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Abstract

Large language models (LLMs) have demon-001
strated remarkable capabilities in various do-002
mains, particularly in system 1 tasks, yet the in-003
tricacies of their problem-solving mechanisms004
in system 2 tasks are not sufficiently explored.005
Recent research on System2-to-System1 meth-006
ods surge, exploring the System 2 reasoning007
knowledge via inference-time computation and008
compressing the explored knowledge into Sys-009
tem 1 process. In this paper, we focus on code010
generation, which is a representative System 2011
task, and identify two primary challenges: (1)012
the complex hidden reasoning processes and013
(2) the heterogeneous data distributions that014
complicate the exploration and training of ro-015
bust LLM solvers. To tackle these issues, we016
propose a novel BDC framework that explores017
insightful System 2 knowledge of LLMs using018
a MC-Tree-Of-Agents algorithm with mutual019
Boosting, Disentangles the heterogeneous train-020
ing data for composable LoRA-experts, and ob-021
tain Customized problem solver for each data022
instance with an input-aware hypernetwork to023
weight over the LoRA-experts, offering effec-024
tiveness, flexibility, and robustness. This frame-025
work leverages multiple LLMs through mu-026
tual verification and boosting, integrated into a027
Monte-Carlo Tree Search process enhanced by028
reflection-based pruning and refinement. Addi-029
tionally, we introduce the DisenLora algorithm,030
which clusters heterogeneous data to fine-tune031
LLMs into composable Lora experts, enabling032
the adaptive generation of customized problem033
solvers through an input-aware hypernetwork.034
Our contributions include the identification of035
critical challenges in existing methodologies,036
the development of the MC-Tree-of-Agents al-037
gorithm for insightful data collection, and the038
creation of a robust and flexible solution for039
code generation. This work lays the ground-040
work for advancing LLM capabilities in com-041
plex reasoning tasks, offering a novel System2-042
to-System1 solution.043
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Figure 1: Illustration of the motivation.

1 Introduction 044

Large language models show significant intelli- 045

gence in various domains, striking both the aca- 046

demic and industrial institutions. Despite their 047

prominent problem-solving abilities in system 1 048

tasks, the mechanism behind the system 2 task solv- 049

ing procedure remain opaque. In this paper, we fo- 050

cus on the code generation task, which emerges as 051

a captivating frontier (Zheng et al., 2023; Roziere 052

et al., 2023; Shen et al., 2023), promising to rev- 053

olutionize software development by enabling ma- 054

chines to write and optimize code with minimal 055

human intervention. Recent research of llms for 056

code focus on inference-time computation (System 057

2 methods) (Yang et al., 2024; Yao et al., 2024b; 058

Zhang et al., 2023) and post-training. While during 059

post-training, distilling system 2 knowledge into 060

system 1 backbones is important and widely-used 061

(Yu et al., 2024b). 062

However, the complex hidden reasoning process 063

and the heterogeneous data distribution pose chal- 064

lenges to the existing System2-to-System1 pipeline. 065

On one hand, the hidden reasoning process for code 066

generation is complex and hard to explore (C1). On 067

the other hand, the heterogeneous data distribution, 068

e.g., jumping structure like branching, recursion, 069

etc., makes the existing train-once-for-all strategy 070

hard to fit the complex latent patterns for robust 071

and generalizable llm solvers (C2). 072

For (C1), we propose to disentangle the prob- 073
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lem solving process into problem2thought and074

