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ABSTRACT

Motivated by the fact that forward and backward passes of a deep network naturally
form symmetric mappings between input and output representations, we introduce
a simple yet effective self-supervised vision model pretraining framework inspired
by energy-based models (EBMs). In the proposed framework, we model energy
estimation and data restoration as the forward and backward passes of a single
network without any auxiliary components, e.g., an extra decoder. For the forward
pass, we fit a network to an energy function that assigns low energy scores to
samples that belong to an unlabeled dataset, and high energy otherwise. For the
backward pass, we restore data from corrupted versions iteratively using gradient-
based optimization along the direction of energy minimization. In this way, we
naturally fold the encoder-decoder architecture widely used in masked image mod-
eling into the forward and backward passes of a single vision model. Thus, our
framework now accepts a wide range of pretext tasks with different data corruption
methods, and permits models to be pretrained from masked image modeling, patch
sorting, and image restoration, including super-resolution, denoising, and coloriza-
tion. We support our findings with extensive experiments, and show the proposed
method delivers comparable and even better performance with remarkably fewer
epochs of training compared to the state-of-the-art self-supervised vision model
pretraining methods. Our findings shed light on further exploring self-supervised
vision model pretraining and pretext tasks beyond masked image modeling.

1 INTRODUCTION

The recent rapid development of computation hardware and deep network architectures have paved
the way for learning very large deep networks that match and even exceed human intelligence on
addressing complex tasks (Brown et al., 2020; He et al., 2017; Silver et al., 2016). However, as
annotating data remains costly, leveraging unlabeled data to facilitate the learning of very large
models attracts increasing attention. Exploiting context information in the massive unlabeled data
in natural language processing (NLP) stimulates Chen et al. (2020a) to use the direct modeling of
pixel sequences as the pre-text tasks of vision model pretraining. Recent self-supervised vision
model pretraining through masked image modeling (MIM) (He et al., 2022; Wei et al., 2021; Xie
et al., 2022) typically adopt an auto-encoder (AE) architecture, where the target vision model to be
pretrained serves as an encoder to encode an image with incomplete pixel information to a latent
representation. An auxiliary decoder is jointly trained to restore the missing information from the
latent representation. Contrastive self-supervised learning methods (Chen et al., 2020b) usually
require large training batch sizes to provide sufficient negative samples. Recent Siamese network
based self-supervised learning methods (Grill et al., 2020; Chen & He, 2021; Tian et al., 2021; He
et al., 2020; Chen et al., 2021) alleviate the huge batch challenge by deploying an momentum copy
of the target model to facilitate the training and prevent trivial solutions. VICReg (Bardes et al.,
2022) prevents feature collapsing by two explicit regularization terms. Barlow Twins (Zbontar et al.,
2021) reduce the need of large batch size or Siamese networks by proposing a new objective based
on cross-correlation matrix between features of different image augmentations.

In this paper, we make a further step towards the following question: Can we train a standard
deep network to do both representation encoding and masked prediction simultaneously, so that
no auxiliary components, heavy data augmentations, or modifications to the network structure are
required?
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Hinted by the fact that the forward and the backward passes of a deep network naturally form
symmetric mappings between input and output representations, we extend the recent progress on
energy-based models (EBMs) (Xie et al., 2016; Du & Mordatch, 2019; Du et al., 2020b; Zhao et al.,
2017) and introduce a model-agnostic self-supervised framework that pre-trains any deep vision
models. Given an unlabeled dataset, we train the forward pass of the target vision model to perform
discriminative recognition. Instead of instance-wise classification as in contrastive self-supervised
learning, we train the target vision model to perform binary classification by fitting it to an energy
function that assigns low energy values to positive samples from the dataset and high energy values
otherwise. And we train the backward pass of the target vision model to perform conditional image
restoration as in masked image modeling methods, by restoring positive image samples from their
corrupted versions through conducting gradient-based updating iteratively along the direction of
energy minimization. Such conditional sampling schemes can produce samples with satisfying quality
using as few as one gradient step, thus prevents the unaffordable cost of applying the standard implicit
sampling of EBMs on high-dimensional data. In this way, we naturally fold the encoder-decoder
architecture widely used in masked image modeling into the forward and backward passes of a single
vision model, so that the structure tailored for discriminative tasks is fully preserved with no auxiliary
components or heavy data augmentation needed. Therefore the obtained vision model can better
preserve the representation discriminability and prevent knowledge loss or redundancy. Moreover,
after folding the corrupted data modeling (encoder) and the original data restoration (decoder) into a
single network, the proposed framework now accepts a broader range of pretext tasks to be exploited.
Specifically, we demonstrate that beyond typical masked image modeling, the proposed framework
can be easily extended to learning from patch sorting and learning from image restoration, e.g.,
super-resolution and image colorization.

We demonstrate the effectiveness of the proposed method with extensive experiments on ImageNet-
1K. It is easy to notice that almost every parameter trained from the self-supervised training stage
will be effectively used in the downstream fine-tuning. And we show that competitive performance
can be achieved even with only 100 epochs of pretraining on a single 8-GPU machine.

