Under review as a conference paper at ICLR 2026

CODERULE-RL: STANDARD-GUIDED RL WITH PER-
RULE REWARD SCHEDULING FOR CODE LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models for code often pass unit tests yet remain brittle in practice.
They may overfit to a test suite, rely on undefined semantics, or fail under small
perturbations. We use the coding standard as training guidance and keep unit
tests outside the training loop. Each rule provides a machine-checkable outcome
that we convert into per-rule reward components with a simple frequency-aware
schedule. The only optimization target is higher pass@]1 (single attempt func-
tional success). We present CodeRule-RL, a reinforcement learning approach
that optimizes pass@/ as the sole objective and uses coding standard feedback
only as auxiliary guidance. Rule outcomes are converted into per-rule reward
components, and a simple frequency aware curriculum prioritizes rules that are
violated most often and reduces their weight as compliance improves. The model,
optimizer, data, and prompts remain fixed. Training adjusts only reward weights.
Unit tests may appear in prompts to express specifications, but they are not ex-
ecuted during training. On the public CodeContests+ C subset, CodeRule-RL
attains higher pass@1 while reducing training wall clock time by more than one
order of magnitude compared with RL that executes tests during training. Across
1.5B-7B backbones, it consistently improves functional success, delivering a rel-
ative pass@1 gain of 87%.

1 INTRODUCTION

Large language models (LLMs) (Guo et al.,[2025) have substantially advanced code generation (Guo
et al.| 2024)), and automated assistants are now widely used in development workflows. Despite this
progress, a gap remains: models often pass unit tests yet still display brittle patterns and may diverge
from project-specific constraints such as coding standards, style guides, and other non-functional
requirements (Mashhadi et al.,2024; |[Mens & Tourwe, [2004). Rather than treating those constraints
as training targets, we use the coding standard only as auxiliary guidance that shapes learning toward
higher first-try functional success, and we make no claims about standard conformance.

Functional correctness and rule guidance are heterogeneous objectives with different tractability.
Coding standards aim to improve readability, maintainability, portability, and predictability, but ex-
isting pipelines provide weak or aggregated supervision: unit test signals capture functionality yet
ignore coding practices, while collapsing diverse rule outcomes into a single score conflates minor
issues with critical constraints. This heterogeneity spans severity, scope, and granularity, for ex-
ample, expression-level restrictions versus translation-unit checks, and naming conventions versus
constraints on control flow and conversions.

Collapsing heterogeneous findings into a single score can favor superficial fixes and introduce con-
flicting signals. We instead represent rule guidance as per rule rewards and schedule their influence
with a simple frequency-aware scheme that focuses on current bottlenecks and gradually relaxes
as violation rates decline. Only reward weights vary over time; the data, prompts, and optimizer
remain fixed. This rule-wise treatment reduces interference between unrelated rules and turns con-
sistent, dense checks into usable feedback even when a candidate fails to compile. Unit tests are
excluded from training. Requirements may still be included in prompts; rewards are never based on
test execution, allowing efficient optimization.

Thus, we introduce CodeRule-RL, an RL framework that keeps pass@1 as the sole objective and
uses coding-standard guidance only for rule-wise reward shaping. Here pass@1 is the probability

Under review as a conference paper at ICLR 2026

that a single decoded program passes all unit tests in the held-out evaluation suite. Rule-wise verdicts
are mapped to reward components so that updates align with individual rules rather than a single
aggregated score. A simple frequency aware curriculum schedules rule weights by emphasizing
the most frequently violated rule and then expanding to lower-frequency rules as violation rates
fall, which focuses updates on the current bottleneck. The curriculum changes only rule weights;
data, prompts, and the optimizer remain fixed. Unit test specifications may appear in the prompt to
express requirements, but tests are not executed during training. Our contributions are threefold:

* We formulate coding standard guided RL with per rule reward shaping and credit assign-
ment that optimizes only pass@ I while avoiding execution of unit tests in the training loop
to improve efficiency.

* We introduce a frequency aware curriculum that reweights per rule rewards by empirical
violation rates while keeping data, prompts, and the optimizer fixed.

* On a frozen subset of CodeContests+ (Wang et al.| 2025b|), CodeRule-RL improves single-
attempt pass@ I and reduces training time relative to RL that executes tests during training.

2 RELATED WORK

2.1 LLM-BASED CODE GENERATION

Large language models (LLMs) have rapidly advanced program synthesis, code completion, and
general code-quality improvement (Wang et al., 2021} |Achiam et al., [2023; Roziere et al., 2023
Shen et al., 2023; Roziere et al.l [2023; [He & Vechev), 2023; [Lozhkov et al., 2024} Xu et al., [2024;
Grattafiori et al.l [2024; [Hui et al.| 2024} |Agarwal et al., [2025)). Most evaluations emphasize func-
tional correctness via unit tests and benchmarks (Li et al., 2022; |Jain et al., 2024;Wang et al., [2025b;
Zhuo et al.| 2025)), which offer limited guarantees of coding-standard adherence. Coding standards
encode conventions for predictable, maintainable, and portable software, and major ecosystems pro-
vide mature rule sets and linters (e.g., PEP 8/pycodestyle, Checkstyle, ESLint, SwiftLint). Within C,
MISRA C defines a disciplined subset that discourages ambiguous constructs (Bagnara et al., 2018;
2021)). In our experiments, we use MISRA C:2012 to derive rule-wise guidance signals, while keep-
ing the framework standard-agnostic: any environment with machine-checkable rules can supply the
same rule-wise feedback without changing the learning algorithm.

2.2 REINFORCEMENT LEARNING FOR CODE LLMSs

Prior efforts improve reliability along three lines. Inference-time guidance constrains decoding with
grammars or type systems and can leverage unit-test feedback (Miindler et al., 2025} |Chen et al.,
2018} (Wang et al., 2025a; |[Feng et al., |2025)), but it does not update the policy, and its effects on
adherence are often transient across tasks. RL from automated feedback (RLAIF) (Lee et al., 2024}
Liu et al.| 2023a)) updates the model using tool-generated, program-level signals (Dou et al.| 2024;
Zeng et al., 2025). Our approach follows this line but differs in three aspects: (i) objective &
setting — we optimize only single-attempt pass@/ and keep tests out of the training loop; (ii)
signal construction — we use bounded per-rule checks instead of collapsing heterogeneous findings
into a single scalar; (iii) scheduling mechanism — we realize a simple frequency-aware schedule
inside the reward that adjusts only rule weights over time (no data resampling; optimizer, data,
and prompts remain fixed). In ablations, we compare against scalar rewards and per-rule shaping
with fixed weights, showing that the in-reward schedule is necessary beyond per-rule shaping alone.
We do not construct preference pairs or counterfactual negatives. Unlike RL, which uses unit-
test rewards, unit-test specifications appear only in the query, which avoids executing tests during
training and improves efficiency. A complementary direction, neuro-symbolic integration, couples
LLM proposals with formal methods (e.g., SyGuS or verifier-in-the-loop) (Ganguly et al., 2024;
Barkel 2024} (Chaudhuri et al.| 2021} L1 et al.| 2024} [Yan et al.l 2025} Jha et al., |2025)); in contrast,
CodeRule-RL integrates per-rule guidance into the policy itself through RL.

Under review as a conference paper at ICLR 2026

Q\\)\G\’ - 7

Violation of Rules Violation of Rules

g :

? R i - ’Q - ‘
g ; ; _______ E % ; -7 Q-+Rule 2 mﬂ
= Q v i i :
All Rules i ¢ .

R
Single Rule e g

Figure 1: Rule-wise signals and scheduling. Left: Aggregate view of rule-wise signals extracted
from a candidate program C'. Right: Reward shaping at the level of individual rules via weights
w, that are scheduled by empirical violation rates. The policy is sampled by prompt; no per-rule
resampling or counterfactual rewrites are constructed.