thought2solution stages, exploring the inherent rea-075

soning clues via combining the strengths of mul-076

tiple llms by mutually-verification and boosting.077

The exploration is integrated into a Monte-Carlo078

Tree Search process, where reflexion-based prun-079

ing and refinement are designed for more efficient080

and effective reasoning clues search.081

For (C2), we propose to disentangle the hetero-082

geneous data into clusters, finetuning llms capa-083

ble of different aspects of tasks to obtain the meta084

LoRA experts hub, and then adaptively generate085

customized problem solver for each code prob-086

lem. Concretely, we design an input-aware hyper-087

network to generate rank-wise weights over meta088

LoRA experts for customized problem solver, of-089

fering robustness and flexibility.090

The main contributions of our work can be sum-091

marized below.092

• Identification of problems and novel BDC093

framework. We identify the high-reasoning094

demand and heterogeneous latent patterns095

problems that hinders the performance of ex-096

isting methods and propose a BDC frame-097

work that explores insightful inherent reason-098

ing clues via multi-llms boosting, generates099

meta-LoRA experts via finetuning on disen-100

tangled data, and offer customized problem101

solver with an input-aware hypernet for rank-102

wise LoRA merging.103

• Novel MC-Tree-of-Agents algorithm for104

insightful data collection. We disentan-105

gle the System 2 solving process into prob-106

lem2thought and thought2solution stages,107

integrating the exploration process into a108

reflexion-based monte carlo tree search armed109

with pruning and refinement, enabling mu-110

tually verification and boosting of different111

agents for insightful data collection.112

• Novel DisenLoRA algorithm that offers cus-113

tomized problem solver for robust code gen-114

eration. We disentangle the heterogeneous115

data distribution into clusters on which meta-116

LoRA experts are trained, and design an input-117

aware hypernetwork to weight over the LoRA-118

experts for customized problem solver, offer-119

ing robustness and flexibility.120

2 Related Work 121

2.1 System 2 Methods in LLMs 122

Recent research on large language models for Sys- 123

tem 2 tasks focus on inference-time computation 124

optimization to stimulate the inherent reasoning 125

ability of LLMs. Few-shot learning methods (Wang 126

et al., 2022; Madaan et al., 2022) utilize the in- 127

context-learning ability of LLMs for enhanced gen- 128

eration. Retrieval-augmented generation (RAG) 129

approaches (Nashid et al., 2023; Du et al., 2024) 130

further introduce domain knowledge into LLMs. 131

Techniques such as Chain-of-Thought (CoT) (Yang 132

et al., 2024; Jiang et al., 2024; Li et al., 2023), Tree- 133

of-Thought (ToT) (Yao et al., 2024b; La Rosa et al., 134

2024), and Monte Carlo Tree Search (MCTS) (Li 135

et al., 2024; Zhang et al., 2023; Hu et al., 2024; Hao 136

et al., 2023; Feng et al., 2024b) are used to explore 137

the inherent reasoning process, often based on the 138

self-play mechanism to reflect on previously gener- 139

ated contents to learn from itself (Haluptzok et al., 140

2022; Chen et al., 2023a; Lu et al., 2023; Chen 141

et al., 2023b; Madaan et al., 2024; Shinn et al., 142

2024). During inference, error position can be ben- 143

eficial in improving the reliability and performance 144

of the model. With identification and analysis of 145

where and why errors occur, recent research (Yao 146

et al., 2024a; Luo et al., 2024; Wu et al., 2025) has 147

made significant strides in quantifying and miti- 148

gating errors during model inference. Refinement 149

(Madaan et al., 2024; Gou et al., 2023) and reflex- 150

ion (Shinn et al., 2024; Lee et al., 2025) are also 151

powerful techniques for enhancing the inference 152

capabilities of LLMs, usually by enabling iterative 153

improvement and self-correction. 154

2.2 Model Composition 155

Model composition technique gains notable atten- 156

tion in cross-tasks generalization. Traditional meth- 157

ods for multiple tasks are to train models on a mix- 158

ture of datasets of different skills (Caruana, 1997; 159

Chen et al., 2018), with the high cost of data mix- 160

ing and lack of scalability of the model though. 161

Model merging is a possible solution to this. Linear 162

merging is a classic merging method that consists 163

of simply averaging the model weights (Izmailov 164

et al., 2018; Smith and Gashler, 2017). Further- 165

more, Task Arithmetic (Ilharco et al., 2022) com- 166

putes task vectors for each model, merges them lin- 167

early, and then adds back to the base, and SLERP 168

(White, 2016) spherically interpolates the param- 169

eters of two models. Based on Task Arithmetic 170
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framework, TIES (Yadav et al., 2024) specifies the171

