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Abstract
Understanding how humans evaluate robot behavior during human-

robot interactions is crucial for developing socially aware robots

that behave according to human expectations. While the traditional

approach to capturing these evaluations is to conduct a user study,

recent work has proposed utilizing machine learning instead. How-

ever, existing data-driven methods require large amounts of labeled

data, which limits their use in practice. To address this gap, we

propose leveraging the few-shot learning capabilities of Large Lan-

guage Models (LLMs) to improve how well a robot can predict a

user’s perception of its performance, and study this idea experimen-

tally in social navigation tasks. To this end, we extend the SEAN

TOGETHER dataset with additional real-world human-robot nav-

igation episodes and participant feedback. Using this augmented

dataset, we evaluate the ability of several LLMs to predict human

perceptions of robot performance from a small number of in-context

examples, based on observed spatio-temporal cues of the robot and

surrounding human motion. Our results demonstrate that LLMs

can match or exceed the performance of traditional supervised

learning models while requiring an order of magnitude fewer la-

beled instances. We further show that prediction performance can

improve with more in-context examples, confirming the scalability

of our approach. Additionally, we investigate what kind of sensor-

based information an LLM relies on to make these inferences by

conducting an ablation study on the input features considered for

performance prediction. Finally, we explore the novel application

of personalized examples for in-context learning, i.e., drawn from

the same user being evaluated, finding that they further enhance

prediction accuracy. This work paves the path to improving robot

behavior in a scalable manner through user-centered feedback.

CCS Concepts
•Human-centered computing→ Social navigation; •Comput-
ing methodologies → Theory of mind; • Computer systems
organization→ Robotics.
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Figure 1: We investigate to what extent Large Language Mod-
els (LLMs) can infer human perceptions of a mobile robot in
navigation scenarios where a person – the “follower” – was
guided by the robot to an indoor location. The inferences are
made based on a few examples only using In-Context Learn-
ing (ICL). For each example, the input consists of sensor-
based observations from the robot and the output is a binary
performance level (e.g., indicating competent behavior).
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1 Introduction
Inferring how humans perceive a robot’s performance is essential

for designing robots that behave not only competently, but also in

socially appropriate ways. These perceptions influence how people

trust, collaborate with, and respond to robots in real-world set-

tings [5, 12, 36, 40, 41, 51, 53]. Because people’s perceptions of robot

behavior are internal to the individual, they are typically measured

through surveys that ask them to reflect on their experience. These

evaluations tend to consider how the robot behaves in terms of

different subjective factors that matter to humans, like whether the

robot’s actions are predictable or intentional [20, 21, 38]. However,
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querying people during an interaction to assess their subjective per-

ceptions of robot behavior can be disruptive and impractical [64, 65].

Prior work proposed to use supervised learning to infer human

perceptions of robots from observable interaction data [64, 65].

First, survey data was collected via a user study, e.g., indicating

how competent a person perceived the robot. Then, the data is

used to train a learning model from scratch, such as a random

forest or neural network. Once trained, the learned model can

be used during interactions without having to query people via

surveys again. This approach enabled more scalable robot behavior

evaluation, although it required a significant data collection effort.

To make the learning approach more practical, we propose using

Large Language Models (LLMs) to predict how a person perceives a

robot’s behavior. Because LLMs encode world knowledge and have

general reasoning capabilities [7, 15], we hypothesize that they can

enable more efficient learning of human perceptions of robots than

traditional supervised learningmethods. Specifically, we investigate

using In-Context Learning (ICL) to condition a pretrained LLM on

a few labeled examples and prompt it to infer a user’s perception of

a robot. This approach requires no retraining of the LLM, making

it suitable for use in Human-Robot Interaction (HRI), where data

tends to be limited and retraining of large models can easily result

in overfitting.

Our work is focused on evaluating LLMs in social robot navi-

gation scenarios, as in Fig. 1. Unfortunately, real-world social ro-

bot navigation data with human evaluations of robots is limited.

Thus, we augmented an existing real-world dataset called SEAN

TOGETHER [65] with additional robot-guided navigation episodes.

This augmentation expands the prior dataset from 235 interaction

episodes collected from 45 participants to 404 episodes from 69

participants. For each episode, the dataset provides ground truth

human perceptions of a mobile robot considering three subjec-

tive factors: whether the robot is perceived as competent, whether

its behavior is surprising, and whether the robot’s intentions are

clear during navigation. We refer to the new dataset as the SEAN

TOGETHER v2 dataset.
1

While prior work explored inferring human perceptions of robots

with LLMs based on a high-level narrative description of an inter-

action [10, 63], we investigate making predictions using a robot’s

sensor-based observations of the interaction. For example, we pro-

vide an LLM with observed motion trajectories, each represented

as a list of coordinates. Using this data streamlines the application

of LLMs.

Through a series of systematic experiments, our work helps us

understand to what extent LLMs with ICL can infer internal human

states from spatial robot data. Firstly, we analyze how LLM pre-

dictions compare to traditional supervised models in accuracy and

sample efficiency. Then, we conduct an ablation study on the input

features considered by an LLM, providing insights about what kind

of sensor-based information it uses to infer human perceptions of

a mobile robot. Finally, we investigate how tailoring demonstra-

tion examples in ICL to an individual affects the LLM’s ability to

infer their perceptions of robot behavior. This effort is motivated

by evidence that adapting learning models in HRI to individual

users can result in better prediction performance (e.g., [43]). To

1
Link to data and code omitted for blind review.

the best of our knowledge, our work is the first to explore creating

personalized predictions of perceived robot performance, bringing

us closer to a future where robot behavior can be evaluated at scale

from a more individualized perspective than possible in prior work.

