Boost, Disentangle, and Customize:
A Robust System2-to-System1 Pipeline for Code Generation

Anonymous ACL submission

Abstract

Large language models (LLMs) have demon-
strated remarkable capabilities in various do-
mains, particularly in system 1 tasks, yet the in-
tricacies of their problem-solving mechanisms
in system 2 tasks are not sufficiently explored.
Recent research on System?2-to-System1 meth-
ods surge, exploring the System 2 reasoning
knowledge via inference-time computation and
compressing the explored knowledge into Sys-
tem 1 process. In this paper, we focus on code
generation, which is a representative System 2
task, and identify two primary challenges: (1)
the complex hidden reasoning processes and
(2) the heterogeneous data distributions that
complicate the exploration and training of ro-
bust LLM solvers. To tackle these issues, we
propose a novel BDC framework that explores
insightful System 2 knowledge of LLMs using
a MC-Tree-Of-Agents algorithm with mutual
Boosting, Disentangles the heterogeneous train-
ing data for composable LoRA-experts, and ob-
tain Customized problem solver for each data
instance with an input-aware hypernetwork to
weight over the LoRA-experts, offering effec-
tiveness, flexibility, and robustness. This frame-
work leverages multiple LLMs through mu-
tual verification and boosting, integrated into a
Monte-Carlo Tree Search process enhanced by
reflection-based pruning and refinement. Addi-
tionally, we introduce the DisenLora algorithm,
which clusters heterogeneous data to fine-tune
LLMs into composable Lora experts, enabling
the adaptive generation of customized problem
solvers through an input-aware hypernetwork.
Our contributions include the identification of
critical challenges in existing methodologies,
the development of the MC-Tree-of-Agents al-
gorithm for insightful data collection, and the
creation of a robust and flexible solution for
code generation. This work lays the ground-
work for advancing LLM capabilities in com-
plex reasoning tasks, offering a novel System2-
to-System1 solution.

System 2 Knowledge 3
via Mutual Boosting |
of LLMs

iUUU () Disentangled |

(C1) Insufficient

exploration of (C2) Insufficient

Robustness H g Composable
System 2 knowledge RSeS| | (T) V7 Compossbe |
due to H A V1) 1 H
3 Hypernet i C v L
3) __ Problem Solver 3
[Solution] : X (Cc2) !

Figure 1: Ilustration of the motivation.

1 Introduction

Large language models show significant intelli-
gence in various domains, striking both the aca-
demic and industrial institutions. Despite their
prominent problem-solving abilities in system 1
tasks, the mechanism behind the system 2 task solv-
ing procedure remain opaque. In this paper, we fo-
cus on the code generation task, which emerges as
a captivating frontier (Zheng et al., 2023; Roziere
et al., 2023; Shen et al., 2023), promising to rev-
olutionize software development by enabling ma-
chines to write and optimize code with minimal
human intervention. Recent research of llms for
code focus on inference-time computation (System
2 methods) (Yang et al., 2024; Yao et al., 2024b;
Zhang et al., 2023) and post-training. While during
post-training, distilling system 2 knowledge into
system 1 backbones is important and widely-used
(Yu et al., 2024b).

However, the complex hidden reasoning process
and the heterogeneous data distribution pose chal-
lenges to the existing System2-to-System1 pipeline.
On one hand, the hidden reasoning process for code
generation is complex and hard to explore (C1). On
the other hand, the heterogeneous data distribution,
e.g., jumping structure like branching, recursion,
etc., makes the existing train-once-for-all strategy
hard to fit the complex latent patterns for robust
and generalizable 1lm solvers (C2).

For (C1), we propose to disentangle the prob-

lem solving process into problem2thought and
thought2solution stages, exploring the inherent rea-
soning clues via combining the strengths of mul-
tiple llms by mutually-verification and boosting.
The exploration is integrated into a Monte-Carlo
Tree Search process, where reflexion-based prun-
ing and refinement are designed for more efficient
and effective reasoning clues search.

For (C2), we propose to disentangle the hetero-
geneous data into clusters, finetuning llms capa-
ble of different aspects of tasks to obtain the meta
LoRA experts hub, and then adaptively generate
customized problem solver for each code prob-
lem. Concretely, we design an input-aware hyper-
network to generate rank-wise weights over meta
LoRA experts for customized problem solver, of-
fering robustness and flexibility.

The main contributions of our work can be sum-
marized below.

* Identification of problems and novel BDC
framework. We identify the high-reasoning
demand and heterogeneous latent patterns
problems that hinders the performance of ex-
isting methods and propose a BDC frame-
work that explores insightful inherent reason-
ing clues via multi-llms boosting, generates
meta-LoRA experts via finetuning on disen-
tangled data, and offer customized problem
solver with an input-aware hypernet for rank-
wise LoRA merging.

* Novel MC-Tree-of-Agents algorithm for
insightful data collection. We disentan-
gle the System 2 solving process into prob-
lem2thought and thought2solution stages,
integrating the exploration process into a
reflexion-based monte carlo tree search armed
with pruning and refinement, enabling mu-
tually verification and boosting of different
agents for insightful data collection.

* Novel DisenLLoRA algorithm that offers cus-
tomized problem solver for robust code gen-
eration. We disentangle the heterogeneous
data distribution into clusters on which meta-
LoRA experts are trained, and design an input-
aware hypernetwork to weight over the LoRA-
experts for customized problem solver, offer-
ing robustness and flexibility.