task vectors and applies a sign consensus algorithm172

to resolve interference between models, and DARE173

(Yu et al., 2024a) matches the performance of orig-174

inal models by random pruning.175

Recently, LoRA merging methods are also176

widely applied to cross-task generalization. CAT177

(Prabhakar et al., 2024) introduces learnable linear178

concatenation of the LoRA layers, and Mixture of179

Experts(MoE) (Buehler and Buehler, 2024; Feng180

et al., 2024a) method has input-dependent merg-181

ing coefficients. Other linear merging methods of182

LoRAs, such as LoRA Hub (Huang et al., 2023),183

involve additional cross-terms compared to simple184

concatenation.185

3 Preliminaries186

3.1 Monte-Carlo Tree Search187

Monte Carlo Tree Search (MCTS) is a decision-188

making algorithm widely used in environments189

with large state and action spaces, particularly in190

game AI and planning. It incrementally builds191

search trees to estimate optimal actions by simulat-192

ing random plays from various nodes and gradually193

improving action-value estimates based on simula-194

tion outcomes. Over iterations, this approach grad-195

ually converges to near-optimal decision-making196

policies. Notably, its integration with reinforce-197

ment learning has driven breakthroughs in systems198

like AlphaGo and AlphaZero (Silver et al., 2017),199

achieving superhuman performance in games.200

Classical MCTS consists of four stages: selec-201

tion, expansion, simulation, and backpropagation.202

It typically employs Upper Confidence Bounds for203

Trees (UCT) (Kocsis and Szepesvári, 2006), which204

balances exploration and exploitation by guiding205

the search to promising nodes. After simulation,206

results propagate back through the tree, updating207

node values. However, MCTS struggles in domains208

with large action spaces, where excessive branch-209

ing can degrade performance. Progressive Widen-210

ing and Double Progressive Widening techniques211

have been proposed to mitigate this by dynamically212

limiting the number of actions considered at each213

decision node (Coulom, 2006).214

3.2 LoRA Finetuning215

LoRA (Low-Rank Adaptation) (Hu et al., 2021)216

fine-tuning is a technique used to adapt large pre-217

trained models, such as transformers, to specific218

tasks with minimal computational overhead. The219

key idea behind LoRA is to introduce low-rank 220

matrices into the model’s weight updates, which 221

reduces the number of trainable parameters and 222

makes fine-tuning more efficient. 223

LoRA starts with a model that has been trained 224

on a large dataset. During finetuning, instead of 225

updating the full weight matrix W ∈ Rm×n, LoRA 226

introduces two low-rank matrices A ∈ Rm×r and 227

B ∈ Rr×n, where r ≪ min(m,n). The updated 228

weight matrix W ′ is then given by: 229

W ′ = W +∆W = W +A ·B. (1) 230

During fine-tuning, only the matrices A and B 231

are updated, while the original weight matrix W re- 232

mains frozen. This reduces the number of trainable 233

parameters from m× n to m× r + r × n, which 234

is much smaller when r is small. For a given task 235

with loss function L, the objective is to minimize: 236

L(y, f(x;W +A ·B)), (2) 237

where y is the target output, x is the input, and f is 238

the model’s forward function. 239

By introducing low-rank matrices, both the num- 240

ber of trainable parameters and memory footprint 241

are reduced. This approach is particularly useful in 242

scenarios where computational resources are lim- 243

ited or when fine-tuning needs to be done quickly. 244

4 Methodology 245

In this section, we introduce the overall methodol- 246

ogy of BDC, addressing challenges in the System2- 247

to-System1 pipeline for code generation, specifi- 248

cally the complexity of hidden reasoning processes 249

and heterogeneous data distributions. The proposed 250

BDC pipeline consists of three main stages: 1) ex- 251

plore the System 2 knowledge via mutual verifica- 252

tion and boosting between LLMs; 2) disentangle 253

the obtained data into clusters over which composi- 254

ble LoRA experts are tuned; 3) customize problem 255

solver by weighting over the composable LoRA 256

experts using an input-aware hypernetwork. 257

4.1 System 2 Knowledge Exploration 258

In this subsection, we introduce the mechanism 259

design for the data collection process. Due to the 260

complex reasoning nature embodied, code blocks 261

are hard to evaluate and estimate before mature. Re- 262

liable reward signals of a reasoning path therefore 263

mainly depend on the dynamic compilation and 264

execution feedbacks, which are extremely sparse 265

and require extensive simulations. To simplify the 266
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Figure 2: Illustration of the overall framework of BDC.

