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ABSTRACT

We propose a new dataset TEXREL as a playground for the study of emergent
communications, in particular for relations. TEXREL provides rapid training
and experimentation, whilst being sufficiently large to avoid overfitting. We use
TEXREL to compare Sender models, compare with a related dataset, examine the
effect of changing meaning space size, and perform a case-study for using TEXREL
in place of symbolic input.

1 INTRODUCTION

Emergent communications is the study of the linguistic behavior of agents with no pre-training on
natural human languages, when placed in a situation where inter-agent communications is needed in
order to maximize performance. We can investigate characteristics of the resulting language, such as
compositionality; and the extent to which the agents learn to communicate at all. Agents can learn
to communicate pictures to each other, e.g. Lazaridou et al. (2018), or to negotiate with each other,
e.g. Cao et al. (2018). In general, the resulting emergent language has limited compositionality. For
example, Lazaridou et al. (2018) presented results showing that even when the agents have learned to
solve a task with 98% accuracy, the topographic similarity - a measure of compositionality - might be
only around 0.16-0.26. The resulting languages do not tend to clearly show certain key characteristics
of human languages, such as the formation of atomic re-usable units of tokens, i.e. words.

We hypothesize that in order to increase the compositionality of the emergent languages, we need
to increase the dimensionality of the underlying meaning space, such that the only feasible way for
models to be able to store the language is to store it in factorized form. For example, if a language has
10 words for colors, and 10 words for shapes, then a model need memorize only these 20 words in
order to describe all possible combinations of colors and shapes. However, if a model uses a unique
non-compositional word for each combination of colors and shapes, then the model will need to
memorize 102 = 100 such words, which is a heavier burden.

Thus, a key step to increasing the compositionality of emergent languages is to train agents in an
environment of sufficient complexity, that is with many meaning space dimensions. Our work presents
a dataset, TEXREL, which provides an experimental playground for learning emergent languages in
relatively high dimensional meaning spaces. In this work, we experiment with meaning spaces with
up to 6 dimensions.

We find counter-intuitively that increasing the dimensionality of the meaning space does not increase
traditional metrics of compositionality, such as topographic similarity (ρ, (Brighton and Kirby, 2006))
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Figure 1: Example images, labels, and ground truth relation for TEXREL dataset Relations task (best
viewed in color)
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nor of more recent compositional metrics such as TRE (Andreas, 2019). Whilst this could show that
increasing the meaning space does not increase underlying latent ground truth compositionality, we
argue that our counter-intuitive result might instead be because existing compositionality metrics do
not correlate perfectly with underlying latent ground-truth compositionality. Thus our results show
that there could be an opportunity to develop new compositionality metrics, or to refine existing ones.

One way to create a high-dimensional dataset is to use symbolic inputs, e.g. Study 1 in Lazaridou
et al. (2018). However, symbolic input is essentially a language in compositional form, where each
token is a single word describing one attribute. Thus it is unclear whether any emergent compositional
language is a reflection of a tendancy of the agents to learn compositional representations, or to
simply reflect the compositional representation of the input.

An alternative approach, which we use in this work, is to represent meanings using images. Each
image contains one or more objects, each having shape and color. We can use the relative positioning
of two objects to express relations between objects, adding additional meaning dimensions. An
existing dataset, Shapeworld, Andreas et al. (2018), provides such a dataset. However, as we shall see
the training set is small, and models capable of learning on the training set quickly overfit, as alluded
to in Andreas et al. (2018). TEXREL provides a much larger training set, 100k training examples,
each with 256 images, compared to 9k training images, each with 6 images.

We seek an experimental playground for emergent communication which not only provides high
dimensional meaning spaces, using non-symbolic input, but which should ideally be relatively fast
to train on. We seek thus to provide images of relatively low resolution, which are friendly to
convolutional networks. We note from e.g. Khurshudov (2015) that convolutional networks might
pay more attention to the textures of objects than to their outline shape. We thus generate textures,
rather than solid-textured shapes. Shapeworld by comparison provides objects with identical solid
texture, differing in outline shape. We argue that our approach of using textures allows the use of
lower dimensional images, which are easier for a convolutional network to learn. Thus we argue
that our family of datasets is ‘green’, that is easy to use in relatively low computational resource
environments.

