
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

COMPUTING CIRCUITS OPTIMIZATION VIA MODEL-
BASED CIRCUIT GENETIC EVOLUTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimizing computing circuits such as multipliers and adders is a fundamental
challenge in modern integrated circuit design. Recent efforts propose formulating
this optimization problem as a reinforcement learning (RL) proxy task, offering
a promising approach to search high-speed and area-efficient circuit design solu-
tions. However, we show that the RL-based formulation (proxy task) converges to
a local optimal design solution (original task) due to the deceptive reward sig-
nals and incrementally localized actions in the RL-based formulation. To ad-
dress this challenge, we propose a novel model-based circuit genetic evolution
(MUTE) framework, which reformulates the problem as a genetic evolution pro-
cess by proposing a grid-based genetic representation of design solutions. This
novel formulation avoids misleading rewards by evaluating and improving gener-
ated solutions using the true objective value rather than proxy rewards. To pro-
mote globally diverse exploration, MUTE proposes a multi-granularity genetic
crossover operator that recombines design substructures at varying column ranges
between two grid-based genetic solutions. To the best of our knowledge, MUTE
is the first to reformulate the problem as a circuit genetic evolution process, which
enables effectively searching for global optimal design solutions. We evaluate
MUTE on several fundamental computing circuits, including multipliers, adders,
and multiply-accumulate circuits. Experiments on these circuits demonstrate that
MUTE significantly Pareto-dominates state-of-the-art approaches in terms of both
area and delay. Moreover, experiments demonstrate that circuits designed by
MUTE well generalize to large-scale computation-intensive circuits as well.

1 INTRODUCTION

Computing circuits such as multipliers and adders serve as the fundamental building blocks in nu-
merous real-world circuits, particularly in central processing units, graphics processing units, and
artificial intelligence (AI) chips (Holdsworth, 1987; Das et al., 2019; Sze et al., 2020). The mul-
tiplication and addition operations stand out as the most fundamental and frequently utilized arith-
metic operations across various computation-intensive applications, including deep neural networks
(DNNs), digital signal processors, and microprocessors (Hashemian, 2002; Elguibaly, 2000; Zuo
et al., 2023). Notably, in many popular DNN architectures such as ResNet (He et al., 2016), ViT
(Dosovitskiy et al., 2021), Transformer (Vaswani et al., 2017), and BERT (Devlin et al., 2019), the
multiplication and addition operations constitute over 99% of all operations. Therefore, the design
of high-speed and area-efficient computing circuits plays a pivotal role in enhancing the performance
of computation-intensive applications, especially in AI chips.

However, computing circuit optimization is a challenging combinatorial optimization problem due
to its NP-hard nature (Hillar & Lim, 2013; Song et al., 2022). On one hand, the combinatorial
design space grows exponentially with the input bit widths of the computing circuits (Roy et al.,
2021). On the other hand, evaluating the post-synthesis performance of a circuit design (i.e., design
performance) with circuit synthesis tools is highly time-consuming, leading to high sampling costs.
Therefore, searching high-speed and area-efficient circuits in the vast design space using limited
samples emerges as a significant challenge.

To search high-speed and area-efficient circuits, recent efforts (Roy et al., 2021; Zuo et al., 2023;
Song et al., 2022) propose formulating the computing circuits optimization problem as a reinforce-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ment learning (RL) proxy task, offering a promising avenue for optimizing circuit designs using
limited samples. Specifically, they start from an initial design solution, learn policies to incremen-
tally modify the local design structure, and utilize design performance gains between two consec-
utive designs as reward signals. Intuitively, the manually designed rewards can guide RL agents to
explore directions that progressively improve design performance at each step.

However, we show that the RL-based formulation (proxy task) converges to a local optimal de-
sign solution (original task) due to the deceptive reward signals and incrementally localized actions.
First, the reward signals based on performance gains between two consecutive designs are deceptive,
as maximizing the cumulative discounted rewards misaligns with the true objective. More specif-
ically, the proxy RL formulation indeed optimizes the cumulative discounted performance of all
encountered design solutions across a trajectory, while the true objective is to find the single best-
performing designs. Second, the actions based on the incrementally local modifications of design
structure suffer from poor exploration capability, and thus struggle to escape local optima.

To address these challenges, we propose a novel model-based circuit genetic evolution (MUTE)
framework, which proposes a grid-based genetic representation of solutions and reformulates the
problem as a circuit genetic evolution process. The evolution formulation is an iterative pro-
cess between circuit genetic variation and model-based selection, where each iteration evaluates
and improves solutions using the true objective value, thus gradually converging toward the best-
performing solution (i.e., the original task). To promote globally diverse exploration for escaping
local optima, MUTE proposes a multi-granularity crossover operator that recombines design sub-
structures at varying column ranges between two grid-based genetic solutions. Moreover, to tackle
the problem of high sampling costs, MUTE introduces a model-based selection method, which
learns a model for rapid evaluation of a large number of solutions.

We evaluate MUTE on several fundamental computing circuits, including multipliers, adders, and
multiply-accumulate circuits. Experiments on these circuits, spanning a wide range of input widths,
demonstrate that MUTE discovers state-of-the-art designs that significantly Pareto-dominate those
produced by manual design, mathematical optimization, and learning-based approaches, improving
the hypervolume by up to 38%. Moreover, we deploy circuits optimized by MUTE and the base-
lines into large-scale computation-intensive circuits, and experiments show that MUTE significantly
outperforms the baselines in terms of both area and delay. Our results highlight the superior abil-
ity of MUTE to discover high-speed and area-efficient circuits for real-world important computing
applications, especially for high-performance AI chips.

We summarize our major contributions as follows. (1) We show that the RL-based formulation for
computing circuits optimization converges to a local optimal design solution, indicating a signif-
icant objective gap between the RL-based formulation and the true objective. (2) To the best of
our knowledge, our MUTE is the first to reformulate the optimization problem as a novel circuit
genetic evolution process, which enables effectively searching for the global optimal circuit design
solutions. (3) MUTE proposes a multi-granularity genetic crossover operator to promote globally
diverse exploration of the design space. (4) Experiments show that MUTE significantly outperforms
state-of-the-art approaches in terms of both area and delay.

2 BACKGROUND

2.1 COMPUTING CIRCUITS ARCHITECTURE

Most computing circuits such as prefix adders, vector adders, subtracters, multipliers, and multiply-
accumulate circuits rely on two fundamental circuit structures, i.e., the Compressor Tree and Prefix
Tree (Weste & Harris, 2015; Roy et al., 2021; Zuo et al., 2023; Wang et al., 2024). Note that the
Compressor Tree and Prefix Tree both share similar tree structures that can both be represented by
grid-based design solutions. We take a multiplier circuit with four input bits as an example to in-
troduce the Compressor Tree structure as shown in Figure 1. In binary multiplication, two unsigned
binary numbers—the multiplicand and the multiplier—are combined to yield their product. Contem-
porary multiplier designs typically comprise three primary components: a partial product generator
(PPG), a Compressor Tree, and a carry propagation adder (CPA). Initially, the PPG generates a bit
matrix based on the multiplicand and multiplier, with each element representing a partial product.
Subsequently, the Compressor Tree compresses each column of the bit matrix to one or two bits by
concurrently summing up the partial products within each column. Finally, the CPA aggregates the
resultant bit matrix from the Compressor Tree to derive the final product.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Partial Product Generator

Compressor Tree

Carry-Propagate Adder

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

0 1 1 0 0 1 0

0 0 0 0

multiplicand

multiplier

Partial

Products

Compressed

Products

Final

Products

(a) Multiplier Architecture (b) Compressor Tree

0 0 0 0

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

0 1 1 0 0 1 0

0

0 1 0 0

0 1 0 0 0 1 0

Columns

Stages

1 2 73 4 5 6

Stage 1

Stage 2

Compressed

Products

Compressor Tree StructureBasic Component

2:2 Compressor

(Half Adder)

a

b Sum

Carry

Sum=a⊗b Carry=ab

3:2 compressor

(Full Adder)c

b

Sum

Carry
a

Sum=a⊗b⊗c

Carry=ab+(a⊗b)c

Grid-Based Design

Solution Representation

0 1 0 0 0 0 0

0 1 0 1 0 0 0

Stage 1

Stage 2

0 0 1 1 1 0 0

0 0 0 1 0 0 0

Stage 1

Stage 2

1 2 73 4 5 6

2:2 Compressor Grid

1 2 73 4 5 6

3:2 Compressor Grid

The number of 3:2 compressors

in stage 2, column 1

0 1 0 1

1 0 1 0

x

Figure 1: An illustration of the multiplication process and multiplier architecture.

In constructing a Compressor Tree, a large number of full and half adders are typically employed
to execute the summation of generated partial products concurrently. A full adder, i.e., a 3:2
compressor, accepts three inputs—two single-bit values and a carry-in bit—and produces two out-
puts: a sum bit and a carry-out bit. A half adder, i.e., a 2:2 compressor, takes two single-bit values as
inputs and yields two outputs: a sum bit and a carry-out bit. Notably, when a 3:2 (2:2) compressor is
applied to the 𝑖-th column, it reduces two (one) bits in column 𝑖 while increasing one bit in column
(𝑖 + 1). Thus, a Compressor Tree employs numerous compressors (i.e., full and half adders) across
multiple stages to compress the partial products matrix into only two rows in parallel, significantly
dominating the final performance of a multiplier circuit. Moreover, modifying the arrangement of
3:2 and 2:2 compressors within a Compressor Tree can result in significantly different tree structure
designs, leading to variable design performance.

2.2 RL FOR COMPUTING CIRCUITS OPTIMIZATION

As the Compressor Tree and/or Prefix Tree usually dominates the final performance of a comput-
ing circuit (Zuo et al., 2023; Xiao et al., 2021), recent efforts have focused on optimizing the tree
structure by formulating the optimization problem as a reinforcement learning (RL) proxy task (Zuo
et al., 2023; Roy et al., 2021). We take the existing RL-based Compressor Tree optimization method
as an example. RL-MUL starts from an initial Compressor Tree design solution, learns policies to
sequentially modify the design structure locally, and utilizes design performance gains as reward
signals. We specify the state space, action space, and reward function as follows. (1) State Space
S. RL-MUL formulates each legal design solution as a state, where each state is represented by a
grid-based image. (2) Action Space A. RL-MUL designs four types of local modifications to a
Compressor Tree solution at a certain column. These local modifications include adding a 2:2 com-
pressor, removing a 2:2 compressor, replacing a 3:2 compressor with a 2:2 compressor, and replacing
a 2:2 compressor with a 3:2 compressor. The action space is a discrete set composed of 4 × 𝑁𝐶 dis-
crete actions, where 𝑁𝐶 denotes the number of columns. Each action 𝑖 ∈ [0, 1, . . . , (4 × 𝑁𝐶 − 1)]
is represented by executing the 𝑗-th modification type at the 𝑘-th column, where 𝑗 = 𝑖 (mod 4) and
𝑘 = ⌊ 𝑖4 ⌋. (3) Reward Function 𝑟 . RL-MUL uses a circuit synthesis tool to obtain the performance
of the designed solution at each step. The reward 𝑟𝑡 is defined as the difference between the area
(delay) of the design at step 𝑡−1 and that at step 𝑡. That is, 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = 𝑓 (𝑠𝑡) − 𝑓 (𝑠𝑡+1), where 𝑓
denotes the design evaluation function. Finally, RL-MUL leverages the deep Q-network algorithm
(Mnih et al., 2015) to train Q-networks. We defer details to Appendix D.

3 LIMITATIONS OF EXISTING RL FORMULATION

3.1 DECEPTIVE REWARD SIGNALS

Existing methods formulate the optimization problem as an infinite-horizon Markov decision pro-
cess (MDP) denoted by a tuple (S,A, 𝑟, 𝑇, 𝛾, 𝜇0), where S denotes the state space, A denotes the
action space, 𝑟 : S×A×S → R denotes the reward function, 𝑇 denotes the deterministic transition
function, 𝛾 denotes the discount factor, and 𝜇0 denotes the given initial design solution. Based on
the MDP, the return of a deterministic policy 𝜋 is defined as 𝑅𝜋 =

∑∞
𝑡=0 𝛾

𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1), where
𝑠0 = 𝜇0, 𝑎𝑡 = 𝜋(𝑠𝑡), and 𝑠𝑡+1 = 𝑇 (𝑠𝑡 , 𝑎𝑡). Note that the reward is defined by the performance gain
between the states 𝑠𝑡 and 𝑠𝑡+1, i.e.,

𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) = 𝑓 (𝑠𝑡) − 𝑓 (𝑠𝑡+1). (1)
Here 𝑓 : S → R denotes the underlying evaluation function of design solutions given by circuit
synthesis tools. Note that multiple evaluation functions are employed, such as area and delay evalu-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

ation functions. For ease of analysis and consistent with previous work (Roy et al., 2021; Zuo et al.,
2023), we assume that the evaluation function 𝑓 is a linear weighted average of these evaluation
functions. Intuitively, the manually designed proxy rewards based on performance gains are able to
guide RL agents toward directions that progressively improve design performance, as the RL agent
receives positive rewards for improving design performance. Thus, a desired question is: Does the
optimal policy in the RL formulation converge to the global optimal design solution?

To investigate this question, we first theoretically show the RL-based optimal policy converges to
a local optimal design solution. Then we empirically show that the underlying evaluation function
𝑓 is highly oscillatory, resulting in the local optimal design solutions found by the optimal policy
diverging significantly from the global optimal solution.

Theoretical Analysis We assume that the state space S is finite. For simplicity, we assume a ter-
minal action for each state that can terminate the episode at this state. We define a state 𝑠 ∈ S as a
local optimum of the function 𝑓 if for all action 𝑎 ∈ A we have 𝑓 (𝑇 (𝑠, 𝑎)) ≥ 𝑓 (𝑠).
Theorem 3.1. The optimal RL policy 𝜋∗ := arg max𝜋 𝑅𝜋 terminates at a state, and the state is a
local optimal design solution of the evaluation function 𝑓 .