2 Related Work
2.1 System 2 Methods in LLLMs

Recent research on large language models for Sys-
tem 2 tasks focus on inference-time computation
optimization to stimulate the inherent reasoning
ability of LLMs. Few-shot learning methods (Wang
et al., 2022; Madaan et al., 2022) utilize the in-
context-learning ability of LLMs for enhanced gen-
eration. Retrieval-augmented generation (RAG)
approaches (Nashid et al., 2023; Du et al., 2024)
further introduce domain knowledge into LLMs.
Techniques such as Chain-of-Thought (CoT) (Yang
et al., 2024; Jiang et al., 2024; Li et al., 2023), Tree-
of-Thought (ToT) (Yao et al., 2024b; La Rosa et al.,
2024), and Monte Carlo Tree Search (MCTYS) (Li
et al., 2024; Zhang et al., 2023; Hu et al., 2024; Hao
et al., 2023; Feng et al., 2024b) are used to explore
the inherent reasoning process, often based on the
self-play mechanism to reflect on previously gener-
ated contents to learn from itself (Haluptzok et al.,
2022; Chen et al., 2023a; Lu et al., 2023; Chen
et al.,, 2023b; Madaan et al., 2024; Shinn et al.,
2024). During inference, error position can be ben-
eficial in improving the reliability and performance
of the model. With identification and analysis of
where and why errors occur, recent research (Yao
et al., 2024a; Luo et al., 2024; Wu et al., 2025) has
made significant strides in quantifying and miti-
gating errors during model inference. Refinement
(Madaan et al., 2024; Gou et al., 2023) and reflex-
ion (Shinn et al., 2024; Lee et al., 2025) are also
powerful techniques for enhancing the inference
capabilities of LLMs, usually by enabling iterative
improvement and self-correction.

2.2 Model Composition

Model composition technique gains notable atten-
tion in cross-tasks generalization. Traditional meth-
ods for multiple tasks are to train models on a mix-
ture of datasets of different skills (Caruana, 1997,
Chen et al., 2018), with the high cost of data mix-
ing and lack of scalability of the model though.
Model merging is a possible solution to this. Linear
merging is a classic merging method that consists
of simply averaging the model weights (Izmailov
et al., 2018; Smith and Gashler, 2017). Further-
more, Task Arithmetic (Ilharco et al., 2022) com-
putes task vectors for each model, merges them lin-
early, and then adds back to the base, and SLERP
(White, 2016) spherically interpolates the param-
eters of two models. Based on Task Arithmetic

framework, TIES (Yadav et al., 2024) specifies the
task vectors and applies a sign consensus algorithm
to resolve interference between models, and DARE
(Yu et al., 2024a) matches the performance of orig-
inal models by random pruning.

Recently, LoRA merging methods are also
widely applied to cross-task generalization. CAT
(Prabhakar et al., 2024) introduces learnable linear
concatenation of the LoRA layers, and Mixture of
Experts(MoE) (Buehler and Buehler, 2024; Feng
et al., 2024a) method has input-dependent merg-
ing coefficients. Other linear merging methods of
LoRAs, such as LoRA Hub (Huang et al., 2023),
involve additional cross-terms compared to simple
concatenation.

3 Preliminaries

3.1 Monte-Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a decision-
making algorithm widely used in environments
with large state and action spaces, particularly in
game Al and planning. It incrementally builds
search trees to estimate optimal actions by simulat-
ing random plays from various nodes and gradually
improving action-value estimates based on simula-
tion outcomes. Over iterations, this approach grad-
ually converges to near-optimal decision-making
policies. Notably, its integration with reinforce-
ment learning has driven breakthroughs in systems
like AlphaGo and AlphaZero (Silver et al., 2017),
achieving superhuman performance in games.

Classical MCTS consists of four stages: selec-
tion, expansion, simulation, and backpropagation.
It typically employs Upper Confidence Bounds for
Trees (UCT) (Kocsis and Szepesvari, 2006), which
balances exploration and exploitation by guiding
the search to promising nodes. After simulation,
results propagate back through the tree, updating
node values. However, MCTS struggles in domains
with large action spaces, where excessive branch-
ing can degrade performance. Progressive Widen-
ing and Double Progressive Widening techniques
have been proposed to mitigate this by dynamically
limiting the number of actions considered at each
decision node (Coulom, 2006).

3.2 LoRA Finetuning

LoRA (Low-Rank Adaptation) (Hu et al., 2021)
fine-tuning is a technique used to adapt large pre-
trained models, such as transformers, to specific
tasks with minimal computational overhead. The

key idea behind LoRA is to introduce low-rank
matrices into the model’s weight updates, which
reduces the number of trainable parameters and
makes fine-tuning more efficient.

LoRA starts with a model that has been trained
on a large dataset. During finetuning, instead of
updating the full weight matrix W € R™*" LoRA
introduces two low-rank matrices A € R™*" and
B € R™", where r < min(m,n). The updated
weight matrix W' is then given by:

W =W+AW =W + A-B. (1)

During fine-tuning, only the matrices A and B
are updated, while the original weight matrix W' re-
mains frozen. This reduces the number of trainable
parameters from m X ntom X r 4+ r x n, which
is much smaller when is small. For a given task
with loss function £, the objective is to minimize:

L(y, f(z; W+ A- B)), (2)

where y is the target output, x is the input, and f is
the model’s forward function.

