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Facial recognition for surveillance applications still remains challenging in uncontrolled environments, especially
with the appearances ofmasks/veils anddifferent ethnicities effects.Multimodal facial biometrics recognition be-
comes one of the major studies to overcome such scenarios. However, to cooperate with multimodal facial bio-
metrics, many existing deep learning networks rely on feature concatenation or weight combination to construct
a representation layer to perform its desired recognition task. This concatenation is often inefficient, as it does not
effectively cooperate with the multimodal data to improve on recognition performance. Therefore, this paper
proposes usingmulti-feature fusion layers formultimodal facial biometrics, thereby leading to significant and in-
formative data learning in dual-stream convolutional neural networks. Specifically, this network consists of two
progressive parts with distinct fusion strategies to aggregate RGB data and texture descriptors formultimodal fa-
cial biometrics. We demonstrate that the proposed network offers a discriminative feature representation and
benefits from the multi-feature fusion layers for an accuracy-performance gain. We also introduce and share a
new dataset formultimodal facial biometric data, namely the Ethnic-facial dataset for benchmarking. In addition,
four publicly accessible datasets, namely AR, FaceScrub, IMDB_WIKI, and YouTube Face datasets are used to eval-
uate the proposed network. Through our experimental analysis, the proposed network outperformed several
competing networks on these datasets for both recognition and verification tasks.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, many studies have applied multimodal biometric
recognition to produce much-improved recognition performance
using advanced algorithms for a surveillance camera, identity authenti-
cation, border control, etc. [1–4]. In amultimodal setting, usingmultiple
modalities of the biometric data to build various representation creates
more challenges. To overcome such scenarios, deep learning has intro-
duced an impressive ability to learn high-dimensional and complex
data in the visual domain [5]. This yields a more vibrant feature repre-
sentation result that could be used to enhance the performance of
recognition.

This paper studies the limitations of face recognition in surveillance
through multimodal facial biometrics recognition by focusing on the
face and periocular modalities. The first question is raised here, “Why
do we choose the face and periocular modalities?” Note that most sur-
veillances are image-based applications. Several studies have proven
that the easiest and fastest ways to extract the biometric modalities
from the camera are either through the face, periocular or gait [6–8].
Furthermore, most of the surveillance cameras fail to identify the crim-
inal suspects due to appearance occlusions such as wearing masks, cov-
ering their faces with scarfs, ethnic groups effects, cosmetic products,
etc. [9–11]. For all these reasons, this motivates us to add the periocular
as an additional feature in enhancing the performance of recognition.

The next concern is, “How can we present multimodal biometric
data into a deep learning network?” A good deep multimodal learning
network must satisfy certain properties such that it should be easy to
obtain even in the presence of the hidden information in severalmodal-
ities. In otherwords, useful representations can be learned through such
data by fusing the modalities into a joint feature representation, which
captures the correlations of the data that it corresponds to. This perhaps
increases the interest of deepmultimodal learning in the biometrics and
computer vision communities [12,13].

In this paper, we attempt to address the challenges of surveillance in
uncontrolled environments, especially for the ethnicities effect, which
remains not well-addressed by the current works [10,14–16]. Thus,
we study this problem by means of implementing multi-feature fusion
layers in two independent dual-stream Convolutional Neural Networks
(CNNs), which accepts the multimodal biometric data (face and
periocular regions). Both dual-stream CNNs aggregate the RGB data
and texture descriptors to support efficient feature learning. The
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proposed fusion layers are designed to incorporate the multimodal in-
puts by strengthening the feature representations in the networks and
improving the recognition performance.

1.1. Related works

For deep multimodal learning, several studies have been considered
in the literature [12,17], whereby it highlights the importance of a fu-
sion algorithm. Early studies conducted by Srivastava & Salakhutdinov
[18] and Zagoruyko & Komodakis [19] proposed several representations
that fused across fusion layers during training. Other similar studies
done by Kahou et al. [20], Liu et al. [21], Simonovsky et al. [22], and
Zhang et al. [23] have demonstrated deep multimodal learning net-
works with a simple fusion approach, where the prior knowledge is
exploited to merge discriminant representations from multimodal
data. However, these networks are less robust under “in-the-wild” var-
iations such as low-resolution or occlusions. This is because all the net-
works are only applied feature concatenation to represent biometrics
features, which could not perform robust learning hierarchical repre-
sentations across late-fusion layers and were unable to be abstracted
into discriminating features at various levels.

Another study related to image correlation was presented by
Feichtenhofer et al. [24] and Hu et al. [25] proposed a fusion strategy
at different stageswithin a deep learning architecture. Hu et al. [25] sug-
gested that fusion approaches at the feature stage that can improve per-
formance, while Feichtenhofer et al. [24] identified that implemented
fusion approaches at the convolutional (conv) layers that can extract
more discriminative information for complex data learning. However,
these networks were found to underperform when temporal images
contained too much noise or low-resolution images that could cause
misalignments in extracting the features.

