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ABSTRACT

The purpose of robust reinforcement learning is to make predictions more robust
to changes in the dynamics or rewards of the system. This problem is partic-
ularly important when dynamics and rewards of the environment are estimated
from the data. However, without constraints, this problem is intractable. In this
paper, we approximate the Robust Reinforcement Learning constrained with a
f -divergence using an approximate Risk-Averse formulation. We show that the
classical Reinforcement Learning formulation can be robustified using a standard
deviation penalization of the objective. Two algorithms based on Distributional
Reinforcement Learning, one for discrete and one for continuous action spaces, are
proposed and tested in a classical Gym environment to demonstrate the robustness
of the algorithms.

1 INTRODUCTION

The classical Reinforcement Learning (RL)Sutton & Barto (2018) problem using Markov Decision
Processes (MDPs) modelization gives a practical framework to solve sequential decision problems
under uncertainty of the environment. However, for real-world applications, the final chosen policy
can sometimes be very sensitive to sampling errors, inaccuracy of the model parameters, and definition
of the reward.

This problem motivates robust Reinforcement Learning, aiming to reduce such sensitivity by taking to
account that the transition and/or reward function (P, r) may vary arbitrarily inside a given uncertainty
set. The optimal solution can be seen as the solution that maximizes a worst-case problem in this
uncertainty set or the result of a dynamic zero-sum game where the agent tries to find the best policy
under the most adversarial environment (Abdullah et al., 2019). In general, this problem is NP-hard
(Wiesemann et al., 2013) due to the complex max-min problem, making it challenging to solve in a
discrete state action space and to scale to a continuous state action space.

Many algorithms exist for the tabular case for Robust MDPs with Wasserstein constraints over
dynamics and reward such as Yang (2017); Petrik & Russel (2019); Grand-Clément & Kroer (2020a;b)
or for L∞constrained S-rectangular Robust MDPs (Behzadian et al., 2021). Here we focus on a more
general continuous state space S with a discrete or continuous action space A and with constraints
defined using f -divergence.

Robust RL (Morimoto & Doya, 2005) with continuous action space focuses on robustness in the
dynamics of the system (changes of P ) and has been studied in Abdullah et al. (2019); Singh et al.
(2020); Urpí et al. (2021); Eysenbach & Levine (2021) among others. Eysenbach & Levine (2021)
tackles the problem of both reward and transition using Max Entropy RL, whereas the problem of
robustness in action noise perturbation is presented in Tessler et al. (2019). Here, we tackle the
problem of robustness through dynamics of the system.. Recently, the issue of the Robust Q-Learning
has also been addressed in Ertefaie et al. (2021).

In this paper, we show that it is possible to tackle a Robust Distributional Reinforcement Learning
problem with f -divergence constraints by solving a risk-averse RL problem, using a formulation
based on mean standard deviation optimization.

The idea beyond that relies on the argument from Robust Learning theory, stating that Robust Learning
under an uncertainty set defined with f -divergence is asymptotically close to Mean-Variance (Gotoh
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et al., 2018) or Mean-Standard deviation optimization (Duchi et al., 2016; Duchi & Namkoong,
2018).

In this work, we focus on the idea that generalization, regularization, and robustness are strongly
linked in RL or MDPs as shown in Husain et al. (2021); Derman & Mannor (2020); Derman et al.
(2021); Ying et al. (2021); Brekelmans et al. (2022). We show that is it possible to improve the
Robustness of RL algorithms with variance/standard deviation regularisation. Moreover, the problem
of uncertainty under the distribution of the environment is transformed into a problem with uncertainty
over the distribution of the rewards, which makes it tractable.

Note that our work is related to Smirnova et al. (2019) as they penalise the expectation by the
variance of returns. However, their approach differs from ours since they use the variance estimate
under a Gaussian assumption of distributions while we use a standard deviation penalization without
any distribution assumptions. Moreover, the idea of robustness in the change of dynamics is not
demonstrated numerically, and the problem tackled is different since they consider close policy
distributions, while we consider dynamic distributions.

The contribution of the work is the following: we motivate the use of standard deviation penalization
and derive two algorithms for discrete and continuous action space that are robust to changes in
dynamics. These algorithms only require one additional parameter tuning, which is the Mean-Standard
Deviation trade-off. Moreover, we show that our formulation using Distributional Reinforcement
Learning is robust to changing transition dynamics in environments with both discrete and continuous
action spaces both in the Mujoco suite and in stochastic environments derived from Mujoco.

Related topics : Regularised MDPs : Policy Regularisation in RL Geist et al. (2019) has been
studied and led to state-of-the-art algorithms such as PPO and SAC (Schulman et al., 2017b; Haarnoja
et al., 2018; Vieillard et al., 2020). In these algorithms, an additional penalisation based on the current
policy is added to the classical objective function. The idea is different, as we penalize our mean
objective function using the standard deviation of the return distribution. Being pessimistic about
the distributional state-value function leads to more stable learning, reduces the variance, and, tends
to improve the robustness of systems as demonstrate (Brekelmans et al., 2022). Recent advances
in Robust MDPs have shown a link between this field and Regularised MDPs as in Derman et al.
(2021); Kumar et al. (2022).