Our contributions are as follows:

• propose a new dataset, TEXREL, which provides a playground for emergent communications
– uses non-symbolic inputs, i.e. images
– fast to train on
– is much larger than comparable existing emergent communication datasets
– provides a high dimensional underlying meaning space

• we provide extensive baselines and empirical studies using TEXREL:
– compare potential sender agent architectures
– compare TEXREL with Shapeworld
– examine the effect of meaning space size and dimensionality on compositionality
– provide a case-study of using TEXREL in place of symbolic inputs, for fast experimen-

tation
• propose new metrics:

– clustering precision and clustering recall as measures of language expressivity and
consistency, respectively

– PTRE: derivative of TRE which assigns low compositionality to languages having low
expressivity

2 BACKGROUND

2.1 REFERENTIAL TASK

We target a referential task, e.g. Lazaridou et al. (2018), in the context of emergent com-
munications. See Figure 2: a sender agent receives labeled sender images, (Xtrn, Ytrn) =
{(xtrn,1, ytrn,1), . . . , (xtrn,n, ytrn,n)} for each example, generated from some underlying hy-
pothesis h. The sender emits a linguistic utterance, û. A receiver agent receives û, along
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Figure 2: Emergent communications referential task

with unlabeled receiver images, Xtst = {xtst,1, . . . , xtst,n}, and predicts the correct labels,
Ytst = {ytst,1, . . . , ytst,n}. We hope that the Sender agent will learn to represent the underly-
ing concept h in the generated linguistic utterance û. Often, Xtrn consists of a single example, and
each ytst,i is always implicitly true. In our own work, we wish to represent relations, so we extend to
the more general case of multiple labeled sender examples.

Each hypothesis can be represented as a list of attributes, potentially tree-structured, for example.
(red), (square), (red, square), or left-of((red, square), (blue, circle)). In the general case, we denote
the number of attributes in a hypothesis as natt, and the number of possible values for each attribute
as nval. For example, if each hypothesis consists of three specific shapes that must exist in an image,
then natt = 3. If there are 8 possible shapes, then nval = 8. We use ‘meaning space’,M, to denote
the space of all possible hypotheses. If natt is 3, and nval is 8, then |M| = 83.

2.2 METRICS

2.2.1 METRICS OF COMPOSITIONALITY

Brighton and Kirby (2006) proposed topological similarity for measuring the compositionality of
utterances, by comparison to a ground-truth description of the underlying concept. We denote
topological similarity as ρ, in line with the notation in Lazaridou et al. (2018). Given pairs of
hypotheses hi, hj and associated utterances, ûi, ûj ρ is the Spearman’s rank correlation between the
distances between pairs of hypotheses Dh(hi, hj), and the distances between the associated pairs of
utterances Du(ûi, ûj). For example, we would like the representation û for the hypothesis (big,red,
circle) to be more similar to (small, red, circle) than to (small, pink, square).

Holdout accuracy on unseen objects, accnew, can be seen as a measure of compositionality. In
training the agent could have seen red objects, square objects, but not red, square objects. If the
agents are using compositional communication, we expect them to generalize well to these novel
combinations. Note that whilst ρ depends only on the sender, accnew depends also on the receiver.

A recent metric of compositionality is TRE, which measures the extent to which an evaluation model
taking as input a ground truth concept can generate the emitted linguistic utterances, under certain
compositional constraints. We experiment with TRE in a later experiment in this work.

2.3 CLUSTERING METRICS

In the domain of clustering (Driver and Kroeber, 1932), given gold standard clusters and predicted
clusters, the quality of the clustering can be evaluated by calculating ‘precision’ and ‘recall’, e.g.
Haponchyk et al. (2018). For each predicted cluster, we assign the most frequent gold standard cluster
to it, and calculate precision as prec = 1

N

∑k̂
j=1 maxi |ci ∩ ĉj |. Cluster recall is correspondingly

rec = 1
N

∑k
j=1 maxi |ĉi ∩ cj |.

