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ABSTRACT

Recent research has explored the use of Large Language Models (LLMs) for tack-
ling complex graph reasoning tasks. However, due to the intricacies of graph
structures and the inherent limitations of LLMs in handling long text, current
approaches often fail to deliver satisfactory accuracy, even on small-scale graphs
and simple tasks. To address these challenges, we introduce GraphAgent-Reasoner,
a fine-tuning-free framework that utilizes a multi-agent collaboration strategy for
explicit and precise graph reasoning. Inspired by distributed graph computation
theory, our framework decomposes graph problems into smaller, node-centric tasks
that are distributed among multiple agents. The agents collaborate to solve the
overall problem, significantly reducing the amount of information and complexity
handled by a single LLM, thus enhancing the accuracy of graph reasoning. By sim-
ply increasing the number of agents, GraphAgent-Reasoner can efficiently scale to
accommodate larger graphs with over 1,000 nodes. Evaluated on the GraphInstruct
dataset, our framework demonstrates near-perfect accuracy on polynomial-time
graph reasoning tasks, significantly outperforming the best available models, both
closed-source and fine-tuned open-source variants. Our framework also demon-
strates the capability to handle real-world graph reasoning applications such as
webpage importance analysis.

1 INTRODUCTION

Graphs, as a crucial data structure for modeling complex real-world relationships, are ubiquitous
across various scenarios, e.g. citation networks, recommendation networks. Many important ap-
plications like drug discovery (Stokes et al., 2020), traffic forecasting (Jiang & Luo, 2022), and
financial detection (Motie & Raahemi, 2024), require reasoning over graphs to be realized. Noticing
the powerful general knowledge and language processing capabilities of Large Language Models
(LLMs) (Brown et al., 2020), a significant amount of works have focused on using LLMs to per-
form various reasoning tasks, such as mathematical formula derivation (Meadows et al., 2023),
commonsense reasoning (Madaan et al., 2022), and multi-hop question answering (Creswell et al.,
2023). However, most of them primarily involve shallow or sequential reasoning. To bring the LLM
reasoning closer to human thinking, it is necessary for LLMs to master deeper and more complex
reasoning, such as graph reasoning.

Despite significant efforts by researchers to enable LLMs to memorize, comprehend, and perform
basic reasoning on graph structures, several issues still persist: 1) The scale of graphs that can be
handled is limited. Describing graph structures in natural language inevitably leads to excessively
long inputs. Due to context length limitations and the shortcomings of LLMs in handling lengthy
text (Liu et al., 2023), previous works (Chai et al., 2023; Fatemi et al., 2024; Perozzi et al., 2024)
could only handle graphs of very limited size (e.g. fewer than 20 nodes and 100 edges). 2) The
performance on graph reasoning tasks is relatively poor. Unlike text, which can tolerate some
degree of semantic deviation, reasoning and computation on graphs must be highly precise. However,
current works demonstrate poor accuracy (average 20∼60%) in various graph reasoning tasks like
connectivity and shortest path. 3) Lacking explicit reasoning paths. Taking the shortest path as an
example, the responses of existing models resemble a heuristic search approach to finding the shortest
path on a graph, rather than strictly executing an algorithm. This makes it difficult to determine
whether LLMs are genuinely deriving the answer through correct reasoning or merely making
educated guesses. Although GraphWiz (Chen et al., 2024a) attempts to generate explicit reasoning
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paths through fine-tuning, it often fails due to the presence of incomplete or wrong reasoning paths in
its training data. Furthermore, GraphWiz exhibits overfitting, where it tends to treat new or unrelated
questions as one of the fine-tuned problems, which will be detailed in Section 5.3.

Motivation. The ultimate goal of graph reasoning is to enable LLMs to leverage graph-related
knowledge or algorithms to solve real-world graph problems. However, with the development of
information science and hardware storage, the scale of graphs and information per node become too
large for a single LLM to handle. To address this, a natural idea is to use distributed approaches, where
a large graph is stored across multiple LLMs separately and compute collaboratively. Therefore, just
as graph algorithms have generally evolved from non-distributed to distributed forms (Meng et al.,
2024b)), we hope that LLMs can also learn the concept of distributed processing, thereby harnessing
the power of swarm intelligence to solve graph problems in real-world scenarios.

Figure 1: The current situation of LLMs in solving graph problems. Previous methods using a single
LLM often failed due to the complex graph structures. In contrast, our approach leverages agents
collaboration to effectively address graph problems.

Our Contribution. To address the above limitations, in this paper, we propose the GraphAgent-
Reasoner(GAR) framework, which leverages the power of swarm intelligence to solve graph reasoning
problems, as shown in Figure 1. We follow a node-centric approach, assigning an agent to each
node, allowing it to focus on processing its own information and communicate with neighbors. Thus,
we can easily scale up the size of graphs that can be processed by simply increasing the number of
agents. At the same time, under the direction of a Master LLM, graph problems are decomposed into
smaller, node-centric tasks, which are assigned to agents for collaborative resolution. This approach
significantly reduces the scale and complexity of information each agent needs to process, thereby
greatly improving the overall accuracy. Furthermore, since agents must clearly transmit the processed
information to neighboring agents, the reasoning process becomes transparent, demonstrating the
framework solves graph reasoning problems through clear and correct reasoning, rather than lucky
guessing. In summary, our contributions are as follows:

• We propose GraphAgent-Reasoner, the first LLM-based multi-agents framework for graph reason-
ing, which requires no fine-tuning and can utilize any LLM as the underlying reasoning model.
Our framework achieves near-perfect accuracy on various polynomial-time tasks, significantly
surpassing the performance of existing methods.

• Our framework expands the scale of graph reasoning tasks handled by LLMs from 100 nodes to
1,000 nodes, demonstrating exceptional scalability. Furthermore, as the graph size increases, our
framework does not exhibit the significant performance degradation seen in other methods and
maintains robust accuracy.

• We explore the performance of our framework in real-world applications like webpage importance
analysis, showcasing its potential for addressing complex graph reasoning problems in real-life
situations.

2 PRELIMINARIES AND RELATED WORKS

Preliminaries. In general scenarios, when discussing LLMs solving graph reasoning problems, the
input is a (G,Q) pair. G is a graph represented as G = (V, E , {si}, {ti}), where V is the node set and
E , the edge set. For each node vi ∈ V , a sequential text node feature si is associated; similarly, for
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each edge ei ∈ E , a sequential text edge feature ti is assigned. The graph G is described in natural
language, typically using edge or adjacency list representation. Q is a task-specific instruction or
problem description. LLMs will process the (G,Q) pair and return an answer string A.