Distributional RL : Second-order estimation is done using Distributional Reinforcement Learning
(Bellemare et al., 2017; Zhang & Weng) using a quantile estimate of our distribution to approximate
our action value function (Dabney et al., 2017; 2018) with the QRDQN and IQN algorithms. Distri-
butional state-action function representation is also used to learn an accurate critic for a policy-based
algorithm, such as in Kuznetsov et al. (2020); Ma et al. (2021); Nam et al. (2021).

Risk-Averse RL : Risk-averse RL aims at minimizing different objectives than the classical mean
optimization e.g. CVaR or other risk measures. For example, Dabney et al. (2018); Ma et al. (2021)
use distributional RL for optimizing different risk measures. Our goal is to show the robustness
of using risk-averse solutions to our initial problem. Our formulation is close to mean-variance
formulation (Jain et al., 2021b; Wang & Zhou, 2020) that already exists in risk-averse RL, although
not using a distributional framework that shows highly competitive performance in a controlled
setting.

Pessimism and Optimism in Distributional RL Moskovitz et al. (2021) describes a way of per-
forming Optimistic / Pessimistic Deep RL using a constructed confidence interval with the variance
of rewards. Their work is close to ours in the pessimistic case but the confidence interval is expressed
in terms of variance of expectation estimate and not using the variance of the distribution itself.
Moreover, they use an adaptative regularizer where we look at the interest of using a fixed parameter.

Preliminaries: Taking into account a Markov Decision Process (MDP) (S,A, P, γ), where S
is the state space, A is the action space, P (r, s′ | s, a) is the reward and transition distribution
from state s to s′ taking action a and γ ∈ (0, 1) is the discount factor. Stochastic policies are
denoted π(a | s) : S → ∆(A) and we consider the cases of action space either discrete our
continuous. A rollout or trajectory using π from state s using initial action a is defined as the
random sequence τP,π(s, a) = ((s0, a0, r0) , (s1, a1, r1) , . . .) with s0 = s, a0 = a, at ∼ π (· | st)
and (rt, st+1) ∼ P (·, · | st, at) ; we denote the distribution on rollouts by P(τ) with P(τ) =
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P0 (s0)
∏T
t=0 P (st+1, rt | st, at)π (at | st) dτ and generally write τ ∼ P = (P, π). Moreover,

we consider the distribution of discounted cumulative return ZP,π(s, a) such that R(τP,π(s, a)) =∑∞
t=0 γ

trt ∼ ZP,π(s, a). Finally, the Q-functionQP,π : S×A → R of π is the expected discounted
cumulative return of the distribution, defined as follows.

QP,π(s, a) := E[ZP,π(s, a)] = EP,π [R(τ) | at ∼ π (· | st) , (rt, st+1) ∼ P (·, · | st, at) , s0 = s, a0 = a] .

The classical initial goal of RL, also called risk neutral RL, is to find the optimal policy π∗ where
QP,π

∗
(s, a) ≥ QP,π(s, a) for all π and s ∈ S, a ∈ A. Finally, the Bellman operator T π and the

Bellman optimal operator T ∗ are defined as follows:

T πQ(s, a) := r(s, a) + γEP,π [Q (s′, a′)]

T ∗Q(s, a) := r(s, a) + γEP
[
max
a′

Q (s′, a′)
]
.

Applying either operator from an initial Q0 converges to a fixed point Qπ or Q∗ at a geometric rate
as both operators are contractive. Simplifying the notation with regard to s, a, π and P , we define the
set of greedy policies w.r.t. Q called G(Q) = argmax

π∈Π
⟨Q, π⟩. A classical approach to estimating an

optimal policy is known as Approximate Modified Policy Iteration (AMPI) Scherrer et al. (2015){
πk+1 ∈ G (Qk)
Qk+1 = (Tπk+1)

m
Qk + ϵk+1

,

which usually reduces to Approximate Value Iteration (AVI, m = 1 ) and Approximate Policy
Iteration (API,m =∞) as special cases. The term ϵk+1 accounts for errors made when applying
the Bellman operator in RL algorithms with stochastic approximation.

2 ROBUST FORMULATION USING χ2-DIVERGENCE CONSTRAINTS.

In this section, we would like to find a policy that is robust to a change of environment law P , as
small variations of P should not have a big impact on the new policy in the greedy step. In our
case we are not looking at the classical greedy step π′ ∈ G(Q) = argmax

π∈Π
⟨Q, π⟩, but rather at the

following greedy step :
π′ ∈ G(Q) = argmax

π∈Π
⟨min
P

Q(P,π), π⟩.