This theorem demonstrates the superior capability of RL methods in achieving local optimal solu-
tions. However, this raises a further question: Is the converged local optimal point also the global
optimum? Given the lack of detailed information about the optimization objective function 𝑓 , a
rigorous analysis of this problem is currently infeasible. Therefore, we present an intuitive and em-
pirical analysis to demonstrate that the converged local optimal solution can significantly diverge
from the global optimal solution as follows.

Illustrative Example We revisit the optimization objective in the RL formulation, i.e.,

𝑅𝜋 =

∞∑︁
𝑡=0

𝛾𝑡 (𝑓 (𝑠𝑡) − 𝑓 (𝑠𝑡+1)) = 𝑓 (𝑠0) −
∞∑︁
𝑡=0

𝛾𝑡 (1 − 𝛾) 𝑓 (𝑠𝑡+1). (2)

This implies that standard RL methods in the existing formulation aim to minimize the cumulative
discounted performance of all visited solutions across a trajectory, except the initial state, when the
discount factor 𝛾 < 1. This is a practical discount factor setting in standard RL and previous methods
(Roy et al., 2021; Zuo et al., 2023). In contrast, the circuit optimization task is a best-case-seeking
task, i.e., the final performance is measured by the single or few best-performing design solutions
found during training. Consequently, the RL-based optimization objective is inconsistent with the
original optimization objective, possibly leading to a significant optimization objective gap.

0 2 4 6 8
Steps

5

10

15

20

25

W
ei

gh
te

d
PP

A

Trajectories of Two Policies
1 : return=-0.31, min=3.0
2 : return=1.13, min=7.0

0 1000 2000 3000 4000 5000
Steps

400

410

420

430

440

W
ei

gh
te

d
PP

A

Training Curve on 64-bit Booth Multiplier

Figure 2: (Left) A motivating example of two distinct tra-
jectories with conflicting returns and found best solutions.
(Right) A practical training curve of the EA method.

To illustrate the optimization objec-
tive gap problem, we provide a mo-
tivating example as shown in Fig-
ure 2 (Left). Specifically, we il-
lustrate two distinct trajectories in
the circuit optimization environment
from a given starting solution fol-
lowing two deterministic policies 𝜋1
and 𝜋2. We denote the two trajec-
tories by (𝑠𝜋1

0 , 𝑎
𝜋1
0 , 𝑠

𝜋1
1 , 𝑎

𝜋1
1 , . . . , 𝑠

𝜋1
𝑇
)

and (𝑠𝜋2
0 , 𝑎

𝜋2
0 , 𝑠

𝜋2
1 , 𝑎

𝜋2
1 , . . . , 𝑠

𝜋2
𝑇
), re-

spectively. Each point in Figure 2
(Left) corresponds to the performance of a state across the trajectory. As shown in Figure 2 (Left),
the return of the policy 𝜋2 is larger than that of the policy 𝜋1, while the best solution found by 𝜋1
is better than that found by 𝜋2. This illustrates a significant optimization objective gap between the
RL-based formulation and the original true objective. ‘

3.2 INCREMENTALLY LOCALIZED ACTIONS

Non-smooth Objective Functions We further empirically investigate the properties of the objective
function 𝑓 . As the domain of 𝑓 is the high-dimensional space S, directly visualizing the landscape
of the objective function is challenging. Instead, we sample a large number of diverse state points
from the state space to approximate the function’s behavior. Specifically, we visualize the training
curve produced by a simple evolutionary algorithm (EA) that uses random actions from the RL

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

c) Circuit Genetic Variation Operators

Column

Crossover

Genes i

Genes j

Sub-Structure

Crossover

Gene

Crossover

Genes i

Genes j

Genes i

Genes j

Multi-Granularity Crossover Operator

d) Model-Based Cascade Ranking

Fast Select

Fine Select

4. Update

Offspring

Solutions

3. Selection

Diverse Populations 2. Variation

Population 1 Population 2

1. Initialize

Evaluation Model

Image

State
ResNet

Area

Delay

Train

a) Genetic Formulation

Genetic

Individual
Compressor

Tree Structure

0 1 0 0 0 0 0

0 1 0 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 0 0 0

Grid-Based

Representation

0 2 0

0 0 1

1 0 0

2 1 0

0

0

Evaluation

Model

Synthesis Env

b) Population Initialization

Replay Memory Elite Pool

Synthesis Env DQN Agent

Restart

Sequential Mutation Operator

1

1

0 0 0

0 2 0

2

0

0 1 0

0 2 0

Solution 0 Solution 1 Solution T

Action 0 Action 1 Action TDQN Agent

Figure 3: An illustration of the MUTE framework with a) Genetic Formulation, b) Population Ini-
tialization, c) Circuit Genetic Variation Operators, and d) Model-Based Cascade Ranking.

action space 𝑎 ∈ A to repeatedly perturb the current best solution locally (see Appendix E for
details.) As shown in Figure 2 (Right), the sampled function values exhibit significant oscillations,
indicating that the underlying objective function is highly oscillatory as well. The major reason
for the oscillations of the evaluation function stems from the complex optimization mechanisms
employed by circuit synthesis tools. Even minor modifications to the circuit structure can result
in substantial performance variations when evaluated by these tools. Consequently, the oscillatory
nature of the optimization objective results in numerous local optimal solutions.

Limited Exploration Ability of Localized Actions The oscillatory nature of the objective functions
results in numerous local optimal solutions, thus requiring globally diverse exploration of the design
space to escape local optima. However, the actions in the existing RL formulation are limited to
local modifications of design structure at a certain column, severely constraining the agent’s ability
to explore diverse or distant regions of the search space. As a result, the search process may become
confined to suboptimal regions, limiting the chances of discovering global optima.

4 A MODEL-BASED CIRCUIT GENETIC EVOLUTION FRAMEWORK

We start with an overview of our proposed MUTE in Section 4.1. Next, we outline the formal
procedure at the core of MUTE, specifying the circuit genetic evolution formulation and population
initialization in Section 4.2, our proposed efficient and effective circuit genetic variation operators
in Section 4.3, and model-based cascade ranking for selection in Section 4.4.

4.1 OVERVIEW OF OUR FRAMEWORK

We provide an illustration of our MUTE in Figure 3. To bridge the gap between the RL-based
formulation and the original task, we design a grid-based genetic representation of solutions, and
reformulate the computing circuits optimization problem as a circuit genetic evolution process. The
evolution formulation is an iterative process between circuit genetic variation and model-based se-
lection, where each iteration evaluates and improves solutions using the true objective value, thus
bridging the objective gap. First, we propose a learning-based population initialization method to
accelerate the evolution process by leveraging the existing RL methods to generate a population of
high-performing design solutions. Then, we propose efficient and effective genetic variation oper-
ators to avoid redundant exploration and promote globally diverse exploration. Finally, to further
improve sample efficiency, we propose a model-based cascade ranking method for efficient selection
from a large number of generated offspring design solutions.

4.2 GENETIC EVOLUTION FORMULATION AND POPULATION INITIALIZATION

Circuit Genetic Evolution Formulation For computing circuits such as adders and multipliers, we
can represent each circuit design solution by a grid of numbers. We take a compressor tree design
solution as an example. As the total number of different full and/or half adders at each column
implicitly encodes the structure of a compressor tree, it significantly impacts the post-synthesis
performance of multipliers (Xiao et al., 2021; Zuo et al., 2023). Specifically, we employ a 2 × 𝑁𝐶
grid to represent the compressor tree design solution, where two rows denote the total number of
full and half adders across 𝑁𝐶 columns, respectively.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

To enable circuit genetic evolution, we propose to formulate each element in the grid-based design
solution representation as a circuit gene, and thus the grid as a genetic individual. Note that the
existing RL-based method can formulate the grid-based design solution as the state representation
as well. Thus, the grid-based genetic formulation allows us to seamlessly incorporate learning into
our genetic evolution framework, which can significantly improve sample efficiency.

To directly optimize the original circuit design performance, we formulate the fitness function as
the underlying design evaluation function 𝑓 given by circuit synthesis tools. Thus, the optimization
objective of our circuit genetic formulation takes the form of arg min𝑠∈S 𝑓 (𝑠), where S denotes the
set of all possible legal design solutions.

Learning-Based Population Initialization Although the performance of existing RL methods is
limited by deceptive reward signals, they can efficiently converge to a local optimal design solution.
Thus, to speed up the evolution process, we incorporate the learning method into our population ini-
tialization to generate a set of high-performing circuit design solutions. During the learning process,
we maintain an elite pool of 𝑁 best-performing design solutions, and progressively update the pool
at each training episode. Finally, we use the elite pool as an initial population.

Following previous work (Song et al., 2022; Zuo et al., 2023; Wang et al., 2024), we use a scalarized
version of the Deep Q-network (DQN) algorithm (Mnih et al., 2015) to learn solution modification
policies. We maintain a progressively updated elite pool, and each episode starts the environment
with a design solution 𝑠0 sampled from the elite pool. Every action 𝑎𝑡 from the Q-network 𝑄 𝜃
modifies the design solution 𝑠𝑡 to another design solution 𝑠𝑡+1, and returns a weighted reward 𝑟𝑡 that
indicates the decrease in the normalized circuit area and delay. That is,

𝑟𝑡 = 𝑤𝑎 (area(𝑠𝑡) − area(𝑠𝑡+1)) + 𝑤𝑑 (delay(𝑠𝑡) − delay(𝑠𝑡+1)). (3)

After each episode, we insert each design solution at this episode into the elite pool when its design
performance is better than the worst solution in the current elite pool.

4.3 EFFICIENT AND EFFECTIVE GENETIC VARIATION OPERATORS

Designing efficient and effective genetic variation operators is important for the success of genetic
algorithms (Zhu et al., 2023; Bai et al., 2023; Li et al., 2024a). Thus, we propose a sequential mu-
tation operator for efficient long-term exploration via sequential modifications of design solutions
based on the Q-network learned during initialization. We propose a multi-granularity crossover op-
erator for globally diverse exploration by recombining two genetic solutions across diverse granu-
larities. By using these genetic variation operators, we can generate a large set of offspring solutions
from a population of design solutions at each iteration. We present details as follows.

A Sequential Mutation Operator for Efficient Exploration To explore the design solution space,
a common idea is to perform random local modifications on design solutions. However, the random
modification strategy can lead to redundant and myopic exploration, thus resulting in low sample
efficiency and sub-optimal solutions. To promote efficient long-term exploration, we propose a se-
quential mutation operator to perform sequential local modifications on a given solution based on
the learned Q-network. Specifically, for a design solution 𝑠0 sampled from the current generation
of populations, we leverage the learned Q-network 𝑄 𝜃 to guide episodic modifications on the de-
sign solution by sampling 𝑇 local modification actions for generating mutated solutions. Thus, we
generate 𝑇 mutated offspring solutions by sampling a sequence of modification actions from the Q-
network, i.e., 𝑎𝑡 = arg max𝑎 𝑄 𝜃 (𝑠𝑡 , 𝑎), 𝑡 = 0, . . . , 𝑇 . To prevent premature convergence, we follow
the 𝜖-greedy strategy (Sutton & Barto, 1998) to sample actions.

This sequential mutation operator offers two key advantages. (1) Guided by the learned Q-function,
we can prioritize modifications that enhance design performance, rather than relying on random
modifications. (2) By leveraging the long-term predictive capabilities of the learned Q-function, we
can identify strong combinations of local modifications, leading to more effective design solutions.

A Multi-Granularity Crossover Operator for Diverse Exploration As shown in Figure 2, the
objective function 𝑓 is highly oscillatory, resulting in many local optimal design solutions. However,
relying solely on existing local modifications severely restricts the exploration capability, as it only
incrementally adjusts the number of full or half adders at a single column within a specific design
solution. To enable global exploration for escaping local optima, it is crucial to develop design
variation operators capable of making globally diverse exploration of the design space.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

To this end, we propose a multi-granularity genetic crossover operator that recombines design sub-
structures at varying column ranges between two grid-based genetic solutions. The key advantage of
this approach is its ability to expand design variation from the single-gene level to the cross-column
level. This allows for transitions from small changes involving a single column to more signifi-
cant modifications that span multiple columns. This significantly enhances our global exploration
capability, improving the ability to escape local optima.

Single Gene/Column Crossover Given two high-performing design solutions 𝑠0 and 𝑠1, we view
the solutions as a sequence of genes, i.e., 𝑠0 =

{
(𝑔0

3:2 (0), 𝑔
0
2:2 (0)), · · · , (𝑔

0
3:2 (𝑁), 𝑔

0
2:2 (𝑁))

}
and

𝑠1 =
{
(𝑔1

3:2 (0), 𝑔
1
2:2 (0)), · · · , (𝑔

1
3:2 (𝑁), 𝑔

1
2:2 (𝑁))

}
.

To recombine the two high-performing solutions to obtain diverse offspring solutions, the single
column crossover randomly selects a column and recombines the genes at that column. Specifically,
the column granularity crossover operator generates two children in the following form:

𝑠0𝑐 =
{
· · · , (g1

3:2 (i), g
1
2:2 (i)), · · ·

}
and 𝑠1𝑐 =

{
· · · , (g0

3:2 (i), g
0
2:2 (i)), · · ·

}
, (4)

where 𝑖 is the selected column. Meanwhile, the single gene crossover only recombines the genes
representing a certain adder type at the selected column.

