CUDA-Optimized real-time rendering
of a Foveated Visual System

Elian Malkin, Arturo Dezaf, Tomaso Poggiot*
Center for Brains, Minds and Machines (CBMM)
Massachusetts Institute of Technology
{emalkin,deza}@mit.edu;tp@ai.mit.edu

Abstract

The spatially-varying field of the human visual system has recently received a
resurgence of interest with the development of virtual reality (VR) and neural
networks. The computational demands of high resolution rendering desired for VR
can be offset by savings in the periphery [16], while neural networks trained with
foveated input have shown perceptual gains in i.i.d and o0.0.d generalization [27, 16].
In this paper, we present a technique that exploits the CUDA GPU architecture to
efficiently generate Gaussian-based foveated images at high definition (1920px x
1080px) in real-time (165 Hz), with a larger number of pooling regions than
previous Gaussian-based foveation algorithms by several orders of magnitude [10}
271, producing a smoothly foveated image that requires no further blending or
stitching, and that can be well fit for any contrast sensitivity function. The approach
described can be adapted from Gaussian blurring to any eccentricity-dependent
image processing and our algorithm can meet demand for experimentation to
evaluate the role of spatially-varying processing across biological and artificial
agents, so that foveation can be added easily on top of existing systems rather than
forcing their redesign (“emulated foveated renderer” [24]). Altogether, this paper
demonstrates how a GPU, with a CUDA block-wise architecture, can be employed
for radially-variant rendering, with opportunities for more complex post-processing
to ensure a metameric foveation scheme [35]]. Our code can be found herel[21]].

1 Introduction

Understanding the computational and representational goal of the foveated nature of the human
visual field is a theme of ongoing research [25, [19, [11 29} |5, [12]. Over the last decade, several
works have suggested foveation as trying to achieve a computational goal tailored towards efficiency.
These works support the previous hypothesis by proposing simulated experiments where a foveated
perceptual system can achieve the same asympototic performance as a non-foveated perceptual system
without any beneficial implications for a standard perceptual test such as object recognition (Akbas
& Eckstein [2]]). On the other hand, another current of thought has recently tried to find support for
the representational goal of foveation (Rosenholtz [30]]). Works of this flavor generally have shown
that under specific perceptual tests, a foveated perceptual system can achieve an advantage over
non-foveated perceptual systems by learning distinct representational signatures leading to robustness
to scene occlusion (Deza & Konkle [6]), or reduction of false alarm rates in object detection (Pramod
et al. [27])).

However, all previous works have approached this problem by studying a stationary visual agent
that does not interact with the environment — a critical component suggested in developmental and
perceptual psychology [[13} (14} 134]] that has slowly permeated into robotic systems [9} 132} [15 [18]].

*Observations: First author is an undergraduate; t:Denotes shared senior authorship.

2nd Workshop on Shared Visual Representations in Human and Machine Intelligence (SVRHM), NeurIPS 2020.

https://github.com/ElianMalkin/foveate_blockwise

Figure 1: a): A 1920 x 1080 (PNG) image divided into 32 x 32 pixel blocks, each colored according
to its distance from the fixation point (image center). b): Foveated 1920 x 1080 image, computed
with our foveated optimization scheme based on adaptive gaussian blurring (generated at a rate of
165 Hz) ¢): Close up of image a) at transition from fovea into periphery. d): Corresponding close up
of image b). e): Original image. Notice that even without image blending such as cosine windowing
functions, the final foveated output from b) looks smoothly generated in reference to e).

Thus anticipating the advent of robotic agents that may require a foveated visual system to explore
and interact with the environment (Orhan et al. [23])), — it will be critical to develop real-time
efficient foveated image transforms if we are to study the perceptual implications of such a set of
transforms (Deza et al. [[7]], Fridman et al. [8]], Kaplanyan et al. [16]). Without such rendering speed,
it will be computationally intractable to train reinforcement learning (RL) agents that require millions
of trials — thus image frames — for training; or to deploy spatially-varying transformations on actual
robotic agents such as drones that rely on portable GPUs.

In this paper we will address this issue by developing a neuro-physiologically inspired CUDA
optimized foveated visual transform — that is based on adaptive gaussian blurring [10], which
emulates convergence of retinal ganglion cells (RGC) as a function of retinal eccentricity in the visual
field of a model system (Baden et al. [3]). Thus as we move one step forward in the direction of
high-speed foveated rendering, the two-fold goal of this algorithm is: 1) To enable computational
experiments that evaluate the role of spatially-varying processing via gaussian-like computation [27]]
in the periphery (RGC convergence) across biological and artificial agents [26, [33]); 2) To aid
in the computational rendering tractability of next-generation Augmented/Virtual Reality (AR/VR)
systems and robots (i.e. drones) that require adaptive low-energy powered systems [28] [37].

2 Proposed Approach: Block-wise Foveation

Block-wise foveation exploits the CUDA GPU architecture to efficiently generate foveated images
with no subsampling and independently of the number of pooling regions. Our approach can be
summarized in Figure[T} where the final image is assembled from square fragments, each of which
has been blurred according to the distance from its midpoint to the point of fixation (that can be
displaced anywhere in the visual field). To achieve this, each fragment in the final image is produced
by a single CUDA block, with each block capable of using a different Gaussian filter to produce its
uniquely assigned set of pixels. Given that the complexity is independent of the (n)-number of

pooling regions; n can be much larger than pre-
vious foveation algorithms that are Gaussian-based
by several orders of magnitude [10, 27], producing
a smoothly foveated image that requires no further
blending or stitching, and that can be fit for any con-
trast sensitivity function. By eliminating the need to
subsample and interpolate we produce a higher quality
adaptive blur transform with virtually no artifacts.