Large Language Models for Graph Reasoning. To further enhance the reasoning capabilities of
LLMs, many works have attempted to improve the performance of LLMs in graph reasoning. Wang
et al. (2023) first introduces the NLGraph Benchmark to evaluate the performance of LLMs on various
graph reasoning tasks. Fatemi et al. (2024) explores the impact of different graph encoding methods
and graph structure types on the performance of LLMs in graph reasoning tasks. Additionally, it
introduces another benchmark called GraphQA. Considering the lengthy nature of describing graph
structures in text, Chai et al. (2023) and Perozzi et al. (2024) respectively use Transformers and GNNs
to encode graph structures and attempt to align them with LLMs. Inspired by how humans understand
structural information through the visual modality, Wei et al. (2024) generates corresponding visual
images based on graph structures and provides them to visual LLMs for graph reasoning. Chen et al.
(2024a) conducted Supervised Fine-Tuning and Directly Prefered Optimization on LLMs, enhancing
the performance of LLMs and encouraging them to output explicit reasoning paths.

Large Language Model based Multi-Agents. Recent advancements in LLMs have spurred interest
in their application within multi-agent systems. LLM-based multi-agent frameworks leverage the
natural language understanding and reasoning capabilities of LLMs to enable agents to collaborate,
communicate, and solve complex tasks in a distributed manner. Existing multi-agents works for
problem solving primarily focuses on applications such as Software Development (Dong et al., 2023;
Hong et al., 2024; Qian et al., 2024), Embodied Agents (Zhang et al., 2024; Mandi et al., 2024; Chen
et al., 2024b) and Science Debate (Xiong et al., 2023; Chan et al., 2024). However, using LLM-based
multi-agents to handle graph data has been less explored, especially in the areas of graph reasoning
and graph computation tasks. This may be due to the hallucination issue inherent in LLMs (Huang
et al., 2023), where their responses are factually incorrect. This problem becomes more complex
in a multi-agent setting, as the hallucinations of a single agent may propagate to other nodes by
communication (Guo et al., 2024). This requires the performance of individual agents be sufficiently
stable to ensure the correct operation of the entire multi-agent system.

3 LIMITATIONS OF SINGLE LLM IN GRAPH REASONING

Although LLMs exhibit strong language processing and logical reasoning capabilities, problems with
the Transformer architecture and Attention mechanism (Vaswani et al., 2017) still limit the scale and
accuracy when they process graph problems. There are two primary limitations:

Figure 2: The performance of a single LLM in memorizing first-order neighboring nodes. As the
number of nodes increases, all models exhibit significant memory errors.

The graph structure is too complex to memorize and understand for a single LLM. Using
adjacency or edge lists to describe graph structures in natural language is the most intuitive and direct
method, facilitating the processing of graph data by LLMs through text. However, this approach
inevitably leads to a lengthy context, as the number of edges can grow quadratically with the number
of nodes. As the graph scales up and becomes denser, the graph structure becomes highly complex,
requiring a large amount of tokens to describe the edge relationships. When the text becomes too
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lengthy, it becomes difficult for LLMs to properly allocate attention, and they may even struggle with
simple tasks such as key-value pair matching Liu et al. (2023). This presents significant challenges
for LLMs in identifying key information for graph reasoning tasks from the lengthy context. Figure 2
shows the performance of a single LLM in memorizing one-hop neighbor nodes. We observe that as
the number of nodes in the graph increases, various LLMs exhibit a significant decline in accuracy. If
a single LLM cannot even correctly recall basic graph structural information like node neighbors, it
becomes difficult to proceed with more complex graph reasoning or computation.

Furthermore, the graph structure is described in a sequential manner. LLMs have to identify implicit
graph structures from sequential text. Since the processing of LLMs is a black-box operation, it is
difficult to assert that they truly construct graph structures implicitly and thereby understand them.
Huang et al. (2024) conducted extensive experiments to explore whether LLMs treat the input prompts
as graphs or merely as paragraphs with keywords on TAGs. The results show that the performance of
LLMs in handling TAGs primarily stems from the context rather than the graph structure. LLMs tend
to process the graph description as linearized paragraphs rather than graphs.

A single LLM struggles to solve reasoning problems in real-world scenarios. Researchers train
LLMs on graph reasoning tasks to empower them to utilize learned graph-related knowledge or
algorithms to tackle real-world graph problems. However, in practical scenarios, the amount of
information associated with each node can be enormous. Take citation networks as an example: a
single node represents a paper, and its node information includes the title, abstract, and references,
which could amount to several thousand tokens. In addition to the complexity of graph structures,
the need to handle a large amount of node information further exacerbates the burden on a single
LLM and highlights its shortcomings in processing long contexts. Moreover, using a single LLM to
handle the entire network is inefficient, as it cannot coherently process the entire network’s problems.
Typically, it is necessary to manually compress or summarize the information for each node and then
feed local subgraphs to the LLM for processing (Guo et al., 2023; Chen et al., 2023).

Furthermore, many current works (Chen et al., 2024a; Perozzi et al., 2024) require training GNNs or
fine-tuning LLMs on individual or multiple graph reasoning tasks. However, when transferring to
other graph tasks, a certain degree of performance degradation occurs, and retraining or fine-tuning
for new graph tasks consumes a significant amount of time and resources. Whether LLMs can apply
the graph knowledge and algorithms learned during the training process to actual graph reasoning
also remains an open question. We explored this question in 5.3 and observed significant overfitting
in LLMs fine-tuned on specific graph reasoning tasks. Therefore, the ideal solution would be to
leverage the powerful general knowledge acquired during the pre-training phase of LLMs through an
appropriate approach, enabling them to handle graph reasoning tasks as naturally as they do with
natural language problems.

4 GRAPHAGENT-REASONER

To solve the limitations above, we propose a novel framework based on multi-agent collaboration
called GraphAgent-Reasoner as shown in Figure 3, aiming to solve graph reasoning problems
explicitly and correctly. The interface of the framework is a Master LLM, which is responsible for
processing the textual input of graph problems, constructing the agent network, directing them to
collaboratively solve the problem, and finally aggregating the states of all agents to derive the solution.
Its implementation is based on the React Agent proposed by Yao et al. (2023), which is capable
of reasoning based on the environment and executing corresponding actions, as detailed later. The
pipeline of GAR consists of four steps: Graph Construction, Algorithm Establishing, Distributed
Execution and Master Summarization.

Graph Construction. Given an input pair (G, Q), the Master LLM first extracts the node and edge
information from the textual description of graph G. It then constructs an agent for each node and
initializes the node’s state and neighbor information, forming an interconnected network of agents.
Each agent independently maintains its state and neighbor data, communicates with adjacent agents
based on instructions from the Master LLM, and updates its state in each round.

