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Abstract

This paper considers the reliability of automatic differentiation for neural networks
involving the nonsmooth MaxPool operation across various precision levels (16, 32,
64 bits), architectures (LeNet, VGG, ResNet), and datasets (MNIST, CIFAR10,
SVHN, ImageNet). Although AD can be incorrect, recent research has shown that it
coincides with the derivative almost everywhere, even in the presence of nonsmooth
operations (such as MaxPool and ReLU). On the other hand, in practice, AD operates
with floating-point numbers, and there is, therefore, a need to explore subsets on
which AD can be numerically incorrect. These subsets include a bifurcation zone
(where AD is incorrect over reals) and a compensation zone (where AD is incorrect
over floating-point numbers but correct over reals). Using SGD for the training
process, we study the impact of different choices of the nonsmooth Jacobian for the
MaxPool function on the precision of 16 and 32 bits. These findings suggest that
nonsmooth MaxPool Jacobians with lower norms help maintain stable and efficient
test accuracy, whereas those with higher norms can result in instability and decreased
performance. We also observe that the influence of MaxPool’s nonsmooth Jacobians
on learning can be reduced by using batch normalization, Adam-like optimizers, or
increasing the precision level.

1 Introduction

Nonsmooth neural networks are trained using optimization algorithms (Bottou et al.l 2018; |[Davis
et all 2018) based on backpropagation and automatic differentiation (AD) (Speelpenningj, [1980;
Rumelhart et al., [1986b; Baydin et al., 2018)). AD is a crucial tool in contemporary learning
architectures as it allows for fast differentiation (Griewank & Walther, |2008; Bolte et al., 2022]).
It is implemented in popular machine learning libraries such as TensorFlow (Abadi et al.| 2016]),
PyTorch (Paszke et al., 2019), and Jax (Bradbury et al., 2018). Although the validity domain
of AD is theoretically limited to smooth functions (Griewank & Walther, 2008), it is commonly
used for nonsmooth functions (Bolte et al., 2022; 2021bj [Bertoin et al., 2023). The behavior of
nonsmooth AD has been investigated in previous studies (Griewank & Walther, 2008} Griewank],
2013}, |(Griewank et al., 2016} Barton et al., 2018; [Kakade & Lee, 2018}, |(Griewank & Rojas| [2019;
Griewank & Walther, 2020; Bolte & Pauwels, |2020a; [Bolte et al., 2022).

MaxPool: a nonsmooth operation Introduced by Yamaguchi et al.| (1990]), MaxPool is a
common operation in convolutional neural networks (CNN), which are a type of network often
used for image classification (Krizhevsky & Hinton, [2010; Krizhevsky et al.l 2012; Zeiler & Fergus,
2014; LeCun et al., 2015)). MaxPool reduces the spatial dimensions of a feature map by selecting
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the maximum value within specific patches. MaxPool applied to uniform pixel values can cause
nonsmoothness, especially at image edges where identical pixels can be chosen arbitrarily. In such
cases, different choices of MaxPool’s nonsmooth Jacobians have a variational sense. See Appendix
for an illustration. In this paper, the term MaxzPool-derived program refers to a specific choice
of a MaxPool nonsmooth Jacobian.

Various types of nonsmooth AD errors: We carry out a small PyTorch (Paszke et al.,
2019) experiment to investigate the autodiff behavior of the nonsmooth max function, defined as
max: T — maxi<i<4Z; € R. We implement two max programs (max; and maxs) with different
derivative implementations (see Appendix for more details). Let zero be a program as follows:
zero: t — maxq (¢t X x) — maxy(t X x). The associated AD output of zero is denoted by zero’. As
mathematical functions, both max; and maxs output the same value, while zero always outputs
0. However, when using AD and floating-point numbers, we observe an unexpected behavior:
zero' (t) # 0 for some t € R. In Table [I} we analyze numerical AD errors for the zero program. For

zero (t)
t —10 3] =102 —-1071 0 10t [ 10° | 10°
r1= 1.0 2.0 3.0 4.0 0.0 0.0 00 |—=15] 00 | 00 | 00
xo=114 14 14 14 10°7 1077 1077 1077|1077 | 1077 | 1077

Table 1: Overview of numerical AD errors for the zero program with 32 bits precision.

x1, we find a large error for t = 0 (zero’(0) = —1.5), which is different from the correct derivative.
For x9, a case with equal numbers common in tasks like image classification (see Appendix ,
theoretical calculations give zero/(t) = 0 for any ¢t € R. However, using floating-point numbers, we
see small divergences in AD results. Specifically, for all ¢ in Table [1} zero/(¢) is about 5.96 x 1078
(shown as 10~7 in the table), near the limit for 32-bit precision. This phenomenon occurs due to
numerical arithmetic limits. In general, ¢ represents a neural network parameter, and x is an input
image with a specific pixel area with identical values (e.g., MNIST dataset- refer to Appendix .
Note that these phenomena observed in Table |1 are not caused by the nonsmooth multivariate
nature of the max function and can also be replicated using only the nonsmooth univariate ReLU
operation. Refer to Appendix for more details.

Reals vs floating-point numbers: Over reals, AD outputs derivatives for nondifferentiable
functions, except for a Lebesgue measure-zero subset of inputs (Bolte & Pauwels, [2020a3b). On
the other hand, as reported in Table [1] floating-point arithmetic can thicken subsets where AD is
incorrect (Bertoin et al., [2023)). In Section |3, we try to identify two network parameter subsets
where AD is incorrect numerically: the bifurcation zone with considerable amplitude variations of
AD and the compensation zone with minor amplitude variations near machine precision, which is
due to rounding schemes used for inexact arithmetics over the reals (e.g., non-associativity). Our
experiments show that in a 64-bit network with MaxPool, the compensation zone fills the entire
parameter space. In a 32-bit network, both compensation and bifurcation zones share the space. In
a 16-bit setting, the bifurcation zone takes up the entire parameter space.