3 METHOD

Problem formulation. Our objective is to maximize one-shot functional success (pass@ I) while
using coding standards only as auxiliary, structured feedback. Given a prompt g, a policy 7o (- | q)
emits a program C. Functional correctness is evaluated at test time by I'(C) € {0,1}, where
I'(C) = 1iff C compiles and passes the public unit tests. A machine-checkable rule evaluator ¢
maps C to a rule-wise signal vector s(C') € N™ for a pluggable rule set R. We define

! Z “A(F(Ca:) = 1)7

pass@Ql = ———
| cva1| 2E Xy

where each task contributes a single decoded candidate (k=1). Rule guidance is used purely for
reward shaping to improve first-try functional success; it is not an optimization target.

Symbols and conventions. J¥[-] is the indicator; for a < b, clip(z, a,b) = min{max{x,a}, b}.
E ¢ ~baten[] denotes the mini-batch expectation. Vectors are row-stacked by default.

Motivation. Unit tests provide functional supervision but are sparse and costly to execute during
training. Automatically checkable rule feedback is consistent and fine-grained. We therefore convert
®’s rule-wise signals into rewards and schedule their influence with a frequency-aware curriculum
that emphasizes frequently violated rules and gradually rebalances as violation rates decline. Train-
ing optimizes only pass@ I; we do not construct preference pairs or counterfactual negatives.

Overview. As shown in Figure 2| a policy my generates a candidate C, the evaluator ® returns
a rule-wise vector s(C'), and this vector is shaped and aggregated into a smooth, bounded reward
R(C,t). All curriculum effects are realized inside the reward through time- and state-dependent
rule weights w,.(¢,s) (Sec. . Data, prompts, and the optimizer remain unchanged. Prompts may
include specification text; unit tests are not executed during RL.

3.1 DATA PREPARATION

Sources and splits. We evaluate on a frozen subset of CodeContests+ (Wang et al., [2025b)) at the
task level, following the official manifest and fixed splits without modification. Prompts are taken
directly from the tasks. To prevent cross-split leakage, we apply multi-level decontamination before
training and keep the split assignments unchanged. For each task, unit-test suites are curated or
normalized and used only at evaluation time to define pass@1 and, in ablations, to provide prompt-
side specifications; tests are not executed during training.

Rule-wise signals. A candidate C' may trigger multiple rule findings. As shown in Figure[l| we do
not decompose C' into per-rule training samples and we do not create compliant rewrites. Instead, we
extract a rule-wise signal vector s(C') and compute a bounded reward by shaping each component
at the rule level. A simple frequency-aware schedule updates the per-rule weights to emphasize
frequently violated rules and to rebalance as violation rates decline. The online RL sampler always
draws inputs by prompt; rule-wise structure is used only in diagnostics and reward computation, not
for data resampling.

Under review as a conference paper at ICLR 2026

Train Dataset

& il &

o

Vs

Task Description

Your task is to generate C code that solves
the given query problem, and the code must
meet MISRA C:2012. The rules of Misra
C:2012 are explained as follows:

<Single Rule>Single Rule</Single Rule>
First, learn <Unit Test>Unit Test</Unit
Test> based on the query, to understand this
query, and then generate code that can pass

~

_®
»X}.—»
)

Policy Gradient

Generated Program 1
Generated Program 2
Generated Program N
#include <stdio.h>
int main() {
void helper_function(int x);
helper_function(42);
return 0;

i
1
1
1
1 void helper_function(int x) {

printf("Value: %d\n", x);

o

Advantage

Policy Model] -------------------------- l -------------- !

e

the test cases.
The following is the query problem:
<Query> Query</Query>

Rule 2

Rule r

Frequency-Driven Curriculum

Count.

ojojo|o

. J ¥ (via Statistical analysis) Weight of Rule r Weight of Other Rules
Coding Standard Detection 5 wM
(via Static Analysis) i . X + L% o
@ #* Initial ﬁ I Step
< / > —_ J N Ruler : Violations of Rules ‘:
CppCheck . &deepseek . ,

Generated Program

: ‘ ¥ Claude : ;
Raw Dataset Large Model ! ule

Figure 2: CodeRule-RL overview. A policy mp emits a candidate program C. The evaluator ®
returns a per-rule vector s(C'). per-rule shaping and scheduled weights w, (¢, s) produce a smooth,
bounded reward R(C, t). All curriculum effects are realized inside the reward. Unit tests may appear
in prompts but are not executed during RL.

3.2 SPEC-TO-REWARD MAPPING

Rule set abstraction. We model a coding standard as a finite set R = {ry,...,rx}. Each rule r
is associated with a machine-checkable predicate or counter function x, : C — Zx> that returns a
non-adherence score for a program C. We treat {x, } as black-box oracles and make no assumption
about the underlying implementation.

Per-rule signalization. Let a, € {0, 1} indicate whether r is available in the current environment.

Define the raw non-adherence vector u(C) = [u,.(C)] er With u,(C) = x;(C), and an element-

wise squashing map ¢, : R>¢— [0, 1] that is monotone and bounded. We form the per-rule signal
s(C) = [5:(O)],crs $+(C) = ar o,(ur(C)),

which yields a structured, bounded vector suitable for reward shaping and scheduling. This construc-

tion is standard-agnostic: replacing the rule set or the checking oracles changes only {x, ©., a,}
while leaving the learning algorithm unchanged.

3.3 REWARD FUNCTION DESIGN

The full algorithmic procedure is presented in Algorithm[T]in the Appendix.

Rule-guided rewards. During RL we do not execute unit tests. Rewards are derived solely from
per-rule, machine checkable verdicts supplied by the rule evaluator ®. This choice yields (i) deter-
ministic and reproducible feedback independent of runtime behavior, (ii) dense signals even when a
candidate fails to compile, (iii) low and predictable latency amenable to batching and caching, and
(iv) no exposure of reference test I/O to the objective. For each candidate C' we obtain the signal vec-
tor s(C) (Sec.3.2), shape components into penalties P, (3,) (Egs. equation[l-equation2), and com-
bine them with curriculum controlled weights w, (¢, s) to produce the bounded reward R,yjes(C, t)
(Eq. equation[3).

Under review as a conference paper at ICLR 2026

Per-rule shaping. For each rule r € R, raw scores are capped or smoothed and mapped to a shaped

penalty:
sr=ty(min{s,, N;}), ¢n(2) € {w, vz}, (D
Pr(gr) =1- eXp(fkr gr)a (2
where N, caps outliers to stabilize gradients, 1), selects linear or sublinear smoothing, and k,. con-
trols per-rule sensitivity.

Aggregation. With base importances normalized over available rules (3 .. a,—1 Wy = 1), the final
reward is
Rrules(ca t) = Clip(l - Z wr(ta S) Pr(§T)7 *0-57 12) (3)
reER
If a valid translation unit cannot be formed or rule checking fails, we assign a fixed penalty Ry,i =
—0.5 (the lower clip bound). The upper bound 1.2 preserves headroom for KL and entropy terms
and keeps the scale numerically stable.

3.4 FREQUENCY-DRIVEN CURRICULUM

From signals to weights. The schedule specifies the weights w,.(¢, s) used in Eq. equation [3| Un-
like scalar aggregation or data resampling, we prioritize rules by empirical violation frequency and
update only the weights inside the reward.

Ordering and active set. Let 5,.(t) be the exponential moving average (EMA) of per-batch rule
signals:

5-(t) = (1 =N 5-(t—1) + AEc~baten[s-(C)], X € (0,1]. 4)
Let 7; sort {3,(t)} in descending order and define the active set.
A(t) = TopK, ({5,(t)}), K(0)=1. 5)

A rule r is considered satisfied when 3,.(t) < 7 for a window of W batches. Typical choices use
A € [0.01,0.1], a small K(0), and 7 set by the median of early-phase frequencies. We increase K
only after all currently active rules are satisfied:

K(t41) = min{K (t)+1, Kmax}, ifVre A(t): 5.(t) <7 for W batches,
K@), otherwise.

Ties in 7; are broken by a fixed rule index; Kpax = |{r : @, = 1}| unless otherwise stated.