Cross Columns Crossover Given two high-performing design solutions 𝑠0 and 𝑠1, the cross columns
crossover randomly selects two columns and recombines the two grid-based genetic solutions within
the selected two columns. Specifically, the cross columns crossover generates two offspring solu-
tions in the following form:

𝑠0𝑐 =
{
· · · , (g1

3:2 (i), g
1
2:2 (i)), · · · , (g

1
3:2 (j), g

1
2:2 (j)), · · ·

}
and

𝑠1𝑐 =
{
· · · , (g0

3:2 (i), g
0
2:2 (i)), · · · , (g

0
3:2 (j), g

0
2:2 (j)), · · ·

}
, (5)

where 𝑖 and 𝑗 are the selected two columns. Depending on the values of 𝑖 and 𝑗 , this crossover can
recombine substructures across any different columns, thereby promoting global diverse exploration.

Note that the crossover operator could lead to illegal solutions. Thus, we design simple legalization
rules following previous work (Zuo et al., 2023) to ensure that these generated children are legal
design solutions. Please refer to Appendix F.5 for details.

4.4 MODEL-BASED CASCADE RANKING FOR EFFICIENT SELECTION

The success of genetic algorithms often relies on sampling a large number of solutions (Zhu et al.,
2023; Bai et al., 2023; Li et al., 2024a). However, in circuit optimization tasks, evaluating each
design solution using circuit synthesis tools is highly time-consuming, which significantly limits the
number of samples for searching. To significantly improve sample efficiency, we propose learning a
design evaluation model 𝑓Θ using the collected populations during evolution.

Model Training Inspired by standard model-based RL (Janner et al., 2019; Wang et al., 2023), we
first train a prediction model using the collected replay buffer during the population initialization
process, and then adaptively update the model using a few populations with true evaluations during
the evolution process. In terms of the model architecture, we employ the ResNet-18 as the state
encoder and a multi-head decoder to predict the area and delay of the input state. The multi-head
decoder comprises two multi-layer perceptrons (MLPs), each with two hidden layers with 256 units
and ReLU activations. In terms of the training details, we use the mean squared error loss to update
the model parameters. We use the Adam optimizer with a learning rate of 1e-3.

Model Usage Previous model-based RL methods (Janner et al., 2019; Wang et al., 2023) have shown
that directly using the learned model to replace the real environment suffers from model exploita-
tion, i.e., overfitting to model errors. To address this challenge, we propose a model-based cascade
ranking method to efficiently and accurately select high-performing solutions from a large set of
generated solutions. The key idea is to progressively select solutions through two-stage ranking
models, where the first stage model is our learned model and the second stage model is the real cir-
cuit synthesis environment. Specifically, we primarily use the model to rapidly evaluate the children
solutions generated by the designed genetic variation operators. We generate at least 100 children
solutions at each iteration, and use the model to pre-rank these solutions. The top-5 solutions are
then selected for evaluation in the true environment. This approach allows us to generate a substan-
tial number of children solutions, promoting diverse global exploration.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

400 450 500 550
Area (m2)

0.60

0.65

0.70

0.75

D
el

ay
 (n

s)

8-bit (And)

1750 2000 2250 2500
Area (m2)

1.2

1.4

D
el

ay
 (n

s)

16-bit (And)

7000 8000 9000 10000
Area (m2)

1.5

2.0

2.5

D
el

ay
 (n

s)

32-bit (And)

30000 35000 40000
Area (m2)

2.0

2.5

3.0

D
el

ay
 (n

s)

64-bit (And)

500 600
Area (m2)

0.7

0.8

D
el

ay
 (n

s)

8-bit (Booth)

1500 1750 2000 2250
Area (m2)

1.0

1.2

1.4

D
el

ay
 (n

s)

16-bit (Booth)

6000 7000 8000
Area (m2)

1.5

2.0

2.5

D
el

ay
 (n

s)

32-bit (Booth)

20000 22500 25000 27500
Area (m2)

2.0

2.5

3.0

3.5

D
el

ay
 (n

s)

64-bit (Booth)

Wallace GOMIL RL-MUL AdaReset HAVE MUTE (Ours)

Figure 4: The results demonstrate that the multipliers optimized by MUTE consistently and signif-
icantly Pareto-dominate the designs optimized by all five baselines across eight multiplier design
problems, improving the hypervolume by up to 38%.

5 EXPERIMENTS

We first introduce the experimental setup, baselines, and evaluation metrics in Section 5.1. Then,
our experiments are designed with four primary objectives. 1) We evaluate the performance of
MUTE in optimizing computing circuits, including multipliers, adders, and MACs, across a broad
range of input widths in Section 5.2. 2) We investigate the generalization performance of multipliers
optimized by MUTE to large-scale macros widely-used in real-world AI chips in Section 5.3. 3) We
perform carefully designed ablation studies to demonstrate the importance of our genetic evolution
formulation and provide insights into each component in MUTE in Section 5.4. 4) We conduct a
thorough trade-off evaluation of the runtime and performance gains of MUTE in Section 5.5.

5.1 EXPERIMENTAL SETTINGS

Experimental Setup Throughout our experiments, we utilize the OpenROAD flow (Ajayi &
Blaauw, 2019) alongside the NanGate 45nm open-cell library (Nangate Inc., 2008) for circuit syn-
thesis, coupled with OpenSTA (Parallax Software Inc.) for timing analysis. The setting follows
previous work (Zuo et al., 2023). These tools represent the state-of-the-art open-source EDA tools,
and are widely used in research of EDA (Kahng, 2021; Tan et al., 2021; Pilipović et al., 2021).
Our training procedure employs the Adam optimizer (Ruder, 2016) within the PyTorch framework
(Paszke et al., 2019). For fair comparison, we controlled the training time of our method to be
comparable with the baseline methods (see Appendix H.2). We apply our method to eight distinct
multiplier design tasks, encompassing 8-bit, 16-bit, 32-bit, and 64-bit multipliers based on both
AND gate-based and Booth encoding-based PPG techniques. Moreover, we apply our method to six
distinct adder and MAC design tasks as well. We defer more results to Appendix H.

Baselines Our baselines encompass five competitive approaches, ranging from traditional human-
designed heuristics to state-of-the-art (SOTA) learning-based methods. 1) Wallace Tree (Wallace,
1964) represents a classical human-designed compression algorithm. 2) GOMIL (Xiao et al., 2021)
is an expert-designed algorithmic method based on integer programming. 3) RL-MUL (Zuo et al.,
2023), 4) AdaReset (Song et al., 2022), and 5) HAVE (Wang et al., 2024) are three recent SOTA
RL-based multiplier and adder optimization methods.

Evaluation Metrics The computing circuits optimization problem is an optimization task with
multiple conflicting objectives, such as area and delay. Thus, we employ two widely-used multi-
objective optimization evaluation metrics (Basaklar et al., 2022; Hung et al., 2023) to compare the
performance of our method with the baselines. First, we visualize the found Pareto points in terms
of the area and delay for circuits designed by both our method and the baselines. Second, we utilize
the hypervolume (HV) of the found Pareto points, which is defined by the volume of the region
between a reference point and these found Pareto points. We defer more details to Appendix F.7.

5.2 MAIN EVALUATION OF OPTIMIZING COMPUTING CIRCUITS

Multiplier Design We highlight the superiority of MUTE through a comparative analysis with five
competitive baselines on eight multiplier design problems across a wide range of input sizes. The

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: The results demonstrate that MUTE significantly outperforms previous SOTA approaches
in terms of the hypervolume on both adder and MAC design tasks.

Adder 16-bit 32-bit 64-bit

Methods HyperVolume ↑ Improvement(%)↑ HyperVolume ↑ Improvement(%) ↑ HyperVolume ↑ Improvement(%) ↑
RL-MUL 88.03 NA 211.76 NA 503.45 NA
AdaReset 92.66 5.26 213.71 0.92 513.07 1.91

HAVE 113.92 29.41 254.09 19.99 566.26 12.48
MUTE (Ours) 116.94 32.84 281.66 33.01 582.73 15.75

MAC 16-bit 32-bit 64-bit

Methods HyperVolume ↑ Improvement(%) ↑ HyperVolume ↑ Improvement(%) ↑ HyperVolume ↑ Improvement(%) ↑
RL-MUL 371.10 NA 4114.00 NA 6184.50 NA
AdaReset 369.60 -0.40 5123.00 24.53 10212.62 65.13

HAVE 401.80 8.27 5221.24 26.91 10604.57 71.47
MUTE (Ours) 414.80 11.78 5843.00 42.03 11487.37 85.74

results in Figure 4 demonstrate that multipliers optimized by MUTE consistently and significantly
outperform designs produced by all baselines across all eight multiplier design tasks. Moreover, we
present the hypervolume of the Pareto points discovered by MUTE in Tables 6 and 7 in Appendix
H.1. The results demonstrate that MUTE achieves a substantial improvement over the previous
SOTA, improving the hypervolume by up to 38%. Overall, these results demonstrate the strong
ability of MUTE to optimize multipliers, leading to significant reductions in both area and delay.

Broad Applicability to Adders and MACs To demonstrate that our approach is able to optimize a
broad class of computing circuits, we apply our MUTE to optimizing two more fundamental com-
puting circuits, i.e., adders and MACs. Specifically, we compare our MUTE with the three SOTA
RL-based computing circuits optimization methods, i.e., RL-MUL (Zuo et al., 2023), AdaReset
(Song et al., 2022), and HAVE (Wang et al., 2024), on adders and MACs. As shown in Table 1, the
results demonstrate that MUTE significantly outperforms previous SOTA approaches, improving the
hypervolume by up to 42% compared to RL-MUL. The results not only highlight the superiority of
our MUTE over previous SOTA approaches on optimizing computing circuits, but also demonstrate
the broad applicability of our MUTE to a wide range of fundamental computing circuits.

5.3 GENERALIZATION TO LARGE-SCALE CIRCUITS

To evaluate the generalization ability of our designed computing units to large-scale real-world
computing circuits with numerous circuit units, we integrate these units optimized by MUTE and
baselines into Processing Element (PE) arrays (Park & Chung, 2020; Son et al., 2023), which follows
previous work (Zuo et al., 2023; Wang et al., 2024). PE arrays are widely used in parallel computing
tasks and large-scale data processing like Deep Neural Network (DNN) accelerators.

The results in Figure 5 show that PE arrays incorporating multipliers optimized by MUTE consis-
tently and significantly Pareto-dominate those utilizing multipliers obtained from baselines. Fur-
thermore, we present the hypervolume of the Pareto frontiers discovered by MUTE in Table 11
in Appendix H.4. The results demonstrate a significant improvement in hypervolume achieved by
MUTE, outperforming previous SOTA by up to 48.18%. We provide detailed results in Appendix
H.4. Overall, the results highlight the strong capability of MUTE to well generalize to large-scale
computation-intensive circuits, thereby substantially improving real-world AI chips.

5.4 ABLATION STUDY

We present carefully designed ablation studies on multiplier design tasks as follows.
Table 2: The results demonstrate that each com-
ponent within MUTE is significant.

16-bit And 32-bit And

Methods HyperVolume ↑ Improvement(%) ↑ HyperVolume ↑ Improvement(%) ↑
Wallace 332.91 NA 1685.61 NA

MUTE (Ours) 622.55 87.00 6461.65 283.34
Genetic Variation Module

w/o Crossover 585.30 75.81 5996.00 255.72
w/o Mutation 600.10 80.26 6385.00 278.79

Model-Based Module

w/o Model 605.20 81.79 6278.00 272.45

Learning Module

w/o Learning 578.10 73.65 5766.00 242.07

Contribution of Each Component To demon-
strate the effectiveness of each component
within MUTE, we conduct a thorough ablation
study on multiplier design tasks.

In terms of the efficient and effective genetic
variation module, we have designed two meth-
ods, called MUTE without Crossover (w/o
Crossover) and MUTE without Mutation (w/o
Mutation). MUTE without Crossover and
MUTE without Mutation removes the designed
genetic crossover and mutation operators, respectively. The results in Table 2 show that our designed
genetic mutation and crossover operators are both critical for optimizing computing circuits, demon-
strating the strong ability of the designed operators for promoting efficient and diverse exploration.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

600000 700000
Area (m2)

1.2

1.4

D
el

ay
 (n

s)

16-bit (And)

2.00 2.25 2.50 2.75
Area (m2) 1e6

1.5

2.0

2.5

D
el

ay
 (n

s)

32-bit (And)

450000 500000 550000 600000
Area (m2)

1.0

1.2

1.4

D
el

ay
 (n

s)

16-bit (Booth)

1.50 1.75 2.00 2.25
Area (m2) 1e6

1.5

2.0

2.5

D
el

ay
 (n

s)

32-bit (Booth)

Wallace GOMIL RL-MUL AdaReset HAVE MUTE (Ours)

Figure 5: The results illustrate that PE arrays designed by MUTE consistently and significantly
outperform the designs discovered by all five baselines in terms of Pareto-dominance across four
multiplier design problems, i.e., 16-bit (And), 32-bit (And), 16-bit (Booth), 32-bit (Booth).

Table 3: A detailed analysis on the trade-off between performance gains and runtime of each module
in MUTE.

16-bit And 32-bit And

Methods HyperVolume Improvement(%) RunTime (h) HyperVolume Improvement(%) RunTime (h)
Wallace 332.91 -25.96 - 1685.61 -70.09 -
HAVE 505.83 12.50 20.33 5822.03 3.29 37.27

SA 449.63 NA 9.33 5636.51 NA 17.40

CGE 594.15 32.14 10.96 6285.00 11.51 18.35
CGE+Learning 608.25 35.28 15.17 6336.50 12.42 26.25

CGE+Learning+Model (MUTE) 622.55 38.46 17.33 6461.65 14.64 37.11

In terms of the model module, we have designed MUTE without Model (w/o Model) by removing
the model-based module. The results in Table 2 show that learning a model can further improve
the found designs in terms of the hypervolume. In terms of the learning module, we have designed
MUTE without Learning (w/o Learning) by removing the learning module. The results demonstrate
the significance of introducing learning into our genetic evolution for improving sampling efficiency.