2 RELATED WORK

Vision model pretraining. Pretraining language Transformers with masked language modeling
(Kenton & Toutanova, 2019) has stimulated the research of using masked image modeling to pretrain
vision models. BEIT (Bao et al., 2021) trains the ViT model to predict the discrete visual tokens
given the masked image patches, where the visual tokens are obtained through the latent code of
a discrete VAE (Ramesh et al., 2021). iBoT (Zhou et al., 2022) improves the tokenizer with a
online version obtained by a teacher network, and learns models through self-distillation. Masked
auto-encoder (He et al., 2022) adopts an asymmetric encoder-decoder architecture and shows that
scalable vision learners can be obtained simply by reconstructing the missing pixels. (Wei et al.,
2021) studies empirically self-supervised training through predicting the features, instead of the
raw pixels of the masked images. Different forms of context information for model pretraining are
also discussed by learning from predicting the relative position of image patches (Doersch et al.,
2015), sorting sequential data (Noroozi & Favaro, 2016), training denoising auto-encoders (Vincent
et al., 2008), image colorization (Zhang et al., 2016), and image inpainting (Pathak et al., 2016).
Similar to metric learning (Hinton, 2002), contrastive self-supervised learning methods learn visual
representations by contrasting positive pairs of images against the negative pairs. (Wu et al., 2018)
adopts noise-contrastive estimation to train networks to perform instance-level classification for
feature learning. Recent methods construct positive pairs with data augmentation (Chen et al., 2020b),
and obtain pretrained models with high discriminability (Caron et al., 2021). To relax the demand
of large batch size for providing sufficient negative samples, (He et al., 2020; Chen et al., 2020c)
are proposed to exploit supervision of negative pairs from memory queues. And it is shown that
self-supervised learning can even be performed without contrastive pairs (Grill et al., 2020; Chen &
He, 2021; Tian et al., 2021) by establishing a dual pair of Siamese networks to facilitate the training.
(Donahue & Simonyan, 2019) extends unsupervised learning with generative adversarial networks to
learning discriminative features.

Energy-based models. The proposed framework for vision model pre-training is inspired by the
progress of energy-based models (LeCun et al., 2006). As a family of generative models, EBMs are
mainly studied to perform probabilistic modeling over data (Ngiam et al., 2011; Qiu et al., 2019;
Nijkamp et al., 2020; Du & Mordatch, 2019; Du et al., 2020b; Zhao et al., 2020; Xie et al., 2016; 2017;
2020; 2021; Xiao et al., 2020; Arbel et al., 2021), and conditional sampling (Du et al., 2020a; 2021).
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Figure 1: Typical EBM sampling demands long chains even with a mild resolution of 64× 64 (left).
Our conditional sampling with short chains obtain satisfactory results with as few as a single gradient
step at a standard resolution of 224× 224 (right).

It is shown in (Grathwohl et al., 2020) that a standard discriminative classifier can be interpreted as
an EBM for the joint data-label distribution, which can then by exploited to learn from unlabeled
data in an semi-supervised manner. Recently, the idea of EBMs is being applied to more applications
including reasoning (Du et al., 2022), latent space modeling of generative models (Pang et al., 2020),
and anomaly detection (Wang et al., 2022; Dehaene et al., 2020). To the best of our knowledge, we
are the first to apply energy-based model training to self-supervised vision model pre-training.

3 METHOD

In this section, we introduce in details the proposed framework of energy-inspired self-supervised vi-
sion model pretraining. We first briefly review the backgrounds of energy-based models in Section 3.1.
We present the general process of the proposed pretraining framework, with a straightforward example
based on mask image modeling in Section 3.2. We then present how the proposed framework allows
extensions to a wide range of variants adopting different pretext tasks with examples of learning from
image restoration (Section 3.3) and learning from sorting (Section 3.4).

3.1 BACKGROUNDS

Being mainly generative models, EBMs are usually trained to model a target distribution density
function. EBM training is typically achieved by learning an energy function that predicts the
unnormalized density, named the energy score, for a given data sample. Specifically, given a data
sample x ∈ Rd, the energy function Eθ(x) : Rd → R, with θ as the learnable parameters, maps the
sample to its energy score, which is expected to be low for the in-distribution (positive) samples, and
high for the out-of-distribution (negative) samples. The modeled data density pθ(x) is expressed as:

pθ(x) =
exp(−Eθ(x))

Zθ
, (1)

where Zθ =
∫
x
exp(−Eθ(x)) is the partition function. Approximating a target data distribution

pdata(x) equals to minimizing the expected negative log-likelihood function over the data distribution,
defined by the maximum likelihood loss function:

LML = Ex∼pdata(x)[− log pθ(x)] = Ex∼pdata(x)[Eθ(x) + logZθ]. (2)

As the computation of LML involves the intractable Zθ, the common practice is to represent the
gradient of LML as,

∇θLML = Ex+∼pdata(x)
[∇θEθ(x

+)]− Ex−∼pθ(x)
[∇θEθ(x

−)]. (3)

The objective in (3) train the model Eθ to effectively distinguish in-domain and out-of-domain samples
by decreasing the predicted energy of positive data samples x+ from the true data distribution and
increasing the energy of negative samples x− obtained through sampling from the model pθ.