2.3.1 METRICS OF EXPRESSIVITY AND CONSISTENCY

The expressivity of a language is the extent to which a language can be used to represent different
meanings. Lazaridou et al. (2018) used the lexicon size as a measure of the ambiguity of emerged
languages. Higher lexicon size corresponds to higher expressivity. An issue with lexicon size is that
it is not normalized, and is difficult to compare across different meaning spaces.

Consistency of a language is the extent to which the same utterance is used to represent the same
underlying meaning. Dagan et al. (2020) used Jaccard Similarity, which is the ratio of the intersection
of two sets divided by their union.
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Table 1: Description of each task type in TEXREL, where C is space of available colors, S is space of
available textures, and P is space of available prepositions.

Task
type

Description natt

Coln Includes n objects of colors {Cc1 , . . . , Ccn}, where {c1, . . . , cn} are sampled for each
example

n

Texn Includes n objects of textures {Ss1 , . . . ,Ssn}, where {s1, . . . , sn} are sampled for
each example

n

TexColn Includes n objects having texture and color {(SS1 , Cc1), . . . , (Ssn , Ccn)}, where
{(s1, c1), . . . , (sn, cn)} are sampled for each example

2n

Rel Includes an object of texture and color (Ss1 , Cc1) positioned Pp1 relative to an object
of texture and color (Ss2 , Cc2), where (c1, s1, p1, c2, s2) are sampled for each example

5

2.4 EMERGENT COMMUNICATION OF RELATIONS

Andreas et al. (2018) presented a relations task, Shapeworld. A model receives four positive
example images of a hypothesis h, and must then predict whether a test image is an example
of the hypothesis. Andreas showed that by partitioning the model into a Sender and Receiver model,
with a linguistic bottleneck, the performance improved. Different from our work, the agents were not
trained end-to-end, but supervised, using English language annotations for the utterances u. Andreas
used a prototypical sender to embed the sender utterances, followed by an LSTM (Hochreiter and
Schmidhuber, 1997) decoder to generate u. The receiver used a second LSTM to embed u, and
formed the dot product of this embedding with an embedding of the test image.

Mu et al. (2020) showed that adding a linguistic bottleneck between two agents was un-necessary: it
was sufficient to use decoding the English language description of the hypothesis as an auxiliary loss.

In our own work, we seek to emerge a language between two agents, with no English language
supervision. This is a challenging exploration problem for the two agents.

3 OUR WORK

3.1 TEXREL DATASET FAMILY

We seek to construct a family of datasets to study the emergence of relations, that is sufficiently
lightweight to allow fast experimentation, whilst being large enough that agents do not overfit.

Table 1 shows the task types provided with TEXREL. These task types allow experimentation with
varying natt of the underlying meaning space. For example, Col3 has natt = 3, TexCol3 has
natt = 6, and Rel has a natt = 5 (nval is not constant across attributes for Rel). We carry out
experiments in later sections on the effect of natt on measured compositionality. C is the space of
available colors, where the colors are C = {C1, . . . , CNcolors

}. Similarly S is the space of textures,
and P is the space of prepositions. Because of symmetry, we include only two prepositions ‘above’
and ‘right-of’.

We wanted to avoid the agents taking short-cuts as much as possible. If negative examples are
sampled uniformly from the space of all possible examples, then only communicating a single
attribute might be sufficient to achieve reasonable accuracy. To mitigate this possibility, we keep all
negative examples ‘tight’ to the manifold of positive examples by constructing negative examples
from positive examples, in which we change just a single attribute.

Each image is associated with a ground truth label, True or False. In addition, for each example, we
provide an English language description of the underlying ground truth concept, and a tree-structured
representation, that could be used for example with TRE. Table 2 shows example annotations.

We added distractor objects to each image, to increase the size of the state space, and thus aim to
discourage the sender from simply sending the entire state.

For each task, we carve a holdout set of objects which are not presented at training time. Task-specific
details on holdout set construction can be found in the Appendix. Following the approach in Andreas
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Table 2: Examples of English language annotations made available with each TEXREL example.