Warmup. When a rule r enters A(t) at time ¢2, its weight ramps up over Tyarm Steps:

a,(t) = min(l, Lo tgn). ©6)

Twarm

Decay. Once r is satisfied at £52¢, its weight decays over T, Steps:

t— tsat
”
Tcool)7

ay(t) = max (0, 1- £ > ot 7

__gsat

An exponential alternative «,.(t) = exp(- tT tTI) can be used; we keep the linear form in the main
text.

Hysteresis. To avoid rapid oscillation, a satisfied rule re-enters the active set only if 5,.(t) > 7+ h
for a margin h > 0.

Weights and priority masking. Only active rules receive nonzero weights; newly activated rules
are ramped; lower-ranked rules are masked until higher-ranked ones clear within the same sample:

wy(t,8) = Wy ar - (t) W[r € A(t)] pr(t,8), (8)

pr(t,s) =W Z Su < €|, H(t,r) = {u € A(¢) : rankg, (u) < rank,, (r)}, (9)
wEH(t,r)
with threshold €, > 1 (we use €, = 1). Here w, are base importances normalized over available
rules, a, is the availability indicator (Sec.[3.2)), and p, enforces within-sample precedence to reduce
credit leakage.

Under review as a conference paper at ICLR 2026

3.5 PoLIiCY OPTIMIZATION

We adopt Group Relative Policy Optimization (GRPO) (Shao et al [2024). For each input, we
sample N=8 candidates, compute centered advantages from Ryes(C,t), and update the policy
with a PPO-style clipped objective (clipping €=0.2) plus a KL penalty 8 KL(7g||mef) to a frozen
reference (5=0.05). We add a small entropy bonus (0.001) to sustain exploration. Rewards derive
solely from per-rule checks and are computed in a consistent, batched, and cacheable manner; unit
tests are not executed during training.

4 EXPERIMENT

Training dataset. Using the pipeline in Sec. and Appendix Figure [6] we curate a compact,
single-turn instruction corpus for RL. We aggregate public prompts and C-focused tasks from gen-
eral sources and apply light, model-agnostic filtering for compilability and basic formatting. Rule-
related feedback is not baked into the dataset: we do not construct compliant-noncompliant pairs or
counterfactual rewrites, and we do not store analyzer diagnostics as labels. Instead, per-rule signals
are computed online during RL by the rule evaluator (Sec.[3.2) and used solely for reward shaping.
Each training item stores the prompt and minimal metadata; unit tests are reserved for evaluation
and, in ablations, for prompt-side specification text only.

Baseline models. We evaluate CodeRule-RL on two open-source code-LLM families. Within the
Qwen line we use Qwen2.5-Coder-Instruct (Hui et al.,|2024) at 1.5B, 3B, and 7B parameters, cov-
ering compact to mid-sized deployments where latency and memory trade against accuracy. Within
the DeepSeek line we use DeepSeek-Coder-Instruct (Guo et al 2024) at 1.3B and 6.7B, providing
an additional architecture, tokenizer, and pretraining mix. This setup enables a controlled study
of whether CodeRule-RL yields consistent gains beyond a single backbone. We also include three
post-training code LLM baselines: AZR-Coder-3B (reinforced self-play without external supervised
data) (Zhao et al.l 2025), NextCoder-7B (built on Qwen2.5-Coder and fine-tuned with selective
knowledge transfer on synthetic and real edit data) (Aggarwal et al [2025)), and Seed-Coder-8B
(model-centric data curation with SFT and preference optimization) (ByteDance Seed et al.| [2025).
We evaluate the official checkpoints in our unified harness (greedy 7'=0, k=1; unified prompts;
identical context limits and stop sequences; same GCC/Clang toolchain); details are in Appendix [D]

Implementation and hyperparameters. We regularize with a KL penalty of 0.05 to a frozen ref-
erence and add a small entropy bonus of 0.001. Prompts are capped at 512 tokens and responses
at 1024. Training uses a global batch of 1024 (micro-batch 32 across 8§ GPUs), a learning rate of
1 x 107%, and 80 steps. Unit tests are not executed during training. We set per-rule base impor-
tances {w, }, sensitivities {k, }, and caps { N, }. Newly activated rules ramp up over Ty.,m steps
(Eq. equation [6); after satisfaction they decay over T.o01 (Eq. equation [7). The frequency-driven
curriculum maintains an EMA with rate A (Eq. equation [), activates the TopK, rules at each step
(Eq. equation , and advances when the EMA 5,.(¢) of all active rules falls below threshold 7 for
W batches. Unless otherwise stated, Tyarm =30, Teoo1=30, A=0.3, K (0)=1, and 7=0.05.

Task and rationale for the standard. We study C code generation: models read problem state-
ments and emit single translation unit C11 programs that use standard I/O and compile with a fixed
toolchain. Given this task focus on C, we adopt MISRA C:2012 as the reference coding standard
because it is widely used in safety-critical software and has mature static-analysis support, enabling
scalable and reproducible auditing. We report only Mandatory and Required findings; Advisory
items are logged but do not affect compliance summaries (Appendix Table [6] lists the rule set and
checker configuration). Required Rule 21.6 is excluded because our single translation unit tasks
rely on stdio.h for I/O; accordingly, it is omitted from checking and reporting. Compliance is
measured offline as a secondary diagnostic and does not influence training rewards.

Benchmark construction and split hygiene. We evaluate on a frozen subset of CodeCon-
tests+ (2025b) using the official manifest and fixed splits without modification. The subset primarily
contains easy to medium Codeforces problems expressed as single translation unit C with standard
I/O and deterministic reference checkers. To control leakage, we apply the official CodeContests+
decontamination pipeline and reuse the published blocklists and fingerprints to screen both training
corpora and generated outputs.

Under review as a conference paper at ICLR 2026

Metrics. Our primary metric is pass@]. For a fixed evaluation set X,y, and a single decoded
candidate per task (k=1), we compute pass@Ql = m >wex. ¥ (D(yz) = 1), where I'(y,)=1
iff the program compiles and passes all tests. Decoding is treated as a factor and evaluated separately
under (i) greedy (7'=0) and (ii) nucleus (p=0.9, T'=0.6), both with k=1; unless otherwise stated,
main tables report the greedy setting and nucleus results appear in the appendix. We do not average
across settings nor select the better of the two. For each setting we run five independent trials with
different random seeds and report mean+SD across trials. Compilation uses GCC13 and Clangi7
with comparable C11 flags (-std=cl1l -02 with strict warnings); any disagreement counts as
failure. pass@] is the primary outcome in the main text. We ensure that the test prompts used in
evaluation do not include any test case information, such as example inputs or expected outputs,
to prevent any potential leakage of test-specific details into the decoding process. Specifically, the
prompts contain only the problem statement and I/O contract, ensuring fairness in the evaluation
across all methods.

4.1 MAIN RESULTS

Table 1: Performance of base models and CodeRule-RL variants on pass@1 (primary). Across
1.3B—7B backbones, CodeRule-RL increases pass@]1.