Sampling from the modeled distribution equals to finding the samples with low energy scores.
Parametrizing the energy function as a deep neural network allows for a continuous energy space
to be learned from data, where sampling can be accomplished by randomly synthesizing a negative
sample of high energy, and moving it in the corresponding energy space along the direction of energy
minimization. Inspired by MCMC based sample techniques such Langevin dynamics (Welling &
Teh, 2011), common practice (Du & Mordatch, 2019; Du et al., 2020b) resorts to gradient-based
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Figure 2: Applying the pro-
posed framework to masked im-
age modeling. The unlabeled
image is corrupted with ran-
dom patches, and the network
is trained to recognize the cor-
rupted sample as a negative one
with high energy, and recover the
original image by updating the
image iteratively along the direc-
tion of energy minimization.

optimization for implicit sampling. Specifically, by performing N gradient steps, the approximated
optimum x̃N can be obtained as

x̃n = x̃n−1 − α∇xEθ(x̃
n−1) + ωn, ωn ∼ N (0, 2α), n = 1, . . . N, (4)

where α is the step size of the gradient-based optimization. In practice, the noise term ωn is usually
set to a smaller empirical scale as in the official implementation of (Du et al., 2020b) for faster
sampling. x̃0 is usually obtained by sampling from a predefined prior distribution such as Uniform.
For a more comprehensive formulation of implicit generation with energy-based models, please refer
to (Xie et al., 2016; Du & Mordatch, 2019; Du et al., 2020b).

3.2 PROPOSED FRAMEWORK

We denote the deep vision model to be pretrained asψ. Our energy-inspired model can be constructed
by simply appending a linear head h with a single output dimension to the feature extractor, i.e.,
Eθ(x) = h(ψ(x)) with θ collectively denoting the parameters of both ψ and h. In a typical setting,
the linear head h contains only hundreds of parameters. After the pretraining, the obtained vision
model can be directly used as an image recognition model by only replacing the linear head h. The
full preservation of network architecture with no auxiliary network components, e.g., a decoder, to be
removed, better maintains the network discriminability and prevents potential feature redundancy.

As illustrated in Figure 1, even using a low resolution, the typical implicit sampling of EBMs in (4)
can take dozens or even hundreds of gradient steps to produce an image sample of satisfying quality
(Du & Mordatch, 2019; Zhao et al., 2020). Applying the standard EBM training to self-supervised
pretraining introduces unaffordable cost. It is discussed in (Gao et al., 2021) that a reformulation of
the training objective based on recovery likelihood can stabilize the training of EBMs. In this paper,
inspired by (Wang et al., 2022), we forgo the from-scratch sampling and train the network to perform
conditional sampling, so as to restore partially corrupted data with explicit supervision. As visualized
in Figure 1, the costly noise-to-image sampling of EBMs is now replaced with conditional sampling,
where a chain of sampled data moving towards the low-energy region are obtained for each corrupted
sample rapidly. In our case of self-supervised learning, doing so has two major advantages: Firstly,
as being further discussed in Section 4.3, the proposed framework now allows the restoration of each
sample to be completed with as few as two gradient optimization steps, and permits desirable speed
for self-supervised training on large scale datasets. Moreover, such conditional sampling allows us to
replace the contrastive divergence (3) designed for unconditional sampling by explicit supervision
with pixel values as we will discuss later, and such strong supervision alleviates the unstable EBMs
training according to our observations. The proposed framework imposes little restrictions to the
image sample corruption methods deployed and permits a wide range of pretext tasks to be exploited.
For the sake of discussion, we present in details one straightforward variant with masked image
modeling to walk through the training process, and illustrate other possible variants in later sections.

Masked image modeling. As visualized in Figure 2, given a batch of image samples {xi}i=1,...,K ,
we first corrupt each image using a predefined function ↓ (·). In this example, ↓ (·) denotes random
image masking. After image masking, ↓ (xi) can be seen as a sample that is out of the target data
distribution pdata with the remaining pixels inferring the original contents of the image. With the
target modeling a continuous energy function, we can perform online evaluation to the estimated
energy function by examining how well moving the masked image in the modeled energy space
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along the energy minimization direction can restore the original data xi. Specifically, we resort to the
gradient based optimization (4) and perform N -step image restoration with x̃0

i =↓ (xi). The loss of
the restoration steps can then be expressed as:

L =
1

KN

K∑
i=0

N∑
j=0

MSE(x̃j
i ,xi), where x̃j

i = x̃j−1
i − α∇xEθ(SG(x̃j−1

i )), (5)

with SG denoting the stop gradient operation that blocks the gradient propagation across steps. We
empirically observe that adding stop gradient operations between consecutive steps helps accelerate
the training speed and convergence. L here encourages original images to be restored from the
negative images (corrupted versions and the sampled versions along the sampling chains of (5))
by gradient based updating along the direction of energy minimization, which equally encourages
higher energy values for negative images, and can functionally replace the second term in (3). The
supervision in (5) is similar to the ones used in score matching and diffusion models (Vincent, 2011;
Ho et al., 2020). One major different is that all the inputs for the intermediate steps in our method are
obtained by the previous step of restoration, instead of generated using the original images based on
some noise schedulers.