Task English language annotation Tree-structured annotation

Col2 has-colors color1 color5 (’has-colors’, (’color1’, ’color5’))
Tex2 has-shapes shape2 shape4 (’has-shapes’, (’shape2’, ’shape4’))
TexCol2 has-shapecolors color4 shape1 color5

shape7
(’has-shapecolors’, ((’color4’, ’shape1’), (’color5’,
’shape7’)))

Rel color0 shape6 above color1 shape6 (’above’, ((’color0’, ’shape6’), (’color1’, ’shape6’)))

et al. (2018), we name the eval datasets using the training objects ‘val_same’ and ‘test_same’, and
the eval datasets using the holdout objects ‘val_new’ and ‘test_new’. Given the scarcity of objects in
the holdout set for some task types, we draw distractors for ‘val_new’ and ‘test_new‘ from the union
of the training and holdout objects.

For each task, we create a training dataset of 100,000 examples. Each example comprises 128 labeled
sender images, and 128 labeled receiver images. For each set of 128 labeled images, 64 are positive
examples of the underlying concept. Each evaluation set has 1024 examples.

3.2 METRICS

3.2.1 CLUSTER PRECISION AND RECALL FOR MEASURING EXPRESSIVITY AND CONSISTENCY

We propose to use cluster precision to measure language expressivity, and cluster recall to measure
language consistency. For each example, the cluster gold label is taken to be the underlying hypothesis
h, and the cluster predicted label is the generated utterance û. Then, if many hypotheses map to
just a few utterances, cluster precision will be low, corresponding to low expressivity. Similarly, if a
single hypothesis maps to multiple utterances, then cluster recall will be low, corresponding to low
consistency. Compared to lexicon size, cluster precision is normalized, and can be compared across
different meaning spaces.

3.2.2 PTRE

TRE (Andreas, 2019) measures compositionality by minimizing the discrepancy between a composi-
tion function of the hypotheses, and the generated utterances. When this discrepancy is near zero, the
generated utterances are assumed to be compositional. However, languages with low expressivity,
having many hypotheses mapping to the same utterance, can be easily fitted by any model, even in
the absence of any underlying compositionality. Thus, TRE will report high compositionality for
non-compositional, low expressivity languages.

We propose to correct for this issue by dividing TRE by cluster precision, and denote the resulting
metric by PTRE.

4 RELATED WORK

Our work relates primarily to Shapeworld, Andreas et al. (2018), which is a dataset of images
depicting relations between colored shapes. By comparison with Shapeworld, our work provides
a significant larger dataset, and uses textures rather than solid filled shapes, which believe allows
convolutional networks to learn faster on TEXREL, and thus allows faster experimentation.

Other datasets containing relations include CLEVR (Johnson et al., 2017) and CUB-200 (Welinder
et al., 2010). CLEVR is a dataset of high-resolution 3-dimensional images, created using the Blender
application (Blender Foundation, 2002); along with english language annotations. By comparison
with our work, CLEVR images are more aesthetically pleasing, however might require significantly
longer training time. Note that CLEVR does incorporate some notion of texture, since objects can
be either shiny metal, or matte rubber. CLEVR comprises 100,000 images, along with around 1
million associated questions. TEXREL contains 100k examples, each having 256 images, for a total
of 2.5 million images: significantly larger. CLEVR targets the visual question-answering (‘VQA’)
setting, and does not clearly map to usage in emergent communications. We experimented with using
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Figure 3: Detailed architecture for sender and receiver models

the CLEVR code to create a dataset for emergent communication, but found that the ray-tracing
generation process is relatively slow; and the resulting images are large, and slow to train on.

CUB-200 (Welinder et al., 2010) is a dataset of photos of birds, comprising 40-60 images for each of
200 species of birds, along with English language annotations. CUB200 along with the annotations
from Reed et al. (2016) was used for example in Mu et al. (2020), where it was used as a meta-
learning task. The ground truth annotations are only available in free-form text, which limits the use
of compositional metrics, such as ρ, in an emergent communication setting. The dataset is relatively
small, and agents in an emergent communication setting might overfit to training examples. Lastly,
the images are photos, so convolutional networks might need considerable training time in order to
form effective representations.