Model pass@1 (%)
AZR-Coder-3b (Zhao et al.,[2025) 15.74
NextCoder-7B (Aggarwal et al.|[2025) 36.60
Seed-Coder-8B (ByteDance Seed et al., [2025)) 37.45
Deepseek-Coder-1.3B (Guo et al., 2024) 2.13
Deepseek-Coder-1.3B w / CodeRule-RL 6.00 (+3.87)
Deepseek-Coder-6.7B (Guo et al., 2024) 18.72
Deepseek-Coder-6.7B w / CodeRule-RL 28.09 (+9.37)
Qwen2.5-Coder-1.5B (Hui et al., 2024) 2.55
Qwen2.5-Coder-1.5B w / CodeRule-RL 11.49 (+8.94)
Qwen2.5-Coder-3B (Hui et al., [2024) 20.43
Qwen2.5-Coder-3B w / CodeRule-RL 22.13 (+1.70)
Qwen2.5-Coder-7B (Hui et al., [2024) 21.13
Qwen2.5-Coder-7B w / CodeRule-RL 39.57 (+18.44)

Effectiveness of CodeRule-RL. Across all backbones (Table , CodeRule-RL yields con-
sistent absolute gains in pass@1: Qwen2.5-Coder-7B 21.13 — 39.57 (418.44; +87.3%),
Qwen2.5-Coder-3B 20.43 — 22.13 (+1.70; +8.3%), Qwen2.5-Coder-1.5B 2.55 —
11.49 (+8.94; +350.6%), DeepSeek—Coder-6.7B 18.72 — 28.09 (+9.37; +50.1%),
DeepSeek—Coder-1.3B 2.13 — 6.00 (+3.87; +181.7%). Gains are largest in absolute terms on
mid-sized models (7B/6.7B) and largest in relative terms on smaller models (1.5B/1.3B), suggesting
that per-rule reward shaping with a frequency-aware schedule is especially helpful under limited
capacity yet remains effective for larger backbones. We observe no regressions on any backbone.
Improvements hold from 1.3B/1.5B to 7B parameters and across two code-model families (Qwen,
DeepSeek), indicating that per-rule rewards with frequency-aware scheduling generalize beyond a
single backbone and decoding setting. The policy reduces brittle patterns that commonly lead to
compile or run failures under stricter warnings or alternative toolchains, which benefits pass@1.

Comparison with post-trained SOTA code LLMs. We compare against size-matched base-
lines using a unified evaluation protocol that employs greedy decoding (7'=0, k=1), unified
prompts, identical context limits, unified stop sequences, five fixed seeds, and the same GCC/Clang
toolchain; unless noted otherwise, all re-evaluated baselines follow this protocol, with details
in Appendix[D] At the ~7B tier, CodeRule-RL on Qwen2.5-Coder-7B attains 39.57, surpass-
ing NextCoder-7B (Aggarwal et al., 2025) at 36.60 (+2.97%) and Seed—Coder—8B at 37.45
(+2.12%). At the ~3B tier, CodeRule-RL on Qwen2.5-Coder-3B reaches 22.13, exceeding
AZR-Coder-3B (Zhao et al., 2025)) at 15.74 (+6.39). These size-matched results show that rule-

Under review as a conference paper at ICLR 2026

wise reward shaping during RL translates into higher one-shot functional success than strong post-
trained baselines of similar size. Our claims of superiority are restricted to models re-evaluated in
our unified harness.

Qwen2.5-Coder-7B-Instruct Ours
#include #include
#include #include
int| main() { int main(void) {

char input[1001]; char number[1001];
scanf("%s", input); (void)scanf("%s", number);
int Ten [en(input); int len = st number);
int dot_index = -1; int dot_inde 1;
for (int i = 0; i < len; i++) { for (int i = 0; i

n; i++) {

if (input[i] == ".
dot_index = ij;
break;

}

¥
int last_digit = input[dot_index - 1] - '0';
if (last_digit != 9) {
int rounded_up = last_digit + 1;
for (int i = dot_index - 2; i >= 0; i--) {
int current_digit = input[i] - '@';
if (current_digit + 1 >= 10) {
input[i] = '@';
} else {
input[i] = current_digit + 1 + '0';
break;

¥

input[dot_index - 1] = rounded_up + '0';
for (int i = dot_index; i < len; i++) {
input[i] = '@';

printf("%s", input);
} else {

if (number[i] == '.
dot_index = ij;
break;
}
}
int last_dot_index = dot_index - 1;
int next_dot_index = dot_index + 1;
int last_digit = number[last_dot_index] - '@';
int next_digit = number[next_dot_index] - '@';
if (last_digit != 9 && next_digit < 5) {
(void)printf("%.*s", dot_index, number);
} else if (last_digit != 9) {
number[dot_index - 1] = (last_digit + 1) + '@';
(void)printf("%.*s", dot_index, number);
} else {
(void)printf("GOTO Vasilisa.");

return ;

[misra-c2012-8.2]
Function types shall be in prototype form with named parameters.

printf("GOTO Vasilisa.");

return ©; [misra-c2012-17.7)
) ’ The value returned by a function having non-void return type shall be used.

Figure 3: An off-the-shelf output versus the CodeRule-RL output on a CodeContests+ task.

Qualitative example. Figure [3|contrasts a typical base decode with the CodeRule-RL output on
a CodeContests+ task. The base decode compiles and passes tests under the default harness but
uses the nonprototype form of main and ignores library return values. After training, the policy
produces int main (void) and acknowledges I/O returns, while preserving problem logic and
I/0 behavior. In aggregate, such targeted, per-rule adjustments correlate with higher pass@1 (Table
[T); we report compliance only as a secondary observation.

4.2 ABLATION STUDY

Comparison with unit test-based RL (pass@1). To isolate the effect of the reward signal,
we evaluate CodeRule-RL and CURE (Wang et al. 2025a) under a prompt-parity protocol on
Qwen?2.5-Coder—3B using the same split, decoding settings, and context limits. CodeRule-RL
attains the highest pass@1 (22.13% vs. 19.15% for CURE; base 5.11%; Table |Z|) In the No-Test
setting, where all test-specific text is removed from the prompts, CodeRule-RL still reaches 20.85%,
showing that gains do not depend on prompt-side exposure to tests. Beyond accuracy, CodeRule-RL
trains without executing unit tests: rewards are dense, deterministic, and per rule, which removes
harness execution overhead and flakiness, improves credit assignment, and simplifies scaling com-
pared with execution-driven RL. These properties make the source of improvement explicit and
confer practical advantages in compute cost and training stability.

Training efficiency and design factors. CodeRule-RL trains in 1.60 hours versus 21.56 hours for
CURE (~13x faster) and has lower average reward latency per program (0.69s vs. 6.36s; ~9x
lower). Rewards depend solely on per-rule checks from the evaluator introduced in Sec. [3.2] and
are computed consistently in batched, cacheable form without executing unit tests during training.
A simple frequency-aware schedule inside the reward adjusts only rule weights over time; data,
prompts, and the optimizer remain fixed.

Curriculum vs. All Rules. As shown in Figure [a frequency-aware schedule over per-rule rewards
raises pass@1 more quickly and to a higher plateau than optimizing all rules uniformly: pass@1
approaches ~ 46% for CodeRule-RL versus ~ 45% for the all-rules baseline. Auxiliary traces fol-
low the same trend, with the normalized reward rising to ~ 0.90 for CodeRule-RL and saturating
near ~ (.81 for the baseline, while the KL trace remains small and stable (< 0.006), indicating con-
trolled updates. Since the optimizer, data, and decoding settings are identical across conditions, the

Under review as a conference paper at ICLR 2026

Table 2: Effect of executing unit tests during training on Qwen2 . 5-Coder-3B. The primary met-
ric is pass@1. We compare the base model, CURE (execution-based RL), and CodeRule-RL. We
also report wall-clock training time (hours) and average reward computation latency (s/sample).

Model pass@1 (%) Training time (h) Latency (s/sample)
Qwen2.5-Coder-3B 5.11 - -

CURE (Wang et al.|[2025a) 19.15 21.56 6.36
CodeRule-RL w/o unit-test prompt 20.85 - -
CodeRule-RL 22.13 1.60 0.69

improvement is attributable to the reward schedule itself: we adjust only rule weights, emphasizing
the most frequently violated rules and gradually relaxing them as violation rates decline.

Rule-wise guidance and pass@1: observational evidence. On Qwen?2 .5-Coder—3B (Hui et al.
2024), CodeRule-RL improves pass@1 even without unit-test prompts (20.85% vs. 5.11% base),
with a further but modest rise to 22.13% when tests are added. These gains are consistent with
a mechanism in which coding-standard guidance defines per-rule reward shaping and a simple
frequency-aware schedule concentrates weight on prevalent violations and then relaxes as they de-
cline. Feedback is consistent and dense during RL; tests remain outside the loop; and only rule
weights change while data, prompts, and the optimizer are fixed. This design reduces interference
across heterogeneous rules and aligns training pressure with common failure modes, which matches
the trend in our curriculum-versus-all-rules comparison (Figure |4) and the overall improvements in
Table [T} We do not make a causal claim beyond these associations.