5.5 PERFORMANCE GAIN AND RUNTIME TRADE-OFF EVALUATION

To further investigate the cost-effectiveness of each module of MUTE, we conducted a trade-off
evaluation of the runtime and performance gains through a comprehensive ablation study by incre-
mentally adding each module of MUTE. We decompose MUTE into three modules: (1) Circuit
Genetic Evolution (CGE) module, (2) Learning module, and (3) Model-based module. First, the
CGE module reformulates the multiplier design task as a genetic evolution problem via a grid-based
genetic representation of design solutions, and introduces well-designed genetic variation operators.
In CGE, the sequential mutation operator is simply guided by a random policy. Second, the learn-
ing module further introduces the learning-based population initialization and leverages the learned
policy to guide the sequential mutation. Finally, the model-based module additionally introduces a
learned model, and incorporates a model-based cascade ranking module into the selection procedure.

The experimental results are summarized in Table 3. The results indicate that the CGE module plays
a pivotal role, achieving gains of up to 32.14% while only slightly increasing runtime. The addition
of the learning module, though increasing runtime due to the computational overhead of learning,
enhances hypervolume by enabling more efficient exploration. Finally, the model-based module
improves the hypervolume by 3.18%, which effectively escapes local optima while further increases
the runtime as it involves training the model and collecting additional samples for evaluation. De-
spite these increases, the runtime of our full method remains comparable to that of HAVE, i.e., the
recent state-of-the-art (SOTA) approach. These findings underscore the effectiveness and efficiency
of our approach in balancing performance improvements with computational costs.

6 CONCLUSION
In this paper, we theoretically and empirically show a significant objective gap between the existing
RL-based formulation and the original task due to the deceptive reward signals and incrementally
localized actions in the RL-based formulation. To address this challenge, we propose a novel model-
based circuit genetic evolution (MUTE) framework, which reformulates the problem as a genetic
evolution process by proposing a grid-based genetic representation of design solutions. To the best
of our knowledge, MUTE is the first to reformulate the problem as a circuit genetic evolution pro-
cess, which enables effectively searching for global optimal design solutions. Experiments on these
circuits demonstrate that MUTE significantly Pareto-dominates state-of-the-art approaches in terms
of both area and delay, improving the hypervolume by up to 38%.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

In this study, to ensure the reproducibility of our approach, we provide key information from the
main text and Appendix as follows.

1. Algorithm. We provide the architecture and illustration of our MUTE in Figure 3 and
Section 4. We also provide the detailed implementation of MUTE in Appendix F. See
Appendix F.6 for the hyperparameters of MUTE.

2. Source Code. To facilitate the evaluation process and support a thor-
ough review, we have released our source code at the following link:
https://anonymous.4open.science/r/AI4MUL-4199.

3. Experimental Details. We provide detailed experiment settings in Section 5.1.

4. Theoretical Proofs. We provide all proofs in Appendix A.

REFERENCES

Hervé Abdi and Lynne J Williams. Principal component analysis. Wiley interdisciplinary reviews:
computational statistics, 2(4):433–459, 2010.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32:96, 2019.

Tutu Ajayi and David Blaauw. Openroad: Toward a self-driving, open-source digital layout im-
plementation tool chain. In Proceedings of Government Microcircuit Applications and Critical
Technology Conference, 2019.

Bushra Alhijawi and Arafat Awajan. Genetic algorithms: Theory, genetic operators, solutions, and
applications. Evolutionary Intelligence, 17(3):1245–1256, 2024.

Nina Amenta, Marshall Bern, and Manolis Kamvysselis. A new voronoi-based surface reconstruc-
tion algorithm. In Proceedings of the 25th annual conference on Computer graphics and interac-
tive techniques, pp. 415–421, 1998.

Nina Amenta, Sunghee Choi, Tamal K Dey, and Naveen Leekha. A simple algorithm for homeomor-
phic surface reconstruction. In Proceedings of the sixteenth annual symposium on Computational
geometry, pp. 213–222, 2000.

Hui Bai, Ran Cheng, and Yaochu Jin. Evolutionary reinforcement learning: A survey. Intelligent
Computing, 2:0025, 2023.

Toygun Basaklar, Suat Gumussoy, and Umit Y Ogras. Pd-morl: Preference-driven multi-objective
reinforcement learning algorithm. arXiv preprint arXiv:2208.07914, 2022.

Andrew Beaumont-Smith and C-C Lim. Parallel prefix adder design. In Proceedings 15th IEEE
Symposium on Computer Arithmetic. ARITH-15 2001, pp. 218–225. IEEE, 2001.

Brent and Kung. A regular layout for parallel adders. IEEE transactions on Computers, 100(3):
260–264, 1982.

Frédéric Cazals and Joachim Giesen. Delaunay triangulation based surface reconstruction. In Effec-
tive computational geometry for curves and surfaces, pp. 231–276. Springer, 2006.

Luigi Dadda. Some schemes for fast serial input multipliers. In 1983 IEEE 6th Symposium on
Computer Arithmetic (ARITH), pp. 52–59. IEEE, 1983.

Biplab Das, Avijit Kumar Paul, and Debashis De. An unconventional arithmetic logic unit design
and computing in actin quantum cellular automata. Microsystem Technologies, pp. 1–14, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Jill Burstein, Christy Doran, and
Thamar Solorio (eds.), Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT
2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers), pp. 4171–
4186. Association for Computational Linguistics, 2019. doi: 10.18653/V1/N19-1423. URL
https://doi.org/10.18653/v1/n19-1423.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep
reinforcement learning for continuous control. In International conference on machine learning,
pp. 1329–1338. PMLR, 2016.

Fayez Elguibaly. A fast parallel multiplier-accumulator using the modified booth algorithm. IEEE
Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47(9):902–908,
2000.

Gautam Garai. Application of genetic algorithm in numerous scientific fields. In Genetic algorithms.
IntechOpen, 2022.

Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.

Reza Hashemian. A new multiplier using wallace structure and carry select adder with pipelining.
In ISCAS ‘02 Conference Proceedings, 2002.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard. Journal of the ACM
(JACM), 60(6):1–39, 2013.

B. Holdsworth. Digital logic design, 2nd ed. 1987. ISBN 0408015667.

Wei Hung, Bo Kai Huang, Ping-Chun Hsieh, and Xi Liu. Q-pensieve: Boosting sample efficiency
of multi-objective RL through memory sharing of q-snapshots. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=AwWaBXLIJE.

Niichi Itoh, Yasumasa Tsukamoto, Takeshi Shibagaki, Koji Nii, Hidehiro Takata, and Hiroshi
Makino. A 32/spl times/24-bit multiplier-accumulator with advanced rectangular styled wallace-
tree structure. In 2005 IEEE International Symposium on Circuits and Systems (ISCAS), pp.
73–76. IEEE, 2005.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. Advances in neural information processing systems, 32, 2019.

Andrew B Kahng. Advancing placement. In Proceedings of the 2021 International Symposium on
Physical Design, pp. 15–22, 2021.

Łukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model based
reinforcement learning for atari. In International Conference on Learning Representations, 2020.

Pengyi Li, Jianye Hao, Hongyao Tang, Xian Fu, Yan Zhen, and Ke Tang. Bridging evolutionary
algorithms and reinforcement learning: A comprehensive survey on hybrid algorithms. IEEE
Transactions on Evolutionary Computation, 2024a.

12

https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=AwWaBXLIJE
https://openreview.net/forum?id=AwWaBXLIJE

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Pengyi Li, HAO Jianye, Hongyao Tang, Yan Zheng, and Fazl Barez. Value-evolutionary-based
reinforcement learning. In Forty-first International Conference on Machine Learning, 2024b.

Jianhua Liu, Shuo Zhou, Haikun Zhu, and Chung-Kuan Cheng. An algorithmic approach for generic
parallel adders. In ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat.
No. 03CH37486), pp. 734–740. IEEE, 2003.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran,
Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, February 2015. ISSN 00280836. URL
http://dx.doi.org/10.1038/nature14236.

Nangate Inc. ”Open Cell Library v2008 10 SP1”. http://www.nangate.com/
openlibrary/, 2008.

Vojin G. Oklobdzija, David Villeger, and Simon S. Liu. A method for speed optimized partial
product reduction and generation of fast parallel multipliers using an algorithmic approach. IEEE
Transactions on computers, 45(3):294–306, 1996.

Parallax Software Inc. OpenSTA. https://github.com/The-OpenROAD-Project/
OpenSTA.

Sang-Soo Park and Ki-Seok Chung. Cenna: cost-effective neural network accelerator. Electronics,
9(1):134, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

Ratko Pilipović, Patricio Bulić, and Uroš Lotrič. A two-stage operand trimming approximate log-
arithmic multiplier. IEEE Transactions on Circuits and Systems I: Regular Papers, 68(6):2535–
2545, 2021.

Rajarshi Roy, Jonathan Raiman, Neel Kant, Ilyas Elkin, Robert Kirby, Michael Siu, Stuart Oberman,
Saad Godil, and Bryan Catanzaro. Prefixrl: Optimization of parallel prefix circuits using deep
reinforcement learning. In 2021 58th ACM/IEEE Design Automation Conference (DAC), pp.
853–858. IEEE, 2021.

Subhendu Roy, Mihir Choudhury, Ruchir Puri, and David Z Pan. Towards optimal performance-area
trade-off in adders by synthesis of parallel prefix structures. In Proceedings of the 50th Annual
Design Automation Conference, pp. 1–8, 2013.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

Jack Sklansky. Conditional-sum addition logic. IRE Transactions on Electronic computers, (2):
226–231, 1960.

Adam Slowik and Halina Kwasnicka. Evolutionary algorithms and their applications to engineering
problems. Neural Computing and Applications, 32:12363–12379, 2020.

Hyun-Wook Son, Ali A Al-Hamid, Yong-Seok Na, Dong-Yeong Lee, and Hyung-Won Kim. Cnn
accelerator using proposed diagonal cyclic array for minimizing memory accesses. Computers,
Materials & Continua, 76(2), 2023.

13

http://dx.doi.org/10.1038/nature14236
http://www.nangate.com/openlibrary/
http://www.nangate.com/openlibrary/
https://github.com/The-OpenROAD-Project/OpenSTA
https://github.com/The-OpenROAD-Project/OpenSTA
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jialin Song, Rajarshi Roy, Jonathan Raiman, Robert Kirby, Neel Kant, Saad Godil, and Bryan Catan-
zaro. Multi-objective reinforcement learning with adaptive pareto reset for prefix adder design.
In Workshop on ML for Systems at NeurIPS, 2022.

R.S. Sutton and A.G. Barto. Reinforcement learning: An introduction. IEEE Transactions on Neural
Networks, 9(5):1054–1054, 1998. doi: 10.1109/TNN.1998.712192.

Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep neural
networks. Springer, 2020.

Cheng Tan, Chenhao Xie, Ang Li, Kevin J Barker, and Antonino Tumeo. Aurora: Automated
refinement of coarse-grained reconfigurable accelerators. In 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1388–1393. IEEE, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Christopher S Wallace. A suggestion for a fast multiplier. IEEE Transactions on electronic Com-
puters, (1):14–17, 1964.

Xiyao Wang, Ruijie Zheng, Yanchao Sun, Ruonan Jia, Wichayaporn Wongkamjan, Huazhe Xu,
and Furong Huang. Coplanner: Plan to roll out conservatively but to explore optimistically for
model-based rl. In The Twelfth International Conference on Learning Representations, 2023.

Zhihai Wang, Jie Wang, Dongsheng Zuo, Ji Yunjie, Xilin Xia, Yuzhe Ma, Jianye HAO, Mingxuan
Yuan, Yongdong Zhang, and Feng Wu. A hierarchical adaptive multi-task reinforcement learn-
ing framework for multiplier circuit design. In Forty-first International Conference on Machine
Learning, 2024. URL https://openreview.net/forum?id=LGz7GaUSEB.

Neil HE Weste and David Harris. CMOS VLSI design: a circuits and systems perspective. Pearson
Education India, 2015.

Weihua Xiao, Weikang Qian, and Weiqiang Liu. Gomil: Global optimization of multiplier by integer
linear programming. In 2021 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 374–379. IEEE, 2021.

Jiaxi Zhang, Qiuyang Gao, Yijiang Guo, Bizhao Shi, and Guojie Luo. Easymac: design exploration-
enabled multiplier-accumulator generator using a canonical architectural representation. In 2022
27th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 647–653. IEEE,
2022.

Tianjun Zhang, Huazhe Xu, Xiaolong Wang, Yi Wu, Kurt Keutzer, Joseph E Gonzalez, and Yuan-
dong Tian. Noveld: A simple yet effective exploration criterion. Advances in Neural Information
Processing Systems, 34:25217–25230, 2021.

Qingling Zhu, Xiaoqiang Wu, Qiuzhen Lin, Lijia Ma, Jianqiang Li, Zhong Ming, and Jianyong
Chen. A survey on evolutionary reinforcement learning algorithms. Neurocomputing, 556:
126628, 2023.

Dongsheng Zuo, Yikang Ouyang, and Yuzhe Ma. Rl-mul: Multiplier design optimization with deep
reinforcement learning. In 2023 60th ACM/IEEE Design Automation Conference (DAC), pp. 1–6,
2023. doi: 10.1109/DAC56929.2023.10247941.

14

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=LGz7GaUSEB

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A THEORETICAL ANALYSIS

This section presents a theoretical analysis of the significant misalignment between the result of
the optimal policy obtained through RL and the original optimal circuit design. First, the proof of
Theorem 3.1 is provided in subsection A.1. Second, subsection A.2 offers further theoretical insights
into the deceptive nature of the existing reward formulation.