Algorithm Establishing. To accommodate diverse graph tasks and fully exploit the knowledge
embedded in LLMs during pre-training, we propose a unified solution approach framed within a
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Figure 3: The framework of GraphAgent-Reasoner. Given a graph problem, the Master LLM will
first construct agents network according to graph strcutures. It then sequentially performs Algorithm
Establishing, Distributed Execution and Master Summarization, as detailed in this section.

distributed paradigm as shown in Algorithm 1. This approach requires the Master LLM to specify six
core components for each problem: State, Message, Initialization, Send, Update, and Termination.

• State: The local information maintained by each node, representing its current state. This can
include attributes like node features, labels, or any other task-specific data. The states evolve as
nodes receive messages and update their information.

• Message: The data transmitted between nodes during the communication phase. Messages
typically contain information that neighboring nodes need to perform updates, such as feature
values, distances, or other task-relevant information.

• Initialization: At the start of the execution, each node initializes its state with predefined values,
which may be based on node IDs, input features or task-specific requirements. This step ensures
that the graph is ready to begin the communication process.

• Send: After initialization, each node generates messages based on its current state and sends them
to its neighboring nodes. This step is repeated in each iteration, allowing nodes to continuously
exchange information with their neighbors.

• Update: Upon receiving messages from its neighbors, each node updates its state by aggregating
the incoming messages and combining them with its current state. This iterative process enables
nodes to refine their information over time.

• Termination: The algorithm halts when a predefined stopping condition is met, such as reaching a
fixed number of iterations, achieving convergence, or satisfying a task-specific criterion. Once the
termination condition is reached, each node will send its final state to the Master LLM, and the
execution terminates.

Since LLMs lack prior knowledge of this distributed paradigm, to facilitate the Master LLM’s
understanding and application of the framework, we develop a distributed algorithm library that
adheres to this distributed paradigm, from which the Master LLM can query relevant algorithm
templates to generate distributed solutions within this paradigm. Specifically, we selected classic
distributed graph algorithms and documented their implementations under this distributed paradigm.
Some examples are presented in Appendix A.1. Drawing on prior work (Zheng et al., 2024; Meng
et al., 2024a), we endeavor to write detailed reasoning steps of each part in the algorithm to encourage
the agent to think step by step as much as possible, which plays an important role in enhancing the
success rate of individual agents.

When receiving a problem input, the Master LLM first retrieves the k algorithms most relevant to
the problem description from the distributed algorithm library. If there are algorithms suitable for
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Algorithm 1: Distributed Paradigm
1 Input: Agent Nodes A, each agent a ∈ A maintains a state Sa, the maximum iterations Imax

given by the Master LLM.
2 Output: Final state Sa for each agent a ∈ A
/* Initialization */

3 Each agent a ∈ A initializes its state Sa based on Initialization rules.
4 Each agent a sends an initial message Ma→v to each of its neighbors v ∈ Neighbors(a) based on

its current state Sa and Send rules.
/* Communication */

5 while Iteration i < Imax and Termination not met do
6 a. /* Receive */
7 Each agent a receives messages Mu→a from all neighboring agents u.
8 b. /* Update */
9 Each agent a updates its state Sa based on the received messages M and its own current state

Sa according to Update rules.
10 c. /* Send */
11 Each agent a sends updated messages Ma→v to each of its neighbors v based on the updated

state Sa according to Send rules.
12 Return: the final state Sa for all agents a ∈ A

handling the problem, the Master LLM will adjust the algorithm according to the problem description,
such as changing the initialization and termination conditions (e.g., the source node in the shortest
path problem). If there are no appropriate algorithms, the Master LLM will design a distributed
algorithm following the distributed paradigm based on the examples of the retrieved algorithms. For
some generated examples, see Appendix A.2.

Distributed Execution. After the distributed algorithm is designed, the Master LLM will relay the
approach to each agent node for execution according to the process outlined in Algorithm 1. Each
agent will first initialize its state based on node information and algorithm rules and then send an
initial message to neighboring agents. Subsequently, each agent will iteratively execute the operations
of receiving messages, updating its state, and sending messages according to the algorithm rules,
synchronizing progress after each communication round. Communication will continue until the
maximum number of iterations is reached or the termination condition is met.

Master Summarization. Finally, the final state of all agent nodes will be aggregated to the Master
LLM, which will summarize the results conclude based on the problem and return the final answer in
natural language form.

5 EXPERIMENTS

In this section, we summarize the key experiments conducted with GAR. We begin by highlighting
some of the most exciting results from our analysis here:

• R1: GAR achieves near-perfect accuracy on polynomial-time graph reasoning problems, signifi-
cantly surpassing existing closed-source models and open-source models fine-tuned on extensive
data.

• R2: GAR maintains high accuracy on larger-scale graphs (up to 1000 nodes), demonstrating
superior scalability. In contrast, as the number of nodes increases, other models exhibit a significant
decline in performance or become incapable of handling the problem at all due to the context length
limitation.

• R3: GAR showcases a robust understanding and application of graph algorithms in real-world graph
reasoning scenarios, highlighting its potential for addressing complex graph problems encountered
in daily life. In contrast, other open-source models that have undergone extensive fine-tuning on
graph reasoning datasets fail to apply the learned graph reasoning knowledge when confronted
with rephrased real-world graph problems.
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Datasets. We conduct our experiments on the graph reasoning tasks proposed in GraphInstruct (Chen
et al., 2024a). This dataset contains nine graph reasoning problems with different time complexity,
ranging from linear and polynomial complexity to NP-complete.

• Linear. Cycle Detection (Detect if a given graph G contains any cycles), Connectivity (Assess if
two nodes u and v in a given graph G are connected via a path), Bipartite Graph Check (Judge if
a given graph G is bipartite), and Topological Sort (Find a topological ordering of vertices in a
directed acyclic graph G).

• Polynomial. Shortest Path (Compute the shortest path between two specific nodes u and v in a
given graph G), Maximum Triangle Sum (Find the maximum sum of weights for any connected
triplet of vertices in a given graph G), and Maximum Flow (Calculate the maximum flow from a
source node s to a sink node t in a directed graph G).

Due to the complexity of NP-complete problems, there are currently no mature exact distributed
algorithms available for their solution. Consequently, the Master LLM is unable to design correct and
effective distributed algorithms based on the knowledge acquired during pre-training. Therefore, in
our experiments, we only consider linear and polynomial-time problems. Detailed information of the
dataset and partial test results for NP-complete problems will be presented in Appendix B.

Setting. The underlying reasoning LLM of Agent Node used in our framework is ChatGPT-4o-
mini-2024-07-18, and the base model of Master LLM is ChatGPT-4-turbo(OpenAI, 2023). The
temperature is consistently set to 0. Our framwork is built upon AgentScope (Gao et al. (2024)), an
innovative platform to easily build reliable, high-performance multi-agent applications.