Foveating in blocks takes advantage of the small
amount of shared memory available and specific to
each CUDA block. Blurring is performed via sepa-
rable convolution which is done in two stages - hori-
zontal and vertical (See Appendix [5.1]— as a similar
strategy is employed in the Gaussian Pyramid [4] and
Feature Congestion [31]]). The output of the first stage
— the intermediate result — can be stored within shared
memory, where only the threads within the block can
access it. In doing so, the blocks work independently
of each other to produce blurred fragments, making it
simple to distribute blurring strengths across blocks.
Figure 2] shows the wide range of Gaussian filters used
to mimic the spatial frequency cut-off rates of the hu-
man retina — our algorithm concurrently employs all

Distribution of filter
sizes across fragments
(modeling human CSF) 23

53

51

49

Filter sizes labeled as edge
of square filter in pixels

31

45

39 37

Figure 2: The filter sizes used to generate the
foveated image in Figure[T] labelled in pro-
portion to their representation in the image.
The fragment patchwork has a total of 26
pooling regions. The CUDA kernel executes
in 1.65 ms on an NVIDIA GTX 1060 GPU.

filters to process the image in a single pass (Algorithm|[T).

Algorithm 1 CUDA Optimization Scheme for Foveated Rendering (See Appendix for detail)

1: Choose fragment size > [CPU - Initial Setup:]
2: Define grid of blurring strengths blur grid using retinal map or contrast sensitivity function

3: Transfer array of Gaussian filters and array of cumulative sizes to GPU constant memory

4: Transfer blur grid to GPU global memory

5: Designate fixation point f > CPU - With every frame: [Asynchronous]
6.

7

8

Calculate blur grid offset to center on f, and fragment shift to minimize fovea
Transfer input image from CPU pinned memory to GPU global memory
. Place padded fragment into shared memory > GPU - With every frame: [Asynchronous]
9: Perform horizontal convolution on padded fragment data
10: Place result of horizontal convolution into shared memory
11: Perform vertical convolution on horizontal convolution data
12: Write result to output array
13: Transfer output image to CPU pinned memory

3 Experiments

To quantify the efficiency and precision of our foveated rendering scheme we devised a set of 2
experiments that assess both the rendering precision in addition to the theoretical-practical compute
time along several hyper-parameters that are systematically varied.

3.1 Localized Image Quality Assessment

The Structural Similarity Index Measure (SSIM) is typically used to evaluate the quality of a
compressed image with reference to the original [38]. We employ this metric to assess the accuracy
of our implementation, using ‘perfect’ (loss-less) pixel-wise foveation as reference. Block-wise
foveation scores lowest (0.971) near the fixation point, as can be seen in Figure 3] The spatial
frequency function is steepest at the fovea (See Appendix [5.2.1)), so relatively large differences arise
at the edges of fragments, where the image is either over-blurred or under-blurred (blurring strength is
set appropriate to the center of each fragment). To mitigate this effect, we shift the tiling of fragments
to center a single fragment on the fixation point. This ensures that the untouched foveal region is as
small as possible, minimizing the very first blurring step where the spatial frequency function is at its

Standard fragments Average SSIM Map

Shifted fragmen

Figure 3: Average SSIM map was computed from 30 images including both natural, artificial, and
abstract scenes. SSIM results show algorithm produces foveated images nearly identical to perfect
foveation, with worst-performing regions scoring 0.971. Disparity is greatest near the fixation point
where the spatial frequency drop off is steepest - shifting fragments to minimize foveal area (red)
reduces disparity. Reference SSIM images were perfectly foveated on a single-pixel basis in 550 ms.

steepest. By tracking the center of the fixation point, the shift also serves to smooth the translation
of the blur across the frame, whereas fixed tiling would force the blur to snap into place when the
fixation point crosses the boundary of a fragment.

The ring-like pattern of under-blurring and over-blurring can be seen to continue out into the periphery
with decreasing disparity as the function gradient becomes shallower. Although the edges of the
fragments, where the steps occur, are imperceptible on still frames (Figure [T), they can become
faintly visible with strong foveation and a large fragment size, as can be seen in the accompanying
video| [20]. Reducing the size of the fragments eliminates these artifacts. Moreover, it may be the
case that these artifacts would not be perceptible to a user looking at the fixation point, though this
would need to be evaluated through psychophysical experimentation.

3.2 Computation Time

OOJ_J_J_JJ_J_JJOO OO_J_J‘_J_JDD 00 Operations/Pixel vs Fragment Size
00QUUUALYVLLGEe ooQuuuos
80011186 66)86
32x32 G0QAJII00000 00
G800 0000080 080) 00
08000000808 80)80
08020000 ooGRaNee
16x16 @G220 J1 1)))00 00QUAUNee
O O ‘J ‘J ‘J ‘J ‘J ‘J ‘J JD O ACTIVE (PADDING
OO,JJJJJJJJOO -J POSITION o PIXEL
ODJ‘JJJ-JJJJOO (_\ INACTIVE FRAGMENT
8x8 OD_JJ‘JJ_J-JJJDO POSITION PIXEL

G - Filter Size
G=35
G=29
G=23
s00| | G=17
\ o=

G=

700

600

n

5

operations per fragment pixel

o 10 20 30 40 50 60
fragment width (pixels)

Figure 4: Fragment size (marked in pixel units) determines the smoothness of the boundaries between
pooling regions, however, smoother boundaries are slower to compute. Larger fragments require
fewer operations per output pixel. Fragment pixels are padded for the convolution operation - e.g.
positions at which horizontal convolution is performed are shown as active positions. The ratio of
padding to fragment pixels is lower for larger fragments, meaning relatively fewer operations are
performed in the padding, for a given filter size (G) in pixels.