This heuristic in the greedy step can also be interpreted at trying to avoid an overestimation of the Q
functions present in the Deep RL algorithms. Using this formulation, we need to constrain the set of
admissible transitions from the state action to the next state P to get a solution to the problem. In
general, without constraint, the problem is NP-Hard, it therefore requires constraining the problem to
specific distributions that are not too far from the original one using a distance between distributions
such as the Wasserstein metric (Abdullah et al., 2019) or other specific distances if the problem
can be simplified (Eysenbach & Levine, 2021). Furthermore, if an explicit form of minP Q

(P,π)

could be calculated exactly for a given divergence, it would lead to a simplification of this max-min
optimization problem into a simple maximisation one. In fact, simplification of the problem is
possible using a specific f -divergence denotedHf to constrain the problem with f a close convex
function such that f : R→ R ∪ {+∞} and f(z) ≥ f(1) = 0 for all z ∈ R :

Hf (Q | P) =

{ ∑
i:pi>0 pif

(
qi
pi

)
;

∑
i:pi>0 qi = 1, qi ≥ 0

+∞ otherwise.

}
.

with P,Q two probability measures. This constraint requires qi = 0 if pi = 0 which makes the
measure Q absolutely continuous with respect to P. The χ2-divergence is a particular case of f -
divergence with f(z) = (z − 1)2. For trajectories sampled from the distribution P0 and looking at
distribution P close to P0 with regard to the χ2-divergence, the minimisation problem reduces to :

min
P∈Dχ2 (P∥P0)≤α

Q(P,π) = Q(P0,π) − αV[ZP0 ]
1
2 = E[ZP0,π]− αV[ZP0,π]

1
2 . (1)
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The proof can be found in Appendix A for α such that α ≤ V[ZP0 ]

∥Z̃P0∥2∞
≤ 1 with Z̃P0 = ZP0 −E[ZP0 ]

the centered return distribution and V[ZP0 ] the variance of returns. For α > V[ZP0 ]

∥Z̃P0∥2∞
, the equality

becomes an inequality, but we still optimize a lower bound of our initial problem. Defining a new
greedy step which is penalized by the standard deviation :

π′ ∈ Gα(Q) = argmax
π∈Π

⟨ min
P∈Dχ2 (P∥P0)≤α

Q(P,π), π⟩ = argmax
π∈Π

⟨Q(P0,π) − αV[Z(P0,π)]
1
2 , π⟩,

we now consider the following scheme :{
πk+1 ∈ Gα (Qk)
Qk+1 = (Tπk+1)

m
Qk + ϵk+1

. (2)

Approximation identities such as (1) for a larger class of f -divergences and not only χ2 can be found
in the work of (Duchi et al., 2016). This work motivates the use of the f -divergence as a measure of
dissimilarity to improve robustness in our problem, since robust mean estimation and mean-standard
deviation optimisation are closed. In the recent work of Kumar et al. (2022) using the Lp norm for
constraints and the tabular case, similar results are derived, and for the particular case of the L2, a
standard deviation term also appears as a regularization similarly to our work.

This idea is also very close to Risk-averse formulation in RL (i.e minimizing risk measure and not
only the mean of rewards) as a mean standard deviation objective is used but here the idea is to
approximate a robustness problem in RL. To do so, the standard deviation of the distribution of
the returns must be estimated. Many ways are possible, but we favour distributional RL using a
distributional representation of the critic (Bellemare et al., 2017; Dabney et al., 2017; 2018) which
achieve very good performances in many RL applications. Estimating the quantiles of the distribution
of return, we can simply estimate the standard deviation using the classical estimator of the standard
deviation given the quantiles over an uniform grid {qi(s, a)}1≤i≤n,∀(s, a) ∈ S ×A :

V[Z(s, a)]
1
2 = σ(s, a) =

( n∑
i=1

(qi(s, a)− q̄(s, a))
2 ) 1

2

where q̄ is the classical estimator of the mean. A different interpretation of this formulation could
be that by taking actions with less variance, we construct a confidence interval with the standard
deviation of the distribution

Zπ(s, a)
d
= Z̄(s, a)− ασ(s, a),

where Z̄(s, a) is the mean of the distribution. This idea is present in classical UCB algorithms
(Auer, 2002) or pessimism/optimism Deep RL. Here, we construct a confidence interval using the
distribution of the return and not different estimates of the Q function such as in Moskovitz et al.
(2021); Bai et al. (2022). In the next section, we derive two algorithms, one for a discrete action
space and one for a continuous action space, using this idea. A very interesting way of doing robust
learning is by doing Max entropy RL such as in the SAC algorithm. In Eysenbach & Levine (2021),
a demonstration that SAC is a surrogate of Robust RL is demonstrated formally and numerically and
we will compare our algorithm to this method.

3 ALGORITHMS BASED ON DISTRIBUTIONAL RL

To derive our algorithms, an estimation of the second-order moment of the distribution of return
must be carried out. For discrete action space a variant of QR-DQN (Dabney et al., 2017) with a
mean-standard deviation objective is proposed whereas, for continuous action space, we propose a
mean-standard TQC algorithm (Kuznetsov et al., 2020) based on the soft-actor framework as it has
already shown some robustness as a surrogate of Robust RL (Eysenbach & Levine, 2021).