Throughout the following theoretical analysis, we assume that the state space S is finite, and there is
a terminal action for each state that can terminate the episode at this state. The assumptions usually
hold in practical multiplier optimization problems. We focus on deterministic policies.

A.1 PROOF OF THEOREM 3.1

Lemma A.1. For any policy 𝜋 in the MDP, there exists a policy 𝜋′ that terminates at a certain state
such that 𝑅𝜋

′ ≥ 𝑅𝜋 .

Proof. Since state space S is finite, the states in trajectory generated by policy 𝜋 are finite as well.
Therefore, there exists a state 𝑠𝑇 = arg min𝑠∈𝜏𝜋 𝑓 (𝑠), where 𝜏𝜋 is the set of states in the trajectory
of 𝜋 and 𝑇 is a finite number. We denote the trajectory 𝜏𝜋 by {𝑠0, 𝑠1, . . . , 𝑠𝑇 , . . . }.
Then we construct a new policy 𝜋′ that generates a trajectory 𝜏𝜋′ = {𝑠′0, . . . , 𝑠

′
𝑇
}, where 𝑠′𝑡 = 𝑠𝑡 ,∀𝑡 ≤

𝑇 . Note that the trajectory 𝜏𝜋′ terminates at the state 𝑠𝑇 . Then we have

𝑅𝜋
′
=

𝑇−1∑︁
𝑡=0

𝛾𝑡 (𝑓 (𝑠𝑡) − 𝑓 (𝑠𝑡+1)) (6)

=

𝑇−1∑︁
𝑡=0

𝛾𝑡 𝑓 (𝑠𝑡) −
𝑇−1∑︁
𝑡=0

𝛾𝑡 𝑓 (𝑠𝑡+1) (7)

= 𝑓 (𝑠0) −
𝑇−2∑︁
𝑡=0

(𝛾𝑡 − 𝛾𝑡+1) 𝑓 (𝑠𝑡+1) − 𝛾𝑇−1 𝑓 (𝑠𝑇) (8)

= 𝑓 (𝑠0) − (1 − 𝛾)
𝑇−2∑︁
𝑡=0

𝛾𝑡 𝑓 (𝑠𝑡+1) − (1 − 𝛾)
∞∑︁

𝑡=𝑇−1
𝛾𝑡 𝑓 (𝑠𝑇) (9)

≥ 𝑓 (𝑠0) − (1 − 𝛾)
𝑇−2∑︁
𝑡=0

𝛾𝑡 𝑓 (𝑠𝑡+1) − (1 − 𝛾)
∞∑︁

𝑡=𝑇−1
𝛾𝑡 𝑓 (𝑠𝑡+1) (10)

= 𝑅𝜋 (11)

□

Then we prove Theorem 3.1 as follows.

Proof. Recall that Theorem 3.1 states that ”The optimal RL policy 𝜋∗ := arg max𝜋 𝑅𝜋 terminates at
a state, and the state is a local optimal state of the evaluation function 𝑓 .” We prove this Theorem in
the following two steps.

(1) 𝜋∗ has a terminal state If the optimal policy 𝜋∗ doesn’t terminate, then according to Lemma
A.1 there exists a distinct policy with a higher return, which contradicts with the definition of the
optimal policy 𝜋∗. Thus, 𝜋∗ terminates at a certain state.

(2) Local Minimality Denote the terminate state of 𝜋∗ as 𝑠𝑇 . By contradiction, suppose ∃𝑎0 ∈
A, 𝑎0 ≠ terminate such that 𝑓 (𝑇 (𝑠𝑇 , 𝑎0)) < 𝑓 (𝑠𝑇). Then consider a new policy 𝜋′ whose trajectory
is identical to 𝜋 before the 𝑇-th step but execute action 𝑎0 rather than terminating at 𝑇-th step, and

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

4305 4310 4315 4320 4325 4330
Steps

394

396

398

400

402

W
ei

gh
te

d
PP

A

m=4 n=1

m=1 n=4

A Sub-Trajectory from the Traning Curve
Traning Curve
Trough Points
Peak Points
Hills

Figure 6: Sampled points from the training curve illustrating the oscillatory properties of the evalu-
ation function.

execute terminate at step 𝑇 + 1. Then the return of policy 𝜋′ is

𝑅𝜋
′
=

𝑇∑︁
𝑡=0

𝛾𝑡 (𝑓 (𝑠𝑡) − 𝑓 (𝑠𝑡+1)) (12)

= 𝑅𝜋
∗ + 𝛾𝑇 (𝑓 (𝑠𝑇) − 𝑓 (𝑇 (𝑠𝑇 , 𝑎0))) (13)

> 𝑅𝜋
∗

(14)

which contradicts the definition of the optimal 𝜋∗. □

A.2 MULTIPLE HIGH HILLS CONDITION FOR GAP EXISTENCE

Theorem 3.1 indicates that the existing reward formulation guides the RL agent to evolve the circuit
from an initial design to a locally optimal solution. However, the conditions under which this local
optimum is the same as the global optimum remain unclear. In this subsection, we provide heuristic
conclusions based on the oscillatory behavior of the objective function.

First, we sample a trajectory from the sigh-dimensional solution space using a basic EA algorithm
for the purpose of visualization and simplified analysis, denoted as 𝜏𝑆𝑖𝑚, as shown in Figure 2. Our
analysis focuses on the impact of the proxy reward function on the optimization objective along
the sampled one-dimensional function curve, avoiding the complexities of the high-dimensional
state space. Using the sampled trajectory 𝜏𝑆𝑖𝑚, we define a simplified MDP (Sim-MDP) with
the tuple (SSim,ASim, 𝑇Sim, 𝑟, 𝛾, 𝜇0). Here, SSim = 𝜏𝑆𝑖𝑚. The action space is simplified into
ASim = {Go,Terminate}. The transition function is defined as 𝑇Sim (𝑠𝑡 ,Go) = 𝑠𝑡+1, and the episode
terminates upon executing the terminate action. The reward function, discount factor, and initial
state are consistent with the original MDP. Any policy in this Sim-MDP corresponds to a trajectory
terminating at a certain state. The Sim-MDP simplifies state and action spaces while keeping the
reward function unchanged, facilitating the analysis of the optimization objective gap.

Based on the Sim-MDP, we calculate the cumulative discounted rewards of policies starting from the
initial state and terminating at various points along the curve. We then compare the returns of these
policies with the return of the policy 𝜋𝑠∗ that converges to the global minimum point 𝑠∗ in the Sim-
MDP. For discount factors of 0.8, 0.9, and 0.99, the proportions of policies with returns higher than
𝜋𝑠∗ accounts for approximately 54.14%, 54.07%, and 45.71%, respectively. Moreover, for discount
factors of 0.8, 0.9, and 0.99, the relative objective gap between the optimal RL policy and the
global optimal point are roughly 35.52%, 34.75%, and 26.19%, respectively. This demonstrates a
significant gap between the RL proxy optimization objective and the original optimization objective,
attributed to the highly oscillatory nature of the optimization objective function.

Second, to further understand the reasons for this gap, we theoretically show conditions for the
existence of optimization objective gap in the Sim-MDP, based on the observation that the evaluation
function is highly oscillatory, leading to many peak and trough points. We first rigorously formulate
the evaluation function 𝑓 across the sampled trajectory 𝜏𝑆𝑖𝑚 by using many repeated hills, which
is inspired by the properties of oscillatory functions. A state 𝑠𝑡 ∈ SSim is a Peak Point if 𝑓 (𝑠𝑡) >

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

𝑓 (𝑠𝑡−1) and 𝑓 (𝑠𝑡) > 𝑓 (𝑠𝑡+1). In contrast, a state 𝑠𝑡 ∈ SSim is a Trough Point if 𝑓 (𝑠𝑡) < 𝑓 (𝑠𝑡−1)
and 𝑓 (𝑠𝑡) < 𝑓 (𝑠𝑡+1). Without loss of generality, we assume the initial state of Sim-MDP is a
through point. We denote 𝑝𝑖 as the step index of the 𝑖-th peak point, and 𝑡𝑖 as the step index of the
𝑖-th through point. The 𝑖-th Hill is defined by a set of states between the 𝑖-th trough point and the
(𝑖 + 1)-th trough point, i.e., 𝑃𝑖 := {𝑠𝑡 |𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1}. We denote the number of ascending steps
𝑝𝑖 − 𝑡𝑖 by 𝑚𝑖 , and the number of descending steps 𝑡𝑖+1 − 𝑝𝑖 by 𝑛𝑖 . Inspired by the fact that the action
will always affine the structure of the multiplier which changes the evaluation function, for the 𝑖-
th Hill we denote the lower bound of the variation of 𝑓 as 𝛿𝑖 := min 𝑗∈[𝑡𝑖 , 𝑝𝑖)

{
| 𝑓 (𝑠 𝑗+1) − 𝑓 (𝑠 𝑗) |

}
;

on the other hand the evaluation function 𝑓 is bounded, thus we denote the upper bound of the
variation of as 𝜖𝑖 := max 𝑗∈[𝑝𝑖 ,𝑡𝑖+1)

{
| 𝑓 (𝑠 𝑗) − 𝑓 (𝑠 𝑗+1) |

}
. The formulation is illustrated in Figure 6.

With the multiple hills formulation, we provide a Multiple High Hills Condition for the existence of
optimization objective gap.
Theorem A.2 (Multiple High Hills Condition). Denote the number of hills in the Sim-MDP before
𝑠∗ as 𝑁 , where 𝑠∗ := arg min𝑠∈Ssim 𝑓 (𝑠) is the global optimal state in Sim-MDP. If there exists the
𝑖-th trough point 𝑠𝑡𝑖 such that

𝑁∑︁
𝑗=𝑖

𝛾𝑡 𝑗−𝑡𝑖
[
𝛾𝑚 𝑗 (1 − 𝛾𝑛 𝑗)

1 − 𝛾 𝜖 𝑗 −
1 − 𝛾𝑚 𝑗

1 − 𝛾 𝛿 𝑗

]
< 0, (15)

then the optimization objective gap exists, i.e., the optimal policy in Sim-MDP 𝜋∗Sim converges to a
sub-optimal solution rather than the global optimal state 𝑠∗.

Proof. Suppose 𝑠∗ is achieved at step 𝑇 , and denote the policy that terminates at 𝑠∗ as 𝜋0. For any
through point 𝑠𝑡𝑖 , consider a new policy 𝜋′ that terminates at 𝑠𝑡𝑖 and its return is

𝑅𝜋
′
=

𝑡𝑖−1∑︁
𝑡=0

𝛾𝑡 (𝑓 (𝑠𝑡) − 𝑓 (𝑠𝑡+1)) (16)

Then we have

𝑅𝜋0 − 𝑅𝜋′ =
𝑇−1∑︁
𝑡=𝑡𝑖

𝛾𝑡 (𝑓 (𝑠𝑡) − 𝑓 (𝑠𝑡+1)) (17)

=

𝑁∑︁
𝑗=𝑖

𝑡 𝑗+1−1∑︁
𝑡=𝑡 𝑗

𝛾𝑡 (𝑓 (𝑠𝑡) − 𝑓 (𝑠𝑡+1)) (18)

=

𝑁∑︁
𝑗=𝑖


𝑡 𝑗+𝑚 𝑗−1∑︁
𝑡=𝑡 𝑗

𝛾𝑡 (𝑓 (𝑠𝑡) − 𝑓 (𝑠𝑡+1)) +
𝑡 𝑗+𝑚 𝑗+𝑛 𝑗−1∑︁
𝑡=𝑡 𝑗+𝑚 𝑗

𝛾𝑡 (𝑓 (𝑠𝑡) − 𝑓 (𝑠𝑡+1))
 (19)

=

𝑁∑︁
𝑗=𝑖

𝛾𝑡 𝑗
𝑚 𝑗−1∑︁
𝑡=0

𝛾𝑡 (𝑓 (𝑠𝑡) − 𝑓 (𝑠𝑡+1)) + 𝛾𝑡 𝑗+𝑚 𝑗

𝑛 𝑗−1∑︁
𝑡=0

𝛾𝑡 (𝑓 (𝑠𝑡) − 𝑓 (𝑠𝑡+1))
 (20)

≤
𝑁∑︁
𝑗=𝑖

𝛾𝑡 𝑗
𝑚 𝑗−1∑︁
𝑡=0

𝛾𝑡 (−𝛿𝑖) + 𝛾𝑡 𝑗+𝑚 𝑗

𝑛 𝑗−1∑︁
𝑡=0

𝛾𝑡𝜖𝑖

 (21)

=

𝑁∑︁
𝑗=𝑖

𝛾𝑡 𝑗

{
1 − 𝛾𝑚 𝑗

1 − 𝛾 (−𝛿𝑖) + 𝛾𝑚 𝑗
1 − 𝛾𝑛 𝑗

1 − 𝛾 𝜖𝑖

}
(22)

(23)

Then
∑𝑁
𝑗=𝑖 𝛾

𝑡 𝑗

{
1−𝛾𝑚𝑗

1−𝛾 (−𝛿𝑖) + 𝛾𝑚 𝑗 1−𝛾𝑛𝑗

1−𝛾 𝜖𝑖
}
< 0 ⇒ 𝑅𝜋0 < 𝑅𝜋

′
, i.e. 𝜋′ has higher return, and further

the optimal policy in Sim-MDP 𝜋∗Sim converges to a sub-optimal solution rather than the global
optimal state 𝑠∗. □

This Theorem implies that if there are multiple high hills, i.e., unexpected high peak points (large
𝛿 𝑗), on the trajectory between a trough point (i.e., a local optimum) and the global optimum, then

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

6

4

2

0

2

4

Feature Axis 1

4 3 2 1 0 1 2 3 4
Feature Axis 2

450

460

470

480

490O
bjective Function

468.10

443.57

Landscape of RL-MUL 16-Bit And
Trajectory of RL-MUL
Optimum of RL-MUL
Global Minimum

450

455

460

465

470

475

480

485

2.62.52.42.32.20.50.60.70.80.91.0

470

475

480

2.6 2.5 2.4 2.3 2.2

0.6

0.7

0.8

0.9

1.0

6

4

2

0

2

4

Feature Axis 1

4 3 2 1 0 1 2 3 4
Feature Axis 2

450

460

470

480

490O
bjective Function

463.96

443.57

Landscape of HAVE 16-Bit And
Trajectory of HAVE
Optimum of HAVE
Global Minimum

450

455

460

465

470

475

480

485

1.701.651.601.551.500.300.350.400.450.50
460

465

470

475

1.65 1.60 1.55 1.50

0.35

0.40

0.45

0.50

Figure 7: Optimization objective landscape of 16-bit and gate-based multiplier. The global minimum
is marked as the red point. The grey lines mark RL-MUL and HAVE trajectories, with points
indicating the optimal solutions found every five episodes. The optimum found by RL-MUL and
HAVE is marked as the yellow point, with the objective value annotated nearby.

the RL optimization objective converges to the local optimum rather than the global optimum, due
to the noisy information in the cumulative discounted performance objective from those unexpected
high peak points.