The time to compute a foveated image depends on the size of the fragments used. Smaller fragments
are desirable because they result in more circular boundaries between pooling regions (Figure [).
Moreover, the smaller the fragments, the more pooling regions can be fit into the frame of the image.
This leads to a finer discretization of the foveation curve and hence a better approximation of smooth
retinal blurring. Smaller fragments are, however, slower to compute. Since it is necessary to perform
work in the padding around a fragment during separable convolution, larger fragments “distribute”
this extra work across more output pixels (Figure F).

https://youtu.be/Rr5oaiIsVbA

Block-wise vs Pyramid Foveation Block-wise vs Pyramid Foveation
Image Size Comparison (Constant 32x32 Fragments) Fragment Size Comparison (Constant 1024x1024 Image Size)
9 T T T T T T T

— @ 2048x2048 — @ 1024x1024 —@— S12x512 (L

8 blockwise blockwise blockwise 8L Q- 8x8 Fragments
——@- - 2048x2048 1024x1024 —— @ - 512x512 —@— 16x16 Fragments
2L pyramid pyramid pyramid S O 32x32 Fragments
A Pyramid

F 0--0-g 9-0-0--0-9_-9--8- g -0-0

Execution Time (ms)
Execution Time (ms)

Vo gl
1%
o0 ©
o o0 0 0°
o 10 20 30 40 50 60 70 80 o 10 20 30 40 50 60 70 80
Foveation Strength (degree eccentricity of image corner) Foveation Strength (degree eccentricity of image corner)

Figure 5: Evaluation is performed with RGB 8-bit images on a GTX 1060 GPU. For the block-wise
approach, CUDA kernel execution is timed. For the Pyramid approach, mipmap generation and
sampling is timed (See Appendix [5.1)). Note that blue lines represent the same data in both figures.

In Figure 5] we compare the kernel execution time of our algorithm with the execution time of
Gaussian pyramid foveation implemented in OpenGL [17]. The Gaussian pyramid approach generates
amipmap which is then used to sample or interpolate output pixels (Appendix[5.1). Interpolation tends
to produce blocky results, as compared to the smooth blur of our convolutional block-wise approach.
The execution time of our algorithm rises with increasing foveation strength, which corresponds
to larger Gaussian filters and hence more operations during convolution. The performance of the
Gaussian pyramid approach only varies with image size, as for a given image size mipmap generation
and subsequent sampling require the same number of operations across all foveation strengths.

While Figure [5]demonstrates timings for center-frame fixation, execution time also varies with the
location of the gaze in the image. Fixating on the edge of the frame introduces larger filters on the
opposite edge, when compared to center fixation, therefore increasing computation time. On top of
kernel execution, data transfer between the CPU and the GPU can significantly affect the total time
to generate a foveated image. Although the 1920 x 1080 px image in Figure[T]took just 1.65 ms to
foveate, the time spent in transfer was 4.4 ms (using pinned memory), leading to a foveation rate
of 165 Hz. In general, several steps can be taken to further reduce the total foveation time, if more
complicated foveation structures are required (See Discussion). Execution time can be accelerated
by using half-precision floating-point arithmetic, as well as more powerful GPUs. The impact of data
transfer on real-time performance can be mitigated by overlapping kernel execution with transfers to
and from the GPU. Figure [6|showcases other CUDA-Driven optimization strategies that are discussed
more in depth in Appendix

69. 0 Kernel Execution Time vs Optimizations

32 x 32 Fragments

5r 1920 x 1080 Image
Distribution of filter RGB
sizes across fragments @
(modeling human CSF) £ 4l
[}
£
L = |
c
0
- -
3
[2t]
o s fior et w
a5
1k]
39
o 1 11 11 11 |
cuda block shape: fixed one-D
data handling: no reuse reuse
image data from: global shared © © ®©@ © O o
filter data from: global constant O O O @ O O
intermediate data from: global shared © © © © @® o

Figure 6: Impact of optimizations on performance. Evaluation done on NVIDIA GTX 1060 GPU (6
GB). Only kernel execution times are shown - memory transfers excluded.

Kangaroo

———

Figure 7: Sample retinal ganglion cell (RGC) density distributions across retinas of different species.
Left: the smoothed RGC maps of the kangaroo, hawk, and dog are shown (sketched from Baden et al.
[3]). Each map is used to asymmetrically foveate an image in real-time of a mosaic (Middle) and an
image of the potential environment of the relevant animal (Right). Our rendering pipeline opens the
door towards training RL agents and CNNs on visual input of spatially-varying properties.

4 Discussion

The flexibility of our block-wise algorithm means that it can be extended to non-radially-symmetric
functions with no additional computational overhead. Any image of the shape f(z,y) : R xR = R
can be used to describe blurring strength throughout the rendering frame, such that the resultant
foveation can represent any desired retinal structure. Figure [7] shows an example of how our
rendering scheme can be adapted to a variety of animal retinas given their retinal ganglion cell (RGC)
convergence maps. These images allow us to probe the use of different retinal structures through
reverse-engineering of perceptual architectures, where we can train different machine vision systems
with asymmetric image processing schemes to evaluate how well they may learn a task such as
object or scene classification. Naturally, each RGC map is usually coupled with its own set of image
statistics such as colors, vantage point and structure.

Altogether, rendering stimuli as viewed from a
biological agent may aid us in understanding the
development of their visual system. In return,
given that our framework is real-time, it opens
the door to test new theories of visual perception
via Reinforcement Learning (RL) agents that
may require millions of visual training frames
that need not be spatially uniform, and that can
later be deployed in robots (Figure [8).