Notably, as discussed in (Du & Mordatch, 2019), standard EBM training with (3) using arbitrary
energy model can cause sharp changes in gradients, and the stable training requires heavy tuning to
the hyperparameters and techniques like spectral normalization to constrain the Lipschitz constant
of the network. While in our framework, unstable training caused by sharp gradients is naturally
prevented by the explicit supervision in (5), as faithfully restoring the original data requires the
gradient in (5) to be bounded within a certain range. We summarize the overall training steps of the
proposed framework in Algorithm 1. We further provide PyTorch-style pseudo code in Appendix
Section A.3 to facilitate reproducing our results.

Algorithm 1 Energy-based self-supervised vision model pretraining.

1: Given: A target network ψ to be pretrained, a large-scale unlabeled dataset {xi}, and an image sample
corruption function ↓ (·).

2: Given: Step size α and number of steps N for the gradient update of corrupted samples.
3: Initialize the target network ψ and the linear head h.
4: repeat
5: Sample a batch of images from the unlabeled dataset.
6: Corrupt each sample and initialize the conditional sampling chains as x̃0

i =↓ (xi).
7: for Step n = 1 : N do
8: Stop gradient x̃n−1

i = SG(x̃n−1
i ).

9: Perform gradient update to the corrupted samples as in (5).
10: end for
11: Compute the restoration error of each step using (5), and update ψ and h with gradient optimization.
12: until Converge
13: Return ψ.

3.3 BEYOND MASK IMAGE MODELING

Recent self-supervised vision model pretraining methods (Xie et al., 2022; He et al., 2022; Wei et al.,
2021) invariably adopt masked image modeling as the pretext task. We argue that the encoder-decoder
architectures used in these methods prevent them from being easily extended to other pretext tasks.
In the auto-encoder based methods, the vision model to be pretrained serves as the encoder, and is
only exposed with the corrupted images during pretraining. Therefore, it is important to present part
of the original image patches to the encoder, so that the encoder can learn from those intact patches
network weights that transfer well in downstream finetuning. While in the proposed pretraining
framework, both corrupted samples and original samples are exposed to the target vision model, in
the forms of input and supervision, respectively. Specifically, by simply replacing the corruption
function ↓ (·), we can establish a wide range of pretext variants that learn vision models from, such
as patch sorting, super-resolution, denoising, and image colorization. Further details and results will
be discussed in Section 4.1. With certain degrees of global image corruption, networks can be trained
to infer possible content given the incomplete pixel information, and restore the missing information,
such as detailed textures or color, by the patterns learned from the true data and stored in the network
weights. With the restriction to the corruption methods being lifted, our framework stimulates further
discussions on the pretext tasks of vision model pretraining. Patch sorting is discussed next as an
example of new pretext tasks.
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3.4 LEARNING FROM SORTING

Sorting the patches of an image according to the spatial position requires inferring the global content
by integrating the local information contained in each patch, and sorting the order of the patches
accordingly. Such process involves both local feature extraction and global semantic inference,
therefore can be an useful pretext task of self-supervised training. However, restoring the patch orders
in the image pixel space can be extremely challenging to learn. MP3 (Zhai et al., 2022) extends
mask image modeling to position predictions by dropping tokens in the values of the self-attention
layers and predicting the corresponding position using the extracted features. Thanks to the absolute
position embedding widely adopted in ViTs, we present an interesting variant of learning from sorting
that does not modify any intermeidate layers of ViTs.. Specifically, the feature extraction of a ViT ψ
can be expressed as:

ψ(xi) = ϕT(zclass, {ϕP(xi[p, q]) + PE[p, q]}P,Q
p=1,q=1) (6)

where ϕT and ϕP denote the stacked transformer layers and the patch embedding layer, respectively.
We use p and q to index the image patch and PE[p, q] is the corresponding position embedding.
Adopting the simple non-learnable sin-cos function as the position embedding, we can shuffle the
image patches by simply shuffling the position embedding, and train the target network to sort the
patches by performing gradient-based optimization to the shuffled position embedding along the
direction of energy minimization. Specifically, based on (6) and omitting the indexes, we define the
new energy function parametrized by the target vision model as Eθ(xi,PE)), and train the network
using the following loss

Lsort =
1

KN

K∑
i=0

N∑
j=0

MSE(P̃E
j
i , PE), where P̃E

j
i = P̃E

j−1
i − α∇PEEθ(xi, SG(P̃E

j−1
)). (7)

Learning from sorting corrupts only the position embedding, and allows the original image signal to
be fully exposed to the network. And the network is encouraged to infer the global structure of an
image from the features of patches and sort the patches to form a semantically meaningful pattern.

Random edge masking in the patch embedding layer. Note that for most natural images, two
neighboring patches may share nearly identical pixels at the edge rows or columns. While such
information is hard to be exploited by human for patch sorting, is can be easy for a network to learn
such trivial sorting solution, and perform nearly perfect patch sorting without resorting to actual
semantics. Such trivial solution can be easily avoided by random masking to the weights in the patch
embedding layer and preventing the patch embedding layer from learning only the edge pattern of
image patches. We discuss the detailed implementation of the edge masking in Appendix Section A.2.
Such trivial solution can also be resolved by randomly masking tokens in vision transformers as in
(Zhai et al., 2022).