By introducing low-rank matrices, both the num-
ber of trainable parameters and memory footprint
are reduced. This approach is particularly useful in
scenarios where computational resources are lim-
ited or when fine-tuning needs to be done quickly.

4 Methodology

In this section, we introduce the overall methodol-
ogy of BDC, addressing challenges in the System?2-
to-System1 pipeline for code generation, specifi-
cally the complexity of hidden reasoning processes
and heterogeneous data distributions. The proposed
BDC pipeline consists of three main stages: 1) ex-
plore the System 2 knowledge via mutual verifica-
tion and boosting between LLMs; 2) disentangle
the obtained data into clusters over which composi-
ble LoRA experts are tuned; 3) customize problem
solver by weighting over the composable LoRA
experts using an input-aware hypernetwork.

4.1 System 2 Knowledge Exploration

In this subsection, we introduce the mechanism
design for the data collection process. Due to the
complex reasoning nature embodied, code blocks
are hard to evaluate and estimate before mature. Re-
liable reward signals of a reasoning path therefore
mainly depend on the dynamic compilation and
execution feedbacks, which are extremely sparse
and require extensive simulations. To simplify the

System 2 Knowledge Exploration

Composable System 1 Experts

Customized Solver Generation

H i
1 1
H Preparation H
1 1
; 1 1 A
’ Problem }—»’ Thought F»[Solution] ' Insightful System 2 Knowledge : ﬁ
1) 1
Find the longest palindrome substring. : [PrOblemZThmlghl Ddla] : A W
Step 1: Use dynamic programming : [ThoughtZSolulion Dala] 1 D
@r Step 2: The state transition function ... 1 Y : ‘
' !
def palindrome (s): i : [Normalization]
1
1
Q 8 ‘ . O
Refinement l\ 1 Pruning : [Disentanglement] ! » q W%
1 ‘s
— T . ‘
i en wh | Lala[
: .tg‘. . & E & A
H oo *° e e, !
! oo 00 o0 o H [HyperNtw
! | | 1
IENL IR : —6
& o S
: 1
1
: : :
Ay ySe
H 7o, 7o, 7o, i
(Boost) ! (Disentangle) i (Customize)
'

Figure 2: Illustration of the overall framework of BDC.

generation paradigm and exploit the mutual verifi-
cation capabilities of the collective searching, we
decompose the generation process into two dis-
tinct stages: problem-to-thought and thought-to-
solution.

4.1.1 Problem-to-thought

Traditional Monto-Carlo Tree Searching comprises
three key operations in each iteration: (a) Select,
(b) Expand, (c) Backup. In the problem-to-thought
stage, we further extend MCTS by two distinct
operations (d) Prune, and (e) Refine to reduce the
searching space. We elaborate on these operations
as follows.

Select. Starting from the root, the reasoning path
is prolonged by iteratively adding a specific child
of the latest node. The operation is usually gov-
erned by certain policies, among which we adopt
Probability-weighted Upper Confidence Bound(P-
UCB) to balance the exploration and exploitation:

log N(S)

1+ N(Se)’

3)
where S, is the state of the child node. S and Q(.5)
denote the parent node’s state and value. P(al|S)
is the conditional probability of sampling the se-
quence a. N(.9) is the total number of times the
parent node S has been visited during simulations,
while N (S.) tracks visits to the child node S.. The
selection process will stop if either a semantic or

PUCB(S,) = Q(S) + ¢ P(alS,) -

rule-based(e.g. length limits) terminal state encoun-
ters.

Expand. The Expand operation is triggered if a
non-terminal leaf node of the tree is selected. A
set of predefined LLM polices o, - - - , 7, generate
subsequent thought sequences a;,, given the state
S of the current node, forming new leaf nodes:

Vi € [n], P(a;|S) ~ m(|S). “4)

Backup. For well-defined problems, a reasoning
path S; will eventually end at a terminal leaf node
St by iterating the Select and Expand operations.
The reward 77 is set according to the evaluation.
We will skip the definition of reward r; and passrate
PR(S;), which will be detailed in the explanation
of the Simulate operation. The reward value is
back-propagated along the reasoning path to update
the state values of corresponding ancestor nodes:

Q(Si—1) = f(Q(Sy), e +vPR(Sy)), (5

where f is the value function.
Additionally, the visit counts of ancestors are
updated alongside the reasoning path:

N(S;) =

We further extend and formalize reflective rea-
son settings proposed in CoMCTS into Prune and
Refine operations as shown in Figure 3.

Pruning. The pruning operation on a selected
node will examine and compare its passrate with

N(Sy) + 1. (6)

— Refinement

y Selection
‘\\
A%\ Ar:—} Backpropagation 5, . /AW A, 3.
3 YN N

Refinement
Operation

Pruning
Operation

Figure 3: Pruning and refinement operations.

that of its parent. With powerful LLMs, we con-
sider valid and reasonable thoughts to bring non-
negative influence solution seeking, thus featuring
monotonically non-decreasing values in the pass-
rate PR(S;) <= PR(S¢11).