generation paradigm and exploit the mutual verifi-267

cation capabilities of the collective searching, we268

decompose the generation process into two dis-269

tinct stages: problem-to-thought and thought-to-270

solution.271

4.1.1 Problem-to-thought272

Traditional Monto-Carlo Tree Searching comprises273

three key operations in each iteration: (a) Select,274

(b) Expand, (c) Backup. In the problem-to-thought275

stage, we further extend MCTS by two distinct276

operations (d) Prune, and (e) Refine to reduce the277

searching space. We elaborate on these operations278

as follows.279

Select. Starting from the root, the reasoning path280

is prolonged by iteratively adding a specific child281

of the latest node. The operation is usually gov-282

erned by certain policies, among which we adopt283

Probability-weighted Upper Confidence Bound(P-284

UCB) to balance the exploration and exploitation:285

PUCB(Sc) = Q(S) + c · P (a|Sp) ·
√

logN(S)

1 +N(Sc)
,

(3)286

where Sc is the state of the child node. S and Q(S)287

denote the parent node’s state and value. P (a|S)288

is the conditional probability of sampling the se-289

quence a. N(S) is the total number of times the290

parent node S has been visited during simulations,291

while N(Sc) tracks visits to the child node Sc. The292

selection process will stop if either a semantic or293

rule-based(e.g. length limits) terminal state encoun- 294

ters. 295

Expand. The Expand operation is triggered if a 296

non-terminal leaf node of the tree is selected. A 297

set of predefined LLM polices π0, · · · , πn generate 298

subsequent thought sequences ain given the state 299

S of the current node, forming new leaf nodes: 300

∀i ∈ [n], P (ai|S) ∼ πi(|S). (4) 301

Backup. For well-defined problems, a reasoning 302

path St will eventually end at a terminal leaf node 303

ST by iterating the Select and Expand operations. 304

The reward rT is set according to the evaluation. 305

We will skip the definition of reward rt and passrate 306

PR(St), which will be detailed in the explanation 307

of the Simulate operation. The reward value is 308

back-propagated along the reasoning path to update 309

the state values of corresponding ancestor nodes: 310

Q(St−1) = f(Q(St), rt + γPR(St)), (5) 311

where f is the value function. 312

Additionally, the visit counts of ancestors are 313

updated alongside the reasoning path: 314

N(St) = N(St) + 1. (6) 315

We further extend and formalize reflective rea- 316

son settings proposed in CoMCTS into Prune and 317

Refine operations as shown in Figure 3. 318

Pruning. The pruning operation on a selected 319

node will examine and compare its passrate with 320
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that of its parent. With powerful LLMs, we con-321

sider valid and reasonable thoughts to bring non-322

negative influence solution seeking, thus featuring323

monotonically non-decreasing values in the pass-324

rate PR(St) <= PR(St+1).325

A child node alleviating this principle will be326

considered as an ill node that introduces wrong327

thoughts. The ill node will be removed and trigger328

an instant Backup operation with zero reward to329

downweight its ancestors.330

Refine. The truncated error and state information331

left by ill nodes will be analyzed in the Refine332

operations. To mitigate the bootstrapping bias of333

LLMs, a distinct policy LLM will be adopted to334

infer and summarize the information in natural lan-335

guage, which will be later utilized to refine and336

replace the ill nodes:337

isIll(Sπi) == 1,338

Summary(Sπi) ∼ πj(Q(Sπi), (7)339

Sπi ,BlockAnalysis(Sπi)),340

where Sπi denotes a ill node generated by πi. A341

refined node is generated to replace the ill one:342

a′ ∼ πi(Q(Sπi), Summary). (8)343

We enforce global and local constraints on pos-344

sible times of calling Refine operation to avoid345

infinite loops and balance performance with com-346

pute budgets. A successful Refine operation will347

cause an in-place replacement of the ill-node, trig-348

gering another Backup operation to re-weight its349

ancestors.350

4.1.2 Thought-to-solution351

Simulate. For the thought-to-solution, we repur-352

pose the Simulate operation for the collective solu-353

tion generation process from the given state S. The354

operation will produce a set of possible solutions,355

each from a policy LLM: 356

Solut.(S)i ∼ πi(S). (9) 357

We define the passrate of a state as the average 358

passrate of its corresponding solutions: 359

PR(S) =
1

n

n∑
i

Passed(Solut.(S)i), (10) 360

where Passed(·) represents the supervising signal 361

from dynamic compilation and execution feedback. 362

The node’s value Q(St) is determined by its 363

PR(St) and reward rt. Sincere additional solu- 364

tion string will be appended to a non-terminal state 365

St before evaluation, PR(St) is an indirect super- 366

vising signal for the St, and the direct signal rt is 367

set to zero. 368

The terminal state ST is treated as the unique 369

solution itself since no string concatenation applies, 370

therefore featuring a non-trivial reward rT . Putting 371

everything together, we have: 372

Q(S) =

{
rT if terminal,
γPR(St) otherwise.