4 EXPERIMENTS

With the standard ImageNet-1K dataset, we show that the proposed EBM pretraining framework can
help a deep vision model to achieve competitive performance with as few as 200 epochs of training.
We use ViT to conduct most of the experiments. And we further show in Appendix Section B.3 that as
a model-agnostic framework, the proposed method can be seamlessly extended to other architectures.

Training. We use AdamW (Loshchilov & Hutter, 2019) as the optimizer for both self-supervised
training and tuning. For all the self-supervised pretraining experiments, we adopt only random
cropping and random horizontal flipping as the data augmentation. We present comprehensive
training details in Appendix Section A.1 Table A. Most of the experimental settings follow (He et al.,
2022). Unlike recent methods (Zhou et al., 2022; He et al., 2022), we do not perform exhaustive
searches for the optimal hyperparameters such as learning rates. Training energy functions introduces
a new hyperparameter α, which is the step size of the gradient optimization to the corrupted data.
Thanks to the explicit supervision available in the proposed framework, we can set α to be learnable,
and jointly train it with the network without the concern of training stability as in standard EBM
training. If not otherwise specified, we adopt N = 2, i.e., two steps of gradient-based energy
minimization in the pretraining stage for the best performance-efficiency trade-off.

4.1 SELF COMPARISONS

As discussed in Section 3, the proposed framework accepts a wide range of variants with different
pretext tasks. To illustrate the flexibility, we present results with different variants including learning
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Table 1: Masked image modeling with different patterns
and ratios of image masking. The result of MAE (He
et al., 2022) with 400 epochs is based on our reimple-
mentation. The results of our methods are obtained by
100 epochs of pretraining. All results are obtained with
100 epochs of finetuning. Baseline results are in gray.
From scratch indicates the purely supervised baseline.

Masking strategies Accuracy

From scratch 76.6

Random large 79.7
Random small 79.3

% of masking 10% 30% 50% 70% 90%
MAE - - - 78.3 -
Gridded (16) 76.7 78.3 78.7 79.0 78.8
Gridded (24) 76.8 78.2 78.7 79.2 78.8
Gridded (32) 77.1 78.4 78.6 79.0 78.7

Table 2: Results obtained by different
pretext tasks of learning from image
restoration and patch sorting. Baseline
results are in gray.

Methods Accuracy

From scratch 76.6

AE + SR 16× 77.1
AE + denoising 76.8
Denoising 79.2
SR 8× 77.1
SR 14× 78.2
SR 16× 79.6
SR 24× 78.4
SR 32× 76.3
Colorization 79.5

AE + sorting 77.2
Patch soring 79.5

from masked image modeling, image restoration, and sorting. All results in this section are obtained
by pretraining and finetuning a ViT-S for 100 epochs on the ImageNet-1K (Deng et al., 2009) dataset.

Learning from masked image modeling. A straightforward way of implementing the proposed
framework is to train the network to perform masked image modeling given incomplete pixel
information. We present results obtained with different masking strategies and ratios of masking in
Table 1. As visualized in Figure 3, in the experiments with gridded mask, we evenly divide an image
into squared patches with the same size, and randomly mask out a portion of the patches. Note that
in the Gridded (16) experiments, the patch partition in the image masking matches exactly with the
patch partition in the ViT networks, therefore it is a fair comparison against MAE (He et al., 2022).
For the random masking experiments, we randomly place blank patches with the size and aspect ratio
sampled from a particular range to each image. In the Random small experiments, we randomly place
75 blank patches with normalized sizes sampled from a Uniform distribution of U(0.01, 0.025). In
the Random large experiments, we randomly place 25 blank patches with normalized sizes sampled
from U(0.02, 0.05). For both experiments, the aspect ratio of each patch is sampled from U(0.5, 2.0).
Learning from image restoration. As discussed in Section 3.3, our framework enjoys higher
flexibility as the pretrained vision model is exposed with both true samples and artificial negative
ones, thus even when the input images are corrupted globally, our framework can still learn good
models. To show this, we present in Table 2 results obtained with learning from image restoration.
Specifically, we train the network to learn from image super-resolution, denoising, and image
colorization, where every pixel is corrupted with a predefined function. Table 2, SR denotes super-
resolution. AE + SR 16 denotes a baseline experiment with a auto-encoder architecture as in (He
et al., 2022). In the s-time super-resolution (denoted as SR s×), the image are first downsampled
using bicubic interpolation for s times, and resized back to the original size using nearest-neighbor
interpolation. In the denoising experiments, we take a noise scheme inspired by diffusion models
(Song et al., 2021a; Ho et al., 2020) with ↓ (x) =

