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Abstract

An Al system for professional floor plan design needs to be able to precisely control
room dimensions and areas (quantitative constraints), while also balancing func-
tional considerations and design aesthetics. Existing generative approaches focus
primarily on respecting the requested connectivity between rooms, but do not sup-
port generating floor plans with numerical constraints. We introduce a text-based
floor plan generation approach that fine-tunes a large language model (LLM) on
real plans and then applies reinforcement learning with verifiable rewards (RLVR)
to enforce both numerical (areas, dimensions) and spatial (topological) constraints.
Furthermore, we design a set of constraint adherence metrics to measure how
generated floor plans align with user-defined constraints systematically. Our model
generates floor plans that satisfy numerical constraints and outperforms existing
methods on realism, compatibility, and diversity scores. Specifically, our approach
leads to an up to 94% reduction in compatibility score. Our results demonstrate
that LLMs can effectively handle quantitative constraints in structured design tasks,
suggesting broader applications for text-based generative modeling.

1 Introduction

North American housing systems face persistent affordability pressures. In the United States, credible
estimates of the national housing shortfall range from 3.7 million to 4.9 million homes, depending
on methodology [Freddie Mac Economic, [2024], [Patel et al., 2024]. In Canada, the national housing
agency projects that restoring affordability by 2030 would require roughly 3.5 million additional
homes beyond current trajectories, and 2022 data indicate that about one in three renter households
spent at least 30% of income on shelter [Canada Mortgage and Housing Corporation, [2023| |Statistics
Canada, 2024].

Multiple factors drive the gap between need and delivery. High and volatile construction and financing
costs have pushed many projects below feasibility, making them unlikely to be built and weakening
future supply and affordability [Garcia, 2023]]. Early-stage floor plan decisions are part of this
landscape. They are not the definitive bottleneck, but they can influence unit yield, constructability,
and program compliance, and they often require rapid iteration with public agencies, funders, and
community stakeholders.

Generative approaches for layouts have advanced quickly, but many methods output raster images
that are difficult to edit, validate, or connect to downstream rule checking. Vectorized approaches
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Figure 1: Overview. Left: Given a bubble diagram (input connectivity graph) and an architectural
constraints JSON (for example, desired room sizes), our model outputs a JSON floor plan with
metric-scale polygons that are directly renderable. Right: After Supervised Fine-Tuning (SFT), the
plans respect the bubble diagram yet exhibit polygon overlaps; adding Reinforcement Learning with
Verifiable Rewards (RLVR) reduces these overlaps while preserving connectivity.

address some of these issues by modeling rooms and boundaries as structured objects. However,
prior graph-conditioned methods such as HouseGAN and House-GAN++ enforce constraints only
through an input adjacency graph (a bubble diagram). They produce axis-aligned room layouts but
do not impose quantitative constraints such as room areas [Nauata et al} [2020, [2021]. Likewise,
HouseDiffusion is conditioned only on the bubble-diagram adjacency graph and generates vector
layouts by diffusing 2D room and door coordinates [Shabani et al.,2023||. Datasets like RPLAN have
enabled learning at scale [Wu et al., 2019].

We target this gap with a JSON-based representation that encodes room layouts as polygonal structures
with explicit attributes. The representation supports fine-grained control of spatial parameters, such as
room sizes and connectivity. We fine-tune a large language model (LLM) to generate JSON-encoded
plans from prompts that specify spatial constraints. See Figure [Ta]for a schematic of the pipeline. We
evaluate constraint satisfaction using proposed spec-adherence metrics and observe high compliance
across tasks. In the most complex setting, eight-room generation with best-of-10 sampling, our
approach yields up to a 94% reduction in the compatibility score (Table|[I).

Our key contributions are as follows: (1) we fine-tune an LLM in two stages, first via supervised
learning and then via reinforcement learning, to transform constraint inputs into valid structured floor
plans, demonstrating the feasibility and advantages of a structured-data-to-structured-data generative
paradigm, and (2) we propose new constraint adherence metrics that systematically evaluate the
extent to which generated floor plans align with user-defined constraints, filling a critical evaluation
gap in this domain.