Implications for learning dynamics: In Sectiond] we explore how different nonsmooth MaxPool
Jacobians affect learning. Using 32-bit precision, nonsmooth Jacobians with low norm yield similar
test accuracy. However, Jacobians with high norms decrease accuracy due to training instability or
gradient problems. In 16-bit precision, which is a key area of study (Vanhoucke et al., 2011; [Hwang
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& Sung, [2014; |Courbariaux et al., 2015; |Gupta et al., |2015)), the impact of these Jacobians is more
pronounced and varies with the network design, data, and precision used. We also observe that
both batch normalization (loffe & Szegedy, 2015)) and the Adam optimizer (Kingma & Bal 2014)
mitigate this effect. All experiments were done using PyTorch (Paszke et al., 2019), and our code is
publicly available [1]

Related works and contributions: Recent works show that for a broad class of programs using
nonsmooth functions, AD is incorrect at most on a Lebesgue measure-zero subset of the input
domain of a program (Bolte & Pauwels| [2020a; Lee et al., 2020)). However, practical inputs are
machine-representable. Lee et al.| (2023) recently explored AD correctness in neural networks with
machine-representable parameters, excluding networks with MaxPool. Bertoin et al.| (2023)) examined
the ReLU’(0) effect on AD and training, identifying a bifurcation zone in ReLU networks where AD
fails. However, they do not consider the case, where AD is incorrect over floating-point numbers but
correct over real numbers (e.g., last line in Table . Thus, our paper introduces a compensation
zone. Our study assesses autodiff reliability in MaxPool neural networks at various precision levels
and explores how the compensation zone’s effects vary by network structure, regardless of the
nonsmooth functions’ dimensionality (univariate or multivariate functions). We also analyze how
nonsmooth MaxPool Jacobians affect neural network training’s stability and performance.

Organization of the paper: In Section [2 we discuss the elements of nonsmooth backpropagation
and define the subsets of network parameters - bifurcation, compensation, and regular zone. We also
introduce nonsmooth MaxPool Jacobians and their theoretical implications for backpropagation,
based on |Bolte & Pauwels (2020a;b). In Section [3, we describe a numerical bifurcation and
compensation zone with factors that influence their importance. In Section [4] we present detailed
experiments on neural network training. Refer to Appendix [C] for further findings and experiments.

2 MaxPool neural networks and nonsmooth AD

2.1 Preliminaries and notations

In supervised training for neural networks, we work with a set of training data (x;, y;) Z]\L 1» Where each
x; is an input and y; its matching label. A neural network, through its function f, uses parameters
0 to generate predictions ¢; = f(x;,#). The difference between these predictions and the actual
labels is measured by a loss function . The aim is to reduce this discrepancy across the training set
by minimizing an empirical loss function L such as:

N

: 1 .
min - L(0) = ;f(yz,yz)- (1)

For all i € {1,...,N} and 6 € RP, Equation can be expressed with £(9;,y;) = 1;(0), where
l; : RP — R represents a composition of M elementary functions as follows:

Li(0) =gimogim—10...0gi1(0). (2)

Equation models common neural network types, including feed-forward (Rumelhart et al., [1986a),
convolutional (LeCun et al., 1998), and recurrent networks (Hochreiter & Schmidhuber; 1997). We
focus on elementary functions that are locally Lipschitz and semialgebraic, commonly found in
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nonsmooth neural networks (Bolte & Pauwels, [2020a;b)). Functions g; ; include operations such as
linear transformations, ReLU, MaxPool, convolution with filters, and softmax for classification.

2.2 Nonsmooth AD framework

Training nonsmooth neural networks (Bolte & Pauwels| [2020a; Bolte et al., 2021b; 2022; 2021a;
Davis et al., 2020) is challenging due to the need to compute subgradients from Equation . Major
machine learning tools such as TensorFlow (Abadi et al., [2016]), PyTorch (Paszke et al., 2019)),
and Jax (Bradbury et all 2018) address this issue using automatic differentiation, referred to here
as backprop (Rumelhart et al., |1986b; [Baydin et al., 2018)). They apply differential calculus to
nonsmooth items, often replacing derivatives with Clarke Jacobians (Clarke, |1983). Given a locally
Lipschitz continuous function F': RP — RY, the Clarke Jacobian of F is defined as:

Jac® F(x) = conv{ lim Jac F(xg) : xp € diffp,z;, — x} (3)
k—4o00 k—+00

where diff p represents the full measure set where F' is differentiable and Jac F' is the standard

Jacobian of F. A selection v in Jac® F' is a function v: RP — RP*? guch that, for all z € RP,

v(z) € Jac® F(x). If F is C!, the only possible selection is v = Jac F.

Definition 1 (Calculus model, programs and nonsmooth AD) Let [ be a composition func-
tion evaluated at 8 € RP, as specified in Equation . A program P that executes [ can be described
through a sequence of subprograms such as:

¢ Elementary programs: {gj}j]\il such that 1(0) = gy o gpr—10...0g1(0).
e Derived programs: {vj}j]‘il where each v;(w) € Jac® gj(w) at point w = gj—10---0g1(0).
Then, the backprop algorithm automates applying differential calculus rules as follows:

backprop[P|(0) = var (grpr—10...091(0)) - vpr—1 (grpr—20...091(0)) - ... - v1(0). (4)

In practice, AD libraries (Abadi et al., |2016; Paszke et al., [2019; Bradbury et al., [2018) implement
dictionaries (see for e.g. (Griewank & Walther| (2008); Bolte et al| (2022)) containing conjointly
elementary programs and derived programs which efficiently computes the quantities defined in

Equation .

Remark 1 As seen in Section [I| with the zero program, various programs can implement a unique
composition function [. Each elementary program g; in the composition (see Definition [I|) can
be associated with different derived programs v;. Specifically, for any j = 1,...,M and w =
gj—10---0gi(8), all selections v;(w) from the Clarke Jacobian of g;(w) can be used.