5.1 EXPERIMENT 1: PERFORMANCE ON GRAPHINSTRUCT

In this experiment, we evaluate the performance of GAR on polynomial-time tasks of the GraphIn-
struct dataset. The results are shown in Table 1. We see GAR exhibits near-perfect results on these
tasks, significantly outperforming other models. Especially on shortest and triangle tasks with high
time complexity, GAR substantially improves the performance of LLMs. Problems that a single
LLM struggles to solve have been effectively resolved through collaboration by agents after being
decomposed into smaller, node-centric tasks.

As the number of nodes increases, the graph structures become more complex, making the solution
of graph problems increasingly difficult. To investigate how the performance of models varies
with increasing problem complexity, we conduct experiments on cycle detection and shortest path
problems, gradually increasing the number of nodes from 5 to 100. The results are presented in
Figure 4.

(a) Cycle Detection (b) Shortest Path

Figure 4: Performance of GraphAgent-Reasoner, GPT4(2 shot) and GraphWiz(Mistral 7B) on cycle
detection and shortest path problems with different graph sizes.
We see with the number of nodes increasing, both ChatGPT-4 and Graphwiz exhibit a significant
decline in performance. However, the accuracy of GAR remains stable, almost unaffected by the
graph size, demonstrating robust scalability. Although the scale of the graph is increasing, the
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information processed by each agent has not significantly increased. Each agent still only handles its
own information and communicates with neighboring agents. We observe that GAR occasionally
makes errors in specific cases, likely due to the increasing communication rounds as the number of
nodes and edges grows. Even when handling simple node-centric tasks, a single agent still has the
potential to make mistakes. Therefore, as the number of agents and communication rounds increases,
the overall likelihood of errors also rises. This can be improved by enhancing the capability of
individual agents (such as using stronger LLMs as the underlying reasoning model) or by more finely
designed prompts.

Table 1: Performance of GraphAgent-Reasoner and other models on polynomial-time tasks of
GraphInstruct test set. Each task contains 400 test cases, with a maximum of 100 nodes. The first
best result for each task is highlighted in bold, and the second best result is highlighted underlined.

Models Linear Polynomial Average
cycle connect bipartite topology shortest triangle

Closed-source Models
GPT-4 (zero-shot) 38.75 17.00 65.25 5.00 9.25 5.75 23.50
GhatGPT (2-shot) 51.25 43.75 70.75 4.50 3.50 17.25 31.83
GPT-4 (2-shot) 52.50 62.75 74.25 25.25 18.25 31.00 44.00

Fine-tuned Open-source Models
Naive SFT (LLaMA 2-7B) 73.75 83.50 41.25 4.00 9.50 30.00 40.17
Naive SFT (Mistral-7B) 73.75 83.50 78.50 1.00 23.00 47.00 51.13
GraphWiz (LLaMA 2-7B) 91.50 87.00 74.00 18.00 28.00 38.25 56.13
GraphWiz (Mistral-7B) 92.00 89.50 72.00 19.00 31.25 38.75 57.08
GraphWiz-DPO (LLaMA 2-7B) 89.00 82.50 84.75 46.75 24.00 52.75 63.29
GraphWiz-DPO (Mistral-7B) 85.50 79.50 85.50 85.25 12.50 29.00 62.88

GraphAgent-Reasoner 99.50 100.00 100.00 96.50 99.75 93.25 98.00

5.2 EXPERIMENT 2: PERFORMANCE ON LARGE-SCALE GRAPHS

In this experiment, we evaluate the performance of current LLMs on large-scale graphs. The largest
graph size handled by existing graph reasoning work is 100 nodes (Chen et al., 2024a), which is still
far from sufficient for real-world graph reasoning scenarios. To evaluate the reasoning performance
of existing models on larger graphs, we conduct shortest path experiments on graphs with 100, 200,
500, and 1000 nodes. Due to the excessively long input text (reaching 16,000 tokens for 1000 nodes)
and the money cost, we only create 20 test samples for each graph size. The results are shown in
Table 2.

Table 2: Performance on large-scale graphs dealing with shortest path problems. x/20 indicates that
out of 20 test samples, x samples are correct. NA signifies that testing could not be conducted due to
the fact that the context length limit is exceeded.

Graph Size 100 200 500 1000

Graphwiz (LLaMA 2-7B) 0/20 0/20 NA NA
Graphwiz (LLaMA 2-7B-DPO) 0/20 0/20 NA NA
Chatgpt-3.5-turbo-16k 0/20 0/20 0/20 0/20
Chatgpt-4-32k 0/20 1/20 0/20 0/20
GraphAgent-Reasoner 20/20 20/20 20/20 18/20

We see the two GraphWiz models fine-tuned on the LLaMA2-7B (Touvron et al., 2023) base model
are unable to handle graphs with 500 or more nodes due to the context length limitation (the context
length limit for Llama2 is 4096 tokens). Although ChatGPT-3.5-turbo-16k and ChatGPT-4-32k can
manage longer contexts, they output wrong answers in almost all test samples, with only ChatGPT-
4-32k being correct in one 200 nodes test sample. In contrast, GAR maintains a high accuracy
in large-scale graph, only failed in two 1000-node test samples, further demonstrating its robust
scalability.
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5.3 EXPERIMENT 3: CASE STUDY

In this experiment, we explore the application of two graph reasoning models, Graphwiz and GAR,
in real-world graph reasoning scenarios. We present a case study of webpage importance analysis in
Figure 5.

(G,Q): For a webpage network graph, each node represents a webpage, and a directed edge (i->j) means
that webpage i has a link to webpage j. Now given a webpage network graph G, you need to analyze the
importance of each webpage and give the top three webpage ids. G: The nodes are numbered from 1 to 20,
and the edges are: (1->5) (1->9) (2->6) (2->17) (3->8) (3->12) (4->2) (4->19) (5->14) (6->1) (7->10)
(7->3) (8->13) (9->4) (10->18) (11->7) (12->15) (13->20) (14->11) (15->2) (16->8) (16->5) (17->16)
(18->14) (19->6) (20->1) (5->7) (10->12) (15->19) (6->11) (8->2) (12->4) (14->9) (3->20) (7->15) (13-
>18) (9->17) (2->13) (11->16) (4->10).
 

GraphWiz(LLaMA 2-7B): \n\n### The output is: ### The output is: The graph has 21 nodes and 21 edges, so 
the number of edges is equal to the number of nodes. Therefore, the graph is connected and there is a path 
between any two nodes. The graph is not bipartite, so there is no way to divide the nodes into two groups 
such that no two nodes in the same group are directly connected.

GraphWiz(LLaMA 2-7B-DPO): The graph has 21 nodes and 19 edges, and we can use a similar strategy as 
the previous examples to find the top three nodes ... Finally, we can select node 6, which has the lowest 
degree (one) among the remaining nodes. \nThis way, we obtain a valid topological sorting of the graph that 
respects the direction of the edges. \n### The top three nodes are 1, 2, and 6.