We use JSON rather than free-form natural language because it provides unambiguous parsing of
numeric and spatial constraints, enforces a consistent schema across training examples, mirrors the
hierarchical structure of floor plan specifications, and could integrate with CAD and architectural
software. See Appendix for the schemas and Appendix [A.2]for the dataset preparation details.

2 Method

Stage 1: Supervised fine-tuning. We begin with supervised instruction, tuning the model to translate
structured prompts into JSON floor plans. The conditioning input is a set of key-value pairs (for
example, room counts, target total area, and a bubble diagram), and the target is the ground-truth
token sequence. We adapt a pre-trained LLM by minimizing token-level negative log-likelihood
over the dataset. This stage yields plausible floor plans that satisfy most numerical and connectivity
requirements, yet overlapping polygons persist, a limitation unaddressed by prior work that we
mitigate in the next stage.

Stage 2: RLVR with GRPO. Our second training stage performs reinforcement-learning-based
fine-tuning with verifiable rewards (RLVR), using GRPO [Shao et al.; |2024]. GRPO is a variant
of PPO Schulman et al.[[2017] that groups multiple trajectories together and optimizes relative



Table 1: Main quantitative results comparing our approach with previous methods on Compatibility
(1), Realism (7), and Diversity (}). Our method fine-tunes a Llama-3.3-70B-Instruct in two stages:
first supervised fine-tuning, followed by reinforcement learning with verifiable rewards, and uses a
best-of-10 sampling strategy.

Model | Compatibility| |RealismT| Diversity]
Task 's 6 7 8| 8 |5 6 71 8
(Ashual and Wolf{[2019]) 7.5 9.2 10.0 11.8| -1.00 |120.6 172.5 162.1 183.0
(Johnson et al.|[2018]]) 7.7 6.5 102 11.3| -1.00 |167.2 168.4 186.0 186.0

House-GAN(Nauata et al.|[2020]) | 2.5 2.4 32 53| -095 |375 41.0 329 664
House-GAN++(Nauata et al.|[2021]) [ 1.9 2.2 24 39| -0.52 |304 37.6 273 329
HouseDiffusion(Shabani et al.|[2023])| 1.5 1.2 1.7 25| -0.19 |11.2 103 104 9.5

(Ours) 10.01 0.02 0.10 0.15| -0.01 | 90 88 78 7.0

improvements within the group. By using group-relative statistics, GRPO does not require the use of
a critic in the same way PPO does (which belongs to the actor-critic family of RL methods).
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Equation [T] defines the group-relative advantage function, which normalizes each candidate’s reward
by comparing it to other outputs for the same input, where 1, and o, are the mean and standard
deviation of rewards within group )(x). Equation [2|is the simplified GRPO objective. For each
input z, GRPO samples a group of candidate outputs Y(x) from the old policy and computes z-score
normalized advantages within that group. The policy is then optimized using the importance sampling
ratio from PPO, weighted by these group-relative advantages. Candidates with above-average rewards
receive positive advantages and larger updates, while below-average candidates receive negative
advantages. This simplified form omits: (1) PPO clipping on the importance ratio and (2) KL
regularization to a reference policy. Complete technical training and inference details appear in

Appendix[A.3]

Rewards for floor-plan generation. In our case, we generate multiple floor plans from the model,
and assign them automatically calculated rewards. We use two rewards with equal weight: (1)
compatibility score, graph edit distance between the input connectivity graph and the generated plan’s
connectivity graph, and (2) 1 — TAE (the total area error), which increases as the generated total area
approaches the target area in the prompt.

3 Our metrics

To evaluate generated floor plans, we introduce four metrics that directly test adherence to prompt-
specified constraints and quantify polygon overlaps. To our knowledge, this is the first work to report
metrics that explicitly measure both overlaps and room-size constraints:

* Room Area |: Mean absolute percentage error of per-room area with respect to the prompt.

