correspond to global attention layers, while
the remaining layers are local attention layers. We observe significant variations in mask prediction
across different layer combinations: Configuration A primarily fuses local layers (0, 3, 6, 9), pro-
ducing minimal background noise but resulting in inaccurate target localization due to insufficient
global context. Configuration B (1, 4, 7, 10) distributes selections across local layers yet still in-
troduces noise and fails to provide precise localization. Configuration D (2,5,8,11), integrating all
global attention layers, enhances global modeling capability but tends to introduce excessive back-
ground regions, increasing mask noise. In contrast, Configuration C (1,4,8,11) achieves the optimal
balance between local details and global structure, delivering the most precise segmentation within
our coarse-to-fine framework. These results demonstrate that blending local and global attention
layers is crucial, and Configuration C’s design provides the most effective feature fusion strategy for
guiding coarse-to-fine segmentation.

Text

Text

Figure 4: Attention Fusion Visualization Ablation. (A) Shallow-only and (B) deep-only fusion
each miss either semantic focus or fine structure. (D) Uniform averaging activates background
regions. Our learnable multi-layer fusion (C) achieves the best balance between localization and
detail.

Table 4: Ablation study on selecting 4 non-consecutive layers from the 12-layer encoder.

Fusion L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
Config A ✓ ✓ ✓ ✓
Config B ✓ ✓ ✓ ✓
Config C ✓ ✓ ✓ ✓
Config D ✓ ✓ ✓ ✓

A.7 ATTENTION SELECTION AT THE FINE-GRAINED STAGE

In the fine-grained stage of attention mechanisms, we compare three different attention mechanisms:
Global Attention (MSA), Window Attention (W-MSA), and our proposed Sparse Swin-style Atten-
tion (W-SSA). The time complexities of these mechanisms are O(N2), O(N), and O(ρ × N),
where N is the number of elements in the image, and ρ is the sparsity factor, which represents the
proportion of high-response areas we focus on. Specifically, Global Attention (MSA) has a time
complexity of O(N2), where N = h × w × C is the combination of image size and the number
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Table 5: Comparison of different attention mechanisms in the fine-grained stage.

MSA W-MSA W-SSA (Ours) Time Complexity
✓ O(N2)

✓ O(N)
✓ O(ρ×N)ρ<1

of channels. According to the original paper of the Swin Transformer, the computation formula for
global attention is:

O(MSA) = 4hwC2 + 2(hw)2C (13)
This indicates that global attention requires calculating the relationships between each pixel and
all other pixels, leading to a significant increase in computational cost as the image size and the
number of channels increase. In contrast, Window Attention (W-MSA) reduces computational costs
by dividing the image into non-overlapping small windows. Its time complexity is O(N), where
N =M2 × h× w, and M is the window size. The computation formula for W-MSA is:

O(W-MSA) = 4hwC2 + 2M2hw (14)

This computation depends only on the number of elements within the window, significantly reducing
the computational cost compared to global attention. Based on this, we propose Sparse Swin-style
Attention (W-SSA), which combines the locality of window attention with a sparsification strategy
to focus attention computation on high-response areas. The time complexity of Sparse Swin-style
Attention is O(ρ×N), where ρ represents the proportion of the sparse area we focus on. The time
complexity derivation process is as follows: we still perform the calculations based on the window
attention structure but only operate on the sparse regions. Assuming the image is divided into M
windows, and only a portion ρ of each window participates in the calculation, the time complexity
of Sparse Swin-style Attention is:

O(W-SSA) = 4hwC2 + 2ρM2hw (15)

Here, ρ is the sparsity factor representing the attention to high-response regions, indicating the
focus on important semantic information in the image. Table 5 summarizes the time complexities
of different attention mechanisms, illustrating the trade-offs between computational efficiency and
accuracy.
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