2 Related Work
Intuitive Psychology.We draw inspiration from emerging stud-

ies on LLM’s intuitive psychology capabilities, i.e., their ability to

reason about human beliefs, goals, and social behaviors. Recent

evaluations of LLMs consider varied Theory-of-Mind tasks from

psychology [27, 28, 42, 55, 57], showing promise but also reveal-

ing brittleness under small task variations. Evaluation suites such

as CogBench [11] suggest that Chain-of-Thought (CoT) prompt-

ing [61] can enhance LLM reasoning. Moreover, reviews on user

modeling with LLMs call for personalized interactive systems [52].

Inferring Human Perceptions of Robots. Understanding how
humans perceive robot behavior is central to developing robots

that are not only functional but also behave desirably. Prior work

has demonstrated using subjective evaluations of robot behavior to

assess robot policies [4, 14, 36, 41, 51] and improve robot behavior [5,

12, 40, 48, 53].

We focus on predicting human perceptions that are critical in

social robot navigation [20, 21]: robot competence, surprisingness,

and clear intent. Competence reflects the robot’s ability to perform

its intended task effectively [2, 8, 37, 54]. Surprisingness captures

how much a robot’s behavior deviates from user expectations [3, 6,

20]. Clear intent refers to how easily a human can infer the robot’s

goal and direction of motion [17, 18, 45]. These dimensions have

been shown to shape people’s ability to coordinate with robots and

their overall experience. Other perceptions such as discomfort [8,

26] and safety [1, 44] are also relevant, but are left as future work.

Prior research showed that it is possible to use supervised learn-

ing to predict human perceptions of robots [4, 64, 65]. In particular,

we build directly on the work by Zhang et al. [65], who trained data-

driven models (like a random forest model) to predict how people

perceive a mobile robot during navigation. Different to prior work,

though, we investigate few-shot learning, e.g., we consider learn-

ing from 4 examples versus 200+ examples as in [65]. To achieve

sample-efficiency, we propose to use LLMs for the inference task.

Other recent work in HRI explores using LLMs for zero-shot

inference, e.g., to predict human trust towards a robot [63], identify

socially-appropriate robot navigation paths [46], identify robot er-

rors [31], predict whether robot actions are explicable or legible [56],

and whether a robot acted fairly [10]. While zero-shot prompting is

practical, our results suggest that providing a few examples to LLMs

can improve how well they infer human perceptions of robots.

Few-Shot Learning with LLMs. In-context learning (ICL) con-

sists of conditioning LLMs on demonstration examples at inference

time, without modifying the model’s parameters [7, 15, 32, 39]. This

makes ICL appealing for robotics, where adaptation to new situa-

tions and users is often required, and where full model fine-tuning —

such as with LoRA [25] — can be impractical due to computational

cost and latency. Thus, ICL has gained popularity for adapting robot

behavior (e.g., [13, 58, 62]). To our knowledge, our work is the first

to use ICL to infer human perceptions of robots.
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Figure 2: ICL overview: An LLM predicts a person’s perception of a robot on an evaluation example given a set of demonstrations
in the prompt. In (a), demonstrations are gathered from interactions with users who are different from the personwho generated
the evaluation example. In (b), the demonstrations include examples from the same user who provided the evaluation example.

LLM-as-a-judge. Our work can be seen as an instance of the “LLM

as a judge” paradigm, whereby an LLM is used to evaluate and

assess the quality, relevance, or accuracy of outputs generated by

other AI models. Prior work in machine learning has investigated

whether LLMs with zero-shot or few-shot prompting can define re-

wards for Reinforcement Learning [29] and model user judgments

about the behavior of an LLM [16, 30, 34]. For example, Kwon et

al. [29] proposed prompting an LLM to assign reward values to an

agent based on state-action trajectories from interaction scenarios.

Their results demonstrate the feasibility of using LLMs to model

user-aligned evaluations in games like the Ultimatum Game. Fur-

ther, Dong et al. [16] proposed to personalize LLM predictions by

providing a description of a persona, and Lau et al. [30] proposed

to use the ICL capabilities of transformers to dynamically adapt

LLM behavior to individual preferences in simulated human popu-

lations. Inspired by this work, we study the impact of ICL in HRI

and evaluate personalized prompting in physical navigation tasks.

3 Method
We propose using LLMs with In-Context Learning to predict hu-

man perceptions of robots. The remaining of this section describes

the ICL approach applied to a navigation scenario to facilitate the

explanation; however, the same ICL formulation could be applied

to other HRI interaction scenarios in the future.

Let D = {(𝑝𝑖 , o𝑖 , 𝑦𝑖 )}𝑁𝑖=1 be a dataset of human-robot interac-

tion episodes, each having a finite time horizon 𝑇 , that were col-

lected when the robot interacted with a given person 𝑝𝑖 . A sample

(𝑝𝑖 , o𝑖 , 𝑦𝑖 ) has three values: the person index 𝑝𝑖 ∈ [1, 𝑃], a set of
robot observations o𝑖 , and a perception label 𝑦𝑖 provided by the

person 𝑝𝑖 in relation to the robot’s behavior. The label was collected

at the end of the episode, when the person 𝑝𝑖 completed a survey to

provide their momentary perceptions of the robot. Following [65],

we consider these perceptions as binary labels, e.g., a 𝑦𝑖 indicates

whether the robot behaved competently (𝑦𝑖 = 1) or not (𝑦𝑖 = 0)

according to the person 𝑝𝑖 . The observations o𝑖 are gathered by

the robot during the interaction episode 𝑖 and, for example, include

motion trajectories for the robot, the person 𝑝𝑖 , and other nearby

people over the time horizon 𝑇 . Because our evaluation considers

interactions where a robot guides the person 𝑝𝑖 in an indoor envi-

ronment, we refer to this person as the robot’s “follower” (Fig. 1).