* Room ID 1: Exact-match accuracy of room_id relative to the prompt. Each room_id
encodes both room type and instance index (e.g., "bedroom|1").

* Overlap |: Boolean check that any two generated room polygons overlap.
» Percentage Overlap |: Total overlapped area as a percent of the generated total_area.

We also evaluate our method using three additional metrics: Compatibility, Realism, Diversity,
following prior work [Nauata et al., 2020, 2021} Shabani et al., 2023]. Compatibility is computed as



the graph edit distance [Abu-Aisheh et al.|[2015]] between the input bubble diagram and the bubble
diagram reconstructed from the generated JSON. Realism is measured in a human study. Diversity
is measured using the Fréchet Inception Distance [Heusel et al.| 2017]. A complete description of
these three metrics is provided in Appendix [A.4]

4 Evaluation

We follow prior work [Nauata et al., 2020, 2021} |Shabani et al., [2023]] and group samples by room
count (5, 6, 7, 8). For each task, one group is held out, the model is trained on the remaining three,
and the held-out group is split evenly into evaluation and test. Full details are in Appendix[A.5] We
compare our method against bubble diagram constrained floor plan generators, including House-GAN
Nauata et al.|[2020], House-GAN++ [Nauata et al.|[2021]], and HouseDiffusion |Shabani et al.| [2023)]],
and scene graph constrained image generation with|Johnson et al.|[2018]] and |Ashual and Wolf][2019].
HouseDiffusion|Shabani et al.|[2023]] is the current peer-reviewed state of the art.

5 Experiments

5.1 Quantitative evaluations

Table [T]reports the main quantitative results; for completeness, Appendix [A.6|reproduces this table
with standard deviations. Baseline numbers are copied from HouseDiffusion|Shabani et al.| [2023]].
Our method, achieves the lowest compatibility score across all tasks (0.01 to 0.15), indicating near-
perfect alignment with the input bubble diagram. For diversity, it also attains the best values (7 to 9).
Relative to HouseDiffusion, our method improves compatibility by 94% and diversity by 26.32% on
the eight-room generation task, the most complex setting. Our metrics across both training stages are
reported in Appendix Table[2] with a detailed discussion in Section See Figure[Ib|for a visual
illustration of the stage-wise effects.

5.2 Qualitative evaluations

Appendix Figure 2] compares our method with HouseDiffusion for the same input bubble diagram.
Across the five examples, our method matches the requested connectivity in every case, preserving the
prompt-specified bubble diagram more reliably (i.e. showing a lower compatibility score). Beyond
connectivity, our method yields room shapes and per-room proportions that more closely match the
reference floor plans. For example, in the third row of Appendix Figure |2} the study, kitchen, and
bathroom connected to the living room have sizes similar to the reference. We validated this with a
single-blind user study following HouseDiffusion. Thirteen graduate students unfamiliar with the
project and without floor-plan design experience completed 10 trials plus a warm-up. Each trial
showed a ground-truth plan and one generated by our method for the same bubble diagram; question
order and left/right placement were randomized. Participants selected which looked more realistic:
ground truth (—1), generated (+41), or both equally (0). The realism score was the mean across all
trials and participants. We obtained —0.008 across n = 13, a value close to zero that indicates our
plans are nearly indistinguishable from ground truth and compare favorably to prior reports (Table [T}
rounded to fit the table format). Survey details are in Appendix [A.9]

6 Conclusions

We introduced a structured-to-structured generator that maps a bubble diagram and numeric spec-
ifications to CAD-ready floor plans via a two-stage recipe that combines supervised instruction
tuning with reinforcement learning with verifiable rewards. The model satisfies quantitative and
topological constraints while minimizing polygon overlaps, and achieves state-of-the-art results
across room-generation tasks: compatibility of 0.01 to 0.15, diversity of 7 to 9, and a realism score of
-0.01, with a 94% reduction in compatibility error and a 26% diversity gain in the eight-room setting
relative to HouseDiffusion. Remaining limitations include occasional overlaps at higher room counts
and a focus on single-floor residential Asian plans derived from RPLAN. Future work will extend
to multi-floor layouts, incorporate additional verifiable objectives such as circulation and daylight
proxies, and enable constraint-preserving interactive editing.
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A Technical appendices and supplementary material