Accuracy vs. Step Reward vs. Step KL Loss vs Step

CodeRule-RL CodeRule-RL CodeRule-RL

46.00 All Rules 09 All Rules. 0.005 All Rules

44.00 0.004

0.003
42.00

Accuracy(%)
KL Loss

0.002

40.00

03 0.001

38.00 02

0.000
1] 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Step Step Step

Figure 4: Training dynamics on Qwen2.5-Coder—"7B: pass@1 (left), compliance reward (mid-
dle), and KL loss (right) over training steps for CodeRule-RL (curriculum) and the All-Rules baseline
(no curriculum). Higher is better for pass@ 1 and reward; lower is better for KL loss.

5 CONCLUSION

Prior work has largely overlooked coding-standard guidance as auxiliary signals for training. We
use this guidance only to shape per-rule rewards with the sole objective of improving pass@1.
We introduce CodeRule-RL, a standard agnostic RL framework that keeps pass@1 as the only
optimization target. Machine-checkable rule checks define per-rule reward shaping together with a
simple frequency aware schedule implemented inside the reward. The schedule emphasizes the most
frequently violated rules first and then gradually reduces their weights as violation rates decline. The
optimizer, data, and prompts remain fixed; only reward weights are adjusted. Unit-test specifications
may appear in prompts to express requirements, but tests are not executed during training, and we do
not construct preference pairs or counterfactual negatives. On a frozen subset of CodeContests+ (C),
CodeRule-RL attains higher pass@1 with substantially lower training time than RL that executes
tests during training, because rewards are computed from per-rule checks without running tests in
the loop.

Under review as a conference paper at ICLR 2026

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin Arbus, Rahul K
Arora, Yu Bai, Bowen Baker, Haiming Bao, et al. gpt-0ss-120b & gpt-o0ss-20b model card. arXiv
preprint arXiv:2508.10925, 2025.

Tushar Aggarwal, Swayam Singh, Abhijeet Awasthi, Aditya Kanade, and Na-
garajan Natarajan. Nextcoder: Robust adaptation of code Ims to diverse
code edits. In International Conference on Machine Learning, 2025. URL
https://www.microsoft.com/en—-us/research/publication/
nextcoder-robust—-adaptation-of-code-1lms-to-diverse-code—-edits/\

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Roberto Bagnara, Abramo Bagnara, and Patricia M Hill. The misra c coding standard and its role in
the development and analysis of safety-and security-critical embedded software. In International
Static Analysis Symposium, pp. 5-23. Springer, 2018.

Roberto Bagnara, Abramo Bagnara, and Patricia M Hill. A rationale-based classification of misra c
guidelines. arXiv preprint arXiv:2112.12823, 2021.

Shraddha Govind Barke. Neuro-Symbolic Program Synthesis for Data-Efficient Learning. PhD
thesis, University of California, San Diego, 2024.

ByteDance Seed, Yuyu Zhang, Jing Su, Yifan Sun, Chenguang Xi, Xia Xiao, Shen Zheng, Anxiang
Zhang, Kaibo Liu, Daoguang Zan, Tao Sun, Jinhua Zhu, Shulin Xin, Dong Huang, Yetao Bai,
Lixin Dong, Chao Li, Jianchong Chen, Hanzhi Zhou, Yifan Huang, Guanghan Ning, Xierui Song,
Jiaze Chen, Siyao Liu, Kai Shen, Liang Xiang, and Yonghui Wu. Seed-Coder: Let the code model
curate data for itself, 2025. URL https://arxiv.org/abs/2506.03524,

Swarat Chaudhuri, Kevin Ellis, Oleksandr Polozov, Rishabh Singh, Armando Solar-Lezama, and
Yisong Yue. Neurosymbolic programming. Foundations and Trends in Programming Lan-
guages, 7(3):158-243, 2021. doi: 10.1561/2500000049. URL https://doi.org/10.
1561/25000000409.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In Interna-
tional Conference on Learning Representations, 2018.

Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie Shan, Caishuang
Huang, Xiao Wang, Xiaoran Fan, et al. Stepcoder: Improve code generation with reinforcement
learning from compiler feedback. arXiv preprint arXiv:2402.01391, 2024.

Yunlong Feng, Yang Xu, Xiao Xu, Binyuan Hui, and Junyang Lin. Towards better correctness and
efficiency in code generation. arXiv preprint arXiv:2508.20124, 2025.

Debargha Ganguly, Srinivasan Iyengar, Vipin Chaudhary, and Shivkumar Kalyanaraman. Proof
of thought: Neurosymbolic program synthesis allows robust and interpretable reasoning. arXiv
preprint arXiv:2409.17270, 2024.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

10

https://www.microsoft.com/en-us/research/publication/nextcoder-robust-adaptation-of-code-lms-to-diverse-code-edits/
https://www.microsoft.com/en-us/research/publication/nextcoder-robust-adaptation-of-code-lms-to-diverse-code-edits/
https://arxiv.org/abs/2506.03524
https://doi.org/10.1561/2500000049
https://doi.org/10.1561/2500000049

Under review as a conference paper at ICLR 2026

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wenfeng Liang. Deepseek-coder: When the
large language model meets programming — the rise of code intelligence, 2024. URL https:
//arxiv.orqg/abs/2401.14196.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Jingxuan He and Martin Vechev. Large language models for code: Security hardening and adver-
sarial testing. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communi-
cations Security, pp. 1865-1879, 2023.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint arXiv:2409.12186,
2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Manvi Jha, Jiaxin Wan, and Deming Chen. Proof2silicon: Prompt repair for verified code and
hardware generation via reinforcement learning. arXiv preprint arXiv:2509.06239, 2025.

Harrison Lee, Samrat Phatale, Hassan Mansoor, Kellie Ren Lu, Thomas Mesnard, Johan Ferret,
Colton Bishop, Ethan Hall, Victor Carbune, and Abhinav Rastogi. RLAIF: Scaling reinforcement
learning from human feedback with Al feedback, 2024. URL https://openreview.net/
forum?id=AAxI1s3D277.

Yixuan Li, Julian Parsert, and Elizabeth Polgreen. Guiding enumerative program synthesis with
large language models. In International Conference on Computer Aided Verification, pp. 280—
301. Springer, 2024.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. Science, 378(6624):1092-1097, 2022.

Jiate Liu, Yiqin Zhu, Kaiwen Xiao, Qiang Fu, Xiao Han, Wei Yang, and Deheng Ye. RItf: Rein-
forcement learning from unit test feedback. arXiv preprint arXiv:2307.04349, 2023a.

Jiawei Liu, Chungqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36:21558-21572, 2023b.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173,2024.

Ehsan Mashhadi, Shaiful Chowdhury, Somayeh Modaberi, Hadi Hemmati, and Gias Uddin. An
empirical study on bug severity estimation using source code metrics and static analysis. Journal
of Systems and Software, 217:112179, 2024.

Tom Mens and Tom Tourwe. A survey of software refactoring. Software Engineering, IEEE Trans-
actions on, 30:126 — 139, 03 2004. doi: 10.1109/TSE.2004.1265817.

Niels Miindler, Jingxuan He, Hao Wang, Koushik Sen, Dawn Song, and Martin Vechev. Type-
constrained code generation with language models. Proceedings of the ACM on Programming
Languages, 9(PLDI):601-626, 2025.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi

Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

11

https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://openreview.net/forum?id=AAxIs3D2ZZ
https://openreview.net/forum?id=AAxIs3D2ZZ

Under review as a conference paper at ICLR 2026

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu, Muhan Zeng, Ailun Yu,
Jichuan Ji, Jingyang Zhao, et al. Pangu-coder2: Boosting large language models for code with
ranking feedback. arXiv preprint arXiv:2307.14936, 2023.