Finally, the rise of several AR/VR systems that — e -
have human users (who have foveated visual sys- =P z

tems) may benefit from accelerated rendering | !

systems as well [16]. Whether it is for purely T
entertainment purposes (video games), Human- Figure 8: Future applications of real-time foveated
Machine Interfaces such as tele-operation, or rendering may enable training RL Agents that learn
VR-driven psychophysics, the high demand of with foveated visual systems in virtual environ-

real-time foveated rendering procedures may be- ments, to later deploy them into drones for auto-
come useful in the near future. matic or semi-automatic (VR-assisted) navigation.

Acknowledgments

Authors would like to thank MIT’s Center for Brains, Minds and Machines (CBMM), the National
Science Foundation (NSF), MIT Quest for Intelligence, and Lockheed Martin. Authors would also
like to thank Ronald Alvarez for permissions to use the upper portion of Figure 8, and members of
the Poggio Lab for insightful comments during lab discussions.

References

[1] CUDA C++ Programming Guide, Sep 2020. URL https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html.

[2] Akbas, E. and Eckstein, M. P. Object detection through search with a foveated visual system.
PLoS computational biology, 13(10):e1005743, 2017.

[3] Baden, T., Euler, T., and Berens, P. Understanding the retinal basis of vision across species.
Nature Reviews Neuroscience, pp. 1-16, 2019.

[4] Burt, P. and Adelson, E. The laplacian pyramid as a compact image code. IEEE Transactions
on communications, 31(4):532-540, 1983.

[5] Cheung, B., Weiss, E., and Olshausen, B. Emergence of foveal image sampling from learning
to attend in visual scenes. arXiv preprint arXiv:1611.09430, 2016.

[6] Deza, A. and Konkle, T. Emergent properties of foveated perceptual systems. arXiv preprint
arXiv:2006.07991, 2020.

[7] Deza, A., Jonnalagadda, A., and Eckstein, M. P. Towards metamerism via foveated style transfer.
In International Conference on Learning Representations, 2019. URL https://openreview!|
net/forum?id=BJzbG20cFQ.

[8] Fridman, L., Jenik, B., Keshvari, S., Reimer, B., Zetzsche, C., and Rosenholtz, R. Sideeye:
A generative neural network based simulator of human peripheral vision. arXiv preprint
arXiv:1706.04568, 2017.

[9] Gan, C., Schwartz, J., Alter, S., Schrimpf, M., Traer, J., De Freitas, J., Kubilius, J., Bhandwaldar,
A., Haber, N., Sano, M., et al. Threedworld: A platform for interactive multi-modal physical
simulation. arXiv preprint arXiv:2007.04954, 2020.

[10] Geisler, W. S. and Perry, J. S. Real-time foveated multiresolution system for low-bandwidth
video communication. In Human vision and electronic imaging III, volume 3299, pp. 294-305.
International Society for Optics and Photonics, 1998.

[11] Han, Y., Roig, G., Geiger, G., and Poggio, T. Scale and translation-invariance for novel objects
in human vision. Scientific reports, 10(1):1-13, 2020.

[12] Harris, E. W. A., Niranjan, M., and Hare, J. Foveated convolutions: improving spatial trans-
former networks by modelling the retina. 2019.

[13] Josephs, E. L. and Konkle, T. Perceptual dissociations among views of objects, scenes, and
reachable spaces. Journal of Experimental Psychology: Human Perception and Performance,
45(6):715, 2019.

[14] Josephs, E. L. and Konkle, T. Large-scale dissociations between views of objects, scenes,
and reachable-scale environments in visual cortex. Proceedings of the National Academy of
Sciences, 117(47):29354-29362, 2020. ISSN 0027-8424. doi: 10.1073/pnas.1912333117. URL
https://www.pnas.org/content/117/47/29354.

[15] Juliani, A., Berges, V.-P., Vckay, E., Gao, Y., Henry, H., Mattar, M., and Lange, D. Unity: A
general platform for intelligent agents. arXiv preprint arXiv:1809.02627, 2018.

[16] Kaplanyan, A. S., Sochenov, A., Leimkiihler, T., Okunev, M., Goodall, T., and Rufo, G.
Deepfovea: Neural reconstruction for foveated rendering and video compression using learned
statistics of natural videos. ACM Transactions on Graphics (TOG), 38(6):1-13, 2019.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://openreview.net/forum?id=BJzbG20cFQ
https://openreview.net/forum?id=BJzbG20cFQ
https://www.pnas.org/content/117/47/29354

[17] Kotseruba, I. Foveate OGL, 2019. URL https://github.com/ykotseruba/foveate_ogl!

[18] Leibo, J. Z., d’Autume, C. d. M., Zoran, D., Amos, D., Beattie, C., Anderson, K., Castafieda,
A. G., Sanchez, M., Green, S., Gruslys, A., et al. Psychlab: a psychology laboratory for deep
reinforcement learning agents. arXiv preprint arXiv:1801.08116, 2018.

[19] Luo, Y., Boix, X., Roig, G., Poggio, T., and Zhao, Q. Foveation-based mechanisms alleviate
adversarial examples. arXiv preprint arXiv:1511.06292, 2015.

[20] Malkin, E., Deza, A., and Poggio, T. "CUDA-Optimized real-time rendering of a Foveated
Visual System" YouTube video. URL https://youtu.be/Rrb5oailsVbA.

[21] Malkin, E., Deza, A., and Poggio, T. foveate_blockwise GitHub repository. https://github.
com/ElianMalkin/foveate_blockwise, 2020.

[22] NVIDIA. NVIDIA Turing GPU Architecture Whitepaper, 2018. URL https://www.nvidia.
com/content/dam/en-zz/Solutions/design-visualization/technologies/
turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf,

[23] Orhan, A. E., Gupta, V. V., and Lake, B. M. Self-supervised learning through the eyes of a child,
2020.