A.1 JSON data schemas for floor plan generation

In this section, we describe the exact JSON schemas our model consumes and produces. Each schema
is built around a top-level spaces array whose elements represent any floor plan entity, including
both rooms and doors (interior or front). In the input schema (Table E]), each space must include an
id and a room_type label, and may specify either an explicit area for irregular-polygon shapes or a
pair of height and width values for rectangular spaces. The input also includes a room_count, a
total_area constraint, and an input_graph dictionary encoding the bubble diagram; front doors
must be specified explicitly in the spaces array, while interior door connections are inferred from
the bubble diagram. In the output schema (Table[d), each space object includes its computed area
and a floor_polygon array of vertices defining its precise footprint in absolute coordinates. All
area values (area, total_area) are given in square meters.

A.2 RPLAN conversion

RPLAN [Wu et al,|2019] is a manually collected dataset of 80,788 real-world floor plans of buildings
in Asia. Each floor plan in RPLAN is stored as a 256 x 256 x 4 vector image. Channels 1 and 2 store
interior and exterior boundary information; channel 3 contains room information where each pixel
value denotes which room it belongs to; channel 4 has extra information to distinguish rooms with
the same room type value in channel 3.

To convert this 4-channel image into a JSON structure, we first use the same data-reader as in
HouseGAN ++ﬂ then process each entry with a custom converter that maps room codes to semantic
names, reconstructs room polygons from boundary segments, and computes geometric attributes
such as area, width, and height. The polygon vertices are expressed in absolute coordinates after
scaling from pixels to meters. Each floor plan is converted into a set of spaces, each assigned a unique
identifier and associated numeric attributes (eg. area, width, height), together with the bubble diagram
encoded as an adjacency list. We obtain each bubble diagram from the interior door connectivity
graph produced by our RPLAN conversion pipeline and represent it as an adjacency list stored in a
JSON dictionary. Each key represents a room identifier, and each value is an array of room identifiers
that are directly connected via interior doors. The front door is modeled as a special space that
connects to exactly one room. Any sample whose adjacency list is disconnected or that contains
rooms lacking valid polygons is filtered out.

Applying this pipeline yields four room-count specific datasets: 8-room with 53,001 training, 8,596
test, and 8,597 validation examples; 7-room with 44,859 training, 12,667 test, and 12,668 validation;
6-room with 47,955 training, 11,119 test, and 11,120 validation; and 5-room with 65,000 training,
2,597 test, and 2,597 validation.

A.3 Training and inference details

In the first stage of the training, we fine-tune the Llama-3.3-70B-Instruct [Touvron et al., 2023]]
backbone using 4-bit quantization and adapter-based PEFT (LoRA) [Hu et al.,|2021]]. We configure
LoRA with rank » = 64 and o = 128, and a learning rate of 1le — 4. Training is distributed across a
6-node Slurm cluster (each node: 4 x NVIDIA H100 80 GB). We pack the examples into a context
window of 6k tokens, use a device batch size of 2, and train for two epochs. For the most complex
8-room floor plan generation task, this requires up to four hours, and equal or less on smaller-room
tasks.

In the second stage, we continue from the supervised fine-tuning checkpoint and train with reinforce-
ment learning using GRPO with TRLEI Training is launched on a 7-node Slurm cluster (each node:
4 x NVIDIA H100 80 GB), 6 for model training, and 1 for inference. A dedicated vLLM server
process handles fast generation [[Kwon et al.l 2023]. We use a per-device batch size of 1 and sample
4 generations per prompt. The best performance is obtained by saving the first checkpoint after 100
training samples; on our hardware, this corresponds to at most 2 hours of wall-clock time per task.