Example 1 The Clarke subdifferential of ReLU(t) = max(0,t¢) at ¢ is 0 for ¢ < 0, 1 for ¢t > 0, and
the interval [0,1] for ¢ = 0. All derived program that implements ReLU’(0) = s with s € [0, 1] can
be used for backprop and have a variational bear.

Definition 2 (Backprop set) Let [ denote a composition function evaluated at 6 € RP, as specified
in Equation . We define J(#) as the function that encompasses the set of all possible backprop
outputs through all programs implementing /() as in Definition

J(0) = {backprop[P](#) : P is a program implementing [(0)} . (5)
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Remark 2 For a composition function I composed by C! elementary programs {g; }jj\il, J(0) is
a singelton for all # € RP. For locally Lipchitz semialgebraic (or definable) elementary programs

{9; }jj\ilz Equation is always an element within the backprop set.

Remark 3 The chain rule, essential for AD, often fails with Clarke subgradients. Hence, the
backprop set might differ from the Clarke subdifferential (Clarkel 1983). For example, the Clarke
subdifferential of 2ReLU(z) — $ReLU(—z) at = 0 is [3,2], whereas backprop outputs 0 (with
ReLU’(0) = 0).

2.3 Network parameters subsets

Recently, Bertoin et al.| (2023) analyzed the bifurcation zone for ReL.U networks, which is defined
by network parameters where AD’s output diverges between ReLU’(0) = 0 and ReLU’(0) = 1.
Their study, however, omitted the analysis of network parameters where backprop is theoretically a
singleton, but AD inaccurately computes due to floating-point arithmetic, as shown in Table (1l To
address this gap, we introduce the compensation zone.

Definition 3 (Compensation, bifurcation and regular zones) For each i = 1,..., N, let [;
denote a composition function evaluated at € RP and J;(0) denote the backprop set associated as
detailed in Definition 2 We define the following network parameters subsets of RP:

Op = {9 ERP:Vije{l,...,N} x{1,..., M}, Jac® g; j(w) is a singleton} : (6)
Oc = {0 eRP\OR:Vie {1,...,N},J;(d) is a singleton}, (7)
Op ={0 € RP\Ogr : i € {1,..., N} such that J;(f) is not a singleton}, (8)

where w = g;j—10...0g;1(0), O is the regular zone, ©¢ the compensation zone and ©p the
bifurcation zone.

The mathematical tools of Proposition [I] are conservative fields developed in [Bolte & Pauwels
(2020a). This proposition implies that theoretically (assuming exact arithmetic over the reals), the
backprop set is almost everywhere a singleton. The proof is given in Appendix

Proposition 1 Given subsets Or, Op, and O¢ in RP as defined in Definition (3, the following
properties hold:

e Op, Op, and O¢ form a partition of RP.

e Op is a Lebesgue null measure subset.

Remark 4 (Backprop returns a gradient a.e.) Let # € RP and P be a program implementing
a composition function (f) as in Definition I} Then backprop[P](¢) = VI(6) almost everywhere.

2.4 MaxPool-derived programs

Definition 4 (Clarke Jacobian of matrix’s maximum function) Let X be a m x n real ma-
trix and Fs be a function such that Fs(X) = maxi<j<m,i<j<n Xij € R, where s :=m x n denotes
the size of X. The Clarke Jacobian of F§ at the point X is:

Jac® F5(X) = conv ( U El-j) , 9)

(1,7)€A(X)
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where A(X) :={(4,5) € {1,...,m} x{1,...,n} : Fo(X) = Xj;} is the active set and E;; is an m xn
matrix with all entries equal to 0 except for the (i, j)-th entry which is 1.

Definition 5 (MaxPool operation) Let X € RP*9 be a real matrix, and s := m xn be the size of
a pooling window such that p > m and ¢ > n. Foreachi € {0,...,|[£]| -1} and j € {0,..., %] -1},
we define a submatrix X; ; of X, of size m x n as follows:

Xm::{Xkl:mxi§k<mx(z’+1),n><j§l<n><(j—i—l)}, (10)

where k and [ are the indices of the entries in X, in the lexicographic order. The MaxPool
operation output a matrix Y € Rlm)*[#] where Yij = Fo(X; ) for all i € {0,...,[£] — 1} and
j €40,..., 1] —1}. Finally, the MaxPool Clarke Jacobian at point X, denoted as Jac® MaxPool(X),
can be obtained by replacing each submatrix X, ; in X with Jac® Fy(X ;).

Definition 6 (MaxPool-derived programs) Define X;; € R™*" as a submatrix of X (Defini-
tion , from which we derive MaxPool programs based on the Clarke Jacobian:

o Native: Chooses the first index (i1, 1) from the active set A(X;;) and outputs E;
Autograd libraries use this implementation.

1j1°

o Minimal: Takes all indices from A(Xj ;), averaging them as AT Yo (keA(x;,;) Er- We

called it "minimal" as it yields the smallest norm element Wlthln Equatlon

e Hybrid: A blend of native and minimal, parameterized by 8 > 0:

(1—6)XE7;1_71+5X (‘A(

Pl > Ekl) ;

(k1)EA(X; ;)
Remark 5 The hybrid MaxPool-derived program is a selection of the MaxPool Clarke Jacobian
for 5 € ]0,1] and a selection of a conservative Jacobian approach for other 8 values, as outlined in

Bolte & Pauwels| (2020a)) .

3 Numerical AD with MaxPool-derived programs

In this section, we explore subsets of network parameters for neural networks with MaxPool operations
at various floating-point precisions. We note that the numerical bifurcation zone identified by |Bertoin
et al.| (2023)) is not applicable to our MaxPool-derived program analysis. As indicated in Table ,
our investigation extends to include small AD errors that occur with floating-point but not with real
numbers. Therefore, we explore both numerical bifurcation and compensation zones via numerical
methods, employing notations from Sections 2.1 and [2.2]

3.1 A numerical criteria for the bifurcation and compensation zone
Recently, Bertoin et al. (2023)) studied a numerical bifurcation zone Sp; for ReLU-based programs.