Presently, Soleymani et al. [26] introduced a multi-level abstraction
fusion CNN, where the face, fingerprint, and iris features are fused at
the fully-connected (fc) layer. Its fusion layer is designed to concatenate
or merge at different levels of the fc layers as a multi-feature represen-
tation with RGB data. This approach leveraged several biometrics mo-
dalities whereby all of them may not always be available such as
having a mask-wearing face or an iris far from camera distance. In addi-
tion, such multimodal biometrics applications may jeopardize the us-
ability of the system such as fingerprint and iris modalities that are
required for stable cooperation from the individuals.

In the previous works of deep learning networks that consume text
descriptor, Levi et al. [27] and Anwer et al. [28] established the use of a
text descriptor as an input to their networks for classification. The au-
thors demonstrated that texture descriptors are beneficial to train the
network. The previous works motivate us to investigate and analyze
the impact of RGB data and texture descriptors with network fusion
layers for presenting multimodal data within a deep multimodal learn-
ing network.

1.2. Motivation and contributions

Currently, the challenges of face recognition technology for surveil-
lance are still concerned about the “in-the-wild” environments and eth-
nic groups effects, such as differences in appearances, cameras location,
level of illuminations, plastic surgery, and others [7,29]. Especially after
the “Boston Marathon bombings”, migration issues, and the recent ter-
ror attacks in Paris and Brussels, the security experts and the police de-
partments in Europe and the U.S. have agreed that face recognition
technology is still possesses remaining challenges, such as the appear-
ances of subjects wearing masks, covered by scarf/veil, and low-
resolution camera [10,30,31].

This paper offers a solution for thementioned challenges in face rec-
ognition by investigating several fusion strategies in the proposed net-
works. We firstly propose two independent networks with several
network fusion layers to exploit the different features among the RGB
data and texture descriptors in order to represent the multimodal data
for recognition. Specifically, the proposed network for face modality,
named as the Multi-Fusion Layers Network (MFLN), performs early fu-
sion layers at the first block of conv layers by correlating the RGB data
and texture descriptors, offering robust activation vector for complex
data learning. On theother hand, another network for periocularmodal-
ity, named as the Multi-feature Deep Layer Network (MDLN), performs
late-feature fusion layers at the fc layers to offer better latent space fea-
tures and exploit discriminatory information for robust feature learning.

To validate our network, a new multimodal dataset that contains
face and periocular modalities is introduced, namely the Ethnic-facial
dataset. Our dataset is designed based on five ethnic groups: African,
Asian, Latin American, Middle Eastern, and Caucasian. The dataset is cre-
ated such a way to avoid any unbalanced selections and there are
huge differences between the shape and skin texture of the periocular
region for each ethnic group [32].

Thus, the contributions of this paper are summarized as follows:

• Various multi-feature fusion layers across two independent dual-
streamCNNs are introduced in this paper. The role of the fusion layers
is to aggregate the RGB data and texture descriptors for complex data
learning. Hence, both networks are benefiting from these features to
deliver better accuracy performance.

• Aweighted rank strategy is introduced to handle themultimodal bio-
metrics features from two independent networks for better recogni-
tion performance. This approach incorporates the rank-K scores
fusion effectively with the multimodal biometrics to formulate better
decisions.

• A new multimodal facial biometrics dataset with face and periocular
modalities, namely the Ethnic-facial dataset, is created and shared in
[33]. The images were collected across large-scaled variations such
as different ethnicities, appearances, locations, uncontrolled subject-
camera distances, etc. The dataset includes training and testing
schemes for the performance analysis and evaluation of recognition
and verification tasks.

This paper is organized as follows: Section 2 describes the proposed
networks with different distinct fusion strategies. The detailed dataset
information is presented in Section 3. Section 4 discusses the experi-
mental results and analysis. A conclusion is summarized in Section 5.

2. Proposed network

We propose two independent dual-stream CNNs with multimodal
facial biometrics using the face and periocular modalities with multi-
feature fusion layers. Both networks conceive the RGB data and texture
descriptors as first and second streams, respectively. The networks are
explained in detailed in the subsections.

2.1. Texture descriptors

RGB data along with texture descriptor are deployed as dual-stream
inputs to form better feature representations to train the proposed net-
works. We utilize spatial information to capture edge appearance infor-
mation by using RGB data and texture information to capture geometry
surface information using the descriptors. This eliminates confounding
factors and emphasizes the network's efforts on variations, such as illu-
mination and occlusions. Thus, the proposed networks can compensate
for hidden information in the multi-feature fusion layers using the
observed data to represent them efficiently during training.

In our experiments, we only study on the Entropy texture and the
Histogram of Oriented Gradients (HOG), which are well-known to re-
duce the sensitivity of image noise and levels of illumination as both de-
scriptors create better texture information in representing objects. The
descriptors are summarized as follows.



Table 1
Configuration of each layer for MDLN. The fc layers are added with the ReLu layers.