√
γx+

√
1− γϵ, with ϵ ∼ N (0, I) and γ uniformly

sampled as γ ∼ U(0, 1).
As shown in the quantitative results in Table 2 and visualizations in Figure 3, with proper degrees of
corruption, restoring the original images may require the network to infer the general content given
the corrupted pixels, and recover the details using the knowledge learned from the true samples and
stored in the network weights. For example, in the image colorization experiments, the pretrained
vision model learns the common colors of different objects from the massive unlabeled data in a
self-supervised way. As visualized in Figure 3, the vision model learns common knowledge such
as stop signs are usually red, and the background of a horse is usually green while manatees are
marine mammals therefore the background is usually blue. Summarizing such knowledge requires
the vision models to learn identifying objects first, therefore transferable network weights and feature
representations can be obtained from pretraining. And as shown in the ‘Denoising’ row of Figure 3,
with strong noise injected to the input, the model is able to recover objects that are almost invisible.
This finding potentially connects our pretraining method with genitive models (Song et al., 2021a; Ho
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Figure 3: Conditional sampling with masked image modeling with different masking strategies and
learning from image restoration. The proposed framework accepts a broader range of pretext tasks.

Table 3: Quantitative comparisons against the recent self-
supervised model pretraining methods. ∗ denotes results
produced by our re-implementation. PT and FT denote
pretraining and finetuning, respectively. All ImageNet
results are evaluated on the validation set with a single
center crop of 224×224 for each image. † denotes the
training involves external dataset other than ImageNet-
1K. For our results, we set e = 50 for ViT-L, e = 100
for ViT-B, and e = 200 for ViT-S. We use N = 2 for
200-epoch experiments and N = 1 otherwise.

Methods (PT + FT) ViT-S ViT-B ViT-L

From scratch 300 79.6∗ 82.3 82.6

DINO - - 82.8 -
MoCo-V3 300+150 - 83.2 84.1
BEiT† 800+100 - 83.2 85.2
MaskFeat 300+100 - 83.6 85.7
iBOT 600 + 200 81.4 - -
iBOT 1600 + 100 - 83.8 -
MP3 100 (150) + 100 - 83.0 83.6
MSN 600 + 100 - 83.4 -
MAE 400 + 100 78.3∗ 83.1∗ -
MAE 1600 + e - 83.6 85.9
Ours Sorting 800 + 100 - 83.2 -
Ours Mixed 200 + e 81.2 83.1 -
Ours Mixed 800 + e 81.8 83.4 85.4

Table 4: ViT-S training efficiency with
number of epochs. Results of MAE (He
et al., 2022) are obtained with our re-
implementation.

Methods Epochs Accuracy

MAE 400 + 100 78.3
MAE 400 + 200 80.2
Ours 100 + 100 79.7
Ours 100 + 200 81.0

Table 5: Efficiency comparisons with
GPU-hours. † denotes numbers obtained
by (Zhou et al., 2022).

Methods GPUs × H Acc.

MoCo-V3 128 × 24 83.2
BEiT† 16 × 90 81.4
DINO† 16 × 112 81.6
iBOT 16 × 193 82.0
MAE (400+100) 8 × 72 83.1∗

MAE (1600+100) 8 × 288 83.6
Ours 8 × 232 83.4

et al., 2020; Song & Ermon, 2019; Song et al., 2021b). We will further investigate the connections in
future efforts. In our method, corrupted images and original image are exposed to the input layers of
the vision model as input and supervision, respectively. Therefore, compared to the auto-encoder
based baseline, which only receives corrupted images as input, the proposed framework demonstrates
clearly better performance after finetuning.
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Learning from sorting. To prevent the trivial solution of sorting as discussed in Section 3.4, we
adopt regularization schemes that prevents the network from simply sorting the patches based on
the edge pixels only. Details of the regularizations can be found in Appendix Section A.2. For a
fair comparison, we conduct a baseline experiment of adopting an auto-encoder network to directly
predict the position of each patch. We follow the details presented in MAE (He et al., 2022) and
implement an asymmetric auto-encoder structure with a lightweight decoder. Note that in the baseline
implementation, there is no position embedding used in the encoder ViT, and we add back trainable
position embedding initialized with full zeros in the finetuning stage for fair comparisons. The
quantitative comparisons are in the bottom rows of Table 2. All numbers are obtained with the same
settings. We apply the same regularization schemes to the baseline method to prevent trivial solution.
The proposed method learns better features. And the discrepancy between pretraining and finetuning
caused by the position embedding in the encoder of the AE baseline may be an important reason of
its worse performance.

4.2 QUANTITATIVE COMPARISONS AGAINST RECENT METHODS

In this section, we present quantitative comparisons against the recent self-supervised model pretrain-
ing methods. We train our method using a mixture of pretext tasks that are uniformly sampled from
image masking, super-resolution, denoising, and colorization. In Table 3, we compare our method
against DINO (Caron et al., 2021), MoCo-V3 (Chen et al., 2021), MaskFeat (Wei et al., 2021), BEiT
(Bao et al., 2021), iBOT (Zhou et al., 2022), MP3 (Zhai et al., 2022), Masked Siamese Networks
(MSN) (Assran et al., 2022), and MAE (He et al., 2022). We train our model with a mixture of all the
pretext tasks discussed above. We do this by randomly sample a correction method for each image in
a batch. With only 200 epochs of pretraining, the proposed framework can achieve comparable or
even better performance with the state-of-the-art self-supervised pretraining methods, some of which
adopt much more epochs and leverage external data for training.