For each i = 1,..., N, two versions of a program, R} (using ReLU’(0) = 0) and R} (using
ReLU’(0) = 1), implement a function l;. The bifurcation zone Sy is defined as:

So1 = {0 eRY: Jie{1,...,N}, backprop[R?](h) # backprop[Rl](Q)} (11)

6
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Definition 7 (Backprop variation) Let (B,),en be a sequence of mini-batches, where each batch
size | B,| falls within {1,...,N}. Consider P = {P}}¥, and @ = {Q;}Y, as two neural network
implementations using different MaxPool-derived programs (e.g., native vs. minimal). Each P; and
Q; applies a composition function ;. The backprop variation between P and () over M experiments
with random parameters {0,,}¥_, is defined as:

Dy g(P,Q) = |[backprop | > P;(6)

i€B,

— backprop {Z Qi(em)] : (12)
1

i€B,

A 32 bits MNIST experiment: Let P and () be programs for a LeNet-5 network on MNIST,
using native and minimal MaxPool programs, respectively. For a sanity check, let P be a copy of P.
We compute the backprop variation (see Definition 7)) between P and P and between P and Q. We
control all sources of divergence in our implementation using deterministic computation. Results
are reported in Figure [l and the experiment was run on a CPU under 32 bits precision.

10% 10?

Proportion (%)
S
Proportion (%)

0 -8 -7 0 -8

-6 -5 -4 3 -7 -6 -5 -4 3
logio(magnitude) logio(magnitude)

(a) Dm7q(P7 Q) (b) Dm7q(P7 p)

Figure 1: Histogram of backprop variation D, , for LeNet-5 on MNIST (128 mini-batch size) at
32-bit precision, comparing P with P and P with @) over M = 1000 experiments.

We find no backprop variation between P and P, indicating controlled divergence sources. Contrary
to expectations (Proposition [1)) of no variation between P and Q, Dy, (P, Q) > 0 across all m, q.
We identify two variation types: minor ones (98.78% of parameters) around the value of machine
precision in 32 bits (107® and 10~7 ) and major ones up to 1073 (1.22% of parameters). This
contrasts with Bertoin et al.| (2023)) experiments, which reported significant divergences or none.

An heuristic for the numerical bifurcation zone: In Figurell]l two backprop variation types
are noted: one potentially from numerical bifurcation and another due to floating-point arithmetic
(compensation errors). To analyze these, we compare observed backprop variations with known
sources: GPU nondeterminism (see Appendix and variations from ReLU-derived programs
in 16 and 32-bit precision (Bertoin et al.,2023). This approach distinguishes between numerical
bifurcation and compensation without assuming separate zones. Let w denote floating-point precision
and f a neural network like LeNet-5, VGG, or ResNet.

A threshold with nondeterministic GPU calculations: We set a threshold 7} » for the
maximum backprop variation due to nondeterministic GPU calculations (see Appendix [A.6.1)):
1 -
= D,, (P, P 1

Tho= L maX _ Dung(P.P) (13)
where P and P implement a neural network f using the same MaxPool derived-program. Refer to
Figure [2] for an illustration. No variation is noted at w = 16, with PyTorch disabled nondeterministic
GPU operations.
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Proportion (%)
Proportion (%)
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0 -4 -1 0 0 -9 -5 -4 0 -17 -16 -15 -14 -13

-3 -2 -8 -7 -6
logyo(magnitude) logyo(magnitude) logio(magnitude)

(a) 7}16 =10 (b) Thgy = 1.11 x 107 (c) They = 1.55 x 10716

Figure 2: Histogram of backprop variation under nondeterministic GPU operations, where f is a
LeNet-5 network on MNIST with batch size 128 for K = 1000 experiments.

A threshold with ReLU-derived programs: For ReLU-derived programs, we define R" (with
ReLU’(0) = 0) and R! (with ReLU’(0) = 1) as two implementations of network f. We introduce
threshold T}%,w for backprop variation:

2 _ : 0 1y . 0 1
3, = 1§m12}\£[l,1§q{Dm’q(R JRY): Dy y(R%,RY) > 0}, (14)

as shown in Figure |3 ensuring deterministic GPU operations.

102 10? 102
10!

10°

=
2

Proportion (%)
Proportion (%)
Proportion (%)

H
)
5

0 -7 -6 4 3 -2 -1 0 0 -7 -6 5 4 3 2 -1 0 0 -17

5 - R R - R
logyo(magnitude) logyo(magnitude)

(a) T?,w =3.39 x 10~ (b) 7’?,32 =4.81 x107° (c) 7—1%64 =0

-16 -15 -14
logio(magnitude)

Figure 3: Histogram of backprop variation with ReLU-derived programs, where f is a LeNet-5
network on MNIST with batch size 128, K = 1000 experiments.

Figure [3]shows two backprop variation types: significant divergences or none, similar to
’s findings. These divergences might indicate a numerical bifurcation zone. Variations from
nondeterministic GPU calculations, shown in Figure [2| align with minor variations near machine
precision seen in Figure [I} We suggest a numerical bifurcation zone, using different thresholds for
various precisions due to hardware constraints.

Criteria 1 (Numerical bifurcation zone) For a neural network f and a floating-point precision
w, let 74, be a fixed threshold (for e.g T}M, Tf’w). The numerical bifurcation zone is defined as:

S(Trw) = {0 e RF :3i e {1,..., N}, |backprop[P}](6) — backprop[Q;](0)||; > Tf,w} C Op. (15)
Here, P; and Q; represent programs for f using different MaxPool-derived programs.

Table [4] in Appendix lists threshold values for different networks and datasets at 16-bit, 32-
bit, and 64-bit precisions. These thresholds are numerical guides and vary with initial network
parameters, datasets, and architecture. The existence and characteristics of the compensation zone
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are determined by the neural network’s structure, not by the nature (univariate or multivariate)
of the elementary programs in Definition Specifically, ReLLU-based approaches can induce
compensation errors as shown in Table (1| (see Appendix . For convolutional networks like VGG
or ResNet, substituting MaxPool with ReLU functions, according to the formula 2 max(z,y) =
(x+y)+(ReLU(z)—ReLU(—y))+(ReLU(y) —ReLU(—x)), modifies the bifurcation zone phenomenon
identified in Bertoin et al.| (2023). Conversely, using NormPool—a nonsmooth multivariate function
calculating the Euclidean norm—avoids such compensation errors. Refer to Appendix [A.4] for more
details.