A child node alleviating this principle will be

considered as an ill node that introduces wrong
thoughts. The ill node will be removed and trigger
an instant Backup operation with zero reward to
downweight its ancestors.
Refine. The truncated error and state information
left by ill nodes will be analyzed in the Refine
operations. To mitigate the bootstrapping bias of
LLMs, a distinct policy LLM will be adopted to
infer and summarize the information in natural lan-
guage, which will be later utilized to refine and
replace the ill nodes:

isTI(S™) == 1,
Summary(S™) ~ m;(Q(S™),)
S™ Block Analysis(S™)),

where S™ denotes a ill node generated by m;. A
refined node is generated to replace the ill one:

a ~ m;(Q(S™), Summary). (8)

We enforce global and local constraints on pos-
sible times of calling Refine operation to avoid
infinite loops and balance performance with com-
pute budgets. A successful Refine operation will
cause an in-place replacement of the ill-node, trig-
gering another Backup operation to re-weight its
ancestors.

4.1.2 Thought-to-solution

Simulate. For the thought-to-solution, we repur-
pose the Simulate operation for the collective solu-
tion generation process from the given state S. The
operation will produce a set of possible solutions,

each from a policy LLM:
SOlUt.(S)Z’ ~ TI'Z(S) (9)

We define the passrate of a state as the average
passrate of its corresponding solutions:

PR(S) = %Z Passed(Solut.(S);), (10)

where Passed(-) represents the supervising signal
from dynamic compilation and execution feedback.

The node’s value Q(S;) is determined by its
PR(S;) and reward 7. Sincere additional solu-
tion string will be appended to a non-terminal state
Sy before evaluation, PR(S;) is an indirect super-
vising signal for the S;, and the direct signal r; is
set to zero.

The terminal state St is treated as the unique
solution itself since no string concatenation applies,
therefore featuring a non-trivial reward r7. Putting
everything together, we have:

Q(S) = {TT

if terminal,
(11)

vPR(S;) otherwise.

4.2 System2-to-System1 Training

4.2.1 Heterogeneous Distribution
Disentanglement

After the data collection, the resulting training
data obtained from the MC-Tree-Of-Agents pro-
cess consists of problem2thought data DP? =
{(XP? yP*"]i € P} and thought2solution data
D% = {(X2y)i € P}: Dyain —
{DP% D®s} As discussed in the introduction
section, the latent patterns of coding problems are
complex and tend to be heterogeneously distributed,
e.g., the branching and recursion flow existing in
the code blocks, different strategies of algorithm
solutions, etc. Therefore, we disentangle the train-
ing data based on the latent semantics of the data
into different clusters for fine-grained modeling.

The clustering objective can be summarized as
below:

mz’m’mizecg g cosine(e;, k),

k 1€Cy
€; :¢9(<X17y2>>7
wr =meande;li € Ci},

(12)

where ®;,q4, 1S the encoder of a code 1lm and g,
denotes the centroid of cluster C},.

4.2.2 Composable LoRA Experts Preparation

Having obtained the disentangled data clusters, we
then finetune on them to obtain the meta LoRA
experts for specialized experts of different aspects.

V(i € C,

mp, < SEFT (mg, {(Xi,uyi)|i € Cr}), (13)

where 7y denotes the base LLM and 7y, denotes
the parameters of the LoRA adapter obtained by
finetuning 7 on CY.

4.2.3 Input-Aware Hypernetwork for
Customized Solver

Given specialized LoRA experts mg,, -+, T,
trained on distinct data clusters, we design an input-
aware Hypernetwork f(-) to dynamically compose
these experts through rank-wise adaption for cus-
tomized problem solver.

For each input instance, the hypernetwork gener-
ates customized expert weights digesting its encod-
ing and semantic distances to the cluster centroids.
we identify "rank" as the minimal unit for aggrega-
tion and generate rank-wise weights for different
experts at each decoding layer:

Gi < f(es, (cosine(ei, 1), . .., cosine(e;, pik))),
(14)

where e; is the encoding of input X;, G; €
REXm>1 5 the output weight matrix, r is the rank
of the LoRA matrices, and K is the number of
LoRA experts.

The aggregated AW of the linear projection
layer is then obtained by

A" =[Ay,..., Ak] © Gy, (15)
AW = ReduceSum(AW™). (17)

The projection output of AW is then merged
during forwarding via:

We adopt a dedicated training phase for the Hy-
pernetwork where all parameters are frozen except
for the f(-). The training is supervised by the cross-
entropy loss, with the randomly permuted input-
output pairs from Dyygip, -

5 Experiments

We conduct empirical studies starting from the fol-
lowing research questions.

RQ1 Does the proposed data collection algorithm
explore insightful reasoning knowledge?

RQ2 Do the complex latent patterns of reasoning
data impact the training performance?

RQ3 Can the disentangle-and-compose mecha-
nism help to promote performance?

RQ4 Do the proposed input-aware hypernet work
outperform other model composition tech-
niques?

RQ5 How does DisenLoRA perform on untrained
datasets?

5.1 Setup

In this section, we provide detailed setup infor-
mation for the evaluation of the proposed BDC,
including datasets, trajectory data collection, and
competing methods.

The overall evaluation is conducted on two
benchmark datasets: the competition-style APPS
dataset and the CodeContest dataset. Both datasets
categorize problems from easy to hard. We ran-
domly sample problem subsets from each category
of these two datasets. Each subset contains approx-
imately 100 problems, except for the CodeContest-
Hard category, which consists of around 50 prob-
lems due to inherent limitation in size.

We conduct isolated assessments of both stages
of BDC to ensure a comprehensive comparison.