[24] Patney, A., Salvi, M., Kim, J., Kaplanyan, A., Wyman, C., Benty, N., Luebke, D., and Lefohn,
A. Towards foveated rendering for gaze-tracked virtual reality. ACM Transactions on Graphics,
35:1-12, 11 2016. doi: 10.1145/2980179.2980246.

[25] Poggio, T., Mutch, J., and Isik, L. Computational role of eccentricity dependent cortical
magnification. arXiv preprint arXiv:1406.1770, 2014.

[26] Potier, S., Mitkus, M., and Kelber, A. Visual adaptations of diurnal and nocturnal raptors. In
Seminars in Cell & Developmental Biology. Elsevier, 2020.

[27] Pramod, R. T., Katti, H., and Arun, S. P. Human peripheral blur is optimal for object recognition.
arXiv preprint arXiv:1807.08476, 2018.

[28] Ratnam, K., Konrad, R., Lanman, D., and Zannoli, M. Retinal image quality in near-eye
pupil-steered systems. Optics Express, 27(26):38289-38311, 2019.

[29] Reddy, M. V., Banburski, A., Pant, N., and Poggio, T. Biologically inspired mechanisms for
adversarial robustness. arXiv preprint arXiv:2006.16427, 2020.

[30] Rosenholtz, R. Capabilities and limitations of peripheral vision. 2016.

[31] Rosenholtz, R., Li, Y., and Nakano, L. Measuring visual clutter. Journal of vision, 7(2):17-17,
2007.

[32] Sano, M., De Freitas, J., Haber, N., and Yamins, D. Learning in social environments with
curious neural agents, Jun 2020. URL psyarxiv.com/jm2rul

[33] Sit, K. K. and Goard, M. J. Distributed and retinotopically asymmetric processing of coherent
motion in mouse visual cortex. Nature communications, 11(1):1-14, 2020.

[34] Tarhan, L. and Konkle, T. Sociality and interaction envelope organize visual action representa-
tions. Nature Communications, 11(1):1-11, 2020.

[35] Tursun, O., Arabadzhiyska, E., Wernikowski, M., Mantiuk, R., Seidel, H.-P., Myszkowski,
K., and Didyk, P. Luminance-contrast-aware foveated rendering. volume 38, 07 2019. doi:
10.1145/3306346.3322985.

[36] Volkov, V. Unrolling parallel loops, 2011. URL https://www.nvidia.com/docs/I0/
116711/scll-unrolling-parallel-loops.pdfl

[37] Xiao, L., Kaplanyan, A., Fix, A., Chapman, M., and Lanman, D. Deepfocus: learned image
synthesis for computational display. In ACM SIGGRAPH 2018 Talks, pp. 1-2. 2018.

[38] Zhou Wang, Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. Image quality assessment: from
error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600-612,
2004.

https://github.com/ykotseruba/foveate_ogl
https://youtu.be/Rr5oaiIsVbA
https://github.com/ElianMalkin/foveate_blockwise
https://github.com/ElianMalkin/foveate_blockwise
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
psyarxiv.com/jm2ru
https://www.nvidia.com/docs/IO/116711/sc11-unrolling-parallel-loops.pdf
https://www.nvidia.com/docs/IO/116711/sc11-unrolling-parallel-loops.pdf

5 Appendix

5.1 Previous Work on Image Foveation

Many techniques have been proposed in the domain of computer graphics to introduce foveation
into the rendering pipeline in order to reduce computational cost. Most similar in design to our
algorithm is Variable Rate Shading (VRS) - an NVIDIA Turing GPU feature that tiles the image frame
and adapts shading rate from tile to tile to increase rendering performance versus individual pixel
shading [22]]. This work differs from ours by targeting the shading step; our algorithm is proposed
as a post-process and applied to the existing full-resolution image to enable experimentation with
foveated visual systems under the requirement of real-time performance.

Previous work on image foveation as a post-process has employed Gaussian pyramids a la Burt &
Adelson [4] to generate foveated images at reasonable time scales [10]. This technique convolves an
image with a small Gaussian filter, followed by subsampling of the pixels, reducing the size of the
image by a factor of four while avoiding aliasing issues thanks to the preceding low-pass convolution.
Repeating these steps yields a series of sequentially smaller images that can be imagined to make up
a pyramid. Upscaling each image back to its original size produces increasingly blurrier versions
of the original, which can then be combined into a single foveated image. Mipmaps are used in
computer graphics and employ the same technique to render scaled-down textures without aliasing.
The rendered pixels are interpolated from the mipmap as a fractional level of the pyramid, i.e. from
between two pyramid levels.

The foveation quality of the Gaussian pyramid approach suffers from its reliance on interpolation,
which produces a blocky image. Bilinear interpolation is frequently used as a middle ground
between the pixelated results of nearest neighbor sampling and the high computational cost of bicubic
interpolation, however, it cannot provide the same smoothness as a purely convolutional blur scheme.

5.2 Methods

ssse

::... IR

1 7777777777 SEPARABLE
'
' H —l
—— h

Figure 9: Separable convolution is faster than non-separable convolution. Although the separable
approach requires more operations to produce a single output pixel, the intermediate horizontal result
is re-used for the vertical step by several pixels, leading to a net decrease in the number of operations.

To render foveated images, it is necessary to designate a fixation point and perform increasing blur
into the periphery. Blur can be achieved by convolving the image with a filter — a small matrix
of values that is centered on every pixel in the image, followed by an element-wise multiplication
and sum. Although several filters exist for achieving a blur effect, we employ the Gaussian filter,
owing to its smooth blur and lack of ringing effects, as well as to its separable property that reduces
computational complexity.