Our work relates to the SHAPES dataset (Andreas et al., 2016). SHAPES dataset is similar to the
Shapeworld dataset, in that it provides images of solid filled colored shapes. Like CLEVR, SHAPES
targets the VQA setting. The SHAPES dataset comprises 64 training images, along with 244 unique
questions. By comparison with TEXREL, the entire SHAPES training dataset contains four times
fewer images than a single training example from TEXREL. Dagan et al. (2020) used a modified
version of the SHAPES dataset, with 80k training examples. However, each example comprised a
single colored shape, without distractor objects, so the task was relatively simpler than our own tasks.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

All results are the mean over 5 runs, unless otherwise indicated. Each run used an NVIDIA 2080Ti
GPU. Where early stopping was used, we set the patience to 10, and evaluated accval_same set every
300 steps. Batch size was 32, unless otherwise indicated. For the emergent communication linguistic
representations, we use a vocab size of 21, and an utterance length of 10. We use L1-distance when
calculating ρ.

Code and data will be made available at 1.

5.1.1 ARCHITECTURE

Figure 3 shows the architecture of the sender and receiver agents. The sender agent uses a convo-
lutional neural network, ‘conv4’ (Snell et al., 2017), to embed each of the images in Xtrn. The
‘image sequence embedder’ takes the sequence of embedded images {e1, . . . , emtrn

}, along with
labels {ytrn,1, . . . , ytrn,mtrn

} and embeds them into a single embedding es. A GRU decoder (Cho
et al., 2014) decodes es into a linguistic utterance, û. The receiver agent uses a second GRU to
embed û into er, then uses multi-modal fusion to output predictions Ŷtst = {ŷtst,1, . . . , ŷtst,mtst

}
for test images Xtst = {xtst,1, . . . , xtst,mtst

}, based on er. We use a prototypical sender as the
image seq embedder, es =

∑mtrn

i=1 1[ytrn,i] · ei (Andreas et al., 2018), where 1(·) is an indicator
function. Following Andreas et al. (2018), we use cosine similarity as the multi-modal fusion,
ŷtst,i = σ(eTr · conv4(xtst,i)), where σ is the sigmoid function.

6



Under review as a conference paper at ICLR 2022

Table 3: Image sequence embedder architectures

Image sequence em-
bedder

Description

RNNOverCNN Encode the images using a convolutional neural network (CNN, LeCun et al. (1989),
then pass through a residual neural network (RNN, Hopfield (1982))

ConvLSTM LSTM built from convolutions instead of projections (Shi et al., 2015)
Stack Stack the planes of all images together (each image comprises red/green/blue planes),

then pass through a CNN
MaxCNN Pass each image through a CNN, max pool
AvgCNN Pass each image through a CNN, average pool
Prot ‘Prototypical’: Pass positive images through a CNN, take mean (Andreas et al.,

2018)

Table 4: Comparison of effect of sender architectures on acctest_new using Relations task of TEXREL
dataset, with 2 distractors. All runs are for 5 minutes. Each result is the mean over 5 runs.

Task RNNOverCNN ConvLSTM Stack MaxCNN AvgCNN Prot

Rels 0.22 0.25 0.84 0.50 0.58 0.78

5.2 SEARCH FOR EFFECTIVE SENDER AND RECEIVER ARCHITECTURES

We used TEXREL to search for effective Sender and Receiver agent architectures for emergent
communication. Due to space constraints, we present results only for the Sender agent. Results
for the Receiver agent can be found in the Appendix. For the Sender agent, the image sequence
embedders we tested are described in Table 3. When using the Prot sender model, only positively
labeled images were used. For other Sender models, the labels were introduced by adding an
additional feature plane to each image, either all 1s, or all 0s, according to y.

5.2.1 SUPERVISED TRAINING OF SENDER MODELS

We trained each model supervised, given ground truth English utterances {u1, . . . , untrn
}, along

with Xtrn and Ytrn. We trained each model for 5 minutes elapsed, because we were optimizing for
models which train quickly. We used the Relations task from TEXREL, with 2 distractors.