Layer Configuration

conv1, conv2 f.m.a: 64 × 50 × 150; kb: 3 × 3; maxpool: 2 × 2
conv3, conv4 f.m.: 128 × 25 × 75; k: 3 × 3
conv5, conv6 f.m.: 128 × 25 × 75; k: 3 × 3; maxpool: 2 × 2
conv7, conv8 f.m.: 256 × 12 × 37; k: 3 × 3
conv9, conv10 f.m.: 256 × 12 × 37; k: 3 × 3; maxpool: 2 × 2
conv11, conv12 f.m.: 512 × 6 × 18; k: 3 × 3
conv13, conv14 f.m.: 512 × 6 × 18; k: 3 × 3; maxpool: 2 × 2
FC1, FC2 4096
Fuseavg, Fusemax 4096
ϕp,1, ϕp,2 C

a f.m. is defined as the dimension of feature maps.
b k is defined as filter size.
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2.1.1. Entropy
The Entropy texturewas designed as a statisticalmeasurement in in-

formation theory [34]. This technique can be used to characterize uncer-
tainty factors across the complementary information of an image.
A descriptor is applied to target the difference between the neighboring
pixel regions from a given image bymaximizing the local context of the
various images, including low-resolution and illumination.

2.1.2. HOG
HOG is a well-known descriptor to represent gradient orientations

in a regular area of an image, which was introduced by Dalal and Triggs
[35] for object detection. The appearance of a given image can be char-
acterized by the distribution of intensity gradients and edge directions.
We follow the implementation of Dalal and Triggs [35] to construct the
HOG descriptor by using a cell size of 5 × 5with 9-bin histograms, and a
block is configured by grouping the 2 × 2 cells.

2.2. Multi-feature fusion layers and dual-stream CNNs

We propose two independent networks, known asMDLN andMFLN
for handling different biometric features. Furthermore, both networks
are built upon dual-stream CNNs with different multifeature fusion
layers. Fig. 1 illustrates the overall architecture of our networks, which
are explained in detailed as follows.

2.2.1. Architecture of MDLN
MDLN is designed to extract feature representations of a periocular

modality. This is because the periocular modality itself contains com-
plex information. To be more explicit, MDLN is focusing on late-
feature fusion representations, where it takes place at the fc layers.
The advantage is that the proposed feature fusion layers are devised to
strengthen the feature activations of the network.

As shown in Fig. 1, the architecture of MDLN consists of 14 conv
layers and 8max-pooling (maxpool) layers. The conv layers are designed
to learn the correspondence between the RGB data and texture
Fig. 1. The architecture of t
descriptors of the periocular region and discriminate between them-
selves with the shared weights. Table 1 tabulates the architecture of
the network.

We proposed two fusion layers, namely Fuseavg and Fusemax, to ag-
gregate the periocular information from RGB data and texture descrip-
tor (D), as shown in Fig. 1. The Fuseavg takes an average of activation
from the FC1 and FC2 with N nodes (N = 4096). The layer is defined as
follows:

Fuseavg ¼ FC1 þ FC2½ �1=2; ð1Þ

where FC∗ =wT ⋅ F∗ + b and ∗ ∈ {1,2}.wT is defined as weight matrix, b
is defined as the bias matrix, and F∗ is defined as the activation vectors
from different input streams. On the other hand, Fusemax layer takes a
larger activation from the FC1 and FC2 with N nodes (N = 4096). The
layer can be represented as:

Fusemax ¼ max FC1 nð Þ þ FC2 nð Þ½ �; ð2Þ

where n is defined as the index of N nodes.
he proposed network.
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A total loss function is implemented for training, which is composed
of a summation of cross-entropy of logit vector of FCavg and FCmax. The
encoded labels for the loss function are utilized such that:

totalloss ¼ L FCavg
� �þ L FCmaxð Þ; ð3Þ

ℒ FC�ð Þ ¼ −
XA
i

XC
j

Lij log S FC�ð Þij
� �

; ð4Þ

where ∗ ∈ {avg,max}. L, A, and C denote class labels, the number of train-
ing sample, and the number of classes, respectively. S(⋅) is defined as
softmax function.

2.2.2. Architecture of MFLN
MFLN focuses on conv fusion to extract the hidden information be-

tween the featuremaps in the earlier block of conv layers. To be specific,
MFLN performs early fusion at the conv1 and conv2 layers to aggregate
the RGB data and texture descriptors from the face images in order to
offer robust feature activations and to complement information for
complex data learning.

The architecture of MFLN consists of 14 conv layers, 2 conv fusion
layers, and 8 maxpool layers. The conv fusion layers are designed to ex-
tract better feature representations across several conv layers so that the
network learns the correspondence between the inputs (RGB data and
texture descriptors of the face) robustly and discriminate between
themselves with the shared weights. Table 2 summarizes the entire
architecture and configurations of MFLN.