Data collection. For Python code generation, we
compare the performance of MCTS over different
methods: zeroshot, LDB (Zhong et al., 2024), RAP
(Hao et al., 2023), Reflexion, LATS (Zhou et al.,
2023), ToT and RethinkMCTS (Li et al., 2024). To
mitigate the influence of factors such as context
window limitations and instruction-following ca-
pabilities, we employ two advanced base models:
GPT-40-mini and Claude-3.5-Sonnet. Aligned with
the purpose, we adopt a greedy decoding strategy
for both models. Additionally, we provided peer
comparisons between these two base models when
driven by the MC-Tree-Of-Agents method in terms
of their error position and refinement capability.

Fine-tuning. For fine-tuning, BDC is compared
against several alternative methods, including SFT
on clustered subsets, TIES, DARES, and TWINS
(Liu et al., 2023).

Table 1: Main results on System 2 knowledge exploration.

APPS CodeContest
Models Intro. Inter. Comp. Easy Hard
PR AC PR AC PR AC PR AC PR AC

ZeroShot 56.56 35.00 40.57 19.00 23.67 9.00 |29.03 19.61 28.24 19.23
LDB 60.64 40.00 46.78 22.00 21.00 8.00 | 34.76 25.58 33.52 16.28
RAP 64.24 39.00 43.32 14.00 22.83 8.00 |43.08 3333 39.99 2692
Reflexion 60.65 40.00 45.58 21.00 17.50 7.00 | 56.16 47.83 34.09 21.15
LATS 69.46 50.00 45.86 20.00 21.83 7.00 |57.70 47.83 39.10 30.77
ToT 7434 55.00 63.49 33.00 2630 11.00 | 51.89 41.18 49.07 32.69

RethinkMCTS 76.60 59.00 74.35 49.00 42.50 28.00 | 60.84 51.53 55.79 48.04

Single (GPT4omini) | 77.99 60.00 72.89 50.00 44.17 25.00 | 55.79 48.04 45.72 26.92
Single (Claude) 73.80 61.00 73.60 57.00 54.67 42.00 | 58.75 5392 6841 55.76

MC-Tree-Of-Agents | 79.72 64.00 79.42 63.00 59.17 45.00 | 62.49 54.64 70.49 56.41
+ Pruning 85.18 76.00 8195 67.00 54.00 38.00 | 64.62 59.80 73.12 59.62
+ Refine 81.29 68.00 7885 62.00 60.33 44.00 | 63.23 56.86 73.80 63.46

Table 2: Main results on System2-to-System1 tuning.

Meta-llama-3.1-instruct-8b

Finetune Method Intro. (100) Inter. (100) Comp. (100)

Overall Easy (102) Hard (51) Overall

PR AC PR AC PR AC

PR AC PR AC PR AC PR AC

w/o tuning 21.14 4.00 20.72 4.00 12.83 1.00

18.23 3.00 | 25.54 17.65 1546 5.77 | 22.18 13.69

SFT on all 2255 7.00 2640 3.00 10.67 1.00

19.87 3.67 | 2533 17.65 16.73 7.69 | 22.46 14.33

SFT on cluster 0 | 20.67 6.00 24.23 3.00 11.50 1.00
SFT oncluster 1 | 21.22 4.00 20.69 4.00 12.00 2.00
SFT on cluster2 | 16.65 7.00 2397 3.00 17.33 4.00

18.80 3.33 | 27.31 17.65 11.69 192 | 22.10 1241
17.97 333 | 27.78 2059 1812 9.62 | 2456 1693
19.32 4.67 | 26.82 20.59 19.50 9.62 | 2438 1693

Ties 22775 4.00 23.06 4.00 12.67 4.00
Dare 2497 7.00 26.66 5.00 12.50 3.00
Twin 19.10 5.00 23.85 500 850 1.00

19.49 4.00 | 26.64 21.57 1871 9.62 | 24.00 17.59
21.38 5.00 | 23.05 13.73 19.65 15.38 | 21.92 14.28
17.15 3.67 | 26.87 17.64 1292 9.62 | 2222 14.97

DisenLoRA 27.11 9.00 23.11 3.00 11.50 4.00

20.57 5.33 | 32.24 2255 1943 9.62 | 2797 18.24

5.2 Empirical Analysis and Discussion

5.2.1 RQ1. MC-Tree-Of-Agents

We evaluate MC-Tree-Of-Agents against widely-
used baseline methods, the results are summarized
in Table 1. From the results, we can draw the
following conclusions.

* The proposed MC-Tree-Of-Agents outperforms
all the baseline methods, which effectively ex-
plores the insightful System 2 knowledge.

* Comparing with the single LLM as agents
version, MC-Tree-Of-Agents allows for mu-
tual verification and boosting between differ-
ent LLMs, offering a superior performance over
each distinct-LLM-as-agent method. This show-
cases the effectiveness of the interaction between
LLMs of different wisdom.

* The pruning and refinement operations both con-
tribute to the final performance, offering a no-
table accuracy gain. This validates that the
designed pruning and refinement mechanism,
based on the difference between rewards of

parent-child nodes, can save the algorithm from
erroneous exploration and lead to beneficial di-
rections in limited rollouts.

5.2.2 RQ2. Impact of latent patterns

To study the distribution of the latent patterns of
coding problems, we first conduct the T-SNE visu-
alization on the encodings of reasoning data col-
lected by MC-Tree-Of-Agents on APPS dataset.
The visualization is displayed in Figure 4.