GraphAgent-Reasoner: To analyze the importance of each webpage in the given directed graph, we can use a 
distributed algorithm based on the concept of PageRank. Below is the structured algorithm design:
### State:
1. `rank`: Represents the importance of the webpage, initialized to 1.0.
### Initialization
Step 1: Set `rank` to 1.0 for each node (webpage).  
### Message:
1. `contribution`: Current rank of the node divided by its number of outgoing links.
Distributed_Algorithm_Designer: ### Send
Step 1: Calculate `contribution` as `rank / out_degree`, where `out_degree` is the total number of outgoing 
links.  
Step 2: Send `contribution` to each connected neighbor (Node A and Node B).
### Update
Step 1: Sum all received `contribution` values from messages.  
Step 2: Update `rank` using the formula:  
   - `new_rank = damping_factor * (sum_of_received_contributions) + (1 - damping_factor) * initial_rank`.  
Step 3: Set the new `rank` as the current state.

<Distributed_Execution>

[RESULT]: Node: 1  State: 1. rank: 1.1194682167142727
Node: 2  State: 1. rank: 1.1624009025870747
...
Node: 19  State: 1. rank: 0.662517899831644
Node: 20  State: 1. rank: 0.5902983815488694

Master: {'thought': 'The PageRank values for each node have been calculated. The top three important 
webpages are those with the highest ranks.', 'speak': 'The top three important webpages are 16, 14, and 5 
based on their PageRank values.'}

Figure 5: The importance analysis in webpage network. While the GraphWiz fails due to incorrect
graph assessments, GAR correctly uses the PageRank algorithm to identify nodes 16, 14, and 5 as the
most important.

Although GraphWiz performed well on fine-tuned tasks, it exhibits severe overfitting when faced
with real-world graph problems, failing to apply the graph reasoning knowledge learned during the
fine-tuning phase. Since GraphWiz uses a consistent graph node description, the sentence "The
nodes are numbered from 0 to ..." appears across all datasets during the mixed-task instruction tuning.
When the actual problem has nodes numbered from 1 to 20, it still assumes the existence of node
0. As a result, both GraphWiz models first output that the graph has 21 nodes and an incorrect
number of edges. Furthermore, neither of the two GraphWiz models recognizes that this is a problem
associated with web page importance ranking. Instead, they approach it as the bipartite graph check
or topological sort problems they had been fine-tuned on. Additionally, neither model generates an
explicit and correct reasoning path. These observations indicate that there is still a significant gap
between excelling in classic graph reasoning tasks and effectively solving real-world graph reasoning
problems. In contrast, GAR correctly identifies that the problem should be solved using knowledge
related to PageRank (Yang et al., 2024) and designs an algorithm that adhered to the distributed
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paradigm (Note: the distributed algorithm library does not contain a PageRank algorithm template).
GAR then assigns the algorithm to agent nodes for execution, ultimately obtaining the PageRank
value for each node and arriving at the correct conclusion. Through the distributed paradigm, GAR
effectively bridges the powerful knowledge learned by LLMs with the solving of real-world graph
reasoning problems, which enables it to flexibly handle practical issues in a distributed manner. This
case study demonstrates the feasibility of using GAR to solve real-world graph reasoning problems,
indicating its substantial practical applicability and offering researchers and practitioners a powerful
framework to address such tasks.

6 CONCLUSION

We first summarize three key issues faced by existing LLMs in graph reasoning tasks: limited graph
scale, poor performance, and the lack of explicit reasoning paths. We then reflect on the limitations of
a single LLM in addressing graph reasoning problems, such as the graph structures being too complex
to memorize and understand and the overwhelming information in real-world graph reasoning
scenarios. To address these challenges, we propose GraphAgent-Reasoner, a framework based on
multi-agent collaboration to solve graph reasoning problems. This framework demonstrates superior
accuracy and scalability, significantly surpassing existing closed-source and fine-tuned open-source
models. Our experiments show its robust scalability, maintaining high accuracy on large graphs (up
to 1,000 nodes). Our case study on webpage importance analysis further illustrates its capability to
handle real-world graph reasoning problems. Future work will focus on designing more accurate and
scalable LLM-based multi-agent graph reasoning frameworks, aiming to apply them to larger and
more complex real-world reasoning scenarios.
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A DISTRIBUTED ALGORITHMS UNDER THE DISTRIBUTED PARADIGM

A.1 EXAMPLE OF DISTRIBUTED ALGORITHMS IN DISTRIBUTED ALGORITHM LIBRARY

Shortest Path: See Figure 6.

Connectivity: See Figure 7.

A.2 EXAMPLE OF DISTRIBUTED ALGORITHMS DESIGNED BY THE MASTER LLM

PageRank: See Figure 8.

Hamilton Path: See Figure 9.

Subgraph Matching: See Figure 10.

B THE GRAPHINSTRUCT DATASET

The statistics and detailed information of GraphInstruct are shown in Table 3. Hamilton Path and
Subgraph Matching are NP-complete problems.

Hamilton Path Execution Example.

Problem Description:

Determine whether or not there is a Hamiltonian path in an undirected graph. In an undirected graph,
(i,j) means that node i and node j are connected with an undirected edge. Given a graph, you need
to output Yes or No, indicating whether there is a Hamiltonian path in the graph. Q: The nodes are
numbered from 0 to 5, and the edges are: (0, 3) (0, 1) (0, 2) (0, 4) (1, 5) (1, 4) (1, 2) (1, 3) (2, 4) (2, 5)
(3, 5) (3, 4). Is there a Hamiltonian path in this graph?

Execution Process:

### State
1. ‘visited‘: Boolean indicating if the node has been visited.
2. ‘path_length‘: Integer representing the current length of the path.
3. ‘max_path_length‘: Integer tracking the longest path found.
### Initialization