B VISUALIZATION OF OPTIMIZATION OBJECTIVE LANDSCAPE

In this section, we visualize the optimization objective landscape using the 16-bit AND gate-based
multiplier optimization task.

Visualizing optimization objective landscape

(1) Data Collection To ensure comprehensive sampling and maximize coverage of the solution
space, we first employ the RL-MUL (Zuo et al., 2023) and HAVE (Wang et al., 2024) algorithms to
generate initial populations, each comprising 2,500 solutions. Building on this initial population, we
extensively apply our genetic variation operators, ultimately producing a total of 50,000 solutions.

(2) Data Visualization To visualize the high-dimensional solution space, we use Principal Compo-
nent Analysis (PCA) (Abdi & Williams, 2010) to reduce its dimensionality to two dimensions. This
enables the creation of a 3D surface plot depicting the relationship between solutions and their fit-
ness values, i.e., our optimization objective landscape. We reconstruct the objective function surface
from the data points using Delaunay triangulation, which is widely used in surface reconstruction
from a set of points (Amenta et al., 1998; 2000; Cazals & Giesen, 2006).

(3) Results As shown in Figure 7, the results reveal that the optimization surface is highly oscillatory
and characterized by numerous local optima. Using the visualization method described above, we
transformed the points collected during the training processes of RL-MUL and HAVE into curves.
The results reveal that both RL-MUL and HAVE converged to specific local optima.

The convergence into local optima of RL-MUL and HAVE

Using the visualization method described above, we transformed the points collected during the
training processes of RL-MUL and HAVE into curves. The results reveal that both RL-MUL and
HAVE converged to specific local optima.

C RELATED WORK

Computing Circuits Optimization. Computing circuits like adders and multipliers are widely em-
ployed in practical applications, leveraging Compressor Tree and Prefix Tree for efficient parallel
operations. Generally, optimization methods for these circuits can be categorized into three main
approaches. (1) Manual designs involve leveraging human expertise to craft architectures derived
from regular designs, which require substantial engineering effort. Various compressor Trees have
been devised to reduce partial products, as shown in (Wallace, 1964; Dadda, 1983; Itoh et al., 2005;

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

01123456

Stage 1
 matrix representation

tensor representation

01123456

Stage 2
01123456

<latexit sha1_base64="knQ7tIj2kjjCc7W4pPRNNyRhvfc=">AAADAnicjVHNTtwwGBxSaOmWli09colYdcVplSAEvVRCcOFIJRaQCEJJ1iwW+ZPjoKIVt74JN26oV16AKz1UfYP2LRgbI2gRKracjOeb+ezPX1JlstZB8GvMezE+8fLV5OvWm6m376bb72e26rJRqeinZVaqnSSuRSYL0ddSZ2KnUiLOk0xsJ0drJr59LFQty2JTn1RiL4+HhTyQaaxJ7bc/R4kYymKU5LFW8utpK+gG3bC7wEXkRxEJtzGzFYlicC/eb3eCXmCH/xiEDnTgxkbZ/okIA5RI0SCHQAFNnCFGzbmLEAEqcnsYkVNE0sYFTtGit6FKUBGTPeJ3yN2uYwvuTc7aulOeknEpOn18pKekThGb03wbb2xmwz6Ve2Rzmrud8J+4XDlZjUOy//PdKZ/rM7VoHOCTrUGypsoyprrUZWnsq5ib+w+q0sxQkTN4wLgiTq3z7p1966lt7eZtYxv/bZWGNfvUaRv8Mbdkg8N/2/kYbC30wqVe+GWxs7LqWj2JWcxhnv1cxgrWsYE+c5/hCtf44X3zzr0L7/ut1Btzng/4a3iXN93VotU=</latexit>
0 0 1 2 1 0 0
0 2 1 0 0 0 0

�

Compressor Tree

<latexit sha1_base64="wcgnoDkChr1071+VFglGfTGVEYs=">AAACJXicbVDLSgMxFM3UVx1fVZdugsXiqmRE1IWLggtdVrC10Cklk962oZnMkGTEMvRn3PgrblxYRHDlr5hOi2jrCYGTc88l954gFlwbQj6d3NLyyupaft3d2Nza3ins7tV1lCgGNRaJSDUCqkFwCTXDjYBGrICGgYD7YHA1qd8/gNI8kndmGEMrpD3Ju5xRY6V24dIPoMdlGoTUKP44ckmJlLzsWIZ9PxPI9Fkirg+y82NuF4qkTDLgReLNSBHNUG0Xxn4nYkkI0jBBtW56JDatlCrDmYCR6ycaYsoGtAdNSyUNQbfSbMsRPrJKB3cjZa80OFN/d6Q01HoYBtZp5+vr+dpE/K/WTEz3opVyGScGJJt+1E0ENhGeRIY7XAEzYmgJZYrbWTHrU0WZscG6NgRvfuVFUj8pe2dl7/a0WLmexZFHB+gQHSMPnaMKukFVVEMMPaEX9IbGzrPz6rw7H1Nrzpn17KM/cL6+AVP2oEI=</latexit>
0 0 1 1 1 0 0
0 0 0 1 0 0 0

�

<latexit sha1_base64="mz84/XiFKzkO9F30/EGttEc7CQU=">AAACJHicbVDLSsNAFJ34rPEVdekmWCyuSiKigpuCIC4r2Ac0oUymt+3QySTMTMQS+jFu/BU3Lnzgwo3f4jSNRVvPMHDm3HOZe08QMyqV43waC4tLyyurhTVzfWNza9va2a3LKBEEaiRikWgGWAKjHGqKKgbNWAAOAwaNYHA5rjfuQEga8Vs1jMEPcY/TLiVYaaltXXgB9ChPgxArQe9HplNyS87P8bzsPVVMD3hn6m1bRafsZLDniZuTIspRbVtvXiciSQhcEYalbLlOrPwUC0UJg5HpJRJiTAa4By1NOQ5B+mm25Mg+1ErH7kZCX67sTP3dkeJQymEYaKeery9na2Pxv1orUd1zP6U8ThRwMvmomzBbRfY4MbtDBRDFhppgIqie1SZ9LDBROldTh+DOrjxP6sdl97Ts3pwUK1d5HAW0jw7QEXLRGaqga1RFNUTQA3pCL+jVeDSejXfjY2JdMPKePfQHxtc376SgFg==</latexit>
0 1 0 0 0 0 0
0 1 1 0 0 0 0

�

<latexit sha1_base64="WSvTkspEC6l7g+U738YI1K/+Kks=">AAACz3icjVHLTsJAFD3UF+ILdemmEUxckZaFujS6cWMCiYAJEDMtAzT0lXaqMQTj1h9wq39l/AP9C++MQ6ISo9O0PXPuPWfm3uvEvpcKy3rNGXPzC4tL+eXCyura+kZxc6uZRlni8oYb+VFy6bCU+17IG8ITPr+ME84Cx+ctZ3Qq461rnqReFF6I25h3AzYIvb7nMkFUp9wJmBg6/fH5pHxVLFkVSy1zFtgalKBXLSq+oIMeIrjIEIAjhCDsgyGlpw0bFmLiuhgTlxDyVJxjggJpM8rilMGIHdF3QLu2ZkPaS89UqV06xac3IaWJPdJElJcQlqeZKp4pZ8n+5j1WnvJut/R3tFdArMCQ2L9008z/6mQtAn0cqRo8qilWjKzO1S6Z6oq8ufmlKkEOMXES9yieEHaVctpnU2lSVbvsLVPxN5UpWbl3dW6Gd3lLGrD9c5yzoFmt2AcVu14tHZ/oUeexg13s0zwPcYwz1NAg7xiPeMKzUTdujDvj/jPVyGnNNr4t4+EDX46T0g==</latexit>

M

<latexit sha1_base64="RtfvI8xdDt1B7vcRzR28K+kbeQY=">AAAC13icjVHLTsJAFD3UF74Rl24awQQ3pGWhLoluXGLCywCStgzQ0FfaqZEQ4s649Qfc6h8Z/0D/wjtjSVRidJq2Z86958zce83AsSOuaa8pZWFxaXklvbq2vrG5tZ3ZydYjPw4tVrN8xw+bphExx/ZYjdvcYc0gZIZrOqxhjs5EvHHNwsj2vSofB6zjGgPP7tuWwYnqZrL5tmvwodmfVKdXk4J2OM13MzmtqMmlzgM9ATkkq+JnXtBGDz4sxHDB4IETdmAgoqcFHRoC4jqYEBcSsmWcYYo10saUxSjDIHZE3wHtWgnr0V54RlJt0SkOvSEpVRyQxqe8kLA4TZXxWDoL9jfvifQUdxvT30y8XGI5hsT+pZtl/lcnauHo40TWYFNNgWREdVbiEsuuiJurX6ri5BAQJ3CP4iFhSypnfValJpK1i94aMv4mMwUr9laSG+Nd3JIGrP8c5zyol4r6UVG/KOXKp8mo09jDPgo0z2OUcY4KauR9g0c84Vm5VG6VO+X+M1VJJZpdfFvKwwdlHJYd</latexit>

T(0)

<latexit sha1_base64="Dlhw5BRSxXtiU8IeCzHQvYFNjuY=">AAAC13icjVHLTsJAFD3UF74Rl24awQQ3pGWhLoluXGLCywCStgzQ0FfaqZEQ4s649Qfc6h8Z/0D/wjtjSVRidJq2Z86958zce83AsSOuaa8pZWFxaXklvbq2vrG5tZ3ZydYjPw4tVrN8xw+bphExx/ZYjdvcYc0gZIZrOqxhjs5EvHHNwsj2vSofB6zjGgPP7tuWwYnqZrL5tmvwodmfVKdXk4J+OM13MzmtqMmlzgM9ATkkq+JnXtBGDz4sxHDB4IETdmAgoqcFHRoC4jqYEBcSsmWcYYo10saUxSjDIHZE3wHtWgnr0V54RlJt0SkOvSEpVRyQxqe8kLA4TZXxWDoL9jfvifQUdxvT30y8XGI5hsT+pZtl/lcnauHo40TWYFNNgWREdVbiEsuuiJurX6ri5BAQJ3CP4iFhSypnfValJpK1i94aMv4mMwUr9laSG+Nd3JIGrP8c5zyol4r6UVG/KOXKp8mo09jDPgo0z2OUcY4KauR9g0c84Vm5VG6VO+X+M1VJJZpdfFvKwwdnf5Ye</latexit>

T(1)

Figure 8: State representation in RL-MUL.

Oklobdzija et al., 1996), while Prefix Trees are optimized for more efficient parallel addition, as
demonstrated in (Beaumont-Smith & Lim, 2001; Sklansky, 1960; Brent & Kung, 1982). (2) Con-
ventional algorithmic methods (Xiao et al., 2021; Liu et al., 2003; Roy et al., 2013) generate circuit
architectures using specific strategies such as mathematical programming and heuristic search. How-
ever, they often optimize circuits using proxy metrics such as size and depth, which may result in a
significant discrepancy from actual performance in the real design flow. (3) Recent methods (Zuo
et al., 2023; Roy et al., 2021; Song et al., 2022; Wang et al., 2024) propose using reinforcement
learning to optimize circuits based on the post-synthesis metrics, incorporating synthesis into the
optimization loop, This offers promising approaches to bridge the gap between proxy metrics and
actual performance. In this paper, we focus on optimizing computing circuits using post-synthesis
metrics as well.

Reinforcement Learning. Reinforcement learning has achieved great success in sequential
decision-making problems, encompassing applications from video game playing to robotic con-
trol(Mnih et al., 2015; Kaiser et al., 2020; Duan et al., 2016). It models the interaction between an
agent and its environment through a Markov decision process (MDP), using rewards to guide the
agent in learning the desired policy(Agarwal et al., 2019). In recent computational circuit optimiza-
tion, (Zuo et al., 2023; Roy et al., 2021; Song et al., 2022; Wang et al., 2024) models the optimization
process of Compressor Trees and Prefix Trees as a MDP, employing reinforcement learning methods
to optimize these structures. In this paper, we innovatively apply reinforcement learning as a popu-
lation initialization method and a sequential mutation operator of genetic evolutionary algorithms.

Genetic Evolution Algorithms. Genetic evolutionary algorithms (GA) are one of the most estab-
lished and famous optimization methods, encompassing a diverse range of variants that find exten-
sive applications across various fields (Garai, 2022; Alhijawi & Awajan, 2024). Inspired by Dar-
winian theories of species evolution in nature, genetic algorithms utilize selection, crossover, and
mutation operators to evolve solutions, ultimately achieving global optimization (Slowik & Kwas-
nicka, 2020). Recently, Evolutionary Reinforcement Learning algorithms (ERLs) have emerged
as a promising solution, effectively integrating the strengths of both reinforcement learning and
evolutionary algorithms (Zhu et al., 2023; Bai et al., 2023; Li et al., 2024a). In this paper, we pro-
pose a learning-based population initialization, a sequential mutation operator, a multi-granularity
crossover operator, and a model-based cascade ranking within a genetic algorithm framework for
optimizing computing circuits.