T-SNE visualization of APPS data encoding

T-SNE Component 2

-100 -75 -50 -25 [25 50 75 100
T-SNE Component 1

Figure 4: T-sne visualization of the APPS data encoding.

From the visualization, we can see that there
different clusters of data distributions existing in

the latent reasoning semantic space, which poses
a potential challenge to robust and generalizable
LLMs on code.

Furthermore, we perform finetuning on differ-
ent clusters of data obtained in Section 4.2.1 and
evaluate the corresponding models on the test data.
From the results in Table 2, we can see the fol-
lowing conclusions. 1) LLMs finetuning on all
the clusters can offer better performance than that
of the non-tuning version, validating the quality
of the collected System2 knowledge data. 2) LIm
experts obtained from different clusters show differ-
ent performances on different levels of tasks. One
expert can demonstrate outstanding capability on
one level of tasks, even outperforming the LLM
finetuning on all the data, while performing weakly
on a different level of task. This phenomenon fur-
ther justifies the heterogeneous latent patterns of
data distribution and serves as supportive evidence
for disentangling LLM experts.

5.2.3 RQ3. Effectiveness of the Experts
Composition

During the empirical study, we test different model
merging methods that combine wisdom from dif-
ferent LoRA experts. We evaluate the well-known
Ties, Dare, and the recently proposed TWIN merg-
ing methods. All of them yield a static composed
model that takes in the strength of the candidate
experts to be merged via solving parameter inter-
ference. From the results, we can see that merging
over decomposed LoRA-experts can offer more
robust problem solvers, outperforming the simple
train-once-for-all mechanism. The experiments jus-
tify our major rationale that disentanglement-and-
compose pipeline can offer more robust System2-
to-System1 performance.

5.2.4 RQA4. Superiority of DisenLoRA over
other composition methods

Although the static-composed expert model can
promote robustness to some extent, its static nature
lacks flexibility to different styles of inputs. As
discussed in the previous contents, the data distri-
bution of coding problems is complex, making the
one-fits-all mechanism easy to fail. Therefore, we
design DisenLoRA algorithm to yield a customized
problem solver with input-awareness. From the re-
sults, we can see that DisenLoRA outperforms the
competing merging methods, validating the effec-
tiveness of the proposed input-aware hypernetwork
that dynamically aggregates the candidate compos-

able LoRA experts at a rank-wise level.

5.2.5 RQA5. Discussion of the Cross-Dataset
Generalization of DisenLoRA

Despite the flexibility offered by the input-aware
hypernetwork, its performance may degrade on
new datasets where the hypernetwork is not trained.
To study this scenario, we use the model trained on
APPS to generate solutions for CodeContest and
use the model trained on CodeContest to generate
solutions for APPS. The results are displayed in
Table 3.

Table 3: Cross-dataset generalization test.

OOD Dataset APPS CodeContest
Method PR AC PR AC
w/o tuning 18.23 3.00 | 22.18 13.69
w/ SFT 17.44 433 | 2099 14.29
DisenLoRA | 18.25 4.33 | 25.09 14.34

From the results, we can see that the proposed
DisenLoRA has the generalization ability to the
untrained dataset, outperforming the train-once-for-
all mechanism still. This demonstrates that the
parameters of the trained hypernetwork have the
awareness of semantic similarities across datasets.

6 Conclusion

We identify the complexity of inherent reason-
ing exploration and the heterogeneous data dis-
tribution problems that hinder the performance of
System?2-to-System1 methods. Correspondingly,
we propose the BDC pipeline that explores insight-
ful System?2 knowledge via mutually Boosting be-
tween llm agents, Disentangle heterogeneous data
distribution for composable LoRA experts, and
Customize problem solver for each instance, offer-
ing flexibility and robustness. Correspondingly, we
propose the MC-Tree-Of-Agents algorithm to effi-
ciently and effectively explore the insightful Sys-
tem2 knowledge via mutual verification and boost-
ing of different LLM agents, armed with reward-
guided pruning and refinement to explore more
beneficial states in limited rollouts for better perfor-
mance. Additionally, we design an input-aware hy-
pernetwork to aggregate over the disentangled com-
posable LoRA experts trained on different clusters
of data collected from MC-Tree-Of-Agents. This
mechanism offers a customized problem solver for
each data instance. Various experiments and discus-
sions validate the effectiveness of different model
components.

Limitations

While our work presents an efficient pipeline for
transferring specialized knowledge from collective
system-2-like LLMs to locally deployed language
models through multiple LoRA adapters—enabling
rapid, precise, system-1-like reasoning—three lim-
itations merit discussion. First, despite code gen-
eration serving as an effective proxy for complex
reasoning, our evaluation is restricted to this do-
main, leaving open questions about generalizability
to broader textual reasoning tasks (e.g., common-
sense reasoning and semantic parsing). Second,
while we focus on their performance on the specific
benchmarks, the safety alignment of derived mod-
els remains unaddressed. Systematic evaluation
is required to assess whether our distilled experts
preserve human values and mitigate harmful out-
puts. Finally, our ensemble methodology for LoRA
experts, while input-aware, does not fully exploit
potential sparsity optimizations in parameter acti-
vation, leaving room for computational efficiency
improvements through advanced routing mecha-
nisms.