The computational demands of the convolution operation can render it prohibitive for time-sensitive
tasks. Gaussian blurring of an image of width w and height h with a filter of dimensions N x N has
a complexity of O(whN?). Consequently, high quality foveated rendering, with large peripheral
averaging filters and high resolution images, presents a challenge by virtue of the number of operations
it requires. A key step in lowering convolution complexity is taking advantage of the separable
property of the Gaussian filter, reducing it from an N2 square filter into two N-length one-dimensional
(1D) filters [4]. The convolution of the two-dimensional square filter is equivalent to first a horizontal
convolution over the image with the first filter, and then a vertical convolution with the second over the
result of the horizontal pass. In the case of a Gaussian filter both 1D filters are identical, hence only
one needs to be stored for both the horizontal and vertical step. Separable convolution is significantly
faster by reducing the number of operations such that the computation can be performed in O(whN)
time.

The Gaussian filter is defined by its standard deviation o, with a larger o producing a larger spread of

values, and hence more averaging and a stronger blur.

1 _12+y2
2mo? e S

G(l‘,y) =

Although the Gaussian function decays out to infinity, we must determine a cutoff point for our filter
to use during convolution. Values beyond 3¢ from the center of the filter are small enough to be
considered negligible, hence each filter is dimensioned as [60] x [60]. The filter matrix is populated
with the output of the Gaussian function at each discrete matrix coordinate (center pixel - (0,0)), then
normalized to prevent the convolution operation from altering the luminance of the image.

5.2.1 Choosing the Standard Deviation of the Gaussian Filter

The standard deviation of the Gaussian filter used at a given eccentricity is found through the method
used by Geisler and Perry [10], starting with the contrast threshold formula, which gives the contrast
required for detection of a patch of sinusoidal grating of a given spatial frequency f (cycles per
degree) at retinal eccentricity e (degrees):

2)

CT(f,e) = CTpexp (afe+e2)

€2

where CTj is the minimum contrast threshold, « is the spatial frequency decay constant, and e5 is
the half-resolution eccentricity. We set these values to be the same as used by Geisler and Perry [[10],
such that « = 0.106, e = 2.3, and CT; = 6—14. Setting the left-hand-side of the equation to 1.0,
which denotes maximum contrast, and rearranging for f gives:

f €2 1 1
eg — n
c-deg ale+e) CTy

3)

where f._g4eq is the highest spatial frequency (cycles per degree) that can be resolved at eccentricity e,
no matter the contrast. This equation therefore gives the spatial frequency cutoff at a given retinal
eccentricity.

In a metameric foveation scheme the viewing distance and monitor dot-pitch are taken into account to
calculate retinal eccentricity and create foveated images indistinguishable from non-foveated images
under the set conditions (e.g. Pramod et al. [27]). Instead, we use a retinal mapping approach, where
the blurring factor scales proportionally to the falloff of visual acuity of the human retina. The
maximum spatial frequency in an image is a single cycle occupying two pixels, i.e. a black and white

10

pixel in succession, which equates to 0.5 cycles per pixel. We use the following equation to derive
the spatial frequency in cycles per pixel from the spatial frequency in cycles per degree:

j;_deg

fc_pix =05 fmaz

“)

where f,,4. is the maximum resolvable spatial frequency across the retina, corresponding to highest
visual acuity at the fovea. The degree eccentricity of a pixel is calculated by first assigning the image
center to 0°, and the corner of the image to a desired retinal eccentricity. By interpreting the flat
image as a spherical retina, we create a linear relationship between Euclidean pixel distance and
retinal eccentricity:

d
D
€= d—ecorne'r‘ (5)
corner

where d,, is the pixel distance from the fixation point, dcorpner is the half-diagonal image distance,
and e.orner 1 the degree retinal eccentricity assigned to the image corner. In this way, we produce
foveated images designed to represent the human visual experience relative to the resolution of the
original image, rather than metameric foveation under any specific conditions. The algorithm is
simple to adapt to achieve the latter.

Finally, we find the standard deviation o of the Gaussian filter at the chosen eccentricity by treating
fe_pixz as the standard deviation of the filter in the frequency domain, o ¢:

B 1 1
o 27 fe_pia - 2moy

g

(6)

This signifies that frequencies at oy and above are considered cut off, or sufficiently attenuated by the
Gaussian filter. This threshold can be shifted higher for stronger blurring.

5.3 Localized Image Quality Assessment dataset

Figure 10: Images used (30) for calculating the average SSIM map of the block-wise algorithm with
reference to perfect foveation (Section[3.1).

11

5.4 A primer on the CUDA Architecture

GPU (DEVICE)

CONSTANT GRID
- p

(
MEMORY)

SHARED ((([
MEMORY ‘°"’e '

CPU
(HOST) K

-

Figure 11: The three levels of the CUDA architecture. The GPU is divided into a grid of blocks,
each of which holds a collection of threads. Each thread executes a single parallelized computation.
Communication between the CPU and GPU is performed via global memory (slowest). Constant
memory communication is one-way (faster). Shared memory is "shared" only by the threads within
the same block (fastest).

CUDA is the programming interface through which custom programs (kernels) can be executed on
an NVIDIA graphics processing unit (GPU). The advantage of employing a GPU for foveation is that
a GPU is able to perform parallel computation of the same kind on large datasets, hence is an ideal
candidate for a convolution operation involving millions of pixels. The GPU is used in tandem with
the CPU to accelerate highly parallel operations. The CPU (host) handles the transfer of data to the
GPU (device), which executes the kernel code written with CUDA.

Figureﬂ;fl shows the basic CUDA architecture, which consists of three levels — the threads, the blocks,
and the grid. Each thread performs one of the parallelized computations, such as a single write of
a blurred pixel to an output array. The CUDA threads are organized into blocks, which reflect the
physical design of the GPU, where the workload is distributed across Streaming Multiprocessors.
The threads within the same block have the useful property of being able to communicate with each
other via a fast form of memory (shared memory), which is crucial to the optimization of CUDA
code. The blocks are organized into the grid, which ties together the whole structure of the CUDA
kernel. The grid’s purpose is to define how many blocks a kernel is launched with, and how these
blocks are arranged. Both the grid and the blocks can have 3 dimensions, which helps organize the
programmer’s solution [T

5.4.1 The CUDA memory model

Optimization of device kernels requires understanding of the different types and properties of memory
offered by CUDA.