D IMPLEMENTATION DETAILS OF RL-MUL

State Representation We use the total number of 3:2 and 2:2 compressors in each column to present
the multiplier structure. As illustrated in Figure 8, 4-bit multiplier structure and its matrix represen-
tation 𝑀 are shown. Given a matrix 𝑀 ∈ R𝐾×(𝑁𝑏+𝑀𝑏) , where 𝑚𝑖 𝑗 indicates the quantity of the 𝑖-th
compressor used in column 𝑗 . RL-MUL follows a fixed scheme to extend the matrix 𝑀 to a tensor
to obtain a unique representation for the assignment of compressors in multiplier stages. As shown
in Figure 8, RL-MUL utilizes T ∈ R𝐾×(𝑀𝑏+𝑁𝑏)×𝑆𝑇 to represent a multi-stage state, where 𝐾 is the
total types of compressors, 𝑆𝑇 is the number of compression stages, and 𝑁𝑏 and 𝑀𝑏 is the input
width. For any element 𝑡𝑘

𝑖 𝑗
within T , it signifies the utilization of the 𝑖-th type of compressor at

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

column 𝑗 and stage 𝑖. The assignment method is to assign the compressors from the least significant
bit (LSB) columns to the most significant bit (MSB) columns and assign the 3:2 compressors first
as many as possible. After assigning the 3:2 compressors, if at column j there are still more than
two PPs, it assigns the 2:2 compressors. Repeat this progress until all compressors are assigned. For
example at column 4 in Figure 8, we first assign a 3:2 compressor in the first stage, then assign a 2:2
compressor in the second stage.

Legalization Rules When selecting actions, RL-MUL exclusively considers whether the action re-
duces the final production products to either 1 or 2. RL-MUL has four actions, including adding a
3:2 compressor, removing a 2:2 compressor, replacing a 3:2 compressor, and replacing a 2:2 com-
pressor. Furthermore, an action performed at column j will have an impact on column j+1 and cause
column j+1 illegal due to the propagation of the carry bit. RL-MUL employs a legalization strategy
that refines the state from column j+1 to the most significant bit, ensuring that the PPs in every line
are reduced to 1 or 2 following the actions. The strategy adds a 3:2 or replaces a 2:2 compressor if
there is an over of PPs, and deletes a compressor if there is a lack of PPs.

E IMPLEMENTATION DETAILS OF THE BASELINES

GOMIL (Xiao et al., 2021) is a global optimization method that simultaneously considers the CT
and CPA. The author provides the open-source C++ code. We can extract the required structure
from its solution files.

E.1 RL-BASED BASELINES

RL-MUL (Zuo et al., 2023) encodes the state into a tensor T described in Appendix D, using
ResNet-18 as the network backbone and training based on the DQN algorithm. Different from the
Random method, RL-MUL only chooses the action randomly in warm-up steps. In future steps, it
chooses the action that can maximize the masked Q-value of the network.

MBPO Janner et al. (2019) is a state-of-the-art model-based RL method, which can significantly
improve sample efficiency by learning an environment model. We implement the algorithm in our
multiplier optimization environment by setting the Update-To-Data ratio as five.

E.2 EVOLUTIONARY ALGORITHMS

MFEA Slowik & Kwasnicka (2020) is a population-based global optimization method inspired by
biological evolution. We maintain a population of candidate solutions, iteratively evolving them
through random mutations, crossovers, and selections. The population is then updated based on the
fitness values of the individuals.

MBBO Garnett (2023) is a global optimization method. We model the solution space as a high-
dimensional vector space. We first sample a trajectory using a random walk. Then during each
iteration, we fit an RBF kernel Gaussian Process model and use UCB (Upper Confidence Bound) as
the acquisition function to determine the next sampling point.

F IMPLEMENTATION DETAILS OF OUR MUTE

F.1 HARDWARE SPECIFICATION

Our experiments were executed on a Linux-based system equipped with a 3.60 GHz Intel Xeon Gold
6246R CPU and NVIDIA RTX 3090 GPU.

F.2 SYNTHESIS TOOL SETUP

Nangate45 is a widely used standard cell library in the semiconductor industry. It is open source
and free, and we can obtain it at https://silvaco.com/services/library-design/.
Readers can refer to https://github.com/The-OpenROAD-Project/
OpenROAD-flow-scripts, seeking the artifact of OpenROAD flow matched with the
distribution.

20

https://silvaco.com/services/library-design/
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts
https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

In terms of the verilog generation, previous work uses EasyMAC Zhang et al. (2022) to imple-
ment it. We encode our CT following EasyMAC Zhang et al. (2022) rules which use a sequence
𝑠𝑐𝑡 = 𝑝0𝑝1 · · · 𝑝𝑟 to represent a CT. Each 𝑝𝑖 = (𝑖𝑛𝑑𝑒𝑥𝑖 , 𝑡𝑦𝑝𝑒𝑖) signifies the index and type of a
compressor. Considering that generating Verilog HDL codes by EasyMAC and running the logical
synthesis are still time-consuming, we directly generate multiplier Verilog codes using our designed
template. Compared to EasyMAC, our method can generate verilog code faster. To ensure fairness
in comparison, we have employed a uniform default adder to implement CPA for all methods.

F.3 DETAILS ON THE LEARNING-BASED POPULATION INITIALIZATION

F.3.1 BEST-CASE LEARNING

In terms of population Initialization, we propose a best-case learning module, which maintains an
elite pool with 20 currently found best design solutions for enhanced diversity. We restart the initial
state by sampling a state from the elite pool at the beginning of each episode. In terms of the RL
algorithms, we follow previous work (Zuo et al., 2023; Wang et al., 2024) to use a DQN agent to
learn Q-functions for selecting modification actions. In terms of the Q-network architecture, we
use the ResNet-18 as the tensor state encoder, and use a multi-layer perceptron (MLP) to predict
Q-values for each candidate action. The MLP contains two hidden layers with 256 units and the
ReLU activation function. To train the Q-network, we use an Adam optimizer, and set the learning
rate as 1e-4. For a fair comparison, we set hyperparameters to align with previous work (Zuo et al.,
2023; Wang et al., 2024).

F.3.2 EVALUATION MODEL LEARNING AND CONSERVATIVE MODEL USAGE

In terms of the model architecture, we employ the ResNet-18 as the tensor state encoder and a multi-
head decoder to predict the area and delay of the input state. The multi-head decoder comprises two
multi-layer perceptrons (MLPs), each with two hidden layers with 256 units and ReLU activation.

In terms of the training details, we use the mean squared error loss to update the model parameters.
We use the Adam optimizer with a learning rate of 1e-3.

In terms of model usage, we primarily use the model to fast evaluate the children solutions generated
by the designed genetic variation operators. Specifically, we generate at least 100 children solutions
at each iteration, and use the model to pre-rank these solutions. The top-5 solutions are then selected
for evaluation in the true environment. This approach allows us to generate a substantial number of
children solutions, promoting extensive globally diverse exploration. Note that we do not use the
model in the RL learning, as it will suffer from the cumulative multi-step model errors due to the
sequential characteristics of RL methods. In contrast, using the model in our evolution process only
suffers from single-step model errors.

Table 4: Runtime comparison
RunTime (s, every 100 samples)

Method/Circuit 32-bit And 64-bit And
EasyMAC+OpenRoad 2930 10930

Vgen+OpenRoad 303 973
Model (Ours) 1.4 1.44

RunTime of Design Evaluation As demonstrated in Ta-
ble 4, our learned model can significantly reduce the de-
sign evaluation time compared to calling synthesis tools.
RL-MUL (Zuo et al., 2023) employs EasyMAC and
OpenRoad, while Vgen refers to a Verilog generation
method we implemented, detailed in Appendix F.2. Al-
though Vgen considerably accelerates evaluation compared to EasyMAC, it remains inefficient when
evaluating large volumes of design solutions.

F.4 DETAILS ON THE RL-GUIDED MUTATION OPERATOR

The action space The actions consist of four types of local modifications to a Compressor Tree
solution at a specific column. These modifications include adding a 2:2 compressor, removing a 2:2
compressor, replacing a 3:2 compressor with a 2:2 compressor, and replacing a 2:2 compressor with
a 3:2 compressor.

Q-network model Our Q-network comprises a ResNet-18 (He et al., 2016) as an encoder to repre-
sent the input state, and a multi-layer perceptron as a decoder to predict Q-values. The input state
is a grid-based genetic representation of the design solution. The output comprises the state-action
values for each action.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

The learning process We employ the Deep Q-network (DQN) algorithm (Mnih et al., 2015) to train
the Q-network. During the population initialization phase, we train the Q-network using collected
interactions with the circuit synthesis environment. We then periodically update the Q-network by
sampling some interactions with the circuit synthesis environment throughout the evolution process.

Managing invalid designs We indeed apply a legalization rule to transforming any invalid design
solution into a valid solution, which is designed by RL-MUL (Zuo et al., 2023). Specifically, a
valid design requires each column to have exactly one or two remaining partial products after com-
pression. Invalid designs—resulting from actions that impact subsequent columns—occur when a
column has either zero or three remaining partial products. To resolve this, we implement a le-
galization process that starts from the affected column and progresses toward the most significant
column. For columns with three remaining partial products, a 2:2 compressor is either replaced
with or augmented by a 3:2 compressor. For columns with zero remaining partial products, a 2:2 or
3:2 compressor is removed, as appropriate. This process ensures that all columns maintain a valid
number of remaining partial products (either one or two).

F.5 DETAILS ON THE MULTI-GRANULARITY CROSSOVER OPERATOR

Legalization Mechanism Note that the crossover operators may lead to illegal solutions. Thus,
we need to design a reasonable and simple legalization mechanism. Fortunately, we can follow
the legalization rule proposed in RL-MUL (Zuo et al., 2023) to legalize these illegal solutions.
Specifically, given a state that is modified from column i to any column, we can refine the state from
column i to the most significant bit, ensuring that the final partial products (PPs) in every line are
reduced to 1 or 2 following the actions. The legalization rule adds a 3:2 or replaces a 2:2 compressor
if there is an over of PPs, and deletes a compressor if there is a lack of PPs.

F.6 ADDITIONAL COMMON HYPERPARAMETERS

In the above sections, we have provided implementation details and hyperparameters. Here, we list
the common parameters used in the comparative evaluation and ablation study in Table 5. Note that
we use the same hyperparameter as that of previous work (Zuo et al., 2023; Wang et al., 2024) if
possible for fair comparison.

Table 5: Common parameters used in the comparative evaluation and ablation study.

Parameter Value

Learning-Based Population Initialization Module

environment steps per learning episode 25
policy updates per environment step 1
optimizer Adam
discount (𝛾) 0.8
total learning episodes for initialization 40

Genetic Variation Module

samples generated by sequential mutation operator at each iteration 100
samples generated by genetic crossover operator at each iteration 200
total iterations for evolution 400

Model-Based Module

samples for circuit synthesis evaluation at each iteration 5

F.7 EVALUATION METRICS

Indeed, the multiplier optimization problem is a multi-objective optimization task with multiple
conflicting objectives, such as area and delay. Thus, we use two evaluation metrics to compare our
method with baselines. First, we visualize the approximated Pareto front in terms of the area and

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Pareto points
Non-Pareto points

objective 1

ob
je

ct
iv

e
2

objective 1

ob
je

ct
iv

e
2 Reference point

Hypervolume

(a) Pareto Points (b) Hypervolume

�0

�(1)

�(2)

�(3)
�(4)

�(5)

 � ∈ �|�0 ≼ � ≼ �(1) �(1)

Figure 9: (a) An example for a Pareto optimal set with 2 objectives and 5 Pareto optimal solutions
(Pareto points). (b) An example for hypervolume with a selected reference point 𝑟0. Integrated area
𝐻 (𝑃, 𝑟0) is the union of the rectangular areas where the reference point 𝑟0 and the Pareto point 𝑃(𝑖)
are diagonally opposite corners.

delay for multipliers designed by our method and baselines. Second, we use the hypervolume of the
approximated Pareto front. We present details on the two metrics as follows.

Multi-Objective Optimization Metrics

Without loss of generality, considering a maximization optimization problem in n objectives, we aim
to find the set of optimal solutions known as the Pareto optimal set. For an 𝑛-objective optimization
problem, a solution 𝑥 Pareto dominates another solution 𝑦 if 𝑥 is not worse than y in all objectives
and has at least one strictly better value, i.e., ∀𝑖 ∈ [1, 𝑛], 𝑓𝑖 (𝑥) ≥ 𝑓𝑖 (𝑦) ∧ ∃𝑖 ∈ [1, 𝑛], 𝑓𝑖 (𝑥) > 𝑓𝑖 (𝑦).
A Pareto optimal solution is not dominated by any solution, and the set composed of all Pareto
optimal solutions is referred to as the Pareto optimal solution set. One metric to evaluate the quality
of a Pareto optimal solution set is hypervolume, which is illustrated in Figure 9. The hypervolume
of a set is the volume of the space that is dominated by the solution in the set. When calculating
the hypervolume of a set, we need to choose a reference point. When reference points are fixed, a
Pareto solution set with a larger hypervolume is considered superior.