Two conv fusion layers, namely convavg and convmax, are proposed
to aggregate the face features from the RGB images and texture de-
scriptor, as shown in Fig. 1. The convavg layer computes the average
of activation of the feature maps from the conv1 and conv2 to employ
the arbitrary correspondence to its best effect. Let us denote the layer
as follows:

convavg ¼ wT conv1 þ conv2ð Þ1=2 � K
h i

þ b; ð5Þ

whereK is defined as the filter matrix. The rest of the variables' descrip-
tion is similar in Eq. (1). On the other hands, the convmax layer takes the
largest activations in the feature maps of the earlier conv layers to em-
ploy the arbitrary correspondence by extracting each feature activation
at the prior layer. The layer can be represented as:

convmax ¼ wT H � K½ � þ b; ð6Þ

where H = maxe[conv1(m),conv2(m)] and maxe[⋅] denotes a function
thatfinds themaximumelement-wise values between the featuremaps
of conv1 and conv2. The rest of the variables' description is similar in
Eq. (5). For training, we also implement a total loss function that com-
posed of summation of cross-entropy of logit vector of FC3 and FC4 based
on Eqs. (3) and (4).
Table 2
Configuration of the MFLN. The fc layers are added with the ReLu layers.

Layer Configuration

conv1, conv2 f.m.: 64 × 128 × 128; k: 3 × 3
convavg, convmax f.m.: 64 × 128 × 128; k: 3 × 3; maxpool: 2 × 2
conv3, conv4 f.m.: 128 × 64 × 64; k: 3 × 3
conv5, conv6 f.m.: 128 × 64 × 64; k: 3 × 3; maxpool: 2 × 2
conv7, conv8 f.m.: 256 × 32 × 32; k: 3 × 3
conv9, conv10 f.m.: 256 × 32 × 32; k: 3 × 3; maxpool: 2 × 2
conv11, conv12 f.m.: 512 × 16 × 16; k: 3 × 3
conv13, conv14 f.m.: 512 × 16 × 16; k: 3 × 3; maxpool: 2 × 2
FC1, FC2 4096
FC3, FC4 4096
ϕf,1, ϕf,2 C
2.2.3. Weighted voting layer
We propose a weighted voting layer to merge the distance scores

from the softmax vectors for decision-making. Let ϕ∗, 1 = softmax(FC)
and ϕ∗, 2 = softmax(FC) be the softmax vectors of the last latent fea-
tures. Since our network is trained with face and periocular modali-
ties, we differentiate the softmax vector ϕf as face and ϕp as
periocular. Each individual ϕ⁎ contains ϕf and ϕp as the sum of its cor-
responding ϕ∗ = ϕ∗, 1 + ϕ∗, 2.

We evaluate the proposed network through two common tasks:
recognition and verification. To recognize an unknown identity, the
testing data are divided into a gallery and probe set. The gallery set
of each individual is composed of his/her softmax vectors as ϕj

G =
{ϕj, f

G ,ϕj, p
G }, where j = 1, 2, 3, …, C and the probe set is represented

as ϕU = {ϕf
U,ϕp

U}. Then, we compute a weighted voting strategy ω
with sum rule and rank-K function as follows:

ω ϕU ;ϕG
j

� �
¼ rankK ϕU

f ;ϕ
G
j; f

� �
þ rankK ϕU

p ;ϕ
G
j;p

� �
ð7Þ

where rankK(⋅) denotes a function that sums up the top-K highest co-
sine similarity distance between the probe set and each subject of the
gallery set. Finally, the recognition δ is defined as follows:

δ ¼ max
j

ω ϕU ;ϕG
j

� �h i
: ð8Þ

A verification protocol refers to the process of verifying an individu-
al's identity that is claimed as either a genuine or an impostor. Let ϕU =
{ϕf

R,ϕp
R} as the reference set and ϕQ = {ϕf

Q,ϕp
Q} as the query set, to verify

ϕQ is genuine or impostor, ν is decided by using Eq. (7) as follows:

ν ¼
1; ω ϕU ;ϕG

j

� �
≤ t

0; ω ϕU ;ϕG
j

� �
b t

8<
: ; ð9Þ

where t is defined as the dependence threshold value.

3. Ethnic-facial dataset

We propose this new dataset to support a balanced collection of
multimodal facial biometrics images among different ethnicities. In ad-
dition, we also ensured that all the images are collected in common and
everyday settings, such as appearances with and without make-up, lo-
cations, level of illuminations, poses, and uncontrolled subject-camera
distances.

3.1. Collection setup

To design our dataset, we followed the example of the VGG Face [36]
dataset collection. We then randomly selected 1062 subjects' names
from BBC News [37], CNN News [38], Fox News [39], Naver News [40],
Phoenix [41], and Sin Chew Daily [42], in order to search for the images
of these subjects across Google's image search engine. In the search, the
top 400 images for each subject were downloaded. The views of the fa-
cial region in these images were between −60° and 60°. Then, the im-
ages were manually verified to ensure that the images are correctly
labeled by the subjects. This dataset contains 188,756 images across
1062 subjects.