Global memory is the most basic type of memory available on the GPU - it is the memory typically
accessed by the host when data is transferred to the device. Global memory offers the largest storage
size on the GPU, on the order of several gigabytes, but has the drawback of being slow to read from
and write to (it is located off-chip, away from the streaming multiprocessors).

Constant memory is a faster type of memory. It is termed “constant” because it can only be written

to by host code, hence is useful when the kernel requires access to read-only data. The size of this
memory is far smaller than that of Global memory - only 64KB [1]]. Although it is still off-chip, it is

12

nonetheless much faster to access than global memory because it is aggressively cached to on-chip
memory.

Each thread block is designated a small amount of shared memory (48-163 KB) which can be written
to and read from by that block alone. Shared memory is located on-chip and is therefore much
faster to access, making it useful for storing intermediate values within a kernel, or data that must be
accessed repeatedly.

The GPU architecture also features registers and local memory, which are specific to individual
threads. Registers offer storage for any variables or arrays declared by a thread within the kernel, and
are the fastest to access, but are limited in quantity. The CUDA compiler determines which data is
placed within a register, and which data spills out into local memory — termed local not because of its
location, but because of its scope. Local memory is off-chip but accessible only by the specific thread,
hence it is local to each thread but slow to access. As a result, register spilling is highly undesirable.

5.5 CUDA-Driven Optimization

69 0O Kernel Execution Time vs Optimizations
6

32 x 32 Fragments
S5F 1920 x 1080 Image 1
Distribution of filter

2 RGB
sizes across fragments
(modeling human CSF) 23

53

51

49

Execution Time (ms)
w

Filter sizes labeled as edge
of square filter in pixels

31
45

39 37
o
cuda block shape: fixed one-D
data handling: no reuse reuse
image data from: global shared
filter data from: global constant
intermediate data from: global shared

Figure 12: Impact of optimizations on performance. Evaluation done on NVIDIA GTX 1060 GPU (6
GB). Only kernel execution times are shown - memory transfers excluded.

Our algorithm demonstrates the suitability of CUDA’s block architecture to space-variant image
processing. We detail below the considerations of the kernel design such that the algorithm can be
adapted to other foveation schemes while maintaining high performance.

5.5.1 Workload of the Block

Four arrays are placed on the GPU: the input image to be foveated, the blur grid describing the blurring
strengths of each fragment, the array of one-dimensional Gaussian filters a4, and an accompanying
array of cumulative filter sizes a..

The threads within the block identify their position on the CUDA grid, which corresponds to a value
in the blur grid. This value is an index into a., which allows the thread to extract the appropriate
Gaussian filter from a,. If the block is assigned the foveal fragment, the pixels from the input image
are simply written directly to the output array - no blurring is done. Otherwise, the block performs
Gaussian blurring on its assigned pixels using the extracted Gaussian filter.

13

The pixels corresponding to the fragment are padded according to the size of the Gaussian filter used.
This tile of pixels is extracted, and horizontal convolution is performed. The result of this operation
is the half-blurred data, termed the intermediate result. Convolution is performed a second time, with
the same Gaussian filter, but this time in a vertical manner, producing the final blurred fragment. The
result is written to the output array.

5.5.2 Shared Memory

Shared memory is faster than global memory because it is located on-chip, hence we can achieve
higher performance by using it to hold frequently accessed data. Since the convolution operation
accesses the same pixels multiple times, we can first load the tile of pixels from global memory into
shared memory before the horizontal pass. This extra step leads to a performance boost by reducing
latency throughout the convolution. We take care to retain the unsigned 8-bit integer image datatype
until convolution, which minimizes the data transfer time and the storage footprint in shared memory.

The intermediate result is likewise placed into shared memory, as it is specific to the workload of
the individual block and each thread must access the results of horizontal convolution generated by
vertically neighboring threads. Therefore, the same benefits of shared memory are applied to the
vertical convolution pass.

5.5.3 Constant Memory

The storage size of constant memory is too small to store the image to be foveated, but is sufficient to
hold the Gaussian filters used for convolution. These filters remain unchanged throughout the kernel
execution, but are frequently accessed, typically millions of times during foveation. Constant memory
is therefore an ideal location because it offers low latency in exchange for read-only designation.

The two 1D filters produced by the separation of the 2D Gaussian filter contain identical values -
their only difference is the direction in which they are applied. We therefore only store one instance
of an N-length filter and apply it in a horizontal or vertical fashion as appropriate. All Gaussian filters
are transferred together into array a, in constant memory, and their cumulative sizes are likewise
placed into constant memory as a second array a.. Cumulative filter sizes allow the kernel to locate
the start and end point of any given Gaussian filter within a.

5.5.4 Optimizing for Cancelled Threads

Although image processing typically involves two-dimensional thread blocks to map individual
threads to image pixels, this approach is inefficient for space-varying algorithms. There are three main
stages in the execution of the kernel - pixel transfer into shared memory as a padded file, followed by
the horizontal and vertical convolution passes. These three steps each require a different arrangement
of threads and vary with Gaussian filter size which determines the amount of padding around a
fragment. Therefore, a two-dimensional thread block is impractical, as a fixed thread arrangement
across the block workload would lead to unused threads at several points in the algorithm. Moreover,
by launching blocks with fixed dimensions to accommodate the largest filters in the periphery, we
would lose performance on smaller tiles closer to the fixation point.