(11) 373

4.2 System2-to-System1 Training 374

4.2.1 Heterogeneous Distribution 375

Disentanglement 376

After the data collection, the resulting training 377

data obtained from the MC-Tree-Of-Agents pro- 378

cess consists of problem2thought data Dp2t = 379

{⟨Xp2t
i , yp2ti ⟩|i ∈ P} and thought2solution data 380

Dt2s = {⟨Xt2s
i , yt2si ⟩|i ∈ P}: Dtrain = 381

{Dp2t, Dt2s}. As discussed in the introduction 382

section, the latent patterns of coding problems are 383

complex and tend to be heterogeneously distributed, 384

e.g., the branching and recursion flow existing in 385

the code blocks, different strategies of algorithm 386

solutions, etc. Therefore, we disentangle the train- 387

ing data based on the latent semantics of the data 388

into different clusters for fine-grained modeling. 389

The clustering objective can be summarized as 390

below: 391

minimizeC
∑
k

∑
i∈Ck

cosine(ei, µk), (12) 392

ei =Φθ(⟨Xi, yi⟩), 393

µk =mean{ei|i ∈ Ck}, 394

where Φtheta is the encoder of a code llm and µk 395

denotes the centroid of cluster Ck. 396
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4.2.2 Composable LoRA Experts Preparation397