Next, to extract the face and periocular regions from each image, we
first aligned all the images by fixing the coordinates of facial feature
points based on the Viola-Jones face detector bounding box. Then, the
images were cropped into the face by using the technique from [43].
The results were resized to 128 × 128 individually as shown in Fig. 2.
For the periocular regions, we also implemented the same technique
from [43] by fixing the coordinates of periocular feature points based
on the Viola-Jones face detector bounding box. Then, the images were



Fig. 2. The sample images of our dataset. Each row represents an individual with different ethnic groups, such as African, Asian, Middle Eastern, Latin American, and Caucasian. (For
interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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cropped into the periocular region (yellow dotted box) and the results
were resized to 50 × 150 individually as shown in Fig. 2.

3.2. Dataset protocol

The dataset provided training and benchmark protocols; 733 sub-
jects were randomly selected as training and the rest of the subjects
were used as benchmarks. Note that no subjects for training overlapped
with the benchmarking set. To develop our own networks, we designed
the protocol by dividing the images for each subject with the ratio of
training and validation at 70:30.

In the benchmarking scheme, we designed the recognition and ver-
ification tasks. For the recognition task, the task was to decide which of
the identifies was represented by the probe set. In the experiments, we
divided the images per subject by selectingfive images as gallery set and
the remaining images as a probe set. This selection process was re-
peated three times. For the verification task, the goal was to verify two
sets of biometric images and decidewhether the claimwas represented
as genuine or impostor. In the experiments, we randomly selected 500
reference-query pairs as ‘same’ labels and another 500 pairs as ‘not
same’. The selection process was also repeated three times.

4. Experiments

We selected our dataset - Ethnic-facial and four public datasets,
namely AR [44], FaceScrub [45], IMDB_WIKI [46], and YouTube Face
(YTF) [47] as the target datasets to evaluate the performance compari-
son of recognition and verification tasks between our network and
other benchmark networks. All the configurations of networks are de-
scribed next.

4.1. Experimental setup

4.1.1. Configuration of proposed networks
Our network was implemented using TensorFlow [48]. For the

configurations of MDLN and MFLN, the learning rate was defined as
1.0 × 10−4 Adam Optimizer was applied to both MDLN and MFLN,
where the weight decay and momentum were set to 1.0 × 10−4 and
0.9, respectively.

In our experiments, the batch sizewas set to 64 and the trainingwas
carried out for 1000 epochs. The training was done by using 577 sub-
jects from the VGG face dataset and 733 subjects from Ethnic-facial by
following the protocols that were mentioned in Section 3.2; thereby
encompassing 1310 subjects across 192,478 images were used. Note
that both MDLN and MFLN were trained independently; it was per-
formed by using Nvidia Titan Xp GPUs.

4.1.2. Configuration of benchmark networks
Several popular benchmark networks in face recognition were se-

lected, namely AlexNet [49], FaceNet [6], LCNN [50],multi-level abstrac-
tion fusion CNN [26], ResNet [51], and VGG Face [36]. These networks
have been proven to be successful in very large recognition and



Table 3
Performance evaluation of the recognition task on the AR dataset. The highest accuracy is
written in bold.

Network Exp + Illum (%) Scarf (%)

Proposed network (using RGB + Entropy) 98.57 94.33
Proposed network (using RGB + Entropy
and score fusion)

98.00 92.86

Proposed network (using RGB + HOG) 97.43 92.86
Tiong et al. [4] 98.00 93.00
Multimodal CNNa with RGB data 94.00 90.14
Multimodal CNN with Entropy 83.57 68.57
Multimodal CNN with HOG 82.00 67.86
CNN (Face) with RGB data 92.43 76.00
CNN (Periocular) with RGB data 80.29 79.14

a Multimodal CNN refers to two CNNs that accept face and periocular modalities, re-
spectively. The networks used score fusion approach to formulate final decision-making.
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verification tasks. In our experiments, we utilized all the pre-trained
models that were provided by the respective authors, except for
AlexNet, Multi-level abstraction fusion CNN, and ResNet. In the case of
Multi-level abstraction fusion CNN, the network is not publicly avail-
able. We therefore did our best effort to implement the network from
scratch by following [26]. Likewise, for AlexNet and ResNet, we per-
formed fine-tuning to improve the networks themselves by training
with our dataset and VGG Face dataset as mentioned in Section 4.1.1.

4.1.3. Configuration of benchmark datasets
Four public datasets, namely AR [44], FaceScrub [45], IMDB_WIKI

[46], and YouTube Face (YTF) [47], which are selected in our studies.
These datasets fulfill the scenarios of controlled and uncontrolled envi-
ronments. However, all the datasets were not designed for periocular
recognition; we therefore implemented the technique from [43] to
crop the periocular regions by using the given coordinates of facial fea-
ture points.