Step 1: Set ‘visited = False‘, ‘path_length = 0‘, and ‘max_path_length = 1‘ for all nodes.
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State:  
1. `distance`: Known shortest distance from source node
Initialization:  
For each node, the input is:
Node Id: <node_id>  
---
### Initialization
Step 1: If Node Id is 14, set `distance` to 0; otherwise, set `distance` to infinity.
Message:
1. `new_distance`: Computed minimum distance from node 2 to the sending node.
Send:
For each node, the input is:
Node Id: <node_id>  
State: 1. distance: <distance>
Neighbor Information:  
Connected to:  
Node A with weight <weight1>  
Node B with weight <weight2>
---
### Send
Step 1: For each neighbor node, calculate `new_distance` = <distance> + <weight>
Step 2: Construct Message sent to Node xx: 1. new_distance: <new_distance>
### Example
## Input
Node Id: 5
State: 1. distance: 2
Neighbor Information:  
Connected to:  
Node A with weight 3  
Node B with weight 5  
## Process
For Node A with weight 3,
Step 1: calculate `new_distance` = 2 + 3 = 5
Step 2: construct Message sent to Node A: 1. new_distance: 5
For Node B with weight 5,
Step 1: calculate `new_distance` = 2 + 5 = 7
Step 2: construct Message sent to Node B: 1. new_distance: 7
## Output
Message sent to Node A: 1. new_distance: 5
Message sent to Node B: 1. new_distance: 7
Update:
For each node, the input is:
Node Id: <node_id>  
State: 1. distance: <distance>
Received Messages:  
Message: 1. new_distance: <new_distance> 
Message: 1. new_distance: <new_distance>
---
### Update
Step 1: For each received message, check if `new_distance` is less than current `distance`.  
Step 2: If it is, update `distance` to `new_distance`; otherwise, keep `distance` unchanged.
### Example
## Input
Node Id: 5  
State: 1. distance: 15
Received Messages:  
Message: 1. new_distance: 12
Message: 1. new_distance: 17
## Process
For Message: 1. new_distance: 12,
Step 1: `new_distance` = 12 is less than current `distance` = 15.
Step 2: update `distance` to 12. State: 1. distance: 12
For Message: 1. new_distance: 17
Step 1: `new_distance` = 17 is not less than current `distance` = 12.
Step 2: no update needed. State remains: 1. distance: 12
## Output
State: 1. distance: 12

Shortest Path

Figure 6: Distributed algorithm for shortest path problem under the distributed paradigm.
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State:  
1. `Component_Id`: unique identifier for the connected component.

Message: 
1. `Sender_Component_Id`: the current component identifier of the sender node.

Initialization: 
For each node, the input is:
Node Id: <node_id>
---
### Initialization
Step 1: set Component_Id = <node_id>

Send: 
For each node, the input is:
Node Id: <node_id>
State: 1. Component_Id: <component_id>
Neighbor Information:  
Connected to:  
Node A
Node B
---
### Send
Step 1: Construct Message sent to Node xx: 1. Component_Id: <component_id>
### Example
## Input
For each node, the input is:
Node Id: 5
State: 1. Component_Id: 5
Neighbor Information:  
Connected to:  
Node A
Node B
## Process
For Node A,
Step 1: Construct Message sent to Node A: 1. Component_Id: 5
For Node B,
Step 1: Construct Message sent to Node B: 1. Component_Id: 5
## Output
Message sent to Node A: 1. Component_Id: 5
Message sent to Node B: 1. Component_Id: 5

Update: 
For each node, the input is:
Node Id: <node_id>
State: 1. Component_Id: <component_id>
Receive Messages:
Message: 1. Sender_Component_Id: <sender_component_id>
Message: 1. Sender_Component_Id: <sender_component_id>
---
### Update
Step 1: For each received message, check if <sender_component_id> is less than current
<component_id>
Step 2: If it is, update <component_id> to <sender_component_id>; otherwise, keep
<component_id> unchanged.
### Example
## Input
For each node, the input is:
Node Id: 5
State: 1. Component_Id: 5
Receive Messages:
Message: 1. Sender_Component_Id: 2
Message: 1. Sender_Component_Id: 7
## Process
For Message: 1. Sender_Component_Id: 2,
Step 1: `Sender_Component_Id` = 2 is less than current `Component_Id` = 5.
Step 2: update `Component_Id` to 2. State: 1. Component_Id: 2
For Message: 1. Sender_Component_Id: 7,
Step 1: `Sender_Component_Id` = 7 is not less than current `Component_Id` = 2.
Step 2: no update needed. State remains: 1. Component_Id: 2
## Output
State: 1. Component_Id: 2'''

Connectivity

Figure 7: Distributed algorithm for connectivity problem under the distributed paradigm.
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State:  
1. `rank`: Represents the importance of the webpage, initialized to 1.0.

Initialization: 
Step 1: Set `rank` to 1.0 for each node (webpage).  
Step 2: (No additional steps required).

Message:  
1. `contribution`: Current rank of the node divided by its number of outgoing links.

Send:  
Step 1: Calculate `contribution` as `rank / out_degree`, where `out_degree` is the total
number of outgoing links.  
Step 2: Send `contribution` to each connected neighbor (Node A and Node B).
### Example
## Input
Node Id: 1  
State: 1. rank: 2.0  
Neighbor Information:  
Connected to:  
Node A 
Node B 
## Process
1. Calculate `out_degree` for Node 1:  
   - Outgoing links = 2 (to Node A and Node B).
2. Calculate `contribution`:  
   - `contribution = rank / out_degree = 2.0 / 2 = 1.0`.
3. Send `contribution` to neighbors:  
   - Message to Node A: `contribution = 1.0`.
   - Message to Node B: `contribution = 1.0`.
## Output
Message sent to Node A: 1. contribution: 1.0  
Message sent to Node B: 1. contribution: 1.0  

Update:  
Step 1: Sum all received `contribution` values from messages.  
Step 2: Update `rank` using the formula:  
   - `new_rank = damping_factor * (sum_of_received_contributions) + (1 - damping_factor) *
initial_rank`.  
Step 3: Set the new `rank` as the current state.
### Example
## Input
Node Id: 2  
State: 1. rank: 1.5  
Received Messages:  
Message: 1. contribution: 0.8  
Message: 2. contribution: 1.2  
## Process
1. Sum all received `contribution` values:  
   - `sum_of_received_contributions = 0.8 + 1.2 = 2.0`.
2. Update `rank` using the formula:  
   - `new_rank = damping_factor * (sum_of_received_contributions) + (1 - damping_factor) *
initial_rank`.  
   - Assuming `damping_factor = 0.85`:  
   - `new_rank = 0.85 * 2.0 + 0.15 * 1.5 = 1.7 + 0.225 = 1.925`.
3. Set the new `rank` as the current state:  
   - `rank = 1.925`.
## Output
State: 1. rank: 1.925

PageRank

Figure 8: Distributed algorithm for pagerank calculation under the distributed paradigm.
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State:  
1. 'isInPath': boolean (True if the node is part of the Hamiltonian path, False otherwise);
2. 'pathLength': integer (length of the path ending at this node).
Initialization:
Step 1: Each node initializes `isInPath` as `False` and `pathLength` as `1`.  
Step 2: Node 0 initializes `isInPath` as `True` and `pathLength` as `1`.
Message: 
1. 'pathLength': integer (current length of the path from the sender node); 2. 'isInPath':
boolean (True if the sender node is part of the Hamiltonian path).
Send:
Step 1: For each neighbor (Node A, Node B), if `isInPath` is `True`, send messages
containing:
- `pathLength`: current `pathLength` + 1
- `isInPath`: current `isInPath`.  
Step 2: If `isInPath` is `False`, do not send messages.
Update:
Step 1: For each received message, check if `isInPath` from the message is `True`.
Step 2: If `isInPath` is `True` and the `pathLength` from the message is greater than the
current `pathLength`, update the state:
- Set `pathLength` to the maximum of the current `pathLength` and the received `pathLength` +
1.
- Set `isInPath` to `True` (if not already).  
Step 3: If no messages resulted in an update, retain the current state.