Yinjie Wang, Ling Yang, Ye Tian, Ke Shen, and Mengdi Wang. Co-evolving llm coder and unit
tester via reinforcement learning. arXiv preprint arXiv:2506.03136, 2025a.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H. Hoi. Codet5: Identifier-aware unified pre-
trained encoder-decoder models for code understanding and generation. In EMNLP, 2021.

Zihan Wang, Siyao Liu, Yang Sun, Hongyan Li, and Kai Shen. Codecontests+: High-quality test
case generation for competitive programming, 2025b. URL https://arxiv.org/abs/
2506.05817.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, Qingwei
Lin, and Daxin Jiang. Wizardlm: Empowering large pre-trained language models to follow com-
plex instructions. In The Twelfth International Conference on Learning Representations, 2024.

Chuanhao Yan, Fengdi Che, Xuhan Huang, Xu Xu, Xin Li, Yizhi Li, Xingwei Qu, Jingzhe Shi,
Zhuangzhuang He, Chenghua Lin, Yaodong Yang, Binhang Yuan, Hang Zhao, Yu Qiao, Bowen
Zhou, and Jie Fu. Re:form — reducing human priors in scalable formal software verification with
rl in IIms: A preliminary study on dafny, 2025. URL https://arxiv.org/abs/2507.
16331.

Huaye Zeng, Dongfu Jiang, Haozhe Wang, Ping Nie, Xiaotong Chen, and Wenhu Chen. Acecoder:
Acing coder rl via automated test-case synthesis. arXiv preprint arXiv:2502.01718, 2025.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Yang Yue, Matthieu Lin, Shenzhi Wang,
Qingyun Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with
zero data, 2025. URL https://arxiv.org/abs/2505.03335,

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam
Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen GONG, James
Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan
Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang,
David Lo, Binyuan Hui, Niklas Muennighoff, Daniel Fried, Xiaoning Du, Harm de Vries, and Le-
andro Von Werra. Bigcodebench: Benchmarking code generation with diverse function calls and
complex instructions. In The Thirteenth International Conference on Learning Representations,
2025. URL https://openreview.net/forum?id=YrycTj11LO.

12

https://arxiv.org/abs/2506.05817
https://arxiv.org/abs/2506.05817
https://arxiv.org/abs/2507.16331
https://arxiv.org/abs/2507.16331
https://arxiv.org/abs/2505.03335
https://openreview.net/forum?id=YrycTjllL0

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with ICLR 2026 policies on LLM usage, we disclose that Al assistance was used only
during manuscript preparation for surface-level editing. Specifically, we used ChatGPT, DeepSeek,
and Grammarly to correct grammatical errors and refine wording. All ideas, claims, experiment
designs, analyses, and conclusions are authored and verified by the human authors. We reviewed
and edited all Al suggestions before inclusion. No confidential or under-review material, proprietary
data, or private code was provided to any Al system. The authors remain fully responsible for the
final content of the paper.

B REPRODUCIBILITY STATEMENT

All implementation and evaluation details needed for replication are specified in the paper. We
document the exact dataset manifest and fixed splits, the construction of prompts and the prompt-
parity No-Test protocol, the reward computation pipeline with analyzer versions and flags, com-
piler toolchains and build options for pass@]1, decoding settings evaluated separately (greedy and
nucleus), the definition of success and failure, and the full set of training hyperparameters includ-
ing curriculum thresholds and reward clipping. We report five independent runs per setting with
mean=+SD, provide hardware configuration, wall-clock training time, and average reward latency,
and describe known sources of non-determinism and the controls we apply. Each table and figure
references the scripts and logged fields from which it is derived so results can be regenerated from
the documented procedures.

C IMPACT OF CODING STANDARDS ON MODEL FUNCTIONALITY

Figure[3]illustrates the positive correlation between the adoption of coding standards and model per-
formance. As training progresses, both the CodeRule-RL and All Rules conditions show significant
improvements in functionality, with a reduction in program errors. This pattern consistently appears
across different experimental setups, confirming the effectiveness of coding standards in enhancing
both program quality and model performance.

CodeRule-RL vs.Step All Rules vs. Step

pass@1 pass@1

Reuies Ty 94.08% Reutes

80 82.33% 80 80.98% 82.13%

Value (%)
4
&
Value (%)

39.57%

40 36.6% 37.45%. 40 812%

32.34% 32.34%
21.13% 21.13%

17.56%

Step Step

Figure 5: Correlation between functionality and training rewards. Experiments were conducted on
the Qwen?2 .5-Coder—7B model. The left plot shows CodeRule-RL, and the right plot shows all
rules.

D RE-EVALUATION DETAILS FOR BASELINES

All re-evaluated baselines use a unified protocol: greedy decoding (T'=0, k=1) with no per-model
tuning; input/output context limits identical to ours; a unified set of stop sequences (listed in the ap-
pendix); five fixed random seeds across all runs; and the same GPU class with the same compilation
toolchain (GCC 13/ Clang 17).

13

Under review as a conference paper at ICLR 2026

Algorithm 1 CodeRule-RL

1: Input:

2 1) Initial policy 7y, reference policy mre.

3: 2) Number of iterations M.

4 3) Static analyzer ¥, rule set R.

5: 4) Base importances {@, }, coverage mask m, shaping functions {1, }, caps { N}, gains {k, }, EMA
rate A, mastery threshold 7, window W, warmup Tiarm, cool-down T¢o01, hysteresis h, gate threshold €.

6: 5) GRPO group size N, PPO clip ¢, KL weight 5.

7: Initialize: v(0)«0; K (0)<«1; set a,(0) < 0; clear {2, taster),

8: for t = 1 to M or not converged do

9: Sample a batch of prompts {g; } _,; for each g;, sample N candidates Cj1.x ~ 7o (- | g;)

10 Run ¥ to obtain the rule-indexed violation vector v(C} i) for all candidates

11 if analysis fails for C 1 then

12 R(Cjk,t) < Rrail > hard penalty for analyzer failure

13 end if

14: Update curriculum state:

15: V() (1 =NV(t=1)+ X - E;x[v(Cjr)] > EMA of per-rule violation frequencies

16 Rank rules by v(t); let S(t) = Top-K (t) > active set of K (¢) most violated rules

17 if Vr € S(t) have been under 7 for W steps then

18 K(t41) < min{ K (t)+1, Kmax }; set t2" <t for newly activated rules

19 else

20: K(t+1)« K(t)

21: end if

22: Apply hysteresis: rules previously deactivated may reenter only if v.(t) > 7+h

23: Compute rewards:

24: for each C 1 do

25: for each r € R do

26: o = (min{v,(Cj k), Nr}) > cap & shape the raw violation count
27: P.(0r) =1 — exp(—k,0r) > per-rule penalty in [0, 1)
28: Compute schedule «,-(t) with warmup (Twarm), anneal/cool-down (T5001)

29: Gate g, (t,v) =W {r e S(t)} - W¥{v,(Cj k) > €4} > active & triggered
30: wr(t,v) = Wr My ar(t) gr(t, v) > effective per-rule weight
31: end for

32: R(Cj i, t) = clip(l — Y e Wr(t,v) Pr(9;), 0.5, 1.2) > static-analysis-only reward
33: end for

34 Optimize the policy 7y:

35: For each group j, center advantages A; x = R(Cjk,t) — & 25:1 R(Cju,yt)

36: Update 0 with PPO-style clipped objective (clip €), KL penalty 8 KL(mg||7res), and a small entropy
bonus

37: end for

38: Output: Trained generator 7g.

E VULNERABILITY DETECTION

Traditional code reviews and dynamic testing often fail to cover all edge cases, leaving potential
issues undetected. To provide a more comprehensive evaluation of the generated code, we employ
Infer, a state-of-the-art static analysis tool. Unlike dynamic testing, which executes the code, Infer
conducts an in-depth analysis of the source code to identify potential vulnerabilities and runtime
errors that are challenging to detect through conventional methods.