Having obtained the disentangled data clusters, we398

then finetune on them to obtain the meta LoRA399

experts for specialized experts of different aspects.400

∀Ck ∈ C,401

πθk ← SFT (πθ, {⟨Xi, yi⟩|i ∈ Ck}), (13)402

where πθ denotes the base LLM and πθk denotes403

the parameters of the LoRA adapter obtained by404

finetuning πθ on Ck.405

4.2.3 Input-Aware Hypernetwork for406

Customized Solver407

Given specialized LoRA experts πθ1 , · · · , πθK408

trained on distinct data clusters, we design an input-409

aware Hypernetwork f(·) to dynamically compose410

these experts through rank-wise adaption for cus-411

tomized problem solver.412

For each input instance, the hypernetwork gener-413

ates customized expert weights digesting its encod-414

ing and semantic distances to the cluster centroids.415

we identify "rank" as the minimal unit for aggrega-416

tion and generate rank-wise weights for different417

experts at each decoding layer:418

Gi ← f(ei, ⟨cosine(ei, µ1), . . . , cosine(ei, µK)⟩),
(14)419

where ei is the encoding of input Xi, Gi ∈420

RK×r×1 is the output weight matrix, r is the rank421

of the LoRA matrices, and K is the number of422

LoRA experts.423

The aggregated ∆W of the linear projection424

layer is then obtained by425

A∗ = [A1, . . . , AK ]⊙Gi, (15)426

∆W∗ = [B1A
∗
1, . . . , BKA∗

K ], (16)427

∆W = ReduceSum(∆W∗). (17)428

The projection output of ∆W is then merged429

during forwarding via:430

y = W0x+∆Wx. (18)431

We adopt a dedicated training phase for the Hy-432

pernetwork where all parameters are frozen except433

for the f(·). The training is supervised by the cross-434

entropy loss, with the randomly permuted input-435

output pairs from Dtrain.436

5 Experiments437

We conduct empirical studies starting from the fol-438

lowing research questions.439

RQ1 Does the proposed data collection algorithm 440

explore insightful reasoning knowledge? 441

RQ2 Do the complex latent patterns of reasoning 442

data impact the training performance? 443

RQ3 Can the disentangle-and-compose mecha- 444

nism help to promote performance? 445

RQ4 Do the proposed input-aware hypernet work 446

outperform other model composition tech- 447

niques? 448

RQ5 How does DisenLoRA perform on untrained 449

datasets? 450

5.1 Setup 451

In this section, we provide detailed setup infor- 452

mation for the evaluation of the proposed BDC, 453

including datasets, trajectory data collection, and 454

competing methods. 455

The overall evaluation is conducted on two 456

benchmark datasets: the competition-style APPS 457

dataset and the CodeContest dataset. Both datasets 458

categorize problems from easy to hard. We ran- 459

domly sample problem subsets from each category 460

of these two datasets. Each subset contains approx- 461

imately 100 problems, except for the CodeContest- 462

Hard category, which consists of around 50 prob- 463

lems due to inherent limitation in size. 464

We conduct isolated assessments of both stages 465

of BDC to ensure a comprehensive comparison. 466

Data collection. For Python code generation, we 467

compare the performance of MCTS over different 468

methods: zeroshot, LDB (Zhong et al., 2024), RAP 469

(Hao et al., 2023), Reflexion, LATS (Zhou et al., 470

2023), ToT and RethinkMCTS (Li et al., 2024). To 471

mitigate the influence of factors such as context 472

window limitations and instruction-following ca- 473

pabilities, we employ two advanced base models: 474

GPT-4o-mini and Claude-3.5-Sonnet. Aligned with 475

the purpose, we adopt a greedy decoding strategy 476

for both models. Additionally, we provided peer 477

comparisons between these two base models when 478

driven by the MC-Tree-Of-Agents method in terms 479

of their error position and refinement capability. 480

Fine-tuning. For fine-tuning, BDC is compared 481

against several alternative methods, including SFT 482

on clustered subsets, TIES, DARES, and TWINS 483

(Liu et al., 2023). 484
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Table 1: Main results on System 2 knowledge exploration.

APPS CodeContest
Models Intro. Inter. Comp. Easy Hard

PR AC PR AC PR AC PR AC PR AC
ZeroShot 56.56 35.00 40.57 19.00 23.67 9.00 29.03 19.61 28.24 19.23

LDB 60.64 40.00 46.78 22.00 21.00 8.00 34.76 25.58 33.52 16.28
RAP 64.24 39.00 43.32 14.00 22.83 8.00 43.08 33.33 39.99 26.92

Reflexion 60.65 40.00 45.58 21.00 17.50 7.00 56.16 47.83 34.09 21.15
LATS 69.46 50.00 45.86 20.00 21.83 7.00 57.70 47.83 39.10 30.77
ToT 74.34 55.00 63.49 33.00 26.30 11.00 51.89 41.18 49.07 32.69

RethinkMCTS 76.60 59.00 74.35 49.00 42.50 28.00 60.84 51.53 55.79 48.04
Single (GPT4omini) 77.99 60.00 72.89 50.00 44.17 25.00 55.79 48.04 45.72 26.92

Single (Claude) 73.80 61.00 73.60 57.00 54.67 42.00 58.75 53.92 68.41 55.76
MC-Tree-Of-Agents 79.72 64.00 79.42 63.00 59.17 45.00 62.49 54.64 70.49 56.41

+ Pruning 85.18 76.00 81.95 67.00 54.00 38.00 64.62 59.80 73.12 59.62
+ Refine 81.29 68.00 78.85 62.00 60.33 44.00 63.23 56.86 73.80 63.46

Table 2: Main results on System2-to-System1 tuning.

Meta-llama-3.1-instruct-8b
Intro. (100) Inter. (100) Comp. (100) Overall Easy (102) Hard (51) Overall

Finetune Method
PR AC PR AC PR AC PR AC PR AC PR AC PR AC

w/o tuning 21.14 4.00 20.72 4.00 12.83 1.00 18.23 3.00 25.54 17.65 15.46 5.77 22.18 13.69
SFT on all 22.55 7.00 26.40 3.00 10.67 1.00 19.87 3.67 25.33 17.65 16.73 7.69 22.46 14.33

SFT on cluster 0 20.67 6.00 24.23 3.00 11.50 1.00 18.80 3.33 27.31 17.65 11.69 1.92 22.10 12.41
SFT on cluster 1 21.22 4.00 20.69 4.00 12.00 2.00 17.97 3.33 27.78 20.59 18.12 9.62 24.56 16.93
SFT on cluster 2 16.65 7.00 23.97 3.00 17.33 4.00 19.32 4.67 26.82 20.59 19.50 9.62 24.38 16.93