4.3 EFFICIENCY DISCUSSIONS

In this section, we present discussions on the training efficiency of the proposed method. As discussed
in Section 3.2, in the proposed framework, the network learns to model the density with samples from
real data distribution and sampled negative. Therefore, compared to other masked image modeling
based pretraining methods that learn from a relatively small part of the images in each iteration, the
proposed framework delivers comparable performance with fewer epochs of training. Note that when
using each training iteration in our approach involves N forward passes and N + 1 backward passes
with an additional backward pass for the gradient of parameters. We present efficiency comparisons
with number of epochs in Table 4. The proposed method can achieve better results with fewer epochs
of training compared to MAE (He et al., 2022).We further present comparisons on training efficiency
with GPU-hours in Table 5. The proposed method demonstrates a good performance-efficiency
trade-off compared to the state-of-the-art methods. We present in Appendix Figure A performance
obtained with different N steps of updating.

5 CONCLUSION

We presented energy-inspired self-supervised pretraining for vision models. We accelerated EBM
training and trained the vision model to perform conditional sampling initialized from corrupted
samples by moving them along the direction of energy minimization. The bi-directional mappings
between images and latent representations are modeled naturally by the forward and backward passes
of a network, which fully preserve the discriminative structure of the target vision model and avoid
auxiliary network components and sophisticated data augmentation to facilitate pretraining. We
presented extensive experiments with different pretext tasks, including learning from masked image
modeling, learning from image restoration, and learning from sorting. We hope our findings can shed
light on further exploring the pretext tasks of self-supervised vision model pretraining.
Limitation. While strong finetuning results are observed, our method does not directly provide
features that are strongly linearly-separable, which is reflected by lower linear probing accuracy
compared to contrastive learning based pretraining methods. This phenomena is also observed and
discussed in (He et al., 2022), and may be attributed to the fact that both (He et al., 2022) and
our method do not explicitly encourage linear separation of features in the pretraining stage as
the contrastive learning based method do. And linear probing cannot faithfully validate strong but
non-linear features. We present quantitative comparisons in Appendix Section B.4, and will keep
improving the linear separation as a direction of future effort.
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A IMPLEMENTATION DETAILS

A.1 DETAILS ON TRAINING

We present the training details for both self-supervised training and finetuning in Table A. All
experiments are implemented using PyTorch (Paszke et al., 2019). We use the default API for
automatic mixed-precision training. The step size α can either be initialized as 0.1 and trained along
with all the parameters in the vision model in an end-to-end fashion, or predicted by a linear head
given the extracted features. In practice, we impose a positive constraint to the value of α during
training. Following standard practice, we use an image resolution of 224× 224 in all experiments.

Configurations Pretraining Finetuning

optimizer AdamW AdamW
base learning rate 1e-4 1e-3
learning rate schedular Cosine decay Cosine decay
weight decay 0.05 0.05
momentum of AdamW β1 = 0.9, β2 = 0.95 β1 = 0.9, β2 = 0.999
layer-wise lr decay (Clark et al., 2020) - 0.75
batch size 256 1024
drop path (Huang et al., 2016) - 0.1
augmentation RandomResizedCrop RandAug (9, 0.5) (Cubuk et al., 2020)
label smoothing (Szegedy et al., 2016) - 0.1
mixup (Zhang et al., 2018) - 0.8
cutmix (Yun et al., 2019) - 1.0
Mix-precision training ✓ ✓

Table A: Training details for both self-supervised pretraining and finetuning.

A.2 LEARNING FROM SORTING

In the experiments of learning from sorting, we adopt the 2D sin-cos position embedding following
the implementation of MoCo-V3 (Chen et al., 2021). The embedding for each position remains
fixed during the self-supervised pretraining stage. In the finetuning stage, we initialize the position
embedding using the same 2D sin-cos function, and allow the embedding to be trainable along with
all the parameters in ViT.

Regularization. To prevent the trivial solution of sorting the patches based on only the edge pixels
of image patches as discussed in Section 3.4, we adopt two regularization methods in the pretraining
stage. Firstly, we adopt the random edge masking as presented Section 3.4. Specifically, for each
image patch, we randomly set the values of the k out-most pixels to all zeros. We observe that
satisfactory performance can be achieved by simply setting the probabilities of k = 1 and k = 2 to
50% and 50%, respectively. To further improve the robustness and training speed, in each iteration,
we randomly dropout 50% of the image patches before the patch embedding enters the Transformer
layers. This simple patch drop-out scheme significantly reduces chance that neighboring patches
entering the Transformer layers simultaneously, and prevents the network from learning to sort the
patches simply based on edge pixels of patches.