3.1 DISTRIBUTIONAL RL USING A QUANTILE REPRESENTATION

Distributional RL aims at approximating the distribution of returns Zπ(s, a) rather than Qπ(s, a) :=
E [Zπ(s, a)] as in the classical RL framework. Many algorithms and distributional representation
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of the critic exist (Bellemare et al., 2017; Dabney et al., 2017; 2018) but here we focus on QR-
DQN Dabney et al. (2017) that approximates the distribution of returns Zπ(s, a) with Zψ(s, a) :=
1
M

∑M
m=1 δ

(
θmψ (s, a)

)
, a mixture of atoms-Dirac delta functions located at θ1ψ(s, a), . . . , θ

M
ψ (s, a)

given by a parametric model θψ : S × A → RM . Parameters ψ of a neural network are obtained
by minimizing the average over the 1-Wasserstein distance between Zψ and the temporal difference
target distribution TπZψ̄ , where Tπ is the distributional Bellman operator defined in Bellemare et al.
(2017). The control version or optimal operator is denoted T Zψ̄ ,

T πZ(s, a) = R(s, a) + γZ (s′, a′) with s′ ∼ P(· | s, a), a′ ∼ π (· | s′) .

ConsideringZ being the space of action-value distributions with finite moments: Z = {Z : X×A →
P (R)} with E [|Z(x, a)|p] <∞,∀(x, a), p ≥ 1 Bellemare et al. (2017) show that :

∥ET Z1 − ET Z2∥∞ ≤ γ ∥EZ1 − EZ2∥∞
. This proves that point wise convergence is exponentially fast for the mean of the distribution as in
the classical RL problem. According to Dabney et al. (2017), the minimization of the 1-Wasserstein
loss can be done by learning quantile locations for fractions τm = 2m−1

2M ,m ∈ [1..M ] via quantile
regression loss, defined for a quantile fraction τ ∈ [0, 1] as :

LτQR(θ) : = EZ̃∼Z

[
ρτ (Z̃ − θ)

]
, with

ρτ (u) = u(τ − I(u < 0)),∀u ∈ R.

Finally, to obtain better gradients when u is small, the (asymmetric) Huber quantile loss is used:

ρHτ (u) = |τ − I(u < 0)|L1
H(u),

whereL1
H(u) is a classical Huber loss with parameter 1. The quantile representation has the advantage

of not fixing the support of the learned distribution, and is used to represent the distribution of return
in our algorithm for both discrete and continuous action space.

3.2 MEAN-STANDARD DEVIATION RL WITH DISCRETE ACTION SPACE

Once the state action return distribution is estimated, a phase of policy improvement is performed
using a Q-learning style algorithm with distributional estimation such as QR-DQN (Dabney et al.,
2017). The main difference in our case is that we do not take the expectation in this phase, but the
mean standard deviation objective (3) in the greedy step using M quantiles over a uniform grid in
[0, 1]. Formally, we choose actions with less variance to improve robustness using a mean standard
deviation objective, where the classical empirical estimator of the standard deviation using quantiles
of the distribution is used. The estimation step of the algorithm does not change as we use the
classical Bellman operator as in the classical QR-DQN algorithm. The parameters ψ of the quantile
network are classically updated using a stochastic gradient descent, where ∇̂ represents a stochastic
estimate of the gradient. Moreover, β is the parameter of soft or Polyak’s update of the target quantile
network parametrized by ψ̄ in algorithm 1. Finally, D represents the replay buffer where we store
all different transitions (s, a, s′, r) and ξ : Z → E[Z] − αV[Z] 12 is the objective function that we
optimize.

a∗ = argmax
a∈A

ξαZ
π(s, a) = argmax

a∈A
E[Zπ(s, a)]− α

√
V[Zπ(s, a)] (3)

3.3 MEAN-STANDARD DEVIATION MAXIMUM ENTROPY RL FOR CONTINUOUS ACTION SPACE

We use a distributional maximum entropy framework for the continuous action space that is close
to the TQC algorithm Kuznetsov et al. (2020). This method uses an actor-critic framework with
a distributional truncated critic to ovoid overestimation in the estimation with the max operator.
This algorithm is based on a soft-policy iteration, where we penalize the target yi(s, a) using
the entropy of the distribution. More formally, to compute the target, the principle is to train N
approximate estimate Zψ1

, . . . ZψC
of the distribution of returns Zπ where Zψc

maps each (s, a)

to Zψc
(s, a) := 1

M

∑M
m=1 δ

(
θmψn

(s, a)
)
, which is supported on atoms θ1ψc

(s, a), . . . , θMψc
(s, a).