4.2. Experimental results

4.2.1. Performance analysis on proposed network
This section analyzes the robustness and performance of the pro-

posed network using the AR dataset [44]. The dataset consists of 100
subjects with neutral, expression (Exp), illumination (Illum), and scarf
conditions that were captured across controlled environments with
two sessions. For evaluation, we designed the experimental protocols
as the following cases:

• ‘Exp + Illum’: 7 non-occluded images for each subject from Session 1
were used as gallery set, and another 7 non-occluded images for
each subject from Session 2 were used as probe set;

• ‘Scarf’: 7 non-occluded images per subject fromSession 1were used as
gallery set, 12 scarf occlusion images per subject from both sessions
were used as probe set;

• ‘Blur’: applied a Gaussian blur to all the images from Session 2 as a
probe set with blurring effects (see Fig. 3(a)) by increasing the σ
values from 1 to 5;

• ‘Occlusion’: created random ‘occlusion box’ to all images (see Fig. 3(b))
from Session 2 as a probe set by increasing its size.

Table 3 shows that the proposed network using RGB + Entropy
achieved the highest Rank-1 recognition accuracies across the
‘Exp + Illum’ and ‘Scarf’ cases with 98.57% and 94.33%, respectively.
Fig. 3. A sample of probe images for the (a) ‘blur’ and (b) ‘occlusion’
Besides, the proposed network using RGB+HOG achieved Rank-1 rec-
ognition accuracies across ‘Exp + Illum’ and ‘Scarf’ cases with 97.43%
and 92.86%, respectively. In addition, we also evaluated our network
using score fusion approach and Tiong et al. [4]; both networks
achieved 98.00% for the ‘Exp + Illum’ cases. For the case of ‘Scarf’,
Tiong et al. [4] achieved 93.00% as the second-best Rank-1 recognition
accuracy and the proposed network using score fusion approach only
achieved 92.86%.

As compared to amultimodal CNN, the network using RGB data only
achieved the Rank-1 accuracies across ‘Exp+ Illum’ and ‘Scarf’ caseswith
94% and 90.14%, respectively. Furthermore, multimodal CNN using En-
tropy and HOG descriptors only achieved 83.43% and 82%, respectively
for the ‘Exp + Illum’ case. Both multimodal CNN using Entropy and
HOG descriptors only achieved 68.57% and 67.86% accuracies, respec-
tively. Besides, we also implemented CNN with face and periocular mo-
dalities for comparison, respectively. For the ‘Exp + Illum’ case, CNN
with face modality achieved 92.43%. Interestingly, CNN with periocular
modality attained to achieve 79.14% for ‘Scarf’ case.

As canbe seen inTable3, theproposednetworkusingRGB+Entropy
achieved the highest recognition accuracies across ‘Exp + Illum’ and
‘Scarf’ cases. These results indicate that our network provides more
complementary information than other networks. Furthermore, we
also evaluate the importance of a periocular modality for the challenge
of appearances with scarf/masks.

Fig. 4 visualizes the robustness performance between the proposed
network and others for ‘blur’ and ‘occlusion’ cases. Through the analysis,
cases. The yellow boxes are defined as the periocular modality.



Fig. 4. The performance of recognition on AR database with (a) ‘blur’ and (b) ‘occlusion’ cases.
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our network using RGB + Entropy achieved at least 89.5% accuracy for
the ‘occlusion’ case, and also achieved at least 88% accuracy for the ‘blur-
ring’ case when σ ≤ 3. As compared to multimodal CNN, the network
using RGB data could only achieve 88% accuracy with 10 × 10 ‘occlusion
box’ and less than 80% accuracy with other sizes for the ‘occlusion’ case.
Furthermore, the network only achieved 75% accuracy for the ‘blur’ case
when σ = 1 and did not perform well when σ ≥ 2.

As can be observed, the proposed multi-feature fusion layers were
fully utilized in our network to aggregate the RGB data and texture de-
scriptors, overcoming the limitations of RGB data. Thus, our network
successfully transformed new knowledge representations to perform
better recognition accuracy by discovering rich features information.
In addition, to overcome the complexities of multimodal data and for-
mulate a decision, the weighted voting strategy preserves the robust-
ness of our network in contributing towards better decision-making
frommultimodal biometrics to achieve better recognition performance.
Besides, texture descriptors are only beneficial to support the complex
learning instead of using as standalone input. This is because the de-
scriptors could not represent precisely the observed high-dimensional
features.