3.2 Volume of the numerical bifurcation zone

We used Monte Carlo sampling to estimate the numerical bifurcation zone’s volume for various
networks, following Criteria |1f and detailed in Appendix Thresholds 7'%16, ’7’}732, and 7}764
were applied across all networks, as specified in Equations (13]) and .

Experimental setup: We generate a set of network parameters {Qm}%zl randomly using Kaiming-
Uniform initialization (He et al. 2015)), with M = 1000. Then, we iterate over the entire CIFAR10
dataset to estimate the proportion of ,, in the numerical bifurcation zone S defined in Criteria
(as shown in Equation equation and the proportion of impacted mini-batches (as shown in
Equation equation .

Impact of floating-point precision: Using VGG11 on CIFARI10, we assessed S’s volume for
different precisions. Results indicate that at 16-bit and 32-bit precision, all parameters fell within S,
while at 64-bit, none did. The impact on mini-batches was 46% at 32 bits and 100% at 16 bits,
highlighting precision’s role in backprop effects with MaxPool-derived programs.

| Floating-point precision | 16 bits 32 bits 64 bits ||

Proportion of {0,,}}_, in S 100%  100% 0%
Proportion of impacted mini-batches || 100%  46.67% 0%

Table 2: Impact of S according to floating-point precision using a VGG11, on CIFARI10 dataset
and M = 1000 experiments. The first line represents network parameters 6, in S, while the second
measured the proportion of affected mini-batches falling in S.

We examined the effect of mini-batch size on the proportion of affected mini-batches in S using
VGG11 on CIFARI10. Larger mini-batch sizes increase the proportion impacted at 32-bit precision,
but no parameters fell into S at 64-bit precision (Figure . Network depth (VGG variants 11,
13, 16, 19) did not significantly change the impact on mini-batches at 16-bit and 32-bit precisions.
However, batch normalization significantly increased the affected mini-batches at 32-bit precision.

4 Impact on learning

4.1 Benchmarks and implementation

Datasets and architectures: We train neural networks to investigate the impact of numerical
effects outlined in Section |3} Our experiments used CIFAR10 (Krizhevsky & Hinton, [2010]), MNIST
(LeCun et al.,[1998) and ImageNet (Deng et al., [2009) datasets. We test various network architectures
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Precision

100 = 16
< 32
S 80 = 64
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VGG11 VGG13 VGG16 VGG19 64 256 512 1024 False True
Networks Number of mini-batch size  Batch-normalization

Figure 4: Impact of different size parameters on the proportion of affected mini-batches (Equation
equation using CIFAR10 dataset. First: Different VGG network sizes. Second: VGG11 with
varying mini-batch sizes. Third: VGG11 with and without batch normalization.

including VGG11 (Simonyan & Zisserman, 2014), ResNet (He et al., 2016), and LeNet (LeCun|
1998)). Details are available in Appendix

Training settings: The default optimizer is SGD. Conducted on PyTorch and Nvidia V100
GPUs, we define mini-batch sequences (By)ren with sizes |Bg| C {1,..., N}, where o > 0 is the
learning rate for each mini-batch k. Each program P; in P = {P;}}¥, implements a function I; (as
in Definition . The SGD algorithm updates network parameters 0 p by:

Ak

Ors1,p = Okp — v Byl > backprop[Pj](0k,p) (16)

i€By,

with v > 0 indicating the step-size parameter.

4.2 Effect on training and test errors

We trained a VGG11 on CIFAR10 using SGD, testing hybrid MaxPool programs across 16 and
32-bit precisions with varied g values, repeating each setup ten times with random initializations.
Results in Figure [5| align with the revised findings from Bertoin et al.| (2023), unlike the initial
findings. Across architectures and datasets, our results were consistent, yet 8 sensitivity varied.
Large 8 values could destabilize training and lower test accuracy, with 5 = 0 generally effective but
not always optimal. Figure 5] shows effects for g € 1,10,100. Using the Adam optimizer with 32-bit
precision, as noted by Bertoin et al.| (2023), mitigates large 3 effects, stabilizing training (Appendix

c2).

Training effect with 16-bit: For 3 values greater than 103, we observe training instability and
exploding gradients, regardless of batch normalization. Stable and efficient test accuracy persists
for g € {0,1,10,100}.

Training effect with 32-bit: When the value of 3 is large (e.g. 10%), training can become
unstable, leading to oscillations and sudden jumps in the learning process if batch normalization
is not applied. However, using batch normalization with a large § value can prevent this issue,
resulting in improved accuracy on test data and avoiding the problem of gradient explosion.

Training and weight differences: We trained seven VGG11 networks {P;}$_, at 32-bit precision

on CIFARI10 for 200 epochs, using 128-size mini-batches, fixed learning rate o, = 1, and momentum
v € [0.01,0.012]. All networks, starting with the same parameters, varied in hybrid MaxPool { Bz‘}?:o-
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Figure 5: Training a VGG network on CIFAR10 with SGD. We performed ten random initializations
for each experiment, depicted by the boxplots and the filled contours (standard deviation).

With nondeterministic GPU computation, we measured epoch-wise backpropagation differences
between Py and the others, observing parameter variations and test accuracies. Variations and
accuracies for f < 10% were consistent, showing #’s minimal impact. At § = 10%, significant
divergences and a test accuracy drop were noted, indicating that high g values could destabilize
training due to exploding gradients.

2
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— B=10?
— B=10°
— B=10°

)

Weight difference
g
Test accuracy

e

)

o
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Epoch

100 125 150 175 200
Epoch

Figure 6: Left: Difference between network parameters (L' norm) at each epoch. “0 vs 0” indicates
0k, P, — Ok, p,||1 Where Pr is a second run of Py for sanity check, “0 vs 17 indicates ||0x p, — O p, |1
Right: test accuracy of each {P;}2_, during 200 epochs.