Then approximations Zψ1 , . . . ZψN
are trained on the temporal difference target distribution denoted
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Algorithm 1 QR-DQN with Standard Deviation penalisation

Initial critics Zψ, Zψ̄
for each iteration do

for each step of the environment do
collect (st, at, rt, st+1) according to π(at|st) = argmaxa ξαZ

π(st, at)
D ← D ∪ {(st, at, rt, st+1)}

end for
for each gradient steps do

Sample batch (s, a, r, s′) of D
Take a∗ = argmaxa′ ξαZ

π(s′, a′)
yi(s, a)← r + γθiψ (s′, a∗) , i ∈ [1..M ]

JZ(ψ) = ED,π
∑m
i,j=1 ρ

H
τj

(
yi(s, a)− θjψ(s, a)

)
ψ ← ψ − λZ∇̂ψJZ (ψ) ,
ψ̄ ← (1− β)ψ̄ + βψ

end for
end for
return critic Zψ, Zψ̄ .

Y (s, a) constructed as follows. First atoms of trained distributions Zψ1 (s
′, a′) , . . . , ZψC

(s′, a′) are

pooled into Z (s′, a′) :=
{
θmψc

(s′, a′) | c ∈ [1..C],m ∈ [1..M ]
}

. We denote elements of Z (s′, a′)

sorted in ascending order by z(i) (s′, a′), with i ∈ [1..MC]. Then we only keep the kC smallest
elements of Z (s′, a′). We remove outliers of distribution to avoid overestimation of the value
function. Finally, the atoms of the target distribution Y (s, a) := 1

kC

∑kC
i=1 δ (yi(s, a)) are computed

according to a soft policy gradient method where we penalised with the log of the policy :

yi(s, a) := r(s, a) + γ
[
z(i) (s

′, a′)− η log πϕ (a′ | s′)
]
. (4)

The entropic term η log πϕ (a
′ | s′) is also added like in classical SAC algorithm. It encourages

exploration and usually improve speed of convergence. As in QR-DQN, the 1-Wasserstein distance
between each of Zψn

(s, a), n ∈ [1..N ] and the temporal difference target distribution Y (s, a) is
minimized learning the locations for quantile fractions τm = 2m−1

2M ,m ∈ [1..M ]. Similarly, we
minimize the loss:

JZ (ψc) = ED,π
[
Lk (st, at;ψc)

]
= ED,π

 1

MkC

M∑
j=1

kC∑
i=1

ρHτj

(
yi(s, a)− θjψc

(s, a)
) (5)

over the parameters ψn, for each critic. With this formulation, the learning of all quantiles θmψn
(s, a)

is dependent on all atoms of the truncated mixture of target distributions. To optimize the actor, the
following loss based on KL-divergence denoted DKL is used for soft policy improvement :

Jπ,α(ϕ) = ED

DKL

πϕ (· | s) ∥exp
(

1
η ξα(θψ (s, ·))

)
D


where η can be seen as a temperature and needs to be tuned and D is a constant of normalisation.
This expression simplify into :

Jπ,α(ϕ) = ED,π

[
η log πϕ(a | s)−

1

C

C∑
c=1

ξα(θψc(s, a))

]
(6)

where s ∼ D, a ∼ πϕ(· | s). Non-truncated estimate of the Q-value are used for policy optimization
to avoid a double truncation, in fact the Z-functions already approximate truncated future distribution.
Finally, η is the entropy temperature coefficient and is dynamically adjusted by taking a gradient step
with respect to the loss like in Haarnoja et al. (2018) :

J(η) = ED,πϕ
[(− log πϕ (at | st)−Hη) η]
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Algorithm 2 TQC with Standard Deviation penalisation

Initialize policy πϕ, critics Zψc
, Zψ̄c

for c ∈ [1..C]
for each iteration do

for each step of the environment do
collect (st, at, rt, st+1) with policy πϕ
D ← D ∪ {(st, at, rt, st+1)}

end for
for each gradient steps do

Sample batch (s, a, s′, r) of D
yi(s, a)← r(s, a) + γ

[
z(i) (s

′, a′)− η log πϕ (a′ | s′)
]

η ← η − λη∇̂ηJ(η)
ϕ← ϕ− λπ∇̂ϕJπ,α(ϕ)
ψc ← ψc − λZ∇̂ψc

JZ (ψn) , c ∈ [1..C]
ψ̄c ← βψc + (1− β)ψ̄c, c ∈ [1..C]

end for
end for
return πϕ, critics Zψc

, c ∈ [1..C].

at every time the πϕ changes. The target entropyHη usually is set heuristically −Dim(A). Tempera-
ture η decreases if the policy entropy, − log πϕ (at | st), is higher thanHη and increases otherwise.
The algorithm is summarized in Algorithm 2:

Our algorithm is based on SAC but with distributional critics to improve the estimation ofQ functions
while using the mean standard deviation objective in policy to improve robustness.