3.1 ICL Setups
Fig. 2 illustrates the ICL setups that we consider in this work, which

differ in terms of how prediction performance is measured. To ex-

plain the difference, consider an LLM M and a previously-unseen

evaluation example (𝑝𝑒𝑣𝑎𝑙 , o𝑒𝑣𝑎𝑙 , 𝑦𝑒𝑣𝑎𝑙 ) from a test set generated

from D. The main goal of the LLM is to correctly predict the label

𝑦𝑒𝑣𝑎𝑙 based on a string representation of the robot observations

o𝑒𝑣𝑎𝑙 , which we refer to as the query 𝑞 = 𝑠 (o𝑒𝑣𝑎𝑙 ), with 𝑠 (·) return-
ing the string representation. To make a prediction, the LLM is

additionally provided with the following information:

𝐶 = {𝐼 , 𝐷≠, 𝐷≈} (1)

where 𝐼 is the task instruction, and 𝐷≠ ∈ D and 𝐷≈ ∈ D are two

different sets of demonstrations:

- Non-personalized demonstrations. The set 𝐷≠ is gathered from

interactions with users other than 𝑝𝑒𝑣𝑎𝑙 : 𝐷≠ =
{
𝑠 (𝑝𝑖 , o𝑖 , 𝑦𝑖 )

}𝐿
𝑖=1

where 𝑝𝑖 ≠ 𝑝𝑒𝑣𝑎𝑙 and the function 𝑠 (·) transforms the data to strings

so the LLM can ingest it.

- Personalized demonstrations. The set 𝐷≈ is gathered from interac-

tions with the person 𝑝𝑒𝑣𝑎𝑙 : 𝐷≈ =
{
𝑠 (𝑝𝑖 , o𝑖 , 𝑦𝑖 )

}𝑀
𝑖=1

where 𝑝𝑖 = 𝑝𝑒𝑣𝑎𝑙

but o𝑖 ≠ o𝑒𝑣𝑎𝑙 . As before, 𝑠 (·) transforms data to strings.

Then, 𝐶 has 𝐾 = |𝐷≠ | + |𝐷≈ | demonstration examples in total.

Finally, the LLMM makes a prediction 𝑦 for the target 𝑦𝑒𝑣𝑎𝑙 as:

𝑟 = argmax

𝑟 ∈R
𝑓M (𝑟,𝐶, 𝑞) (2)

𝑦 = parse(𝑟 ) (3)

with 𝑟 ∈ R being the LLM’s string response, generated in an autore-

gressive manner with the model’s scoring function 𝑓M [15]. The

prediction𝑦 is extracted from the response 𝑟 via a parser. In contrast
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to supervised learning (as in [65]), the ICL formulation does not

involve any model fine-tuning and relies solely on prompting.

In the non-personalized ICL setup, there are no demonstration

examples that were collected from interacting with the person 𝑝𝑒𝑣𝑎𝑙 .

This corresponds to making inferences when the set of personal-

ized demonstration examples is empty, 𝐶 = {𝐼 , 𝐷≠, {}}. Thus, the
non-personalized setup can be seen as making predictions for an

unknown test user, as in Fig. 2(a). This setup induces a data split

similar to the supervised learning setups from prior work [64, 65].

Conversely, the personalized ICL setup corresponds to making

predictions when the set of personalized demonstration examples

is not empty. This can be seen as making predictions for a known
test user, as illustrated in Fig. 2(b). We study two cases for the latter

setup: in one case, only personalized examples are provided, so𝐶 =

{𝐼 , {}, 𝐷≈}; in another case, both non-personalized and personalized
examples are provided, so 𝐶 = {𝐼 , 𝐷≠, 𝐷≈}. Fig. 3 illustrates the

prompt structure for the non-personalized and personalized setups.

3.2 Observation Space
Based on findings from prior work [65], we utilize spatial behav-

ior features for predicting perceived robot performance in social

navigation scenarios. These features can be computed by mobile

robots using off-the-shelf approaches for people tracking (e.g., with

Kinect sensors [47]) and for robot localization [22].

For a given example (𝑝, o, 𝑦), the observations o provide a tem-

porally grounded and robot-centric view of the navigation scene,

encoding how the robot, the participant, and others in the environ-

ment move over time. The observations o span an 8-second time

horizon and are represented in a coordinate frame centered on the

robot’s pose at the initial timestep (𝑡 = 0). Temporally-varying data

is sampled at 1 Hz. The observations are:

– Goal Pose: The 2D position of the robot’s navigation goal relative

to the robot at 𝑡 = 0.

– Robot Trajectory: The robot’s 2D position and orientation at each

timestep of the time horizon.

– Follower Trajectory: The 2D position and orientation of the person

following the robot at each timestep of the time horizon.

– Nearby Pedestrians: The 2D positions and orientations of other

pedestrians at each timestep of the time horizon. We consider only

observed people within a 7.2-meter radius of the robot, which cor-

responds to the robot’s public space per Hall’s proxemic zones [23].