4.2.2. Performance evaluation on recognition tasks
This section presents the experimental results on the recognition

task by conducting several public datasets “in-the-wild” environments.
We used our dataset – Ethnic-Facial and two public datasets, the
FaceScrub and IMDB_WIKI, to evaluate the performance of the proposed
network and other benchmark networks. we evaluated the perfor-
mance by using a Cumulative Matching Characteristic (CMC) curve
with a 95% confidence interval (CI). All the experimental results are
outlined in the following sub-section.
Table 4
Performance evaluation of the recognition task on the FaceScrub, IMDB_WIKI, and Ethnic-facia

Networks FaceScrub (%)

Rank-1 Rank-5

AlexNet '12 58.88 ± 7.1 80.19 ± 1.5
FaceNet '15 89.78 ± 2.5 96.01 ± 0.5
VGG Face '15 86.67 ± 3.2 95.18 ± 0.9
ResNet '16 89.49 ± 2.9 95.42 ± 0.7
LCNN '18 84.68 ± 3.4 89.32 ± 0.8
Multi-level abstraction fusion CNN '18 90.52 ± 1.1 96.45 ± 0.6
Our network 93.86 ± 1.3 97.50 ± 0.7
Evaluation on FaceScrub dataset
To evaluate whether our network performs well on standard

datasets, we tested its performance on a more subjective experiment
with FaceScrub dataset. This dataset is a real-life dataset that contains
530 subjects. The imageswere collected from the Internet under uncon-
trolled environmental conditions, which contained different appear-
ances, poses, illuminations, expressions and time. The details of the
dataset were described in Ng andWinkler [45]. As a performance com-
parison with the benchmark networks, the experimental protocol for
the recognition task was designed by dividing the images of each sub-
ject into three groups. We selected one of them as a gallery set, the re-
maining two groups as probe sets. The division process was repeated
three times.

According to Table 4, the proposed network achieved the highest av-
erage accuracies for Rank-1 and Rank-5 recognition with 93.86 ± 1.3%
and 97.5 ± 0.7% accuracies. Besides, the multi-level abstraction fusion
CNN achieved the second-best performance with 90.52 ± 1.1% and
96.45 ± 0.6% for Rank-1 and Rank-5 recognition accuracies. We also
present the Rank-1 to Rank-10 recognition results in Fig. 5. As can be
seen in the figure, our network achieved the best result among the
benchmark networks. The result indicates that the proposed network
is capable of learning the features of the RGB data and texture descriptor
decently for improving the performance of recognition.

Evaluation on IMDB_WIKI dataset
We also conducted another more challenging experiment with the

IMDB_WIKI dataset to verify the robustness of the proposed network.
This dataset consists of 100,000 subjects whereby the images are
assigned based on the age and timestamp information related to indi-
viduals [46]. Since the data itselfwas notwell-organized for facial recog-
nition, we performed data re-arrangement by means of removing the
l datasets. The highest accuracy is written in bold.

IMDB_WIKI (%) Ethnic-Facial (%)

Rank-1 Rank-5 Rank-1 Rank-5

21.60 ± 6.5 35.90 ± 2.8 48.58 ± 3.4 62.14 ± 0.6
63.41 ± 4.3 79.62 ± 1.9 82.66 ± 1.3 88.67 ± 0.5
57.98 ± 5.7 77.32 ± 2.3 80.48 ± 1.6 87.96 ± 0.7
60.49 ± 3.5 78.33 ± 1.9 80.57 ± 1.4 89.04 ± 0.5
61.47 ± 3.1 79.01 ± 1.6 81.58 ± 1.8 89.35 ± 0.6
67.22 ± 3.4 80.61 ± 1.8 83.19 ± 1.7 90.90 ± 0.4
73.11 ± 4.2 86.47 ± 2.1 89.03 ± 1.7 96.60 ± 0.5



Fig. 5. Performance comparison for the recognition task on FaceScrub dataset. Fig. 7. Performance comparison for the recognition task on Ethnic-facial dataset.
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images that are not representative of the genuine. In this experiment,
we have only selected 2129 subjects, and each subject contained at
least 15 images; the total number of images was 89,424. For the evalu-
ation protocols, we divided the images such that the ratio between the
gallery sets and probe sets is 40:60. This division process was repeated
three times.

Table 4 presents that our network achieved the highest average
Rank-1 and Rank-5 recognition accuracies with 73.11 ± 4.2% and
86.47 ± 2.1%, respectively. The second best was achieved by the
Multi-level abstraction fusion CNN with 67.22 ± 3.38% and 80.61 ±
1.8% as Rank-1 and Rank-5 accuracies, respectively. Fig. 6 illustrates
the CMC curve of the proposed network, showing that the network
outperformed other benchmark networks from Rank-1 to Rank-10 rec-
ognition accuracies. The results indicated that the deterministic fusion
layers are capable of correlating the RGB data and texture descriptors.

Evaluation on Ethnic-Facial dataset
We present the experimental results in Table 4 by following the

recognition protocol, which is mentioned in Section 3.1. When com-
pared against several benchmark networks (see Table 4), our
network achieved the highest Rank-1 and Rank-5 recognition
Fig. 6. Performance comparison for the recognition task on IMDB_WIKI dataset.
accuracies with 89.03 ± 1.7% and 96.6 ± 0.4%. Fig. 7 illustrates the
CMC curve of the proposed network, which shows that the network
outperformed other benchmark networks from Rank-1 to Rank-10
recognition accuracies. The results prove that our network can
learn new features from the multi-feature fusion layers in order to
transfer new knowledge between the networks to perform better
recognition performance.
4.2.3. Performance evaluation on verification tasks
This section conducted the performance comparison for verifica-

tion. We selected our dataset and YTF datasets for the evaluation.
We reported the performance Receiver Operating Characteristic
(ROC) curve and area under the ROC curve (AUC) for each dataset's
evaluation.