Table 4 shows the results. Due to space constraints, we present only acctest_new, and only for the
Relations task. Interestingly, the simplest models, StackedInputs and PrototypicalSender, did better
than more complex models, such as RNNOverCNN and ConvLSTM. This is perhaps because we
were optimizing for training time. Similarly, Prot did better than AvgCNN, even though Prot discards
images for which ytrn = 0.

5.2.2 END TO END TRAINING

We retained some of the best models from the supervised Sender training, and paired them with
Receiver models, then trained end-to-end, using early stopping on accval_same. Due to space
constraints, we present results only for the Cosine receiver model here. Additional results can be
found in the Appendix. We sampled utterances û from the Gumbel distribution (Jang et al., 2017),
parameterized by the output from the Sender model. We used the Relations task.

Table 5: Comparison on end-to-end architectures. Results are evaluated using test_new. Time is in
minutes. Each result is mean over 5 runs.

Sender Receiver Steps Time acc ρ prec rec

Stacked Cosine 16k 36 0.65 0.16 0.05 0.69
Prot Cosine 17k 40 0.63 0.15 0.05 0.81

1url provided at publication; zip file of code submitted as addendum
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Table 5 shows the results. Stack performed slightly better than Prot, when paired with CosineReceiver.
However, Prot performed almost on par. The results align with the choice of Andreas et al. (2018) to
use a Prot sender and a Cosine Receiver.

5.3 COMPARISON WITH SHAPEWORLD DATASET

Table 6: Comparison between TEXREL and ShapeWorld datasets for an emergent communication
scenario. ‘LSL’ code means the modified L3 implementation provided with the LSL paper. ‘Shape-
world+aug’ dataset denotes Shapeworld dataset with data augmentation. Each result is mean over 5
runs.

train test_same testnew

Code Dataset acc acc ρ prec rec acc ρ prec rec

LSL Shapeworld 0.62 0.50 0.50
LSL Shapeworld+aug 0.47 0.50 0.50
ours Shapeworld 0.57 0.51 0.01 0.01 0.7 0.52 0.01 0.01 0.6
ours TEXREL 0.68 0.67 0.08 0.03 0.99 0.63 0.15 0.05 0.81

We compare TEXREL to the Shapeworld relations dataset. We evaluate Shapeworld using two
codebases: a modified version of the implementation of ‘Learning with Latent Language’ (‘L3’,
Andreas et al. (2018)) provided with ‘Learning with Shaped Language’ (‘LSL’, Mu et al. (2020)); and
our own codebase. In LSL and L3, the linguistic utterance is used as a supervisory signal during the
training, based on English language annotations. In emergent communication, no such supervision is
provided: the agents emerge their own language. We thus modified the LSL code to enable end-to-end
learning, without supervised pre-training. The LSL code-base also adds data augmentation, which
negatively samples data from other concepts. We disabled this by default. The LSL codebase uses
soft sampling at training time for the intermediate latent utterances. In our own codebase we used
Gumbel sampling. Other training hyper-parameters remained the same. When using TEXREL dataset,
we chose the Relations task, with 2 distractors.

Figure 6 shows the results. When training end-to-end, in an emergent communication scenario,
the agents failed to learn to co-ordinate when using Shapeworld dataset: both acctest_same and
acctest_new were at chance, 0.50. However, using TEXREL, whilst the task remained challenging,
with acctest_new = 0.63, the agents did learn to co-ordinate, and ρ reached 0.15, showing the
beginnings of compositional communication.

5.4 EFFECT OF SIZE OF MEANING SPACE ON METRICS OF COMPOSITIONALITY
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Figure 4: Experiments on varying size of meaning spaceM, using TEXREL Texture datasets. Shaded
areas are 95% confidence intervals, over 5 seeds.

We hypothesized that increasing the number of attributes, natt, would increase compositionality, and
thus increase ρ. To test this, we used the TEXREL Texture datasets, and varied both the number of
textures in the hypothesis, natt, and the number of available textures, nval. Each training run was for
5k training steps.