All 2D positions are encoded as (𝑥,𝑦) locations, and the ori-

entations 𝜃 are encoded as (cos𝜃, sin𝜃 ). The cos-sin encoding is

standard practice to ensure continuity for learning algorithms [50,

59, 64]. Although it is not as critical for LLMs, it helps supervised

learning models, which we compare against in our evaluation.

Fig. 3(b) illustrates how the observation features are included in

the LLM’s prompt. When a particular person is not detected in a

timestep, their position and orientation are indicated as “unknown”.

4 Experimental Setup
We evaluate ICL for predicting human perceptions of robot perfor-

mance using a real-world HRI dataset, which is an augmentation

of an existing dataset. Zhang et al. [65] contributed the SEAN TO-

GETHER dataset, which provides short episodes of human-robot

interaction during a social navigation task in semi-public university

Example i / Evaluation Example
The robot starts at (0, 0), and the robot's goal location is <goal (x, y) position>. 
The robot's positions (x, y): [sequence of robot (x, y) positions].
The robot's orientations (cos, sin): [sequence of robot (cosθ, sinθ) orientations].
The follower's positions (x, y): [sequence of follower (x, y) positions].
The follower's orientations (cos, sin): [sequence of follower (cosθ, sinθ) orientations].
Nearby person A's positions (x, y): [sequence of nearby person A (x, y) positions].
Nearby person A's orientations (cos, sin): [sequence of nearby person A (cosθ, sinθ) orientations].
…

Demonstration / Evaluation Example
The robot starts at (0, 0), and the robot's goal location is <goal (x, y) position>. 
The robot's positions (x, y): [sequence of robot (x, y) positions].
The robot's orientations (cos, sin): [sequence of robot (cosθ, sinθ) orientations].
The follower's positions (x, y): [sequence of follower (x, y) positions].
The follower's orientations (cos, sin): [sequence of follower (cosθ, sinθ) orientations].
Nearby person A's positions (x, y): [sequence of nearby person A (x, y) positions].
Nearby person A's orientations (cos, sin): [sequence of nearby person A (cosθ, sinθ) orientations].
…

Task Instruction
<Instruction about the navigation task of the mobile robot>
<Instruction about the prediction task of LLM>
<Instruction about spatial-temporal features>
<Instruction about performance label and output format>

Demonstration Examples
<Example 1>
Label: {"competence": 1}
...
<Example N>
Label: {"competence": 0}

Non-Personalized Setup 
(Unknown Test User)

Demonstration Examples 
(Different Followers)
<Example 1 (different follower)>
Label: {"competence": 1}
...

Personalized Setup 
(Known Test User)

Demonstration Examples 
(Same Follower as Eval)
<Example 1 (same follower)>
Label: {"competence": 0}
...

Evaluation Example
<Evaluation Example>
Label:

Evaluation Example
<Evaluation Example>
Label:

(a) Full prompt structure for ICL

(b) Prompt for a demonstration / evaluation 
example of the navigation task

Figure 3: Prompt structure (a), including the structure for an
example (b). The LLM is asked to predict robot competence.

environments. Each episode contained observations of the interac-

tion captured by the robot and corresponding human perceptions.

We expanded the dataset with approval of our local Review Board

using the same protocol and mobile robot. This increased the num-

ber of participants from 45 people to 69 people, totaling 404 labeled

interaction episodes. We named the augmented dataset SEAN TO-

GETHER v2. See the supplementary video for example episodes.

Data Collection Protocol. The robot, which can be seen in Fig. 1,

was built on a Pioneer 3-DX base. It was equipped with two Kinect

sensors (one looking forward and one backwards), and had a screen-

based face. It navigated autonomously through two public indoor

spaces on a university campus. One space was a pedestrian tunnel;

the other was a building entrance corridor.

The participants were not pre-recruited; rather, they engaged

with the robot opportunistically. As pedestrians encountered the

robot at the university, experimenters invited them to briefly follow

the robot to a nearby goal marked on the ground. The robot peri-

odically stopped during navigation and prompted the participants

to evaluate its behavior using a mobile interface.

The robot’s high-level behavior was implemented as in [65],

where it either moved efficiently toward the destination (Nav-Stack
behavior), spinned in place to appear confused (Spinning behavior),

and moved away from the goal (Wrong-Way behavior). The robot

switched between the high-level behaviors to maintain a consistent
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rate of sub-optimal behavior. The behaviors were designed to elicit

both positive and negative views of the robot while also avoiding

participant boredom or significant confusion.

Each behavior was executed for a fixed duration of 20-40 secs.

Shortly before or after a behavior change, there was a pause in

which participants rated the robot’s recent performance. They an-

swered 3 questions on a 5-point Likert format: “How competent was
the robot at navigating?” (Competence performance dimension);

“How surprising was the robot’s navigation behavior” (Surprise);
and “How clear were the robot’s intentions during navigation?” (In-
tention). As in [65], we inferred human perceptions based on an

8-second observation window preceding the participant’s response.

Performance Labels. Zhang et al. [65] showed that predicting

human perceptions of robots in a 5-point scale is very difficult even

for humans. Thus, we created the performance labels for our experi-

ments by binarizing the human ratings provided by the participants

during data collection. Specifically, we excluded neutral-labeled

examples, which were rare, and mapped the remaining responses

by converting ratings of 4 or 5 to positive labels, and ratings of 1 or

2 to negative labels. In total, we had 363 episodes for the prediction

of Competence, 351 for Surprise, and 375 for Intention.