For instance, Infer can track the complete lifecycle of variables, enabling it to flag memory man-
agement errors such as improper memory allocation and deallocation. Furthermore, it identifies
performance bottlenecks like EXPENSIVE _LOOP_INVARIANT CALL. This issue occurs when a
computationally expensive function (determined through cost analysis to have at least linear com-
plexity) that is loop-invariant is called inside a loop. This inefficient coding pattern can severely
degrade performance, especially when the code is executed repeatedly.

To quantify the security and robustness of the generated code, we introduce the Vulnerability-Free
Rate (VFR) metric. This metric measures the percentage of code samples that pass the Infer static

14

Under review as a conference paper at ICLR 2026

analysis scan without any detected issues. It is mathematically defined as:

1

VFR = ———
|Xeval|

> H[Fpi(z) =1].

TE Xeval

(10)

where, Figr is Facebook Infer vulnerability detector. The VFR complements the pass@1 metric,
which measures functional correctness, to form a comprehensive framework for evaluating model
performance.

As shown in Table [3| our experiments reveal that the optimization method generally improves
the functional correctness (pass@1) of the models. However, its impact on code security (VFR)
varies across different models. For example, after optimization, Qwen2 .5-Coder—1.5B shows
a +8.94% improvement in pass@1 but a -3.44% decrease in its VFR. This suggests that while
the new code is more functionally correct, it also introduces more potential issues detectable by
static analysis. In contrast, larger models like Qwen2 .5-Coder—7B demonstrate excellent per-
formance on both fronts, achieving a significant +18.44% increase in pass@1 alongside a solid
+2.66 % improvement in VFR. This result indicates that our optimization method, when applied to
larger models, can effectively enhance problem-solving capabilities without sacrificing code quality
or security.

Table 3: Performance Comparison of Baseline and Optimized Models (Pass@1 and VFR for Vul-
nerability Detection)

Model pass@1 (%) VFR(%)
Absolute_Zero_Reasoner-Coder-3b 15.74 77.87
NextCoder-7B 36.60 87.02
Qwen3-4B-Instruct-2507 55.32 717.02
Qwen3-4B-Instruct-2507 w / CodeRule-RL ~ 56.17 (+0.85) 80.43 (+3.41)
Deepseek-Coder-1.3B 2.13 41.70
Deepseek-Coder-1.3B w / CodeRule-RL 6.00 (+3.87) 77.02 (+35.32)
Deepseek-Coder-6.7B 18.72 89.36
Deepseek-Coder-6.7B w / CodeRule-RL 28.09 (+9.37) 90.64 (+1.28)
Qwen2.5-Coder-1.5B 2.55 91.91
Qwen2.5-Coder-1.5B w / CodeRule-RL 11.49 (+8.94) 88.47 (-3.44)
Qwen2.5-Coder-3B 20.43 83.02
Qwen2.5-Coder-3B w / CodeRule-RL 22.13 (+1.70) 88.94 (+5.92)
Qwen2.5-Coder-7B 21.13 82.02
Qwen2.5-Coder-7B w / CodeRule-RL 39.57 (+18.44) 84.68 (+2.66)

F DATA PROCESSING PIPELINE

The pipeline in Figure [6] follows Sec. [3.1] and prepares the data used for training. Tasks are mined
and decontaminated, then pass through up to three probe-and-check iterations per prompt. Probe
candidates that fail to compile are discarded. A rule evaluator ® produces per rule signals s(C)
that are used only for offline screening and aggregate quality checks; these signals are not stored
as labels and do not become part of the training corpus. Dip and Dy are temporary inspection
sets for reporting and analysis, not supervision. The final frozen training set D contains prompts
and minimal metadata. During RL, per rule signals are recomputed online by ® on the sampled
candidate and are used only inside the reward (Secs. [3.3H3.4); data, prompts, and the optimizer
remain fixed.

15

Under review as a conference paper at ICLR 2026

S Input Output
. q tion: Q
Train Dataset (€ Unit Test crncation 3
Validity £
(=N
Code | 5]
=3
RAW Data Rule Separation — g
N — Large Model a
p 0
Transform —_—> B
Filter |, T Generat) deepseck
. enerate: |
Compie Test T L Clade
|E You are a professional C
ode EE— e B O AI code reviewer tasked with
Verification: @ pen mudifying the code to fully
Ground Truth | | Code _ Cppcheck e < comply with

Q MISRA C 2012 rules.
— wen The problem is as follows:
Code - <Query>

Q Iterate N Times b The original code violates

Violation Rule Information oG
Query <Rules>
Original code:

<Code>

Figure 6: Data pipeline. Tasks are mined and decontaminated, followed by up to three probe-and-
check iterations for curation. The evaluator ® produces per rule signals for filtering and diagnostics
during curation; these signals are discarded after curation and are not persisted in the dataset. During
RL, signals are recomputed online for reward shaping. The pipeline is standard-agnostic: replacing
the rule set or checker changes only ® and its mapping, not the learning algorithm.

G ABLATION STUDY FOR COMPLIANCE

Coding-standard compliance. We assess MISRA C:2012 compliance using cppcheck 2.7 with
the MISRA addon. With one candidate per prompt (k=1), we report

1
compliance@1 = |Xi Z H‘[Cstd(yx) = 1], Y. = Decodeg—1(mg,), (11

1
eva | € Xeval

1

joint@] = ———
|Xeval|

> (T (Ye) = 1A Caalys) = 1]. (12)
TEXeval
Advisory findings are logged but ignored by the metric. Unless otherwise stated, each translation

unit is analyzed with cppcheck 2.7.

Analysis. To test whether a frequency driven, rule by rule schedule outperforms optimizing all
constraints at once, we compare CodeRule-RL—a curriculum with a Top-K frontier plus gating
and annealing—against an All Rules baseline (Figure [7). Under All Rules, pass@]1 rises modestly
(32.34 — 38.72 — 34.89) while compliance@1 remains at 0.43% and joint@1 stays at 0. With
CodeRule-RL, compliance@ 1 improves monotonically (20.00 — 42.13 — 58.72), joint@1 in-
creases in step (8.51 — 19.57 — 24.68), and pass@1 remains comparable (33.19 — 40.00 —
37.02). These results support our mechanism: per rule credit assignment and gradient isolation
within the active frontier drive compliance and joint success, whereas optimizing all rules simulta-
neously induces gradient interference and stalls compliance learning.

G.1 HUMANEVAL AND MBPP

For our evaluation on general benchmarks, we used HumanEvalChen et al.| (2021), HumanEval
Plus, MBPPAustin et al.|(2021)), and MBPP Plus to assess Python programming tasks on EvalPlus
Liu et al.| (2023b). The HumanEval Plus dataset extends the original HumanEval test cases by a
factor of 80 to create the HumanEval Plus dataset, while MBPP Plus includes 35 times more test
cases than the original MBPP.

Table @] summarizes the results on HumanEval (and HumanEval Plus) [Chen et al. (2021) and MBPP
(and MBPP Plus) Austin et al.| (2021)). After applying our optimization, the 1.5B and 3B models

16

Under review as a conference paper at ICLR 2026

All Rules CodeRule-RL
Quen2.5-Coder-7B-Instruct (22.98%) Quen2.5.Coder-7B-Instruct (22.98%) »
60% Joint@1 60% Joint@1 3872%
compliance@1 compliance@1
pass@1 pass@1
50% 50%
40.00%
. 40% 3872 = 0% 37.00%
g 34.89% £ 33.09%
P 32.34% v
g E]
2 30% 2 30%
s s 24.68%
20% 20% 2000% 19.57%
10% 10% 851%
o000% _043% 000% _043% 000w _0.43%
0% 0%
20 40 60 20 40 60
Step Step

Figure 7: Qwen2.5—-Coder—7B under different training regimes and rule granularities. Single Rule:
optimizes one rule at a time. CodeRule-RL: a frequency driven, phased curriculum that learns
multiple rules jointly. All Rules: optimizes the full rule set simultaneously.

demonstrate substantial improvements across all metrics. Notably, the 1.5B model shows an over
16% increase in its HE metric, indicating that our method effectively enhances the code-generation
capabilities of smaller models. In contrast, the 4B and 7B models exhibit only marginal improve-
ments, likely because these larger models are already approaching the performance ceiling on these
benchmarks. Overall, the results suggest that our method incurs little to no degradation in general-
purpose coding performance and may even result in slight gains.