References

Eric L Buehler and Markus J Buehler. 2024. X-lora:
Mixture of low-rank adapter experts, a flexible frame-
work for large language models with applications
in protein mechanics and molecular design. APL
Machine Learning, 2(2).

Rich Caruana. 1997. Multitask learning. Machine
learning, 28:41-75.

Kai Chen, Chunwei Wang, Kuo Yang, Jianhua Han,
Lanqging Hong, Fei Mi, Hang Xu, Zhengying Liu,
Wenyong Huang, Zhenguo Li, et al. 2023a. Gain-
ing wisdom from setbacks: Aligning large lan-
guage models via mistake analysis. arXiv preprint
arXiv:2310.10477.

Xinyun Chen, Maxwell Lin, Nathanael Schirli, and
Denny Zhou. 2023b. Teaching large language mod-
els to self-debug. arXiv preprint arXiv:2304.05128.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and
Andrew Rabinovich. 2018. Gradnorm: Gradient
normalization for adaptive loss balancing in deep
multitask networks. In International conference on
machine learning, pages 794-803. PMLR.

Rémi Coulom. 2006. Efficient selectivity and backup
operators in monte-carlo tree search. In International
Conference on Computers and Games, pages 72—83.
Springer.

Kounianhua Du, Jizheng Chen, Renting Rui, Huacan
Chai, Lingyue Fu, Wei Xia, Yasheng Wang, Ruiming
Tang, Yong Yu, and Weinan Zhang. 2024. Code-
grag: Bridging the gap between natural language
and programming language via graphical retrieval
augmented generation. Preprint, arXiv:2405.02355.

Wenfeng Feng, Chuzhan Hao, Yuewei Zhang, Yu Han,
and Hao Wang. 2024a. Mixture-of-loras: An efficient
multitask tuning for large language models. arXiv
preprint arXiv:2403.03432.

Xidong Feng, Ziyu Wan, Muning Wen, Stephen Marcus
McAleer, Ying Wen, Weinan Zhang, and Jun Wang.
2024b. Alphazero-like tree-search can guide large
language model decoding and training. Preprint,
arXiv:2309.17179.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2023. Critic: Large language models can self-correct
with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

Patrick Haluptzok, Matthew Bowers, and Adam Tauman
Kalai. 2022. Language models can teach themselves
to program better. arXiv preprint arXiv:2207.14502.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao,
See-Kiong Ng, Anh Tuan Luu, Junxian He, Pang Wei
Koh, and Bryan Hooi. 2024. Uncertainty of thoughts:
Uncertainty-aware planning enhances information
seeking in large language models. arXiv preprint
arXiv:2402.03271.

Chengsong Huang, Qian Liu, Bill Yuchen Lin, Tianyu
Pang, Chao Du, and Min Lin. 2023. Lorahub: Effi-
cient cross-task generalization via dynamic lora com-
position. arXiv preprint arXiv:2307.13269.

Gabriel IlTharco, Marco Tulio Ribeiro, Mitchell Worts-
man, Suchin Gururangan, Ludwig Schmidt, Han-
naneh Hajishirzi, and Ali Farhadi. 2022. Edit-
ing models with task arithmetic. arXiv preprint
arXiv:2212.04089.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov,
Dmitry Vetrov, and Andrew Gordon Wilson. 2018.
Averaging weights leads to wider optima and better
generalization. arXiv preprint arXiv:1803.05407.

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2024.
Self-planning code generation with large language
models. ACM Transactions on Software Engineering
and Methodology, 33(7):1-30.

https://arxiv.org/abs/2405.02355
https://arxiv.org/abs/2405.02355
https://arxiv.org/abs/2405.02355
https://arxiv.org/abs/2405.02355
https://arxiv.org/abs/2405.02355
https://arxiv.org/abs/2405.02355
https://arxiv.org/abs/2405.02355
https://arxiv.org/abs/2309.17179
https://arxiv.org/abs/2309.17179
https://arxiv.org/abs/2309.17179

Levente Kocsis and Csaba Szepesvari. 2006. Bandit
based monte-carlo planning. In European Confer-
ence on Machine Learning (ECML), pages 282-293.
Springer.

Ricardo La Rosa, Corey Hulse, and Bangdi Liu. 2024.
Can github issues be solved with tree of thoughts?
arXiv preprint arXiv:2405.13057.

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave
Marwood, Shumeet Baluja, Dale Schuurmans, and
Xinyun Chen. 2025. Evolving deeper 1lm thinking.
arXiv preprint arXiv:2501.09891.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023. Struc-
tured chain-of-thought prompting for code genera-
tion. ACM Transactions on Software Engineering
and Methodology.

Qingyao Li, Wei Xia, Kounianhua Du, Xinyi Dai, Ruim-
ing Tang, Yasheng Wang, Yong Yu, and Weinan
Zhang. 2024. Rethinkmcts: Refining erroneous
thoughts in monte carlo tree search for code gen-
eration. arXiv preprint arXiv:2409.09584.

Ziquan Liu, Yi Xu, Xiangyang Ji, and Antoni B Chan.
2023. Twins: A fine-tuning framework for improved
transferability of adversarial robustness and general-
ization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
16436-16446.