4 EXPERIMENTS

We try different experiments on continuous and discrete action space to demonstrate the interest of
our algorithms for robustness using ξ : Z → E[Z]−αV[Z] 12 instead of the mean. The choice of α is
crucial as it determines the degree of penalty in the objective. The more the environment is penalized,
the more a pessimistic action is chosen.

4.1 RESULTS ON CONTINUOUS ACTION SPACES

For continuous action space, we compare our algorithm with SAC which achieves state-of-the-art
robust control (Eysenbach & Levine, 2021) on the Mujoco environment such as Hopper-v3, Walker-
v3 or HalfCheetah-v3. We use a version where the entropy coefficient is adjusted during learning for
both SAC and our algorithm, as it requires less parameter tuning. Moreover, we show the influence
of a distributional critic without a mean-standard deviation greedy step using α = 0 to demonstrate
the advantage of using a distributional critic against the classical SAC algorithm. We also compare
our results to TQC algorithm, varying the penalty α to show that for the tested environment, there
exists a value of α such that prediction are more robust to change of dynamics.

The interest of our algorithm is best shown in stochastic environments, since it involves the distri-
butions of returns which are varying in stochastic environments. The only source of stochasticity
in the Mujoco subject is the initial point, so in order to make its environments stochastic we have
noised environments at each step by adding a noise in [−1e−2, 1e−2] to each action. Since we also
compare our algorithm in non-stochastic environments, we differentiate the two cases by denoting
noisy environments by (N) and environments without noise (wN). In these simulations, variations of
dynamics are carried out by moving the relative mass, which is an influential physical parameter in all
environments. All algorithms are trained with a relative mass of 1 and then tested on new environment
where the mass varies from 0.5 to 2. Two phenomena can be observed for the 3 environments.

First, for all environments in Fig 1,2, and Fig 7 in annex, where performance is normalized by the
maximum of the performance for every curve to highlight robustness and not only mean-performance.
We see that we can find a value of α where the robustness is clearly improved without deteriorating
the average performance. In fact, if a penalty is applied too strongly, the average performance can
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be reduced, as in the HalfCheetah-v3 environment. For Hopper-v3, a α calibrated at 5 gives very
good robustness performances, while for Walker2d-v3, the value is closer to 2. This phenomenon
was expected and was in agreement with our formulation. Moreover, our algorithm outperforms the
SAC algorithm for Robustness tasks in all environments. Tuning of α must be chosen carefully, for
example, α is chosen in {0, 1, ..., 5} for Hopper-v3 and Walker2d-v3 whereas values of α are chosen
smaller in {0, 0.1, 0.5.1, 1.5, 2} and not in a bigger interval. As a rule of thumb for choosing α, we
can look at the empirical mean and variance at the end of the trajectories to see if the environment
has rewards that fluctuate a lot. The smaller the mean/variance ratio, the more likely we are to
penalise our environment. For HalfCheetah, the mean/variance ratio is about approximately 100, so
we will favour smaller penalties than for Walker2d where the mean/variance ratio is about 50 or 10
for Hopper.

The second surprising observation is that penalizing our objective also improves performance in
terms of stability during training and in terms of average performance, especially for Hopper and
Walker2d in Fig 4 or sometimes in Fig 3. Similar results are present in the work of (Moskovitz et al.,
2021), which gives an interpretation in terms of optimism and pessimism for environments. This
phenomenon is not yet explained, but it is present in environments that are particularly unstable
and have a lot of variance. The variance of the return is a consequence of the stochasticity of the
environment or of the policy. Intuitively, the most favorable settings are thus the one with the most
stochasticity. We have, however, observed that our method remains interesting in low-stochasticity or
non-stochasticity environments even if the policy is not stochastic. A possible explanation is a better
exploration thanks to the pessimistic approach.
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Figure 1: y-axis : normalised mean ± standard deviation over 20 trajectories. x-axis : relative mass.
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(c) Walker-v3 (wN)

Figure 2: y-axis : mean ± standard deviation over 20 test trajectories. x-axis: relative mass.

4.2 RESULTS ON DISCRETE ACTION SPACES

We test our QRDQN algorithm with standard deviation penalization on discrete action space, varying
the length of the pole in Cartpole-v1 and Acrobot-v1 environments. We observe similar results for
the discrete environment in terms of robustness. Training is done for a length of the pole equal to
the x-axis of the black star on the graph, and then for testing, the length of the pole is increased or
decreased. We show that robustness is increased when we penalised our distributional critic. We have
compared our algorithm to PPO which has shown relatively good results in terms of robustness for
discrete action space in (Abdullah et al., 2019) as SAC does not apply to discrete action space. The
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(c) Walker-v3 (N)

Figure 3: y-axis : mean over 20 trajectories ± standard deviation in function of timesteps.
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Figure 4: y-axis : mean over 20 trajectories ± standard deviation in function of timesteps.

same phenomenon is observed in terms of robustness as for continuous environments. However, the
improvement in terms of mean performance on Hopper and Walker2d environments is not observed.
This is partly explained by the fact that the maximum reward is reached in Cartpole and Acrobot
quickly. An ablation study can be found in annex C where we study the impact of penalization on
our behavior policy during testing and on the policy used during learning. It is shown that both are
needed in the algorithm.
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Figure 5: Mean over 20 trajectories varying length’s pole, trained on the x-axis of the black star.