Figure 4 shows the results. Surprisingly, we found that ρ actually decreased with natt and nval.
We hypothesize that this is an artifact of the way that ρ is calculated. Take the case of a single
entity. No compositionality is possible, since there is only a single concept to represent. Indeed
acctest_new is consistently at chance, aligned with compositional generalization being impossible for
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Figure 5: Experiments on TRE based on Andreas (2019) section 7, using TEXREL. errgen means
generalization error. Each run is for 5k training steps. Each point represents the result of a single run.

natt = 1. ρ is the Spearman’s rank correlation between the distances between pairs of utterances,
and the distances between corresponding ground-truth concept labels. For a single entity, the distance
between ground-truth concept labels ∈ {0, 1}. However, the distances between pairs of utterances
will vary. Thus, as we increase nval, the Spearman’s rank correlation will fall, and ρ will decrease.
That ρ changes for a non-compositional scenario suggests there could be an opportunity to introduce
a new compositional metric, e.g. by an appropriate normalization of ρ.

Looking at accval_new, we can see that increasing nval did in fact improve accval_new, in line with
our hypothesis that increasing nval will increase compositionality.

5.5 REPRODUCTION OF TRE SECTION 7 EXPERIMENTS USING NON-SYMBOLIC INPUT

As an example of using TEXREL to run experiments using symbolic data to use non-symbolic data, we
reproduce experiments from section 7 of Andreas (2019). We target the experiments that investigate
the relationship between compositionality and generalization. Figure 5 (a) shows the relationship
between TRE and generalization error, for 100 runs using a Relations dataset from TEXREL. Note
that low TRE is a measure of high compositionality. We can see that generalization error decreases
with lower TRE, that is with increased compositionality, which goes against conventional wisdom, e.g.
Kottur et al. (2017) or Lazaridou et al. (2018), but aligns with Andreas’s results. These experiments
ran in 17 hours, on a single 2080Ti GPU. Therefore the compact size of the images in TEXREL
allows for rapid, low-cost experimentation on non-symbolic image inputs.

We were interested by the negative correlation between generalization error and compositionality.
From Figure 5 (b), we note that TRE decreases with decreasing cluster precision, i.e. with less
expressive languages. We hypothesize that expressivity is a confounding factor. We added a correction
to TRE, by dividing by cluster precision, to form PTRE. Figure 5 (c) shows the relationship between
PTRE and generation error. Generalization error in fact increases with decreasing PTRE. Thus,
the finding that generalization increases with compositionality could be an artifact of a reduction in
expressivity. We leave further investigation of the relationship between TRE, PTRE, and underlying
ground-truth compositionality to future work.

6 CONCLUSION

We have presented TEXREL a dataset targeted at fast, green experimentation for emergent communi-
cation. TEXREL provides a number of challenging tasks, such as relations learning. We showed that
TEXREL compares favorably with existing relations datasets, and experimented with using TEXREL
on a number of tasks related to emergent communication. We hope that TEXREL can provide a
helpful experimental playground that is an alternative to using symbolic data, and that allows for fast,
green experimentation on emergent communications.

7 REPRODUCIBILITY

Full code is provided in the addendum, along with instructions in the README.md. Full code will
be published to github following acceptance. The datasets can be created from scratch, using the
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provided code. In addition, a link to download the data from Google Drive has been provided in the
README.md.

Each experiment scenario was run multiple times, except where noted (eg experiments on TRE
section 7); and the mean reported. 95% confidence interval (CI95) was provided where space allowed,
e.g by adding shading to graphs.

8 ETHICS

This work does not involve human subjects. It contains no obviously harmful insights, methodologies
or applications. There are no obvious conflicts of interest or sponsorship to note. There are no obvious
discrimination/bias/fairness concerns to report. There are no obvious issues with privacy, security, or
legal compliance. All data provided was artificially generated, and does not present privacy or other
issues. We have done our due diligence to ensure the integrity and reproducibility of our research.
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Table 7: Holdout approach by task type.

Task type Holdout approach

Coln Set aside several colors
Texn Set aside several textures
TexColn Set aside several pairs of colors and textures
Rel Set aside several pairs of colors and textures

APPENDICES

.1 HOLDOUT SETS

Table 7 describes the task-specific holdout set construction approaches.