Hamilton Path

Figure 9: Distributed algorithm for hamilton path problem under the distributed paradigm.

State:  
1. **NodeMatch**: A list of potential matches for nodes in the subgraph G'.
2. **MatchedFlag**: A boolean indicating if the node is currently matched to a node in the
subgraph.

Initialization:  
Step 1: Each node in graph G initializes its **NodeMatch** as an empty list and
**MatchedFlag** as false.  
Step 2: Each node in subgraph G' initializes its unique identifier and sets **MatchedFlag**
as false.

Message:  
1. **MatchInfo**: Contains the identifier of the sending node and its list of current
potential matches.
2. **EdgeConnection**: Indicates the directed neighbors that the sending node is connected
to.

Send:  
Step 1: Construct **MatchInfo** message containing the node identifier and its list of
potential matches.  
Step 2: Include **EdgeConnection** message detailing connections to both Node A and Node B.  
Step 3: Send the constructed messages to both connected neighbors.  

Update:  
Step 1: For each received **MatchInfo** message, check if the identifier matches any node in
the state of the subgraph G'. If a match is found, update **NodeMatch** to include the new
match and set **MatchedFlag** to true.
Step 2: For each received **EdgeConnection** message, update the list of potential neighbors
or confirm connectivity with received nodes, ensuring to track relationships needed for
further matching.
Step 3: If no new matches are found and the **MatchedFlag** remains false, retain the current
state while preparing for potential future updates.  

Subgraph Matching

Figure 10: Distributed algorithm for subgraph matching problem under the distributed paradigm.
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Table 3: The detailed information of GraphInstruct dataset.

Problem Definition Node Range Test Size
Cycle Detection Detect if a given graph G contains any cycles. [2, 100] 400

Connectivity Assess if two nodes u and v in a given graph G are
connected via a path.

[2, 100] 400

Bipartite Graph Check Judge if a given graph G is bipartite. [2, 100] 400

Topological Sort Find a topological ordering of vertices in a directed
acyclic graph G.

[2, 50] 400

Shortest Path Compute the shortest path between two specific
nodes u and v in a given graph G.

[2, 100] 400

Maximum Triangle Sum Find the maximum sum of weights for any con-
nected triplet of vertices in a given graph G.

[2, 25] 400

Maximum Flow Calculate the maximum flow from a source node s
to a sink node t in a directed graph G.

[2, 50] 400

Hamilton Path Determine if a given graph G has a Hamiltonian
path that visits each vertex exactly once.

[2, 50] 400

Subgraph Matching Verify if there exists a subgraph in G that is iso-
morphic to a given graph G′.

[2, 30] 400

Step 2: For the initial node (e.g., Node Id: 0), set ‘visited = True‘ and
‘path_length = 1‘.
Distributed_Algorithm_Designer: ### Message
1. ‘path_length‘: The current path length from the sender.
2. ‘max_path_length‘: The maximum path length known to the sender.
3. ‘visited_flag‘: Boolean indicating whether the sender has visited the node.
### Send
Step 1: For each neighbor (Node A, Node B), if ‘visited‘ is ‘False‘, construct the message as follows:
- Message to Node A: ‘(Node Id: <node_id>, path_length + 1, max(max_path_length, path_length + 1))‘.
- Message to Node B: ‘(Node Id: <node_id>, path_length + 1, max(max_path_length, path_length + 1))‘.
Step 2: Send the constructed messages to both neighbors.
### Example
## Input
Node Id: 0
State:
1. visited: False
2. path_length: 2
3. max_path_length: 3
Neighbor Information:
Connected to:
Node A
Node B
## Process
Step 1: Check neighbors Node A and Node B. Since ‘visited‘ is
‘False‘, proceed to construct messages.
- For Node A:

- Calculate new ‘path_length‘: ‘2 + 1 = 3‘
- Calculate ‘max_path_length‘: ‘max(3, 2 + 1) = 3‘

- For Node B:
- Same calculations apply as for Node A.

Step 2: Construct messages:
- Message to Node A: ‘(Node Id: 0, 3, 3)‘
- Message to Node B: ‘(Node Id: 0, 3, 3)‘
## Output
Message sent to Node A:
1. path_length: 3
2. max_path_length: 3
3. visited_flag: False
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Message sent to Node B:
1. path_length: 3
2. max_path_length: 3
3. visited_flag: False
### Update
Step 1: For each received message, check the ‘visited_flag‘. If it is
‘False‘, proceed to the next steps.
Step 2: Update ‘visited‘ to ‘True‘ for the current node.
Step 3: Update ‘path_length‘ to the maximum of its current value and
the received ‘path_length‘ from the message, incrementing by 1 if the
message indicates a potential continuation of the path.
Step 4: Update ‘max_path_length‘ to the maximum of its current value
and the received ‘max_path_length‘ from the message.
Step 5: If any messages were processed, trigger a re-evaluation of
outgoing messages to neighbors, if applicable.
### Example
## Input
Node Id: 1
State:
1. visited: False
2. path_length: 1
3. max_path_length: 2
Received Messages:
Message 1:
1. path_length: 2
2. max_path_length: 3
3. visited_flag: False
Message 2:
1. path_length: 3
2. max_path_length: 4
3. visited_flag: True
## Process
Step 1: Process Message 1. Since ‘visited_flag‘ is ‘False‘, proceed:
- Update ‘visited‘ to ‘True‘.
- Update ‘path_length‘: ‘max(1, 2) + 1 = 3‘.
- Update ‘max_path_length‘: ‘max(2, 3) = 3‘.
Step 2: Process Message 2. Since ‘visited_flag‘ is ‘True‘, ignore this
message and do not make any changes.
## Output
State:
1. visited: True
2. path_length: 3
3. max_path_length: 3
### Termination
The algorithm continues until:
- A node reaches a ‘path_length‘ equal to the total number of nodes
(indicating a Hamiltonian path exists).
- Or until a predefined number of iterations equal to the total number
- of nodes (‘N‘) is reached without discovering a Hamiltonian path.
Master: ##################### ITER 3, STEP 1: REASONING ######################
Master: {’thought’: "The algorithm is designed to check for a
Hamiltonian path. Now let’s execute it to see if such a path exists.",
’speak’: "The algorithm is ready. Let’s execute it to determine if there is
a Hamiltonian path.", ’function’: [{’name’: ’Distributed_Execution’,
’arguments’: {}}]}
Master: ####################### ITER 3, STEP 2: ACTING #######################
0: State: 1. visited: True 2. path_length: 1 3. max_path_length: 1
2: State: 1. visited: False 2. path_length: 0 3. max_path_length: 1
5: State: 1. visited: False 2. path_length: 0 3. max_path_length: 1
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3: State: 1. visited: False 2. path_length: 0 3. max_path_length: 1
4: State: 1. visited: False 2. path_length: 0 3. max_path_length: 1
1: State: 1. visited: False 2. path_length: 0 3. max_path_length: 1
Node 5 Send Message to Node 1: 1. path_length: 1 2. max_path_length:
1 3. visited_flag: False
Node 5 Send Message to Node 2: 1. path_length: 1 2. max_path_length:
1 3. visited_flag: False
Node 5 Send Message to Node 3: 1. path_length: 1 2. max_path_length:
1 3. visited_flag: False
...
All agents’ state unchanged, terminating early...
>>> END
system: 1. Execute function Distributed_Execution