Ties 22.75 4.00 23.06 4.00 12.67 4.00 19.49 4.00 26.64 21.57 18.71 9.62 24.00 17.59
Dare 24.97 7.00 26.66 5.00 12.50 3.00 21.38 5.00 23.05 13.73 19.65 15.38 21.92 14.28
Twin 19.10 5.00 23.85 5.00 8.50 1.00 17.15 3.67 26.87 17.64 12.92 9.62 22.22 14.97

DisenLoRA 27.11 9.00 23.11 3.00 11.50 4.00 20.57 5.33 32.24 22.55 19.43 9.62 27.97 18.24

5.2 Empirical Analysis and Discussion485

5.2.1 RQ1. MC-Tree-Of-Agents486

We evaluate MC-Tree-Of-Agents against widely-487

used baseline methods, the results are summarized488

in Table 1. From the results, we can draw the489

following conclusions.490

• The proposed MC-Tree-Of-Agents outperforms491

all the baseline methods, which effectively ex-492

plores the insightful System 2 knowledge.493

• Comparing with the single LLM as agents494

version, MC-Tree-Of-Agents allows for mu-495

tual verification and boosting between differ-496

ent LLMs, offering a superior performance over497

each distinct-LLM-as-agent method. This show-498

cases the effectiveness of the interaction between499

LLMs of different wisdom.500

• The pruning and refinement operations both con-501

tribute to the final performance, offering a no-502

table accuracy gain. This validates that the503

designed pruning and refinement mechanism,504

based on the difference between rewards of505

parent-child nodes, can save the algorithm from 506

erroneous exploration and lead to beneficial di- 507

rections in limited rollouts. 508

5.2.2 RQ2. Impact of latent patterns 509

To study the distribution of the latent patterns of 510

coding problems, we first conduct the T-SNE visu- 511

alization on the encodings of reasoning data col- 512

lected by MC-Tree-Of-Agents on APPS dataset. 513

The visualization is displayed in Figure 4.
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Figure 4: T-sne visualization of the APPS data encoding. 514
From the visualization, we can see that there 515

different clusters of data distributions existing in 516
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the latent reasoning semantic space, which poses517

a potential challenge to robust and generalizable518

LLMs on code.519

Furthermore, we perform finetuning on differ-520

ent clusters of data obtained in Section 4.2.1 and521

evaluate the corresponding models on the test data.522

From the results in Table 2, we can see the fol-523

lowing conclusions. 1) LLMs finetuning on all524

the clusters can offer better performance than that525

of the non-tuning version, validating the quality526

of the collected System2 knowledge data. 2) Llm527

experts obtained from different clusters show differ-528

ent performances on different levels of tasks. One529

expert can demonstrate outstanding capability on530

one level of tasks, even outperforming the LLM531

finetuning on all the data, while performing weakly532

on a different level of task. This phenomenon fur-533

ther justifies the heterogeneous latent patterns of534

data distribution and serves as supportive evidence535

for disentangling LLM experts.536

5.2.3 RQ3. Effectiveness of the Experts537

Composition538

During the empirical study, we test different model539

merging methods that combine wisdom from dif-540

ferent LoRA experts. We evaluate the well-known541

Ties, Dare, and the recently proposed TWIN merg-542

ing methods. All of them yield a static composed543

model that takes in the strength of the candidate544

experts to be merged via solving parameter inter-545

ference. From the results, we can see that merging546

over decomposed LoRA-experts can offer more547

robust problem solvers, outperforming the simple548

train-once-for-all mechanism. The experiments jus-549

tify our major rationale that disentanglement-and-550

compose pipeline can offer more robust System2-551

to-System1 performance.552

5.2.4 RQ4. Superiority of DisenLoRA over553

other composition methods554

Although the static-composed expert model can555

promote robustness to some extent, its static nature556

lacks flexibility to different styles of inputs. As557

discussed in the previous contents, the data distri-558

bution of coding problems is complex, making the559

one-fits-all mechanism easy to fail. Therefore, we560

design DisenLoRA algorithm to yield a customized561

problem solver with input-awareness. From the re-562

sults, we can see that DisenLoRA outperforms the563

competing merging methods, validating the effec-564

tiveness of the proposed input-aware hypernetwork565

that dynamically aggregates the candidate compos-566

able LoRA experts at a rank-wise level. 567

5.2.5 RQ5. Discussion of the Cross-Dataset 568

Generalization of DisenLoRA 569

Despite the flexibility offered by the input-aware 570

hypernetwork, its performance may degrade on 571

new datasets where the hypernetwork is not trained. 572

To study this scenario, we use the model trained on 573

APPS to generate solutions for CodeContest and 574

use the model trained on CodeContest to generate 575

solutions for APPS. The results are displayed in 576

Table 3. 577

Table 3: Cross-dataset generalization test.