Evaluation Procedure. Each perception dimension (Competence,
Surprise, and Intention) is a separate classification task. For each

dimension, we partitioned the participants into disjoint sets: 40%

for testing, 40% for training, and 20% for validation. The splits were

fixed across all experiments and conditions. To ensure that each

participant in the test set contributed usable evaluation data, we

only included participants who have at least one example with a

positive label, one with a negative label, and at least four additional

examples for personalization analysis. From each of the test partici-

pants, we randomly selected one positive and one negative example

as the evaluation examples, resulting in a balanced evaluation set.

Thus, we measured performance with classification accuracy.
All experiments are repeated 25 times because we use random-

ized demonstration sampling, whereby the demonstration examples

are randomly chosen from the training data. For each of the 25 runs,

all the models utilize the same demonstration and evaluation exam-

ples, andmake predictions based on the same feature representation

for the observations (as in Sec. 3.2) to ensure a fair evaluation.

5 Evaluation
We systematically investigated four research questions (RQs) using

a limited number of demonstrations that ranged from 𝐾 = 4 to 𝐾 =

64.
2
We used linear mixed model analyses estimated with REstricted

Maximum Likelihood (REML) [24, 49] to evaluate accuracy for

each performance dimension. The analyses considered Run ID as a

random effect because we repeated the experiments 25 times with

varying demonstrations. The independent variables varied per RQ.

5.1 Non-Personalized ICL with Different LLMs
Our first research question was:

RQ1: Do LLMs with ICL result in more accurate, non-personalized

2
Because LLMs can be biased by the distribution of target labels in the demonstration

examples for ICL [60], we always set 𝐾 to be a power of 2 so that we could balance

the number of positive and negative examples whenever possible.

predictions of human perceptions of robot performance in few-shot
learning scenarios than more traditional supervised learning?

In prior work [65], a Random Forest (RF) supervised learning model

provided state of the art performance for predicting human per-

ceptions of a guide robot. Thus, we compared the RF model in the

the SEAN TOGETHER v2 dataset against several LLMs: Gemini

2.0 Flash; GPT 4.1 mini; and Llama 3.2 90B. The first two LLMs are

closed-source models, while the latter one is open-source. Because

part of our motivation for these models is making inferences during
interactions, we limited the set of LLMs to “non-reasoning” models

that can produce predictions relatively quickly on the cloud, e.g.,

hundreds of tokens per second, by simply predicting one token at

a time in an auto-regressive fashion. For each LLM model, we also

considered two prompting strategies: one with Chain-of-Thought

(CoT) reasoning [61] that asked the model to “Do it step by step

and explain your answer”; the other involved no CoT reasoning.

While ICL provides the demonstration examples to the LLMs via

their prompt, the same demonstrations are used to train the RF from

scratch. We thus hypothesized that with fewer examples, the LLMs

would do better than the RF. To test this idea, we compared results

in two scenarios: having few demonstrations with 𝐾 = |𝐷≠ | = 4;

and having a larger number with 𝐾 = |𝐷≠ | = 64, which approached

the limit of the context window for Llama given our prompt (Fig. 3).

Results. Table 1 shows prediction accuracy on 25 runs with 𝐾 = 4

and 𝐾 = 64 demonstration examples. The best result for the RF was

on Surprise with 𝐾 = 64, where it provided close performance to

Gemini; otherwise, the RF model underperformed Gemini and GPT.

We analyzed the accuracy results with linear mixed models, one

per performance dimension. Each analysis considered Run ID as a

random effect, and Number of Demonstrations (𝐾 = 4 and 𝐾 = 64)

and Model (7 levels, each row of Table 1) as main effects. Also, the

analysis considered the interaction between the main effects.

The analysis indicated that the Number of Demonstrations (𝐾)

had a significant effect on the accuracy for Competence (𝐹 (1, 312) =
5.94, 𝑝 = 0.0154) and Surprise (𝐹 (1, 312) = 53.38, 𝑝 < 0.0001). For

Competence, a post-hoc Student’s t-test showed that 64 demonstra-

tions (𝑀 = 0.65, 𝑆𝐸 = 0.007) led to significantly higher accuracy

than 4 demonstrations (𝑀 = 0.64, 𝑆𝐸 = 0.006) – although the aver-

age difference was close enough that it lacked functional meaning.

A more pronounced significant difference was obtained for Surprise,
where 𝐾 = 64 led to an average accuracy of𝑀 = 0.64 (𝑆𝐸 = 0.01),

and 𝐾 = 4 led to 𝑀 = 0.60 (𝑆𝐸 = 0.01). We attribute the limited

effect of the 𝐾 demonstrations on accuracy (considering several

LLMs) to the challenge of processing long context windows [33].

For example, for Gemini No CoT with 𝐾 = 4, the context window

had about 3, 000 tokens, while 𝐾 = 64 led to about 36, 000 tokens.

Model had a significant effect on the prediction accuracy (𝑝 <

0.0001 for all performance dimensions). Fig. 4 shows significant

pairwise differences with Tukey HSD post-hoc tests. In general, the

Gemini and GPT models resulted in significantly higher accuracy

than Llama and RF. Although there were some significant differ-

ences in accuracy between the Gemini and GPT models, differences

were small, showing the generalizability of our ICL approach.