5 CONCLUSION

In this paper, we show that by using a mean-standard deviation formulation to choose our actions
pessimistically, we can increase the robustness of our environment for continuous and discrete
environments. A single fixed α parameter must be tuned to obtain good performance without
penalizing the average performance too much. Moreover, for some environments, it is relevant to
penalize actor to increase the average performance as well when there is a lot of variability in the
environment. Theoretical links with a (Kumar et al., 2022) of Lp norms could be an interesting way
of comparing our algorithm. The analysis of error propagation in this AMPI scheme is left for future
work to understand theoretically how our algorithm behaves.
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A PROOF OF MEAN-STANDARD DEVIATION FORMULATION AS A ROBUST
PROBLEM

We consider the following equality :

min
P∈D

χ2 (P∥P0)≤α
Q(P,π) = Q(P0,π) − αV[ZP0,π]

1
2 . (7)

Consider that trajectories τ is drawn from P but here we will write P the transition of the environment as the
policy π is fixed and it is the only part which differ.

Writing R̃(τ) = R(τ)− Eτ∼P0 [R(τ)] we get :

∥Eτ∼P [R(τ)]− Eτ∼P0 [R(τ)]∥ =

∥∥∥∥∫
τ

R̃(τ)
(
p(τ)− p0(τ)

)
dτ

∥∥∥∥
=

∥∥∥∥∥
∫
τ

R̃(τ)
√

p0(τ)

(
p(τ)− p0(τ)

)√
p0(τ)

dτ

∥∥∥∥∥
≤

∥∥∥∥∫
τ

R̃(τ)2p0(τ)dτ

∥∥∥∥ 1
2

∥∥∥∥∥
∫
τ

(
p(τ)− p0(τ)

)2
p0(τ)

dτ

∥∥∥∥∥
1
2

= VP0 [R(τ)]
1
2Dχ2(P∥P0)

1
2 ,

because of the positivity of the divergence and of the variance, the norms are removed. This inequality comes
from the Cauchy-Schwarz inequality and becomes an equality if for λ ∈ R :

R̃(τ)p0(τ) = λ(p(τ)− p0(τ)) ⇐⇒ p(τ) = p0(τ)(1 +
1

λ
R̃(τ)). (8)

However, p(τ) needs to be non-negative and sum to one as it is a measure. However, the normalization condition

is respected by construction, to ensure that the measure is non-negative, this requires
∥∥∥R̃(τ)/λ

∥∥∥ ≤ 1 in the

case where λ ≤ 0 . In this case of equality, we obtain from 8 that Dχ2(P∥P0) =
VP0

[R(τ)]

λ2 . Replacing the
divergence in the inequality, the following result holds :

∥Eτ∼P [R(τ)]− Eτ∼P0 [R(τ)]∥ ≤ VP0(R(τ))

λ
.

To prove (7) we are interested in the case where Dχ2(P∥P0) ≤ α, from the initial inequality we obtain :

min
P∈D

χ2 (P∥P0)≤α
Q(P,π) ≥ min

P∈D
χ2 (P∥P0)≤α

Q(P0,π) −Dχ2(P∥P0)V[ZP0,π]
1
2 = Q(P0,π) − αV[Z(P0,π)]

1
2

with the maximum value of α equals to Dχ2(P∥P0) =
VP0

[R(τ)]

λ2 ≤ VP0
[R(τ)]

∥R̃∥2

∞

=
∥R̃∥2

2

∥R̃∥2

∞

≤ 1, where the first

inequality comes from the conditions
∥∥∥R̃(τ)/λ

∥∥∥ ≤ 1 and the last one comes from that the L2 norm is smaller
than ∞-norm.

If our problem is contrained, assuming α ≤ VP0
[R(τ)]

∥R̃∥2

∞

≤ 1, we obtain the following results with the maximum

attained for Dχ2(P∥P0) = α :

min
P∈D

χ2 (P∥P0)≤α
Q(P,π) = Q(P0,π) − αV[ZP0 ]

1
2 . (9)

For α > 1, we still optimize a lower bound of the quantity of interest. The formulation of our algorithm becomes
the following.

{
πk+1 ∈ Gα (Zk) = G(ξα(Zk) = argmax

π∈Π
⟨E[Zk]− α

√
V[Zk], π⟩

Zk+1 =
(
T

πk+1
σ

)m
Zk

.
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B FURTHER RESULTS ON CONTINUOUS ACTION SPACE

B.1 NORMALISED RESULTS

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Relative mass

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
ea

n 
Re

wa
rd

SAC
=0
=2
=5
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(c) Walker-v3 (wN)

Figure 6: y-axis : normalised mean ± standard deviation over 20 trajectories. x-axis : relative mass.
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Figure 7: y-axis : normalised mean ± standard deviation over 20 trajectories. x-axis : relative mass.