OOD Dataset APPS CodeContest
Method PR AC PR AC

w/o tuning 18.23 3.00 22.18 13.69
w/ SFT 17.44 4.33 20.99 14.29

DisenLoRA 18.25 4.33 25.09 14.34

From the results, we can see that the proposed 578

DisenLoRA has the generalization ability to the 579

untrained dataset, outperforming the train-once-for- 580

all mechanism still. This demonstrates that the 581

parameters of the trained hypernetwork have the 582

awareness of semantic similarities across datasets. 583

6 Conclusion 584

We identify the complexity of inherent reason- 585

ing exploration and the heterogeneous data dis- 586

tribution problems that hinder the performance of 587

System2-to-System1 methods. Correspondingly, 588

we propose the BDC pipeline that explores insight- 589

ful System2 knowledge via mutually Boosting be- 590

tween llm agents, Disentangle heterogeneous data 591

distribution for composable LoRA experts, and 592

Customize problem solver for each instance, offer- 593

ing flexibility and robustness. Correspondingly, we 594

propose the MC-Tree-Of-Agents algorithm to effi- 595

ciently and effectively explore the insightful Sys- 596

tem2 knowledge via mutual verification and boost- 597

ing of different LLM agents, armed with reward- 598

guided pruning and refinement to explore more 599

beneficial states in limited rollouts for better perfor- 600

mance. Additionally, we design an input-aware hy- 601

pernetwork to aggregate over the disentangled com- 602

posable LoRA experts trained on different clusters 603

of data collected from MC-Tree-Of-Agents. This 604

mechanism offers a customized problem solver for 605

each data instance. Various experiments and discus- 606

sions validate the effectiveness of different model 607

components. 608
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Limitations609

While our work presents an efficient pipeline for610

transferring specialized knowledge from collective611

system-2-like LLMs to locally deployed language612

models through multiple LoRA adapters—enabling613

rapid, precise, system-1-like reasoning—three lim-614

itations merit discussion. First, despite code gen-615

eration serving as an effective proxy for complex616

reasoning, our evaluation is restricted to this do-617

main, leaving open questions about generalizability618

to broader textual reasoning tasks (e.g., common-619

sense reasoning and semantic parsing). Second,620

while we focus on their performance on the specific621

benchmarks, the safety alignment of derived mod-622

els remains unaddressed. Systematic evaluation623

is required to assess whether our distilled experts624

preserve human values and mitigate harmful out-625

puts. Finally, our ensemble methodology for LoRA626

experts, while input-aware, does not fully exploit627

potential sparsity optimizations in parameter acti-628

vation, leaving room for computational efficiency629

improvements through advanced routing mecha-630

nisms.631
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A Implementation Details849

For the size of retrieval pool, we use 11,913 C++850

code snippets and 2,359 python code snippets. Due851

to the limited access, we do not use a large re-852

trieval corpus for our experiment, which can be853

enlarged by other people for better performance.854

We also attach the graph extraction codes for both855

languages and all other expeirment codes here:856

https://anonymous.4open.science/r/Code-5970/857

For the fintuning details, the learning rate and858

weight decay for the expert GNN training is 0.001859

and 1e-5, repectively. We apply 8-bit quantization860

and use LoRA for parameter-efficient fine-tuning.861

The rank of the low-rank matrices in LoRA is uni-862

formly set to 8, alpha set to 16, and dropout is set863

to 0.05. The LoRA modules are uniformly applied864

to the Q and V parameter matrices of the attention865

modules in each layer of the LLM. All the three866

models are optimized using the AdamW optimizer.867

For the CodeContest dataset, totally 10609 data-868

points are used, and for APPS dataset, 8691 data869

samples are used to train the model.870
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