Optimal performance for every task throughout the workload can be achieved by launching each
block as a one-dimensional (one-D) line of threads. Within the kernel, the dimensions of active
positions within the tile are specified at every step, so that the line of threads can be organized to best
fit the task at hand. Figure [I3]shows how a one-dimensional block of threads can be reshaped.

The number of active positions in the tile is usually greater than the number of invoked threads, so
blocks typically iterate through the tile. The number of iterations is reduced for one-dimensional
blocks as compared to fixed two-dimensional blocks as threads populate only active positions (with
the exception of the last iteration where overflow might occur).

14

ACTIVE INACTIVE FRAGMENT PADDING REDUNDANT THREAD
] POSITION POSITION PIXEL PIXEL PIXEL

b
000 000000000000
rrrrrrrperrel

Figure 13: A one-dimensional block of threads can be optimally arranged for any purpose. a) Threads
arranged in a vertical column for horizontal convolution. b) Threads arranged to transfer a small tile
of image data into shared memory.

5.5.5 Data Reuse

An optimization discussed by Volkov [36] involves reusing data accessed within the kernel through
registers, which reduces accesses of slower forms of memory. This technique can be applied during
the convolution step of the algorithm.

During convolution, the same Gaussian filter is used in an overlapping fashion for many neighboring
pixels. If the convolution operation at every pixel is assigned a separate thread, neighboring threads
access the same image and filter data several times. Performance can be improved by increasing the
work done by a single thread, such that memory accesses and data transfers are reduced. By having a
single thread perform four convolutions at once, we achieve over 2x speedup (Figure[I2). The exact
factor by which to increase per-thread workload can be determined through experimental evaluation.
Note that since there are typically many more pixel positions in the tile (at which convolution is to be
performed) than there are invoked threads, increasing per-thread workload does not lead to inactive
threads but rather reduces the number of iterations through the tile.

Data reuse involves registers - on-chip memory that holds variables and arrays declared by a thread.
Registers are the fastest form of memory to access but are limited in quantity, therefore they can be
used for temporary storage of values fetched from less efficient memory locations. Figure[T4]shows
the first two steps of horizontal convolution performed by a thread, where each step is concerned with
a different Gaussian filter value. In Step 1, the first filter value is accessed. This value will be used as
the first step of convolution for all four highlighted pixels, so it is placed in a register and applied
immediately at the appropriate positions - four separate convolution sums are maintained. Reusing
the filter value is faster than extracting it four times from constant memory. Step 2 uses three of the
four image pixel values from the previous step, so these values are likewise reused, rather than being
fetched anew from shared memory. The reuse pattern seen in Step 2 continues for the remaining
steps.

5.5.6 Algorithm Limitations

The optimized algorithm is limited by the sizes of constant and shared memory on the GPU. On an
NVIDIA compute capability 6.1 device, the maximum amount of shared memory per thread block is

15

@ REUSED O ACCESSED

filter values

STEP 1

STEP 2
S

Figure 14: Data reuse through local variables improves performance of the kernel. The convolution
operation has a great deal of overlap at neighboring pixels. A thread is able to store values in registers
and perform four pixels worth of convolution, allowing a single access of constant or shared memory
to serve multiple convolution operations. Step 1 shows reuse of the first filter value. In Step 2, the
second filter value is likewise reused but so are three of the four image pixels previously accessed.

48 KB, and the constant memory size is 64 KB [1]]. These limits impose constraints on the number of
pooling regions and largest filter size that can be used by the algorithm.

Shared memory is used for image data and the intermediate result produced by horizontal convolution.
The image data is in the form of a tile of width ¢ileW¥ and height ¢ile H, which holds fragment data
of dimensions fragmentW and fragmentH, as well as the surrounding padding. The tile is stored
in shared memory with unsigned 8-bit integer datatype - the same as the input image. The array that
holds the intermediate result has dimensions fragmentW x tile H with float32 datatype, having
been produced through multiplication with floating point Gaussian filter values. Since float32 values
are four times the size of unsigned 8-bit integers, the intermediate result, despite holding fewer values,
can take up more shared memory than image data. Shared memory usage can be calculated in bits as
follows:

Shared Memory Used = tileW x tileH + 4 x (fragmentW « tileH) 7

Larger Gaussian filters require more padding around a fragment leading to a larger tileWW and tileH.
For fragment dimensions of 32 x 32, 16 x 16, and 8 x 8 pixels, the maximum filter size is 133, 174,
and 196 pixels respectively.

Gaussian filters and their cumulative sizes are placed into arrays a4 and a. in constant memory. The
number of bits placed into constant memory is a function of the total number NV, of float32 values in
array a4 (total length of all filters used), as well as the number N, of int32 values in a. (number of
filters used, i.e. number of pooling regions):

Constant Memory Used = 4 * (N, + N,) (8)

Ny is determined by the lengths of the Gaussian filters which correspond to blurring strength defined
by specific foveation parameters. The maximum number of pooling regions, each of which is defined
by a unique filter, must therefore be determined experimentally.

The limiting factors of shared and constant memory can be removed through the use of global memory
in exchange for lower performance. The impact of these compromises on execution time is shown in

Figure[T2]

16

	Introduction
	Proposed Approach: Block-wise Foveation
	Experiments
	Localized Image Quality Assessment
	Computation Time

	Discussion
	Appendix
	Previous Work on Image Foveation
	Methods
	Choosing the Standard Deviation of the Gaussian Filter

	Localized Image Quality Assessment dataset
	A primer on the CUDA Architecture
	The CUDA memory model

	CUDA-Driven Optimization
	Workload of the Block
	Shared Memory
	Constant Memory
	Optimizing for Cancelled Threads
	Data Reuse
	Algorithm Limitations