Lastly, we found that the interaction between 𝐾 and Model had a

significant effect on accuracy, with 𝑝 < 0.0001 for all performance

dimensions. For 𝐾 = 4, the Gemini and GPT models resulted in



, Qiping Zhang, Nathan Tsoi, Mofeed Nagib, Hao-Tien Lewis Chiang, Marynel Vázquez

Table 1: Results for RQ1. Average accuracy (± std. err.) of LLMs with ICL and Ran-
dom Forest (RF) over 25 repetitions. CoT stands for Chain-of-Thought prompting.
The Best , Second , and Third average results are highlighted.

Model CoT # Demo.
Examples (𝐾 ) Competence Surprise Intention

Gemini 2.0 Flash No 4 0.67 ± 0.01 0.65 ± 0.01 0.65 ± 0.02

Gemini 2.0 Flash Yes 4 0.72 ± 0.01 0.64 ± 0.01 0.69 ± 0.01

GPT 4.1 mini No 4 0.67 ± 0.01 0.64 ± 0.01 0.65 ± 0.01

GPT 4.1 mini Yes 4 0.69 ± 0.01 0.64 ± 0.01 0.68 ± 0.01

Llama 3.2 90B No 4 0.57 ± 0.01 0.55 ± 0.01 0.51 ± 0.01

Llama 3.2 90B Yes 4 0.61 ± 0.01 0.52 ± 0.01 0.57 ± 0.01

RF / 4 0.53 ± 0.02 0.57 ± 0.01 0.49 ± 0.02

Gemini 2.0 Flash No 64 0.72 ± 0.01 0.70 ± 0.01 0.67 ± 0.01

Gemini 2.0 Flash Yes 64 0.73 ± 0.01 0.67 ± 0.01 0.67 ± 0.01

GPT 4.1 mini No 64 0.71 ± 0.01 0.67 ± 0.01 0.65 ± 0.01

GPT 4.1 mini Yes 64 0.70 ± 0.01 0.66 ± 0.01 0.64 ± 0.01

Llama 3.2 90B No 64 0.53 ± 0.01 0.59 ± 0.01 0.45 ± 0.01

Llama 3.2 90B Yes 64 0.51 ± 0.01 0.48 ± 0.01 0.51 ± 0.01

RF / 64 0.66 ± 0.01 0.69 ± 0.01 0.61 ± 0.02

****

****
****

****

****
**

*
**

*

* ****
****

****

Figure 4: Model accuracy for RQ1. (****), (**),
and (*) denote 𝑝 < 0.0001, 𝑝 < 0.01, and 𝑝 <

0.05. Error bars are std. err. and are small.

significantly higher accuracy than RF and Llama in all dimensions.

For 𝐾 = 64, the post-hoc interaction tests showed that the Llama

models resulted in significantly lower accuracy, but other results

varied by dimension: forCompetence, Gemini CoT andNoCoT led to

significantly higher accuracy than the other models, except for the

GPT models; for Surprise, there was no significant difference for the
Gemini, GPT, and RF models; and for Intention, Gemini No CoT had

significantly higher accuracy than RF. In addition, for Competence,
Gemini CoT with only 𝐾 = 4 led to significantly higher accuracy

than RF and Llama with 𝐾 = 64, while for Intention, Gemini CoT

and GPT CoT with only 𝐾 = 4 led to significantly higher accuracy

than RF and Llama with 𝐾 = 64.

5.2 The Value of Spatial Observations for ICL
Our second research question was:

RQ2:Which spatial observations drove ICL performance with limited
demonstrations (𝐾 = 4)?

We compared making non-personalized ICL predictions in a few-

shot ICL scenario utilizing different types of observations: 1) the

goal and robot trajectory only; 2) the goal, robot trajectory, and

follower trajectory; and 3) the goal, robot trajectory, follower tra-

jectory, and other pedestrian trajectories, i.e., all observations in

Sec. 3.2. Thus, this RQ served as a feature ablation for ICL.

We limited our evaluation (and the following RQs) to Gemini 2.0

Flash with no CoT given our prior results, which showed strong

performance for this model. Focusing on one model also helped

reduce the cost of experiments and their carbon footprint [19].

Results. Fig. 5 shows prediction accuracy. For each performance

dimension, we fit a linear mixed model on accuracy considering

the Set of Observations provided to Gemini as main effect, and

Run ID as random effect. The Set of Observations had a significant

effect on Competence (𝑝 < 0.0001), Surprise (𝑝 < 0.0001), and Inten-
tion (𝑝 = 0.0007). Due to limited space, we summarize significant

pairwise differences from Tukey HSD post-hoc tests in Fig. 5. The

results show that the LLM’s performance was not only due to using

information about the robot trajectory and goal, but also to using

pedestrian observations (including observations of the follower).

5.3 Increasing ICL Demonstrations
Our third research question was:

RQ3: How does ICL performance vary with an increasing number of
demonstration examples (𝐾) in the non-personalized setup?

We analyzed in more detail the impact of 𝐾 on the ICL predictions

for Gemini 2.0 Flashwith noCoT, which provided good performance

in RQ1. We considered 𝐾 ∈ {4, 8, 16, 32, 64}, and two supervised

learning baselines trained from scratch: RF (as in RQ1), and a neural

network with a GRU architecture [9] (as in [64]). Also, we consid-

ered two other baseline models that required no training. First, we

compared results with a weighted random sampling model (WR)

that predicted a label by sampling from the distribution of targets

in the demonstrations. This helped understand the complexity of

the prediction problem. Further, we evaluated Gemini 2.0 Flash in

a zero-shot prediction scenario, where the task instruction was the

same as for ICL but no demonstrations were provided to the LLM

(thus 𝐾 = 0). This helped gauge how much the demonstrations

contributed to the LLM’s performance given its world knowledge.