5 Conclusion

In our study, we assess autodiff reliability in neural networks employing MaxPool. Testing across
various models and datasets, we found AD might inaccurately handle MaxPool with floating-point
calculations. This suggests Lee et al.| (2023)’s AD correctness findings may not fully extend to
convolutional neural networks using MaxPool. Our analysis focuses on two subsets: bifurcation
zones, where AD inaccuracies occur in both real and floating-point calculations, and compensation
zones, correct in real numbers but possibly erroneous in floating-point numbers. Bifurcation zones,
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though rare, lead to notable AD divergences, while compensation zones more commonly show minor,
machine precision-related amplitude shifts.

Lower-norm MaxPool Jacobians enhance training stability and test accuracy, whereas higher-
norm Jacobians risk training instability, particularly in lower-precision settings. Factors like
dataset, architecture, and learning parameters such as batch normalization and the Adam optimizer
significantly impact AD’s numerical behavior.
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This is the appendix for ”On the numerical reliability of nonsmooth autodiff: a MaxPool case study”.
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A Further comments, discussion, and technical elements

A.1 Implementation of the zero program

The implementation of the zero function used in Table[I]is given in Figure[7] Programs max; and
maxo correspond to an equivalent implementation of the same function max, but the computed
derivatives are different.

def max1(x): def max2(x):
# Derivative: first coordinate # Derivative: min norm
# Not the default in Torch # Default in Jaz
res = x[0] return torch.max(x)
for i in range(l, 4):
if x[i] > res: def zero(t):
res = x[i] # Zero function
return res z =t *xx

return maxl(z) - max2(z)

Figure 7: Implementation of programs max;, maxs and zero using Pytorch. Programs max;
and maxs are an equivalent implementation of max, but with different derivatives due to the
implementation.

A.2 Challenges posed by MaxPool in image processing

In Convolutional Neural Networks (CNNs), the MaxPool operation is frequently used for reducing
dimensions and downsampling. This function is especially crucial in image contexts, where uniform
intensity regions are common, especially around the edges of objects and flat surfaces. One common
situation is encountering identical pixel values within a pooling window, as shown in Figure [§]
MaxPool must choose among these equivalent values, creating a point of non-differentiability. During
training, this affects gradient calculation in backpropagation, affecting the updates to convolutional
filters (Goodfellow et al.l [2016]).
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Figure 8: ITmage segment post-convolution, spotlighting equal pixel values (marked in red) within a
2x2 MaxPool window.

A.3 AD errors with ReLU-derived programs

We conduct a small PyTorch experiment using the nonsmooth function ReLU: z — max(z,0).
Consider two programs max; and maxs implementing the max: z — maxj<;<4z; € R function
using different ReLU-derived programs. Note that 2 max(z,y) = (z +y) + (ReLU(z) — ReLU(—y)) +
(ReLU(y) — ReLU(—x)). Let zerog: t — max;(f X ) — maxa(t X ) be a program implementing
the null function as described in Figure @ Let zeroly, denote the backward AD algorithm for the
zero program. As mathematical functions, max; and maxs are equal and the program zero outputs
constantly 0. However, for some ¢t € R, AD can return zeroh(t) # 0. Results are reported in Table
and similar to Table [l

def relu(x):
return torch.relu(x)

def relu2(x):
return torch.where(x >= 0, x, torch.tensor(0.0))

def max01(x):
return (x[0] + x[1]) / 2 + relu((x[0] - x[1]) / 2) + relu((x[1] - x[0]) / 2)

def max02(x):
return (x[0] + x[1]) / 2 + relu2((x[0] - x[1]) / 2) + relu((x[1] - x[01) / 2)

def maxl(x):
return max01(torch.stack([max01(x[0:2]), max01(x[2:4])]1))

def max2(x):
return max02(torch.stack([max02(x[0:2]), max02(x[2:4])]1))

def zero 2(t):
zZ =1t * x
return maxl(z) - max2(z)

Figure 9: Implementation of max;, maxs and zeros using Pytorch. Programs max; and maxs are
an equivalent implementation of max, but implemented using different RelLU-derived programs.
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t —1073 [ =102 [ =107 0 108 [ 102 | 10°
z= (1.0 2.0 3.0 4.0 0.0 0.0 0.0 1.5 | 0.0 | 0.0 | 0.0
r=1|14 14 14 14 1077 1077 1077 [ 1077|1077 | 1077 | 1077

Table 3: Summary of various types of AD errors with zeros program using PyTorch for different
combinations of ¢ and x.

A.4 NormPool : a nonsmooth multivariate operation without compensation errors

We conducted an experiment to show that compensation errors are not caused by the multivariate
nature of nonsmooth elementary functions when using floating-point arithmetic. In this experiment,
we used the NormPool operation, which is similar to the MaxPool operation but replaces the
maximum with the Euclidian norm. Two programs, P and @), were used to implement a LeNet-5
network on the MNIST dataset with two different NormPool-derived programs. We computed the
backprop variation (see Definition @ between P and @), while controlling all sources of divergence
in our implementation using deterministic computation. The results are presented in Figure
The experiment was conducted on a CPU with 16-bit floating-point precision.

102

10!

Proportion (%)

107t

0 -7 -6

5 4 3 2 1 0 1
logio(magnitude)

Figure 10: Histogram of backprop variation between P and @ for a LeNet-5 network on MNIST
(128 mini-batch size) with 16-bit. We run M = 1000 experiments.

In contrast to our findings with MaxPool, we obtained similar results to those reported in [Bertoin
et al.[ (2023) with ReLU-based programs. Specifically, for NormPool-based programs, we observed
either significant divergence of backprop or none.

A.5 Bifurcation zone: a practical example

This section presents an example that demonstrates cases where AD can be incorrect. Calculating
the accurate derivative for all inputs might be impossible, particularly when the function is
nondifferentiable. This is because the derivative does not exist for inputs where the function is
nondifferentiable.