Jiangiao Lu, Wanjun Zhong, Wenyong Huang, Yufei
Wang, Fei Mi, Baojun Wang, Weichao Wang, Lifeng
Shang, and Qun Liu. 2023. Self: Language-driven
self-evolution for large language model. arXiv
preprint arXiv:2310.00533.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-
cal reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. arXiv preprint
arXiv:2210.07128.

Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023.
Retrieval-based prompt selection for code-related
few-shot learning. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE),
pages 2450-2462. IEEE.

Akshara Prabhakar, Yuanzhi Li, Karthik Narasimhan,
Sham Kakade, Eran Malach, and Samy Jelassi. 2024.
Lora soups: Merging loras for practical skill compo-
sition tasks. arXiv preprint arXiv:2410.13025.

10

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan,
Bing Geng, An Fu, Muhan Zeng, Ailun Yu, Jichuan
Ji, Jingyang Zhao, et al. 2023. Pangu-coder2: Boost-
ing large language models for code with ranking feed-
back. arXiv preprint arXiv:2307.14936.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

David Silver, Julian Schrittwieser, Karen Simonyan,
et al. 2017. Mastering the game of go without human
knowledge. Nature, 550:354-359.

Joshua Smith and Michael Gashler. 2017. An investi-
gation of how neural networks learn from the expe-
riences of peers through periodic weight averaging.
In 2017 16th IEEE International Conference on Ma-
chine Learning and Applications (ICMLA), pages
731-736. IEEE.

Xingyao Wang, Sha Li, and Heng Ji. 2022. Code4struct:
Code generation for few-shot event structure predic-
tion. arXiv preprint arXiv:2210.12810.

Tom White. 2016. Sampling generative networks.
arXiv preprint arXiv:1609.04468.

Junxi Wu, Dongjian Hu, Yajie Bao, Shu-Tao Xia,
and Changliang Zou. 2025. Error-quantified con-
formal inference for time series. arXiv preprint
arXiv:2502.00818.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin A
Raffel, and Mohit Bansal. 2024. Ties-merging: Re-
solving interference when merging models. Ad-

vances in Neural Information Processing Systems,
36.

Guang Yang, Yu Zhou, Xiang Chen, Xiangyu Zhang,
Terry Yue Zhuo, and Taolue Chen. 2024. Chain-
of-thought in neural code generation: From and for
lightweight language models. IEEE Transactions on
Software Engineering.

Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang,
Yibo Wang, Shunyu Liu, Yingjie Wang, Yuxin Song,
Haocheng Feng, Li Shen, et al. 2024a. Mulberry:
Empowering mllm with ol-like reasoning and reflec-
tion via collective monte carlo tree search. arXiv
preprint arXiv:2412.18319.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024b. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yong-
bin Li. 2024a. Language models are super mario:
Absorbing abilities from homologous models as a
free lunch. In Forty-first International Conference
on Machine Learning.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov.
2024b. Distilling system 2 into system 1. Preprint,
arXiv:2407.06023.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B Tenenbaum, and Chuang Gan. 2023.
Planning with large language models for code gener-
ation. arXiv preprint arXiv:2303.05510.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, et al. 2023. Codegeex: A pre-trained model
for code generation with multilingual evaluations on
humaneval-x. arXiv preprint arXiv:2303.17568.

Li Zhong, Zilong Wang, and Jingbo Shang. 2024.
Ldb: A large language model debugger via verify-
ing runtime execution step-by-step. arXiv preprint
arXiv:2402.16906.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman,
Haohan Wang, and Yu-Xiong Wang. 2023. Lan-
guage agent tree search unifies reasoning acting

and planning in language models. arXiv preprint
arXiv:2310.04406.

A Implementation Details

For the size of retrieval pool, we use 11,913 C++
code snippets and 2,359 python code snippets. Due
to the limited access, we do not use a large re-
trieval corpus for our experiment, which can be
enlarged by other people for better performance.
We also attach the graph extraction codes for both
languages and all other expeirment codes here:
https://anonymous.4open.science/r/Code-5970/

For the fintuning details, the learning rate and
weight decay for the expert GNN training is 0.001
and le-5, repectively. We apply 8-bit quantization
and use LoRA for parameter-efficient fine-tuning.
The rank of the low-rank matrices in LoRA is uni-
formly set to 8, alpha set to 16, and dropout is set
to 0.05. The LoRA modules are uniformly applied
to the Q and V parameter matrices of the attention
modules in each layer of the LLM. All the three
models are optimized using the AdamW optimizer.
For the CodeContest dataset, totally 10609 data-
points are used, and for APPS dataset, 8691 data
samples are used to train the model.

11

https://arxiv.org/abs/2407.06023

	Introduction
	Related Work
	System 2 Methods in LLMs
	Model Composition

	Preliminaries
	Monte-Carlo Tree Search
	LoRA Finetuning

	Methodology
	System 2 Knowledge Exploration
	Problem-to-thought
	Thought-to-solution

	System2-to-System1 Training
	Heterogeneous Distribution Disentanglement
	Composable LoRA Experts Preparation
	Input-Aware Hypernetwork for Customized Solver

	Experiments
	Setup
	Empirical Analysis and Discussion
	RQ1. MC-Tree-Of-Agents
	RQ2. Impact of latent patterns
	RQ3. Effectiveness of the Experts Composition
	RQ4. Superiority of DisenLoRA over other composition methods
	RQ5. Discussion of the Cross-Dataset Generalization of DisenLoRA

	Conclusion
	Implementation Details