Results for Gemini only. The blue bars and line in Fig. 6 show

average accuracy with an increasing 𝐾 for Gemini. For each per-

formance dimension, we analyzed accuracy using a linear mixed

model with Run ID as a random effect, and Number of Demon-

strations (𝐾 ∈ {0, 4, 8, 16, 32, 64}) as a main effects. The analysis

showed a significant effect for 𝐾 on all performance dimensions

(𝑝 < .0001). For Competence, a Tukey HSD post-hoc test showed

that the zero-shot model (𝐾 = 0) led to significantly lower accu-

racy than all ICL models (𝐾 > 0). Also, ICL with 𝐾 ∈ {64, 16} had
significantly higher accuracy than ICL with 𝐾 = 4. For Surprise,
zero-shot Gemini also led to significantly lower accuracy than ICL.

Further, ICL with 𝐾 = 64 led to significantly higher accuracy than
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Figure 5: Results for RQ2. Average accuracy for Gemini 2.0
Flash NoCoTwith𝐾 = 4. Themodel always takes as input the
goal location, but the other spatial observations are ablated.
Error bars are std. err. The symbols (****), (***), (**), and (*)
denote 𝑝 < 0.0001, 𝑝 < 0.001, 𝑝 < 0.01, and 𝑝 < 0.05.

𝐾 ∈ {16, 8, 4}. For Intention, ICL with 𝐾 ∈ {32, 16} led to signifi-

cantly higher accuracy than 𝐾 = 4 and the zero-shot model. Taken

together, these results suggest that the LLM benefited from having

demonstrations.

Results for Gemini vs Other Models. Fig. 6 shows results for all
the models. We analyzed prediction accuracy on each performance

dimension using a linear mixed model, but this time excluded the

zero-shot case for which the supervised learning models could not

be fit. The linear mixed model considered Run ID as a random

effect, Number of Demonstrations (𝐾 ∈ {4, 8, 16, 32, 64}) and
Model (Gemini, RF, GRU, WR) as a main effects, and the interaction

between the Number of Demonstrations and Model. Because of

limited space, we focus on discussing the interaction effect, which

is the most relevant for RQ3 and was significant for Competence
(𝑝 = 0.0275), Surprise (𝑝 < 0.0001), and Intention (𝑝 = 0.0036).

The Tukey HSD post-hoc tests for the interaction effect con-

firmed the superiority of the Gemini model in most cases. For

example, for Competence, Gemini with 𝐾 ∈ {64, 32, 16, 8} led to sig-

nificantly higher accuracy than all other models, except for Gemini

with 𝐾 = 4 and RF with 𝐾 = 64. In contrast to our prior results for

RQ3 considering Gemini only, the post-hoc tests for the interaction

effect between the Number of Demonstrations and Model resulted

in no significant pairwise differences for Gemini across 𝐾 = {4, 8,
16, 32, 64}. RF benefited more from an increasing 𝐾 . The 𝑅𝐹 model

with 𝐾 = 64 demonstrations led to significantly higher accuracy

than 𝑅𝐹 with 𝐾 = {4, 8} across all performance dimensions.

5.4 ICL with Personalized Demonstrations
Our last research question was:

RQ4: Do personalized examples improve in-context learning?

Because individual factors can influence human perceptions of

robots, we examined whether we could improve ICL accuracy with

prompts constructed with demonstration examples from the same

user who provides the evaluation example (as in Fig. 2(b)). Follow-

ing RQ2 and RQ3, we considered only Gemini 2.0 Flash with no

CoT for this experiment. Also, we considered three values for the

Figure 6: Results for RQ3. Accuracy of Gemini 2.0 Flash
No CoT (Gemini), Random Forest (RF), Recurrent Network
(GRU), and Weighted Random Sampling (WR) with varying
number of demonstrations (𝐾). The blue line indicates aver-
age accuracy for Gemini 2.0 Flash with a zero-shot prompt.

total number of ICL demonstrations 𝐾 : 4, 8 and 68 total examples.

Specifically, for each 𝐾 value, we either had:

– 0 personalized demonstrations (so |𝐷≈ | = 0 and 𝐾 = |𝐷≠ |); or
– 4 personalized demonstrations (so |𝐷≈ | = 4 and 𝐾 = |𝐷≠ | + 4).

Results. The results are shown in Table 2. For each performance

dimension, we analyzed accuracy using a linear mixed model with

Run ID as a random effect, the Number of Personalized Demon-

strations (|𝐷≈ | ∈ {0, 4}) and the Total Number of Demonstrations

(𝐾 ∈ {4, 8, 68}) as the main effects, and their pairwise interaction.
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Table 2: Results for RQ4. Mean accuracy (± std. err.) of Gemini 2.0 Flash with varying numbers of personalized and non-
personalized demonstrations, over 25 repetitions. The Best , Second , and Third average results are highlighted.

Row

Num. of Non-Personalized
Demonstrations ( |𝐷≠ |)

Num. of Personalized
Demonstrations ( |𝐷≈ |)

Total Number of
Demonstrations (𝐾 ) Competence Surprise Intention

1 0 4 4 0.71 ± 0.01 0.69 ± 0.01 0.72 ± 0.00

2 4 0 4 0.67 ± 0.01 0.65 ± 0.01 0.65 ± 0.02

3 4 4 8 0.76 ± 0.01 0.73 ± 0.01 0.76 ± 0.01

4 8 0 8 0.68 ± 0.01 0.65 ± 0.01 0.64 ± 0.02

5 64 4 68 0.79 ± 0.01 0.76 ± 0.00 0.75 ± 0.01

6 68 0 68 0.72 ± 0.01 0.70 ± 0.01 0.69 ± 0.01

The Number of Personalized Demonstrations (|𝐷≈ |) had a signifi-
cant effect on accuracy on all performance dimensions (𝑝 < 0.0001).