A.5.1 Network configuration

Consider an input matrix X of size 4 x 4 given by:

X = (Input)

o O O
o O O O
o O o o
o O O =
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Let k be a positive number and W be a convolution kernel of size 3 x 3 given by:

11
W=Ek-|1 1 (Convolution kernel)
11

—_ =

Let’s consider a composition function [ such that:
[(W) = MaxPoolo (X « W) =k (17)

where the convolution operation X x W produces an output matrix Z of size 2 x 2, followed by the
application of a MaxPool with a pooling window of size 2 x 2.

A.5.2 Backprop computation: native vs minimal

Let P (resp. @) be a program implementing the composition function [ in Equation equation
using the native (resp. minimal) MaxPool-derived program. Then, we have:

1 0 0 0.5 0 0.5
backprop[P](W) = [0 0 0|, backprop[@Q](W)=] 0 0 0
0 0 0 0 0 O

The convolutional kernel W falls within the bifurcation zone defined in Definition [3l

A.6 Comments on Section 3

A.6.1 Non-determinism in GPU computation

Graphics Processing Units (GPUs) are designed for parallel processing, which can result in unpre-
dictable behaviors.

¢ Floating-point operations: The non-associative nature of floating-point arithmetic can
lead to discrepancies. These differences might become significant as they accumulate across
operations.

¢ Reduction operations: Functions like sum or maximum, especially in GPUs, can exhibit
variability between runs. This variability can result in divergent accumulated rounding
errors.

A.6.2 Threshold values for various networks in Section [3.1]

Table [] presents threshold values for various neural networks on different datasets, computed
under different floating-point precisions (16-bit, 32-bit, and 64-bit). For simplicity, thresholds are
approximated as powers of 10.

A.6.3 Details on Monte Carlo sampling in Section [3.2]

Recall that, for a neural network f and a floating-point precision w, we want to estimate the volume
of the set

S(rsw) = {0 € R” :3i € {1,..., N}, |[backprop[P] (6) — backprop|Q:](6)|l; > 77} C O
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Network f Dataset ’7’}’16 7']%716 T}’ 39 7']%32 T},G 4 7'%6 4
LeNet-5 MNIST 0 10° 109 10° 107 o0
VGG-11 CIFAR-10 0 100' 10% 1077 107 o0
VGG-11 SVHN 0 100' 10®% 1007 107" 0
VGG-13 CIFAR-10 0o 100' 10 107° 107 o0
VGG-16 CIFAR-10 0 1072 107 107 107 0
VGG-19 CIFAR-10 0 1073 107% 10719 107 0
ResNet-18 CIFAR-10 1072 1 1073 107%* 1071 0
DenseNet-121 CIFAR-100 0 1072 107% 107! 107 0

Table 4: Threshold values of various neural networks f across different datasets.

Our experiments divide a dataset into R mini-batches. Each r-th mini-batch is represented by the
index set B, C {1,...,N}. The programs P, and @, are associated with the neural network f and
implement a composition function [, for each r. Specifically, P, uses the native MaxPool-derived
program, whereas (), uses the minimal one. For every precision level w € {16, 32,64}, we establish a
threshold 77, as in Section Using the Kaiming-Uniform (He et al., 2015) initialization in PyTorch,
we randomly generate a parameter set {6; }JKzl, with K = 1000. The first line of Table [2|is given by

the formula

> i)

JEB-

backprop

— backprop [Z Qj(G)]

JjEB-

L
?ZH‘ Ire{l,...,R}, >7r0 | (18)
k=1 1

where I represents the indicator function, returning either 1 or 0 depending on the truth value of
its argument’s condition. Similarly, the second line of Table [2|is given by the formula

1 K R
— ¥ P;(0
KR};; ( > Pi®)

JEBr

backprop

— backprop {Z Qj(a)]

JEBr

> Tf,w) , (19)
1

Using the formula
In (%)
2n

and setting a = 0.05, we compute the error margin of the Hoeffding confidence interval as n = K
for Table 2fs first line and n = K R for its second. The first line adheres to a 95% confidence interval
under the 7id assumption due to Hoeffding’s inequality.

Using McDiarmid’s inequality at risk level a = 0.05, we compute the error margin of the second

line in Table 2] by the formula
()
o\x "RrR)"\Q)

B Proof related to Section 2.3

Proof 1 (of Proposition
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1. The three subsets have unique definitions, indicating that they are separate. For instance,
a parameter cannot belong to the regular and bifurcation zones since the regular zone is
defined as the area where each program g; ; is assessed at differentiable points. On the other
hand, the bifurcation zone is defined as the region where the set of all possible backprop
outputs is not a singleton, indicating non-differentiability at some points. Additionally,
the union of these zones covers the entire parameter space © as every parameter must
be assigned to one of the three subsets: resulting in differentiable points when evaluated,
resulting in nondifferentiable points but having a singleton backprop set, or resulting in
nondifferentiable points with a non-singleton backprop set. Therefore, Or UOp U B¢ = O.

2. As we consider locally Lipchitz semialgebraic (or definable) functions, see [Theorem 1, Bolte
& Pauwels| (2020a)] for the proof arguments.

C Complements on experiments

C.1 Benchmark datasets and architectures

Datasets: In this work, we utilized various well-known image classification benchmarks. Below
are the datasets, including their characteristics and original references.

Dataset Dimensionality Training set Test set
MNIST 28 x 28 (grayscale) 60K 10K
CIFAR10 32 x 32 (RGB) 60K 10K

SVHN 32 x 32 (RGB) 600K 26K
ImageNet 224 x 224 (RGB) 1.3M 50K

The corresponding references for these datasets are LeCun et al. (1998)); Krizhevsky & Hinton
(2010); |Netzer et al.| (2011)).