"https://github.com/sepidsh/Housegan-data-reader
“https://github.com/huggingface/trl
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Figure 2: Qualitative comparison against HouseDiffusion. We replicate HouseDiffusion’s visualization
to enable direct visual comparison. From left to right: dataset sample (reference), input bubble
diagram, and layouts generated by our method and HouseDiffusion from the same bubble diagram.
Numbers under the outputs report compatibility(graph edit distance; lower is better). Our method
better matches the specified connectivity and achieves equal or lower compatibility across the shown
examples.



Thus, the second phase sees only 100 training examples in every task, which is far fewer than in
supervised fine-tuning.

At inference time, we sample with a temperature of 0.7 and top-p of 0.9 under a best-of-n strategy to
generate ten candidates, and select the candidate with the smallest overlap area and, in case of ties,
the lowest compatibility score. Below is the exact prompt we use to condition the model:

<|begin_of_text|><|start_header_id|>system<|end_header_id|>You are a state-of-the-
art floor-plan generator that translates JSON specifications and

connectivity requirements defined by a bubble diagram into precise, optimized
layouts.

Your algorithm considers each room’s dimensions, proportion, and desired adjacencies

to produce an efficient arrangement that maximizes usable

space while honoring all constraints.

Your top priority is that no two room polygons ever overlap. Rooms must be strictly
disjoint, doors may touch room boundaries, but room interiors must never
intersect.

Your output must be a JSON object, where ‘output‘ key contains:

- ‘room_count‘: the total number of room entries

- ‘spaces‘: a list of mixing rooms and doors. Each room or door entry must include:

- ¢id‘: formatted as ‘<room_type>|<unique_index>‘ (e.g. ‘"bedroom|2"¢ or ‘"
interior_door|0"¢)

- ‘room_type‘: the room type (e.g. ‘"living_room"¢, ‘"kitchen"‘, etc.)

- ‘area‘ in square meters (all positive numbers)

- ‘floor_polygon‘: an ordered list of ‘{x: , y:}‘ vertices defining a simple
polygon

Additional rules:

- *xAbsolute non-overlap**: no two room polygons may share any interior point under
any circumstances.

- Every adjacency in the bubble diagram must be bridged by exactly one door.

- Every ‘id‘ used in the bubble diagram and on any door must appear in the ‘rooms?
list.

Return only a JSON object containing an ‘output‘ key without extra commentary or
explanation.<|eot_id|>

A.4 Compatibility, realism and diversity

Compatibility is computed as the graph edit distance [Abu-Aisheh et al.,2015]] between the input
bubble diagram and the bubble diagram reconstructed from the generated JSON. A lower score
indicates higher consistency with the specified connectivity, with a score of 0 meaning a perfect
match. In this sense, Compatibility can be interpreted as the number of connectivity mistakes in the
generated floor plan, making it the most direct measure of whether the model satisfies the user-defined
connectivity constraints.

Realism is measured through a human study in which each participant sees 10 randomized pairs
of layouts (one ground truth, one generated) and selects the more realistic layout, or indicates that
both are equally realistic. For each pair, we score +1 if they select the generated floor plan, —1 if
they select the ground-truth, and 0 if they judge them equally realistic. Summing these scores over
all pairs and all participants yields a total realism score. Values near zero indicate that, on average,
generated layouts are indistinguishable from ground truth.

Diversity is measured using the Fréchet Inception Distance (FID) [Heusel et al. 2017], which
compares the feature distributions of generated floor plan images and ground truth floor plan images.
Rather than relying on pixel-level differences, FID computes the mean and covariance of deep feature
representations to assess the similarity between the two distributions. A lower FID means that the
generated floor plans have feature statistics closer to those of the ground truth, indicating that the
model captures both the diversity and overall distribution of the reference data more effectively. We
compute FID using a custom visualization pipeline that mimics the HouseDiffusion visualizer on our
data.