Evaluation on YTF dataset
YTF is a real-life video dataset that consists of 1595 subjects from

the YouTube [47]. The videos have been acquired with a wide range
of appearance variations, poses, and ‘super’ low-resolution. To evalu-
ate the robustness of the proposed network for verification task, we
followed the protocols reported by [52] by selecting the subjects
that at least have four or more videos. We then randomly selected
500 reference-query pairs as ‘same’ labels and another 500 pairs as
‘not same’. The selection process was repeated three times. Accord-
ing to Table 5, the proposed network achieved the lowest EER as
16.47 ± 1.48% and AUC as 0.9084. Multi-level abstraction fusion
CNN attained second-lowest performance with 17.74 ± 1.53% for
EER and 0.8946 as AUC. Fig. 8 illustrates the ROC curve, which dem-
onstrates that our network obtained the best performance of AUC
and the lowest EER.

Evaluation on Ethnic-Facial dataset
We presented the experimental results in Table 5 by following the

verification protocol asmentioned in Section 3.2. For the results of ver-
ification, our proposed network achieved the lowest EER 5.76± 0.43%
and 0.9933 AUC, respectively. Except for AlexNet, all the benchmark
networks achieved the EER between 6.8% and 10%. Fig. 9 illustrates
the ROC curve of our proposed network, which outperformed other
networks with respect to all the benchmarks for the best performance
of AUC. This is evidence to demonstrate our network outperformed
most of the benchmark networks and achieved the highest recall
rate against other networks. Besides, the results proved that our net-
work can learn new feature representations from the fusion layers
for better verification.



Table 5
Performance evaluation of the verification task on the YTF and Ethnic-facial datasets. The lowest EER is written in bold.

Networks YTF Ethnic-Facial

EER (%) AUC EER (%) AUC

AlexNet '12 49.69 ± 3.24 0.5899 40.82 ± 1.87 0.6799
FaceNet '15 18.37 ± 1.95 0.8776 8.21 ± 0.75 0.9733
VGG Face '15 19.26 ± 2.42 0.8686 10.03 ± 0.83 0.9625
ResNet '16 18.77 ± 1.67 0.8636 9.74 ± 1.13 0.9703
LCNN '18 18.08 ± 1.77 0.8812 7.59 ± 0.25 0.9772
Multi-level abstraction fusion CNN '18 17.74 ± 1.53 0.8946 6.87 ± 0.69 0.9811
Our network 16.47 ± 1.48 0.9084 5.76 ± 0.61 0.9933

Fig. 8. Performance comparison for the verification task on YTF dataset.

Fig. 9. Performance comparison for the verification task on Ethnic-facial dataset.
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4.3. Discussion

Several observations can be listed through experimental analysis
and results. First, the evaluation results in Section 4.2 reported that
only using RGB as input does not provide the best performance for
recognition and verification tasks. Most of the existing deep learning
networks are focusing on filtering out confounding factors such as illu-
mination and occlusion. Hence, using our network can exploit the dis-
criminatory features through the RGB data and texture descriptors for
better recognition. The proposed network utilizes texture information
to enrich latent and complement information for complex data learning,
which contributes to a more robust representation for the challenges of
surveillance.

Our experimental results also proved that the proposed network is
able to achieve better performance due to its ability to learn the com-
plexities of multimodal data by using the proposed multi-feature fu-
sion layers. Specifically, with the real scenarios of uncontrolled
environments and ethnic group effects, the weighted voting strategy
preserves the robustness of our networks and formulate better
decision-making in various datasets. The effectiveness of the pro-
posed fusion layers and weight voting strategy provides strong sup-
port towards our assumption confidently such that multi-feature
learning can achieve better results than using raw data or unimodal
biometric data.

5. Conclusion

This paper proposed the design of multi-feature fusion layers
that contributed to offering a more robust feature representation
in multimodal facial biometrics recognition. By aggregating the
dual inputs (RGB data and texture descriptors) into the network fu-
sion layers, the proposed network achieved better accuracy perfor-
mance by learning new features. We also collected a new Ethnic-
facial dataset, which consisted of a large collection of multimodal
biometrics images based on different ethnicities and uncontrolled
environments. Through the extensive experiments by comparing
with several networks on our dataset and other available datasets,
the proposed network achieved better performance in both recog-
nition and verification tasks under controlled and uncontrolled
environments.

However, this work is still limited to some extreme cases of individ-
uals who are wearing “large and wider” sunglass. In the future, we plan
to study generative models to recover and predict such cases for identi-
fying criminal suspects. In addition, we shall incorporate the gait analy-
sis, which is useful to identify the terror behaviors of the suspects in
real-time.
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