The results were normalised to better reflect the improvement without being biased by the average performance
which is higher with a distributional critic.

C FURTHER EXPERIMENTAL DETAILS

All experiments were run on a cluster containing an Intel Xeon CPU Gold 6230, 20 cores, and all experiments
were performed on a single CPU between 3 and 6 hours for continuous control and less than 1 hour for the
discrete control environment.

Pre-trained models will be available for all algorithms and environments on a GitHub link.

The Mujoco OpenAI Gym task licensing information is given at
https://github.com/openai/gym/blob/master/LICENSE.md. The baseline implementation of PPO, SAC,
TQC, and QRDQN can be found in Raffin et al. (2019). Moreover, hyperparameters across all experiments used
are displayed in Table 2, 1 and 3 .

D ABLATION STUDY FOR DISCRETE ACTION SPACE ON CARTPOLE-V1

The purpose of this ablation study is to look at the influence of penalization in the discrete action space with
QRDQN. In the figures below, we look at the influence of penalizing only during training, which will have the
effect of choosing less risky actions during training in order to increase robustness. This curve is denoted Train
penalized.

Then we look at the influence of penalizing only once the policy has been learned using classic QRDQN without
penalization. Only mean-var actions are selected here during testing and not during training. This experience is
denoted Train Penalization.

Finally, we compare its variants with our algorithm called Full penalization. The results of the ablation are: to
achieve optimal performance, both phases are necessary.
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When penalties are applied only during training. Good performance is generally obtained close to the length
1 where we train our algorithm. However, the performance is difficult to generalize when the pole length is
increased,increased, as we do not penalize during testing.

When we penalize only during testing: even if the performances deteriorate, we see that it tends to add robustness
because the curves have less tendency to decrease when we increase the length of the pole. The performances
are not very high as we play different acts than those taken during the learning.

So both phases are necessary for our algorithm. Penalizing during training allows for safer exploration and
penalizing during testing allows for better generalization.

The ablation study for the continuous case is more difficult to do. Indeed, the fact that the penalty occurs only in
the gradient descent phase makes it difficult to penalize only in the test phase.
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E HYPERPARAMETERS

For HalfCheetah-v3 , penalisation is chosen in [0, 2] and not [0, 5] like in Walker-v3 and Hopper-v3.

Table 1: Table of best hyperparameter for Cartpole-v1

Hyperparameter QRDQN with standard deviation penalisation PPO
Learning Rate 2.3e-3 3e-4
Optimizer Adam Adam
Replay Buffer Size 10e5 N/A
Number of Quantiles 10 N/A
Huber parameter κ 1 N/A
Penalisation α {0,1,3,5,7 } N/A
Network Hidden Layers for Policy N/A 256:256
Network Hidden Layers for Critic 256:256 256:256
Number of samples per Minibatch 64 256
Discount factor γ 0.99 0.99
Target smoothing coefficient β .0.005 N/A
Non-linearity ReLu ReLu
Target update interval 10 N/A
Gradient steps per iteration 1 1
Entropy coefficient N/A 0
GAE λ 0.95 0.8

Table 2: Table of best hyperparameter for Acrobot-v1

Hyperparameter QRDQN with standard deviation penalisation PPO
Learning Rate 6.3e-4 3e-4
Optimizer Adam Adam
Replay Buffer Size 50 000 N/A
Number of Quantiles 25 N/A
Huber parameter κ 1 N/A
Penalisation α {0, 0.5, 1, 2, 3} N/A
Network Hidden Layers for Critic 256:256 256:256
Network Hidden Layers for Policy N/A 256:256
Number of samples per Minibatch 128 64
Discount factor γ 0.99 0.99
Target smoothing coefficient β .0.005 N/A
Non-linearity ReLu ReLu
Target update interval 250 N/A
Gradient steps per iteration 4 1
Entropy coefficient N/A 0
GAE λ 0.95 0.95

16



Under review as a conference paper at ICLR 2023

Table 3: Table of best hyperparameter for all continuous environments

Hyperparameter TQC with standard deviation penalisation SAC
Learning Rate linear decay from 7.3e-4 linear decay from 7.3e-4
Optimizer Adam Adam
Replay Buffer Size 106 106

Expected Entropy Target −dimA −dimA
Number of Quantiles 25 N/A
Huber parameter κ 1 N/A
Penalisation α {0, 1, ...5} N/A
Network Hidden Layers for Policy 256:256 256:256
Network Hidden Layers for Critic 512:512:512 256:256
Number of dropped atoms 2 N/A
Number of samples per Minibatch 256 256
Discount factor γ 0.99 0.99
Target smoothing coefficient β .0.005 0.005
Non-linearity ReLu ReLu
Target update interval 1 1
Gradient steps per iteration 1 1
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