[ARGUMENTS]:

[STATUS]: SUCCESS
[RESULT]: Node: 0 State: 1. visited: True 2. path_length: 5 3. max_path_length: 1

Node: 1 State: 1. visited: True 2. path_length: 2 3. max_path_length: 1
Node: 2 State: 1. visited: True 2. path_length: 4 3. max_path_length: 3
Node: 3 State: 1. visited: True 2. path_length: 5 3. max_path_length: 3
Node: 4 State: 1. visited: True 2. path_length: 4 3. max_path_length: 3
Node: 5 State: 1. visited: True 2. path_length: 5 3. max_path_length: 3

Master: ##################### ITER 4, STEP 1: REASONING ######################
Master: {’thought’: ’Since the maximum path length found is 5, which is
less than the total number of nodes (6), there is no Hamiltonian path in
the graph.’, ’speak’: ’No, there is no Hamiltonian path in this graph.’,
’function’: []}

C EXECUTION EXAMPLES OF GRAPHAGENT-REASONER

Shortest Path Execution Example.

Problem Description:

Find the shortest distance from a source node to other nodes in an undirected graph. In an undirected
graph, (i,j,k) means that node i and node j are connected with an undirected edge with weight k. The
graph has 8 nodes, and the edges are: (0,7,9) (0,1,7) (0,4,9) (1,7,1) (2,7,7) (2,6,5) (2,5,8) (3,5,9)
(3,4,8) (3,6,1) (4,7,7) (4,5,6) (5,7,6). Give the weight of the shortest distance from node 1 to other
node.

Execution Process:

Master: ##################### ITER 1, STEP 1: REASONING ######################
Master: {’thought’: ’I need to find the shortest distances from node 1 to all
other nodes in the given undirected graph. First, I will build the graph using
the provided edges and then design a distributed algorithm to find the
shortest paths.’, ’speak’: ’Building the graph and designing the distributed
algorithm to find the shortest distances from node 1.’, ’function’: ’[{"name":
"Build_Graph", "arguments": {"Edges": [[0, 7, 9], [0, 1, 7], [0, 4, 9], [1, 7, 1], [2,
7, 7], [2, 6, 5], [2, 5, 8], [3, 5, 9], [3, 4, 8], [3, 6, 1], [4, 7, 7], [4, 5, 6], [5, 7, 6]],
"Nodes_Num": 8, "Directed": false}}]’}
Master: ####################### ITER 1, STEP 2: ACTING #######################
>>> Edges: [[0, 7, 9], [0, 1, 7], [0, 4, 9], [1, 7, 1], [2, 7...
>>> Nodes_Num: 8
>>> Directed: False
>>> END
system: 1. Execute function Build_Graph

[ARGUMENTS]:
Edges: [[0, 7, 9], [0, 1, 7], [0, 4, 9], [1, 7, 1], [2, 7, 7], [2, 6, 5], [2, 5, 8], [3,
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5, 9], [3, 4, 8], [3, 6, 1], [4, 7, 7], [4, 5, 6], [5, 7, 6]]
Nodes_Num: 8
Directed: False

[STATUS]: SUCCESS
Master: ##################### ITER 2, STEP 1: REASONING ######################
Master: {’thought’: ’The graph has been successfully built. Now, I will design
a distributed algorithm to find the shortest distances from node 1 to all
other nodes.’, ’speak’: ’Designing a distributed algorithm to find the
shortest distances from node 1.’, ’function’: ’[{"name":
"Design_Distributed_Algorithm", "arguments": {"Problem_Str": "Find the
shortest distance from node 1 to all other nodes in an undirected graph
with 8 nodes and given edges."}}]’}
Master: ####################### ITER 2, STEP 2: ACTING #######################
>>> END
Master: ##################### ITER 3, STEP 1: REASONING ######################
Master: {’thought’: ’The distributed algorithm has been successfully
designed. Now, I will execute the algorithm to find the shortest distances
from node 1 to all other nodes.’, ’speak’: ’Executing the distributed
algorithm to calculate the shortest distances from node 1.’, ’function’:
’[{"name": "Distributed_Execution", "arguments": {}}]’}
Master: ####################### ITER 3, STEP 2: ACTING #######################
Initialization:
1: State: 1. distance: 0
0: State: 1. distance: \infinity
2: State: 1. distance: \infinity
4: State: 1. distance: \infinity
5: State: 1. distance: \infinity
7: State: 1. distance: \infinity
3: State: 1. distance: \infinity
6: State: 1. distance: \infinity
Node 6 Send Message to Node 2: 1. new_distance: \infinity
Node 6 Send Message to Node 3: 1. new_distance: \infinity
Node 1 Send Message to Node 0: 1. new_distance: 7
Node 1 Send Message to Node 7: 1. new_distance: 1
Node 3 Send Message to Node 5: 1. new_distance: \infinity
....
All agents’ state unchanged, terminating early...
>>> END
system: 1. Execute function Distributed_Execution

[ARGUMENTS]:

[STATUS]: SUCCESS
[RESULT]: Node: 0 State: 1. distance: 7

Node: 1 State: 1. distance: 0
Node: 2 State: 1. distance: 8
Node: 3 State: 1. distance: 14
Node: 4 State: 1. distance: 8
Node: 5 State: 1. distance: 7
Node: 6 State: 1. distance: 13
Node: 7 State: 1. distance: 1

Master: ##################### ITER 4, STEP 1: REASONING ######################
The shortest distances from node 1 are as follows: Node 0: 7, Node 1: 0,
Node 2: 8, Node 3: 14, Node 4: 8, Node 5: 7, Node 6: 13, Node 7: 1.Master:
{’thought’: ’The distributed algorithm has been successfully executed, and I
have obtained the shortest distances from node 1 to all other nodes.’,
’speak’: ’The shortest distances from node 1 are as follows: Node 0: 7, Node
1: 0, Node 2: 8, Node 3: 14, Node 4: 8, Node 5: 7, Node 6: 13, Node 7: 1.’,
’function’: []}
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