Neural network architectures: We evaluated various CNN neural network architectures, with
details as follows:

Name Layers Loss function
LeNet-5 5 Cross-entropy
VGGI1 11 Cross-entropy
VGG13 13 Cross-entropy
VGG16 16 Cross-entropy
VGG19 19 Cross-entropy

ResNet18 18 Cross-entropy
ResNet50 50 Cross-entropy

DenseNet121 125 Cross-entropy

The corresponding references for these architectures are [Simonyan & Zisserman| (2014); |He et al.
(2016); Huang et al. (2017); |[LeCun et al.| (1998)).

LeNet-5: The implementation for LeNet-5 was sourced from the following GitHub repository:
https://github.com/ChawDoe/LeNet5-MNIST-PyTorch/blob/master/model. py.
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VGG: We used the PyTorch repository’s implementation for the VGG models. It can be accessed
at the following link: https://github.com/PyTorch/vision/blob/main/torchvision/models/

VEg.-PYy:

ResNet: For ResNet models, we utilized the PyTorch repository’s implementation available at:
https://github.com/PyTorch/vision/blob/main/torchvision/models/resnet.py. We made
minor adjustments to the output layer’s size (changing from 1000 to 10 classes) and the kernel size
in the primary convolutional, varying from 7 to 3). When batch normalization was not used, we
replaced the batch normalization layers with identity mappings.

DenseNet: The implementation for DenseNet was taken from the PyTorch repository, available
at: https://github.com/PyTorch/vision/blob/main/torchvision/models/densenet.py.

C.2 Mitigating factor: Adam optimizer

After training a VGG11 network on CIFAR-10 using the Adam optimizer, we obtained results shown
in Figure Our findings are consistent with those presented in Section [3] but the network exhibits
reduced sensitivity to 5, resulting in improved stability of both test errors and training loss.
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Figure 11: Training losses on CIFARI10 (left) and test accuracy (right) on VGG network trained
with Adam optimizer and without batch normalization.

C.3 Additional experiments with MNIST and LeNet-5 networks

We repeated the experiments in Section using a LeNet-5 network on the MNIST dataset. The
results are depicted in Figure We found that for 16 bits, the test accuracies were similar when
training was possible, but 3 = {103,10*} caused chaotic training behavior. For 32 bits, the test
accuracies were mostly similar, except for 3 = 10%. We noticed that the chaotic oscillations had
completely disappeared.

C.4 Additional experiments with ResNet18

We performed the same experiments described in Section using ResNet18 architecture trained
on CIFAR 10. Figure [13| represents the test errors with or without batch normalization. For 16
bits, test accuracies are similar, but 8 = 10* induces chaotic training behavior. For 32 bits, test
accuracies are identical, and the chaotic oscillations phenomena have entirely disappeared.

22


https://github.com/PyTorch/vision/blob/main/torchvision/models/vgg.py
https://github.com/PyTorch/vision/blob/main/torchvision/models/vgg.py
https://github.com/PyTorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/PyTorch/vision/blob/main/torchvision/models/densenet.py

Under review as submission to TMLR

0.995 0.10
. Batch norm B
> 0.994 ¢ = False 0.08 - o
© T I True g
2 0.993 ! £ 0.06 - 1
2 '® 0.04 1 10
8 0.992 = 100
0.02 A — 1000
0.991 0.00 ) —— 10000
0 1 10 100 1000 10000 0 20 40 60 80 100
B epoch
(a) 16-bit (b) 16-bit, with batch normalization
0.996
0.15
B
2 0.994 ¢ " —00
5 * *ﬁ § 0101 1
S
©0.992 * £ 10
g Batch norm ¢ = 0.05 100
= I False 1000
0.9901 mmm True ¢
0.00 —— 10000
0 1 10 100 1000 10000 0 20 40 60 80 100
B epoch
(c) 32-bit (d) 32-bit, without batch normalization

Figure 12: Training a LeNet-5 network on MNIST with SGD. We performed ten random initializations
for each experiment, depicted by the boxplots and the filled contours (standard deviation).
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Figure 13: Training a ResNet18 network on CIFAR10 with SGD. We performed ten random
initializations for each experiment, depicted by the boxplots and the filled contours (standard
deviation).

C.5 Additional experiments with ResNet50 on ImageNet
We performed the same experiments described in Section [4.2 using a ResNet50 architecture trained on

ImageNet. The test accuracy is represented in Figure [14, We employ mixed precision (Micikevicius
ket al., 2017} Jia et al. [2018), utilizing 16 and 32 bits precision to balance computational speed and
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information retention. Test accuracies are similar when training is possible, but 5 = 10® induces
chaotic training behavior.
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Figure 14: Test accuracy during training a Resnet50 on ImageNet with SGD using mixed precision.
The shaded area represents three runs. We have a chaotic test accuracy behavior for 5 = 103.

D Complementary information

Computational Resources: All the experiments were conducted on four Nvidia V100 GPUs.
This ensured consistent and reliable computation times across different experimental runs.

Code and Results Availability: The code corresponding to the experiments, as well as the
results of these experiments, are publicly available. The repository can be accessed at the following
URL: https://github. com/AnonymousMaxPool/MaxPool-numerical.

Licenses: The datasets used in our experiments are released under various licenses. CIFARI10
is under the MIT license, MNIST and SVHN are under the GNU General Public License, and
ImageNet is under the BSD license. The libraries we used, Numpy and PyTorch, are released under
the BSD license, while Python is released under the Python Software Foundation License.

H Dataset ‘ Network ‘ Optimizer ‘ Batch Size ‘ Epochs ‘ Time Per Epoch | Repetitions
MNIST LeNet-5 SGD 128 100 2 seconds 10
CIFAR10 | VGGI11 SGD 128 200 9 seconds 10
CIFAR10 | ResNetl8 | SGD 128 200 13 seconds 10
SVHN VGGI11 SGD 128 100 70 seconds 10
ImageNet | Resnetb0 | SGD 512 90 15 minutes 3

Table 5: Detailed experimental setup, including the dataset, neural network architecture, optimizer
used, batch size, number of epochs, average computation time per epoch, and repetitions for each

experiment.
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