Definition F.1 (Hypervolume metric). Let 𝑃 be a Pareto front approximation in an 𝑛-dimensional
objective space and contain 𝑁 solutions. Let 𝑟0 ∈ 𝑅𝑚 be the reference point. Then, the hypervolume
metric is defined as:

H(𝑃, 𝑟0) =
∫
𝑅𝑛

𝟙𝐻 (𝑃,𝑟0) (𝑧)𝑑𝑧

, where 𝐻 (𝑃, 𝑟0) = {𝑧 ∈ 𝑍 |∃1 ≤ 𝑖 ≤ |𝑃 | : 𝑟0 ⪯ 𝑧 ⪯ 𝑃(𝑖)}.𝑃(𝑖) is the i-th solution in 𝑃, ⪯ is
the relation operator of objective dominance, and 𝟙𝐻 (𝑃,𝑟0) is a Dirac delta function that equals 1 if
𝑧 ∈ 𝐻 (𝑃, 𝑟0) and 0 otherwise.

F.8 CONTRIBUTION OF OUR WORK TO AI COMMUNITY

Advancing AI Chips Our work directly contributes to the advancement of AI chips, such as
NVIDIA’s GPUs and Google’s TPUs, by introducing an innovative optimization framework for the
design of high-speed, area-efficient, and energy-efficient computing circuits. Note that NVIDIA’s AI
researchers have integrated AI-designed adders into their H100 chip [5], demonstrating the potential
of our AI-based approach for advancing AI chips. The ability to optimize AI chips is crucial for ad-
dressing the ever-growing computational demands of modern AI systems, ensuring their scalability,
efficiency, and sustainability.

A Novel and Broadly Applicable Genetic Evolution Algorithm Our work introduces a sequen-
tial mutation operator and a multi-granularity crossover operator that leverages a grid-based genetic
solution representation to facilitate efficient and diverse exploration of large search spaces. This

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

approach presents a broadly applicable framework suitable for addressing a wide range of search
problems. Moreover, we propose a model-based cascade ranking approach, which efficiently and
accurately selects high-performing solutions from a large pool of generated candidates. These con-
tributions offer a versatile and robust methodology for tackling complex optimization problems.

Identifying the Limitations of a Commonly-Used RL Formulation for Combinatorial Opti-
mization The existing RL formulation for computing circuit optimization adheres to a widely
adopted paradigm in neural combinatorial optimization [6, 7, 8], commonly referred to as the ”learn-
to-improve” framework. In this paradigm, the state is defined as a candidate solution, the action
represents a local modification to the solution, and the reward is based on the performance improve-
ment achieved. This paper theoretically and empirically demonstrates that the RL-based formulation
tends to converge to local optima, primarily due to deceptive reward signals and incrementally lo-
calized actions. These findings provide valuable insights for developing more robust and effective
methods applicable to a broad class of neural combinatorial optimization problems.

G LICENSES

We credit the following open-source code and data used in this paper. We will also open-source our
code once the paper is accepted.

Environment

1. OpenRoadFlowScripts BSD 3-Clause License

2. OpenRoad BSD 3-Clause License

3. Yosys ISC License

4. EasyMAC No License

Algorithms

1. GOMIL No License

2. MBPO MIT License

3. NovelD Creative Commons Public Licenses

H MORE RESULTS

H.1 MORE RESULTS OF MAIN EVALUATION

The details about the hypervolume of MUTE and other baselines can be found at Table 6 and Table
7. Table 6 records the hypervolumes of the method on four multipliers with different bit-widths
based on the And-Gate, showing that our method has the greatest improvement. Table 7 shows our
improvements on the multipliers based on Booth-encode.

Table 6: We record the hypervolume of multipliers based on And-Gate.The results demonstrate that
MUTE has the maximum hypervolume on each circuit design task.

8-bit And 16-bit And 32-bit And 64-bit And

Methods HyperVolume Improvement (%) HyperVolume Improvement (%) HyperVolume Improvement (%) HyperVolume Improvement (%)
Wallace 149.94 NA 332.91 NA 1685.61 NA 13870.80 NA
GOMIL 153.02 2.05% 394.25 18.43% 3304.67 96.05% 16628.51 19.88%

RL-MUL 160.84 7.27% 470.78 41.41% 5329.71 216.19% 25311.45 82.48%
AdaReset 168.34 12.27% 473.20 42.14% 5768.29 242.21% 32827.17 136.66%

HAVE 179.49 19.71% 504.94 51.67% 5822.03 245.40% 33030.52 138.13%
MUTE (Ours) 189.68 26.50% 622.55 87.00% 6461.65 283.34% 36419.85 162.56%

H.2 RUNTIME COMPARISON OF MUTE WITH BASELINES

The results in Table 8 indicate that the runtime of our method is comparable to or shorter than that
of the recent state-of-the-art HAVE (Wang et al., 2024), while our method significantly improves the
hypervolume of found Pareto points.

24

https://github.com/The-OpenROAD-Project/OpenROAD-flow-scripts/blob/master/LICENSE_BUILD_RUN_SCRIPTS
https://github.com/The-OpenROAD-Project/OpenROAD/blob/master/LICENSE
https://yosyshq.net/yosys/
https://github.com/pku-dasys/easymac
https://github.com/SJTU-ECTL/GOMIL
https://github.com/jannerm/mbpo/blob/master/LICENSE
https://github.com/tianjunz/NovelD/blob/master/LICENSE

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 7: We record the hypervolume of multipliers based on Booth-encode. The results demonstrate
that MUTE has the maximum hypervolume on each circuit design task.

8-bit Booth 16-bit Booth 32-bit Booth 64-bit Booth

Methods HyperVolume Improvement (%) HyperVolume Improvement (%) HyperVolume Improvement (%) HyperVolume Improvement (%)
Wallace 304.86 NA 625.70 NA 4045.40 NA 13184.57 NA
GOMIL 314.22 3.07% 773.43 23.61% 3686.76 -8.87% 11456.09 -13.11%

RL-MUL 339.72 11.43% 897.02 43.36% 6090.67 50.56% 19341.59 46.70%
AdaReset 339.72 11.43% 910.00 45.44% 6970.98 72.32% 23946.19 81.62%

HAVE 339.72 11.43% 975.94 55.98% 7452.70 84.23% 25910.38 96.52%
MUTE (Ours) 366.63 20.26% 1060.86 69.55% 8057.07 99.17% 29441.15 123.30%

Table 8: The runtime of MUTE is comparable to or shorter than that of the recent state-of-the-art
HAVE, while MUTE significantly improves hypervolume.

16-bit And 32-bit And

RL/ERL Method RunTime (hours) HV ↑ Iterations RunTime (hours) HV ↑ Iterations

MUTE (Ours) 17.33 622.55 400 37.11 6461.65 400
RL-MUL 14.75 470.78 400 31.17 5329.71 400

ParetoReset 15.37 473.2 400 31.37 5606 400
HAVE 20.33 505.83 400 37.27 5822.03 400

VEB-RL 33.17 485 400 64.97 5402 400
MBPO 28.4 491.53 400 51.73 4978.11 400

EA Method
MFEA 10.7 473.39 400 19.7 5478.03 400
MBBO 12.7 473.36 400 35.1 5445.18 400

H.3 MORE RESULTS OF COMPARISON WITH RL METHODS

Figure 10 illustrates the Pareto frontier of our MUTE and all RL-based methods. Moreover, we
provide the results of hypervolume on 16-bit Booth and 32-bit Booth in Table 9. Through the table
and figure, we can observe that MUTE outperforms other RL methods comprehensively, achieving
the smallest area and delay.

Table 9: Results of comparison with RL methods on 16-bit Booth and 32-bit Booth.
16-bit Booth 32-bit Booth

Methods HyperVolume Improvement (%) HyperVolume Improvement (%)
Wallace 625.70 NA 4045.40 NA

RL-MUL 897.02 43.36 6090.67 50.56
NoveID 873.31 39.57 6436.80 59.11

PD-MORL 871.02 39.21 6639.44 64.12
DDQN 894.74 43.00 6504.40 60.79
MBPO 942.20 50.58 6056.30 49.71
RL-EA 910.00 45.44 6970.98 72.32

MBPO-EA 932.86 49.09 6772.67 67.42
MUTE (Ours) 1060.86 69.55 8057.07 99.17

1750 2000 2250 2500
Area (m2)

1.1

1.2

1.3

D
el

ay
 (n

s)

16-bit (And)

7000 8000 9000 10000
Area (m2)

1.5

2.0

2.5

D
el

ay
 (n

s)

32-bit (And)

1500 1750 2000
Area (m2)

1.0

1.2

D
el

ay
 (n

s)

16-bit (Booth)

6000 7000 8000
Area (m2)

1.50

1.75

2.00

D
el

ay
 (n

s)

32-bit (Booth)

MUTE (Ours)
DDQN

NoveID
PD-MORL

MBPO
RL-MUL

RL-EA
MBPO-EA

Figure 10: The results demonstrate that multipliers optimized by MUTE consistently and signifi-
cantly outperform designs produced by all RL-based methods in terms of Pareto-dominance across
four multiplier design problems.

H.4 MORE RESULTS OF GENERALIZATION

Table 11 shows the hypervolume of PE arrays designed by MUTE and other baselines. MUTE
achieves the highest hypervolume across all circuit designs.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

H.5 MORE ABLATION STUDY

Table 10: MUTE significantly outperforms ad-
vanced (evolutionary) RL methods.

16-bit And 32-bit And

Methods HyperVolume ↑ Improvement(%) ↑ HyperVolume ↑ Improvement(%) ↑
Wallace 332.91 NA 1685.61 NA

Specifically Designed RL Methods

RL-MUL 470.78 41.41 5329.71 216.19
AdaReset 473.20 42.14 5768.29 242.21

HAVE 504.94 51.67 5822.03 245.40

Advanced Standard RL Methods

NoveID 473.20 42.14 4953.97 193.90
PD-MORL 485.03 45.69 4665.43 176.78

DDQN 473.20 42.14 4773.51 183.19
MBPO 491.53 47.65 4978.11 195.33

SOTA Evolutionary RL Method

VEB-RL 485.00 45.69 5402.00 220.48

Our Genetic Evolution Formulation

MUTE (Ours) 622.55 87.00 6461.65 283.34

The Importance of Our Genetic Evolution
Formulation Although we have compared our
MUTE with three specifically designed RL
methods for computing circuits optimization,
i.e., RL-MUL, AdaReset, and HAVE, the three
methods are all based on the deep Q-network
(DQN) algorithm (Mnih et al., 2015), which is
a classical RL method. To further demonstrate
the superiority of our formulation over the ex-
isting RL formulation, we further apply five ad-
vanced RL methods to multiplier design tasks.
Specifically, we compare MUTE with four ad-
vanced RL methods, including NovelD (Zhang
et al., 2021), PD-MORL (Basaklar et al., 2022),
DDQN (Van Hasselt et al., 2016), and MBPO
(Janner et al., 2019), and an evolutionary RL method, i.e., VEB-RL (Li et al., 2024b).

The results in Table 10 suggest the following key conclusions. (1) MUTE significantly outperforms
these advanced (evolutionary) RL methods, demonstrating the superiority of our proposed circuit
genetic evolution formulation. (2) Advanced RL methods do not consistently and significantly out-
perform DQN-based circuit optimization methods, i.e., RL-MUL, AdaReset, and HAVE. This im-
plies that the multiplier optimization task diverges significantly from standard RL benchmarks, such
as Mujoco control (Todorov et al., 2012), due to its unique challenges.

Table 11: We record the hypervolume of PE arrays across four PE array design problems. The
results demonstrate that MUTE has the maximum hypervolume on each circuit design task.

16-bit And 32-bit And 16-bit Booth 32-bit Booth

Methods HyperVolume Improvement (%) HyperVolume Improvement (%) HyperVolume Improvement(%) HyperVolume Improvement(%)
Wallace 73073.23 NA 329263.00 NA 156874.00 NA 692705.30 NA
GOMIL 84820.07 16.08% 627041.10 90.44% 174168.70 11.02% 628020.70 -9.34%

RL-MUL 103507.80 41.65% 944998.90 187.00% 219779.80 40.10% 1049519.00 51.51%
AdaReset 104073.20 42.42% 1009747.00 206.67% 230816.90 47.14% 1237265.00 78.61%

HAVE 108277.90 48.18% 1019332.00 209.58% 247851.40 57.99% 1306568.00 88.62%
MUTE (Ours) 143485.40 96.36% 1165307.00 253.91% 258221.60 64.60% 1388204.00 100.40%

26

	Introduction
	Background
	Computing Circuits Architecture
	RL for Computing Circuits Optimization

	Limitations of Existing RL Formulation
	Deceptive Reward Signals
	Incrementally Localized Actions

	A Model-Based Circuit Genetic Evolution Framework
	Overview of Our Framework
	Genetic Evolution Formulation and Population Initialization
	Efficient and Effective Genetic Variation Operators
	Model-Based Cascade Ranking for Efficient Selection

	Experiments
	Experimental Settings
	Main Evaluation of Optimizing Computing Circuits
	Generalization to Large-Scale Circuits
	Ablation Study
	Performance Gain and Runtime Trade-off Evaluation

	Conclusion
	Theoretical Analysis
	Proof of Theorem 3.1
	Multiple High Hills Condition for Gap Existence

	Visualization of Optimization Objective Landscape
	Related Work
	Implementation Details of RL-MUL
	Implementation Details of the Baselines
	RL-Based Baselines
	Evolutionary Algorithms

	Implementation Details of Our MUTE
	Hardware Specification
	Synthesis Tool Setup
	Details on the Learning-Based Population Initialization
	Best-Case Learning
	Evaluation Model Learning and Conservative Model Usage

	Details on the RL-guided mutation operator
	Details on the Multi-Granularity Crossover Operator
	Additional Common Hyperparameters
	Evaluation Metrics
	Contribution of Our Work to AI Community

	Licenses
	More Results
	More Results of Main Evaluation
	Runtime comparison of MUTE with baselines
	More Results of Comparison with RL Methods
	More Results of Generalization
	More Ablation Study