A.5 Evaluation protocol

We follow the evaluation protocol of previous work [Nauata et al., 2020} {2021} |Shabani et al., [2023]]
and divide all floor plan samples into four groups based on the number of rooms (5, 6, 7, or 8 rooms).
For each experiment, one group is held out completely, while the model is trained using 100% of the
remaining three groups. The held-out group is split into two equal parts: 50% for evaluation and 50%
for testing. This specific evaluation—test split is not explicitly defined in the original protocol, but
we adopt it to provide a separate evaluation set for monitoring performance during training and a
dedicated test set for final reporting.

For example, when performing the 5-room task, all 5-room samples are removed from the training set,
and the model is trained on the 6-, 7-, and 8-room samples. The 5-room group is then split evenly for
evaluation and testing. Following the evaluation protocol, all experiments are tested using a random
subset of 1,000 samples from the test portion of the held-out group. This setup ensures that the model
must generalize to unseen configurations rather than memorizing layouts for a specific room count.

A.6 Full main results with standard deviations

This section reproduces the Table[T]and adds standard deviations. Table [5|reports mean + standard
deviation for compatibility, realism, and diversity on the five to eight-room tasks, using the same
evaluation setup as the main results. The only change is the inclusion of dispersion values for
completeness.

A.7 Effect of the training stages

Table 2] compares three settings for Llama 3.3 70B: few-shot prompting, supervised fine-tuning, and
supervised fine-tuning followed by reinforcement learning with verifiable rewards. Few-shot with
three examples serves as a backbone-only baseline. It is unstable and scales poorly with task size:
compatibility rises from 2.93 at five rooms to 6.89 at eight rooms, while overlap stays saturated
around 0.50-0.55 with huge variance, indicating frequent collisions even under best-of-10 selection.
The very high diversity scores reflect uncontrolled variability, since many samples violate the bubble
diagram or overlap constraints.

Stage one learns the mapping from structured prompts to JSON floor plan and already yields low room
area error and perfect room identification, but as the room count grows, overlaps and bubble diagram
mismatches increase. Averaged over tasks with five to eight rooms, adding RLVR cuts overlaps by
65% and reduces compatibility by 56% compared with supervised fine-tuning. Besides, percentage
overlap is near zero and room area MAPE remains near 0.10 to 0.12, and room ID accuracy stays at
1, so these gains do not trade off size accuracy or room labeling.

Finally, we evaluate the effect of the number of generations at inference using a best of n selector
on the eight-room task. For each prompt, we sample n candidates with temperature 0.7 and top p
0.9, then select the candidate with the smallest overlap area, breaking ties by lower compatibility.
Appendix Table @reports results for n € {1,10,100}. Moving from 10 to 100 samples improves
overlap by 30% and compatibility by 89% while Percentage Overlap remains at 0.00+0.01. However,
generating 100 samples per prompt is computationally expensive and time-consuming in production
environments, so the main paper reports the best of 10.

A.8 Behind the scenes

In this section, we guide readers through the complete research process, including the experiments
and approaches that did not work, sharing insights and lessons that may benefit other researchers.

Llama-3.1-8B-70B-Instruct. We first tried an 8B Llama-3.1-Instruct backbone. Even with very large
LoRA adapters (rank r € {256,512} and o € {128,256}), the model did not yield reliable results:
at inference it often fell into a repetition loop that emitted the same value sequence for one polygon
vertex array within a room, producing degenerate or invalid geometry. Because this failure mode
persisted, we discarded the 8B variant for this application and adopted a 70B Llama-3.3-Instruct
backbone instead.