A.3 PSEUDO CODE IN PYTORCH STYLE

1

2 model = VisionModel()
3 # initialize deep vision model with any architectures
4 head = Linear(in_channels=model.dim, out_channels=1, bias=False)
5 # initialize a simple linear head for energy score prediction
6

7 criterion = SmoothL1Loss(beta=1.0)
8 # define loss function for image reconstruction
9

10 optimizer = AdamW(model.parameters() + head.parameters())
11 # initialize parameter optimizer
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12

13 # training loop
14 for images in image_loader:
15 # images with shape [n, c, h, w]
16 corrupted_images = corruption_method(images)
17

18 loss = 0
19

20 for _ in num_steps:
21 corrupted_images = corrupted_images.detach()
22 # stop gradients between inner-loop steps.
23 energy_score = head(model(corrupted_images))
24 # energy score with shape [n, 1]
25

26 im_grad = autograd(energy_score.sum(), corrupted_images)
27 # compute the gradient of input pixels along the direction
28 # of energy maximization
29 corrupted_images = corrupted_images - alpha * im_grad
30 # gradient descent along the direction of energy minimization
31

32 loss += criterion(corrupted_images, images)
33

34 optimizer.zero_grad()
35 loss.backward()
36 optimizer.step()

Listing 1: PyTorch-style pseudo code of the proposed pretraining framework.

B ADDITIONAL ANALYSIS

B.1 PERFORMANCE WITH DIFFERENT STEPS OF GRADIENT UPDATE

We present performance obtained with different N steps of gradient update to the corrected samples.
We use N = 2 for the best performance-efficiency trade-off and the proposed framework can perform
fairly well with as few as a single step of gradient update to each corrupted sample.
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Figure A: Performance with different N . N = 0 corresponds to using corrupted images as negative.

B.2 LOSS CURVE

We plot the training curve for the mixed experiment with ViT-B in Figure B. The potentially inaccurate
energy estimation at early training stage does not hurt the overall training.

B.3 OTHER NETWORK ARCHITECTURES AND DOWNSTREAM TRANSFER

Different from models like MAE (He et al., 2022) and SimMIM (Xie et al., 2022) that are specifically
tailored for particular network architectures, our framework can be seamlessly applied to any deep
vision models without any customization or auxiliary network components beside the simple linear
head h. To show this, we present results with convolution-based ResNet (He et al., 2016), ConvNeXts
(Liu et al., 2022) and Swin-Transformer (Liu et al., 2021) in Table B. We replace the batch normaliza-
tion layers with group normalization layers in ResNet to ensure the training stability. And to validate
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Figure B: Training loss curve.

Table B: The proposed framework can be seam-
lessly applied to any deep vision models. FS, PT,
and FT denote from-scratch training, pretraining,
and finetuning, respectively.

Networks FS 300E PT 200E + FT 100E

ConvNeXt-T 82.1 82.7
Swin-T 81.3 82.2
ResNet-50 76.5 77.2

Table C: mIoU results with ADE20K semantic
segmentation finetuning.

method data ViT-B

Supervised ImageNet 47.4
MoCo-v3 ImageNet 47.3
BEiT ImageNet+DALL-E 47.1
MAE ImageNet 48.1
Ours ImageNet 47.5

the effectiveness to the downstream transfer, we finetune the pretrained network on the ADE20K
(Zhou et al., 2017) semantic segmentation dataset, and present the results with mean interaction
over union (mIoU) in Table C.The proposed framework generalizes well across architectures and
downsteam tasks.

B.4 ADDITIONAL EVALUATIONS

We report in Table D additional evaluations on ImageNet-1K. All numbers are obtained with the
ViT-B network. And we present experiments with a non-linear MLP head (three layers with 768
channels and ReLU activation) with the pretrained feature extractor frozen. For both MAE He et al.
(2022) and our method, we consistently observe that a three-layer MLP head cannot significantly
improve the performance compared to linear probing.

Following the low-data regime discussions in (Chen et al., 2020b), we further present in Table D
results with semi-supervised finetuning on ImageNet. Specifically, we finetune the entire networks
with 1% 10% ImageNet training samples and report the top-1 accuracy on the official validation set.

To further evaluate how well the learned features transfer to downstream tasks, following the discus-
sions in (Chen et al., 2020b), we present linear probing results with additional fine-grained natural
image datasets in Table D.

B.5 ENERGY SCORE

In Figure C, we show the histograms of the scores estimated by a trained model. Step 0 in Figure C
corresponds to the scores of the manually corrupted images, and Step 1 corresponds to the scores
of the images obtained by one-step recovery by our model given the manually corrupted images.
The trained model assigns lowest scores to the real images. We further present the the energy score
histograms of ImageNet and the validation set of Stanford Cars (Over 8K images) in Figure D. The
energy estimation generalizes well to unseen images as the network assigns the same low scores to
the images of the additional natural images.
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Table D: Additional empirical evaluations. We report the top-1 accuracy for all experiments.

Models ViT-B + MAE ViT-B + Ours

Linear probing 67.8 66.5
MLP head 68.2 67.2

1% semi-supervised 48.48 48.67
10% semi-supervised 72.73 72.58

Cars 52.13 52.58
Aircraft 58.43 58.67

Pets 85.64 85.08
Flowers 93.38 94.02
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Figure C: Histograms of energy scores. All scores are obtained on the ImageNet validation set.
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Figure D: Energy score histograms of natural images.
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