.2 RECEIVER MODEL SEARCH

Table 8: Multi-modal fusion architectures

Multi-modal fusion Description

Concat Concatenate encoded utterance and encoded image, then project,
e.g. Misra et al. (2017)

Cosine Dot product of encoded utterance and encoded image, eg Lazaridou
et al. (2018)

GatedAtt Image is encoded using a convolutional neural network (CNN,
e.g. LeCun et al. (1989). Encoded utterance is used as attention
(Bahdanau et al., 2015) over the output planes of the CNN output
(Chaplot et al., 2018)

AllPlaneAtt Encoded utterance is used to give attention over feature planes of
all layers of the CNN, not just the output of the final layer

Configurable Convolution Kernel
(‘CCK’)

Encode utterance, use as weights in convolutional network (Chen
et al., 2015)

Table 8 depicts the Receiver models we searched over. Note that in the general case, the convolutional
network cannot be factorized out of the multi-modal fusion. For example, for CCK, the encoded utter-
ance is used as the weights for the convolutional network, and this comprises the entire entanglement
between the encoded utterance and the receiver images.

Table 9 shows the results for supervised training of the Receiver models in isolation, using English
language utterances u. The task is Relations.

Table 10 shows the results for end to end training of pairs of Sender and Receiver agents. The task is
Relations. We sample each predicted utterance û from the Gumbel distribution, parameterized by the
output of the Sender model.

12



Under review as a conference paper at ICLR 2022

Table 9: Comparison of effect of receiver architectures on acctest_test and acctest_new using TEXREL
dataset. ‘coln’ is Colors task, where n is the number of entities; ‘shpn’ is Shapes task, ‘scn’ is
shapes-colors task, and ‘rels’ is Relations task. In all cases, two distractor objects are added to each
image. All runs are for 5 minutes. Each result is the mean over 5 runs.

(a) Effect of receiver architecture on acctest_same.

Receiver architecture col1 col2 col3 shp1 shp2 shp3 sc1 sc2 sc3 rels

Concat 0.61 0.50 0.51 0.60 0.53 0.51 0.50 0.50 0.50 0.50
Cosine 1.00 1.00 1.00 0.96 0.99 1.00 0.98 0.84 0.75 0.84
GatedAtt 0.99 1.00 1.00 1.00 1.00 0.98 0.98 0.84 0.73 0.78
AllPlaneAtt 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 0.83 1.00
CCK 0.56 0.52 0.50 0.50 0.51 0.50 0.50 0.50 0.50 0.50

(b) acctest_same

(c) Effect of receiver architecture on acctest_new.

Receiver architecture col1 col2 col3 shp1 shp2 shp3 sc1 sc2 sc3 rels

Concat 0.38 0.46 0.47 0.36 0.42 0.45 0.49 0.50 0.50 0.50
Cosine 0.38 0.99 0.97 0.41 0.83 0.96 0.80 0.74 0.71 0.74
GatedAtt 0.40 0.96 0.97 0.37 0.87 0.94 0.84 0.74 0.67 0.72
AllPlaneAtt 0.50 0.83 0.98 0.50 0.78 0.99 0.95 0.92 0.70 0.98
CCK 0.58 0.49 0.52 0.50 0.52 0.50 0.50 0.50 0.50 0.51

(d) acctest_new

Table 10: Comparison on end-to-end architectures. Each result is mean over 5 runs. Utterances are
sampled from Gumbel distributions. The underlying task is Relations. Early stopping on accval_same

Time test_new
Sender Receiver Steps (mins) acc ρ prec rec

StackedInputs AllPlaneAtt 3k 11 0.53 0.04 0.04 0.63
StackedInputs Cosine 16k 36 0.65 0.16 0.05 0.69
StackedInputs FeatPlaneAtt 14k 30 0.60 0.10 0.04 0.67
Prototypical AllPlaneAtt 11k 30 0.57 0.11 0.04 0.80
Prototypical Cosine 17k 40 0.63 0.15 0.05 0.81
Prototypical FeatPlaneAtt 17k 40 0.60 0.13 0.05 0.77
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