Prompting Alone Is Not Enough. We ran few-shot prompts with state-of-the-art backbones,
including GPT-40, OpenAl 03, and QwQ-32B. None consistently produced a valid floor plan JSON.
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In short, few-shot prompting does not provide the built-in structure needed to enforce bubble diagram
connectivity and numeric constraints jointly. Even with careful prompt engineering and schema
exemplars, outputs remained brittle. Typical failures include non-closed polygons, self-intersections,
duplicated or missing rooms, violations of bubble diagram connectivity and exterior door semantics,
numerical drift in room areas, repetition loops that copy a single coordinate across a polygon, and
schema hallucinations. We therefore adopted supervised fine-tuning, followed by reinforcement
learning with verifiable rewards.

Reward Hacking. We initially optimized only the compatibility reward. The model quickly learned
to game this objective: it collapsed geometry into tiny rooms so that the reconstructed adjacency
matched the prompt, yielding near-zero compatibility while violating requested areas and hurting
realism.

To remove this failure mode, we added a second verifiable term that rewards accurate total area,
and trained with GRPO using equal weights on compatibility and total-area rewards (Section 4.2).
After this change, room sizes stabilized (room-area MAPE 0.10-0.12 across tasks), and compatibility
improved without encouraging degenerate geometry.

A.9 Realism survey design

Instructions given to participants at the start of the realism survey:

Please help us decide if the Al-generated floor plans look as realistic as the ground-
truth ones.

What we want you to do is for each of the following 10 floor plans to decide if the
one on the left or the one on the right looks more realistic, or they both look more
or less the same.

Notes:
e There are doors between rooms (marked in purple) and entrance doors

(marked in dark gray) that are placed pretty arbitrarily, even in the GT
dataset.

* There are gaps between rooms (also known as "walls") of varying thickness,
even within the same floor plan. This is normal.

 Floor plans only very rarely end up perfectly square, so don’t look for that.

* Important: We are not asking you to detect which ones are Al-generated. We
are asking you to pick which one you find more plausible or realistic.

e Important: Both being equal is a perfectly fine response.

» We will not elaborate what "realistic” or "plausible" means. Just use your
best judgment.

Figure[3]is a screenshot from one of the questions.
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Legend:

red = living room
cyan = balcony
yellow = bedroom
brown = kitchen
gray = bathroom

Sample 1

Please pick your favorite! *

O Left is more realistic
(O Rightis more realistic

o Both are roughly equal

Back Next IS Page 2 of 11 Clear form
Figure 3: Example question from our user study, showing a ground truth floor plan and a generated

one from our method for the same bubble diagram. In this case, ground truth is left. The order was
randomly shuffled between questions.

12



Table 2: Task-wise results for Llama-3.3-70B-Instruct under with three examples,
, and plus reinforcement learning with verifiable rewards.
is stage one supervised fine-tuning that teaches the model to map structured specifications to
JSON floor plans. RILVR is stage two reinforcement learning with verifiable rewards, trained with
GRPO to reduce polygon overlaps and compatibility errors. + RLVR yields the lowest overlap,
percent overlap, and compatibility while keeping room area MAPE and diversity low. Results use
best-of-10 sampling, selecting the candidate with the smallest overlap area and, in case of ties, the
lowest compatibility score.

Experiment |Task|Room Area| Room IDT Overlap| % Overlap| Compatibility| Diversity]

0.27£0.22 0.96£0.19 0.55+0.50 0.07+£0.10 2.93£1.26 45.96+0.00
5 10.10+0.08 1.004+0.000.12£0.33 0.00£0.02 0.02+0.16  8.60+0.00
+ RLVR 0.11+0.08 1.00+0.00 0.03£0.17 0.00+£0.00 0.01+0.14 8.96+0.00

0.19£0.19 1.00£0.00 0.54+0.50 0.06+0.09 4.27+1.47 40.094+0.00
6 | 0.10+0.07 1.0040.000.14£0.35 0.00£0.02 0.04+0.23  7.59+0.00
+ RLVR 0.12£0.08 1.00£0.00 0.05+0.21 0.00+£0.01  0.02+0.17 8.79+0.00