The post-hoc test showed that using 4 personalized demonstrations

led to significantly higher accuracy than using zero (|𝐷≈ | = 0).

Additionally, the Total Number of Demonstrations (𝐾) had a

significant effect on the accuracy. For Competence and Surprise
(𝑝 < 0.0001), Tukey HSD post-hoc tests indicated that 𝐾 = 68 total

examples led to significantly higher accuracy than 𝐾 = 8, which

also led to significantly higher accuracy than 𝐾 = 4. For Intention
(𝑝 = 0.0052), 𝐾 = 68 led to significantly higher accuracy than 𝐾 = 4.

Lastly, we found that the interaction between |𝐷≈ | and 𝐾 had a

significant effect on accuracy for Surprise (𝑝 = 0.0258) and Intention
(𝑝 = 0.0364), but not Competence. For Surprise, using 𝐾 = 68 or 𝐾 =

8 demonstrations, including |𝐷≈ | = 4 examples, led to significantly

higher accuracy than the other options in Table 2. For Intention,
using 𝐾 = 68 and |𝐷≈ | = 4, or using 𝐾 = 8 and |𝐷≈ | = 4, led

to significantly higher accuracy than the other options except for

using only𝐾 = |𝐷≈ | = 4 personalized demonstrations. We conclude

that the personalized demonstrations helped ICL performance.

Qualitative Analysis. To better understand ICL performance, we

manually inspected predictions by Gemini 2.0 Flash No CoT with

|𝐷≠ | = 64 and |𝐷≈ | = 4, for a total of 68 demonstrations. As shown

in row 5 of Table 2, this model had highest average accuracy on

Competence and Surprise, and was second best for Intention.
For each perception dimension, we selected three sets of 10

examples from the test set: the 10 examples with the highest pre-

diction accuracy, the 10 with the lowest, and the 10 with accuracy

closest to 50% across the 25 runs of the model. Then, we visual-

ized the navigation episodes and identified recurring patterns that

correlated with the model’s success, failure, or prediction ambigu-

ity. Unsurprisingly, the model achieved high accuracy on episodes

with consistent robot behaviors, such as steady progress towards

the goal or aimless rotation far from it. Low and middle-accuracy

predictions mainly stemmed from:

1) Semantic ambiguity of the robot’s final state (6/20 examples for

Competence; 4/20 examples for Surprise; and 8/20 examples for

Intention). We did not provide the LLM a specific threshold for

when the robot reached the goal, which made it difficult to gauge

how close was close enough to complete the navigation task.

2) Transitional ambiguity from mid-episode behavioral shifts, such

as corrective turns or reversals (5/20 examples for Competence, and
6/20 examples for Surprise and Intention). The robot showed both

effective and ineffective behavior within an episode.

3) Contextual and kinematic ambiguity in the robot behaviors, like

navigating away from the goal or rotating in place (7/20 examples

for Competence, 6/20 for Surprise, and 7/20 for Intention). Model

uncertainty seemed to stem from subtle variations in the context

(e.g., proximity to the goal) or kinematics (e.g., a slow drift vs. a

rapid retreat) that were under-sampled in the demonstrations.

6 Discussion
Summary of Key Findings.We proposed an In-Context Learning

approach for LLMs to infer human perceptions of robot perfor-

mance. The approach used observations of interactions to predict

user evaluations of robot competence, surprisingness, and intent.

Our experiments in navigation scenarios showed that our ICL ap-

proach not only matches or exceeds the performance of traditional

supervised models with a fraction of the data but also outperforms

zero-shot LLM predictions. Further, accuracy is enhanced by per-

sonalizing in-context examples to the test user.

ICL Limitations. Despite its promise, our work also highlighted

limitations of ICL. For example, we found mixed results on whether

more demonstrations increased prediction accuracy. We suspect the

root cause is that with more examples, the context window for the

LLM is longer, which can make LLMs struggle [33]. Also, we inves-

tigated choosing demonstrations by random sampling, but perhaps

a more thoughtful approach could help LLMs better leverage more

demonstrations [35, 66]. Importantly, ICL required prompt engi-

neering effort. For example, in early experiments, we found that

unintuitive values for the target label could reduce performance,

such as using “surprise = 0” to indicate surprising behavior. In a

qualitative analysis, we also found that semantic ambiguity in what

it meant to complete the navigation task in our prompt could lead

to erroneous predictions. More systematic experiments are needed

to assess the robustness of the ICL approach to prompt variations.

Future Work. Limitations of our research also point to future

research directions. First, our evaluation focused on a specific robot-

following task. More work is needed to validate ICL across more

diverse interactions. Second, our observation representation was

limited to spatio-temporal features provided as strings to LLMs.

Incorporating multimodal cues (e.g., using videos captured from the

robot) could increase performance with multi-modal large models.

Ultimately, the most compelling application of this work is robot

behavior improvement. A robot could use its predictions of user

perceptions as direct feedback to adjust its behavior policy, closing

the loop from passive inference to active, socially-aware adaptation.
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