0.15£0.14 0.99£0.05 0.50+0.50 0.05+0.08 5.27+1.19 41.734+0.00
7 | 0.09+0.06 1.00+0.000.23+0.42 0.01+0.02 0.17£0.51  6.79+0.00
+ RLVR 0.12£0.07 1.00£0.00 0.09+0.29 0.00+£0.01 0.10+0.40 7.79+0.00

0.12£0.10 0.91£0.200.514+0.50 0.04+0.06  6.894+0.71 49.844-0.00
8 | 0.08+0.05 1.00£0.000.37£0.48 0.01+£0.03  0.41+0.73  6.44=+0.00
+ RLVR 0.10£0.06 1.00£0.00 0.13+0.33 0.00+£0.01 0.15+0.48 6.96=0.00

Table 3: Input JSON data structure for floor plan generation.

Field Description
room_count Total number of rooms
total_area Sum of all room areas
spaces Array of space objects
id Unique identifier (e.g., bedroom| 0)
room_type Semantic label (e.g., bedroom)
area Area for an irregular polygon space (omit height and width)
height Height of bounding rectangle for a regular polygon space (omit area)
width Width of bounding rectangle for a regular polygon space (omit area)
input_graph Bubble diagram. Each key is a space ID mapping to an array of its
neighbor IDs

Table 4: Output JSON data structure for generated floor plans.

Field Description
room_count Total number of rooms in the generated floor plan
total_area Sum of all generated room areas
spaces Array of space objects
id Unique identifier (e.g., bedroom|0)
room_type Semantic label (e.g., bedroom)
area Area of the polygon space
floor_polygon List of vertices outlining the space polygon
X X—coordinate
y Y-—coordinate
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Table 5: Main quantitative results comparing our approach with previous methods on Compatibility
(1), Realism (7), and Diversity (}). Our method fine-tunes a Llama-3.3-70B-Instruct in two stages:
first supervised fine-tuning, followed by reinforcement fine-tuning with GRPO, and uses a best-of-10
sampling strategy.

Model \ Compatibility ] [Realism1| Diversity |
Task s 6 7 s | 8 | 5 6 7 8
(Ashual and Wolf|[2019])| 7.5+0.0 9.240.0 10.04+0.011.8£0.0| -1.00 [120.640.5172.54+0.2162.14+-0.4183.04+-0.4
(Johnson et al.|[2018]) |7.740.0 6.5+0.0 10.2+0.011.3+0.1] -1.00 {167.2+0.3168.4+0.4186.0+0.4186.0+0.4
(Nauata et al.[[2020]) |2.5£0.1 2.440.1 3.2£0.0 5.3+0.0| -0.95 |[37.5£1.1 41.0+£0.6 32.9+1.2 66.4+£1.7

(Nauata et al.|[2021]]) |1.9+0.3 2.24+0.3 2.4+0.3 3.9+0.5| -0.52 |30.4£4.4 37.6£3.3 27.3£4.9 32.9£4.9
(Shabani et al.| [2023]]) |1.5+£0.0 1.2+0.0 1.7£0.0 2.5+£0.0| -0.19 |11.2£0.2 10.3£0.2 10.4£0.4 9.540.1

(Ours) 0.01+0.10.020.20.10+0.40.15+£0.5| -0.01 | 9.0+0.0 8.8+0.0 7.8+0.0 7.0+0.0

Table 6: Effect of generation budget n on the eight-room task for Llama-3.3-70B-Instruct after
two-stage fine-tuning. For each prompt we sample n € {1,10,100} candidates and select the one
with the least overlap, breaking ties by compatibility.

Experiment |Task| n Room Area| Room IDt  Overlap| % Overlap| Compatibility]

1 0.09+0.05 1.00+0.00 0.26+0.44 0.01£0.02 1.89+1.97
10 0.10£0.06 1.00£0.00 0.134+0.33 0.00£0.01 0.15+£0.48
100 0.09 £0.06 1.00 £0.000.10+£0.300.00 +0.01 0.02+0.16

Llama +

+ RLVR| 8
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