Table 4: Performance Comparison of Models on Code Generation Tasks (HumanEval/MBPP, All
Metrics in %)

HumanEval MBPP
Model

HE HE+ MBPP MBPP+
BASE
Qwen2.5-Coder-1.5B 59.10 53.70 68.50 58.50
Qwen2.5-Coder-3B 76.20 68.90 70.40 59.30
Qwen3-4B-Instruct-2507 76.80 70.10 80.70 68.30
Qwen2.5-Coder-7B 81.70 75.60 82.30 68.50

Deepseek-coder-1.3B 61.60 5790 63.80 54.50
Deepseek-coder-6.7B 68.90 6340 76.20 64.80

Ours

Qwen2.5-Coder-1.5B 75.60 68.90 70.10 59.50
Qwen2.5-Coder-3B 7440 67.70 71.20 60.30
Qwen3-4B-Instruct-2507 77.40 72.00 80.70 68.30
Qwen2.5-Coder-7B 81.70 76.20 83.30 68.30

Deepseek-coder-1.3B 60.40 57.30 65.10 56.10
Deepseek-coder-6.7B 69.50 62.80 75.70 64.00

G.2 ANNEALING WARMUP EPOCH

We use the Qwen2.5-Coder-7B model to compare the impact of different annealing steps on coding
standards and functionality. The step size of the annealing process plays a crucial role in learning
major violation rules. A larger step size leads to a smaller effective weight for minor rules, thereby
prioritizing the learning of coding standards related to major violations. As shown in Table 5] we
selected a step size of 30 for our experiments, as it demonstrated the most significant impact on key
performance metrics.

17

Under review as a conference paper at ICLR 2026

Table 5: Influence of Annealing Warmup Epoch
Epoch join@1 (%) compliance@1 (%) pass@1 (%)

0 0.00 0.00 21.13
5 8.09 12.34 35.74
10 7.66 21.70 24.47
20 4.26 6.81 36.60
30 22.26 55.74 39.57
50 4.26 8.51 35.32

H LEARNING SEQUENCE

After the second iteration of the data generation phase (as shown in Figure [6), we selected 4,000
compilable code samples for code style rule violations detection. Based on these samples, we eval-
uated the model’s error rate for different coding rules, with the results shown in Figure|8| The figure
illustrates the number of violations for various MISRA C:2012 rules, with misra-c2012-8.2
having the highest number of violations, reaching 4,473, followed by misra-c2012-15. 6 with
2,240 violations. Most other rules had relatively few violations, reflecting the varying levels of
adherence to different rules in coding. Using this violation data, we followed the corresponding se-
quence for training, detection, and evaluation to fine-tune the model’s performance more effectively.

2240

530 517

Violation Count
8

10°

Figure 8: MISRA C:2012 Rule Violation Distribution.

I CODING STANDARDS

As shown in Table[6] we adopt the 178 rules of the MISRA C:2012 standard as the coding guideline
(including 18 Mandatory, 122 Required, and 38 Advisory rules) and use the cppcheck tool for
analysis. Because Advisory rules have minimal impact on coding in software engineering projects,
we perform training, detection, and evaluation for the S metric only on the Mandatory and Required
categories. Furthermore, since the study uses single-file C data, MISRA C:2012 Rule 21.6 (which
prohibits the use of standard library input/output functions in <stdio.h> and <wchar.h>, such
as printf and fgets) would render stdio.h unusable and hinder subsequent file read/write
operations needed for evaluation; therefore, this rule was excluded from the process. Ultimately, the

18

Under review as a conference paper at ICLR 2026

Table 6: MISRA C:2012 rule sets for each category: Mandatory, Required, and Advisory. Counts
reflect analyzer outputs, including duplicates. All counts are in percentage.

Category Rules (IDs) Count

Mandatory 7.5, 9.1, 12.5, 17.3,17.4,17.6, 17.9, 19.1, 21.13, 21.17, 21.18, 21.19, 21.2, 21.22, 18
222,22.4,225,22.6

Required 1.1,1.3,1.4,15,2.1,2.2,3.1,3.2,4.1,5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8, 6.1, 6.2, 122

63,7.1,72,7.3,74,8.1,82,8.3,84,8.5, 8.6, 8.8, 8.12, 8.14, 8.15,9.2, 9.3, 9.4,
9.5,10.1,10.2, 10.3, 10.4, 10.6, 10.7, 10.8, 11.1, 11.2, 11.3, 11.6, 11.7, 11.8, 11.9,
12.2, 13.1, 13.2, 13.5, 13.6, 14.1, 14.2, 14.3, 14.4, 15.2, 15.3, 15.6, 15.7, 16.1,
16.2, 16.3, 16.4, 16.5, 16.6, 16.7, 17.1, 17.2, 17.5, 17.13, 18.1, 18.2, 18.3, 18.6,
18.7,18.8, 18.9, 20.2, 20.3, 20.4, 20.6, 20.7, 20.8, 20.9, 20.11, 20.12, 20.13, 20.14,
21.1, 21.2, 21.3, 21.4, 21.5, 21.7, 21.8, 21.9, 21.12, 21.14, 21.15, 21.16, 21.21,
21.23,21.24, 22.1, 22.3, 22.7, 22.8, 22.9, 22.11, 22.15, 22.16, 22.17, 23.2, 23.4,
23.6,23.8

Advisory 1.2,2.3,24,25,26,2.7,42,59,8.7,8.9,8.11, 8.13, 8.16, 8.17, 10.5, 11.4, 11.5, 38
12.1, 12.3, 12.4, 13.3, 13.4, 15.1, 154, 15.5, 17.8, 17.11, 17.12, 18.4, 18.5, 19.2,
20.1,20.5, 21.11, 23.1, 23.3, 23.5, 23.7

rules actually included in the evaluation comprise 18 Mandatory and 121 Required rules, for a total
of 139 rules.

J CASE EXAMPLES

As shown in Figs. [I0] [B] and Pl we present an illustrative comparison between
Qwen2.5-Coder—-7B-Instruct and our trained model. The three panels respectively show
the input prompt, the generated C program, and the cppcheck diagnostics. We evaluate on the
subset of CodeContests+ tasks, and the evaluation pipeline is fully automated with no manual inter-
vention or post-processing.

Functional correctness. On the illustrated example, our model passes all 34 CodeContests+ unit
tests for the task, whereas the Qwen2.5-Coder—-7B-Instruct baseline passes 19. These
counts refer to functional test cases on CodeContests+ and are independent of the static-analysis
diagnostics in Figure[9]

Static-analysis diagnostics. Independently of functional testing, we run cppcheck and summa-
rize rule indexed findings under the analyzer’s MISRA C:2012 configuration. Most findings for both
models fall under the Required category. Under our accounting (counting Mandatory+Required and
excluding Rule 21.6), and without any manual edits, our model reduces the average number of
flagged issues by roughly 2 relative to the baseline. Fig. [9|provides the per-rule breakdown.

19

Under review as a conference paper at ICLR 2026

Qwen2.5-Coder-7B-Instruct

test.c:4:9: style: Function types shall be in prototype form with named parameters [misra-c2012-8.2]
int main() {
A

test.c:20:35: style: The precedence of operators within expressions should be made explicit [misra-c2012-12.1]
if (current_digit + 1 >=10) {
A

test.c:6:10: style: The value returned by a function having non-void return type shall be used [misra-c2012-17.7]
scanf("%s", input);
A

test.c:31:15: style: The value returned by a function having non-void return type shall be used [misra-c2012-17.7]
printf("%s", input);
A

test.c:33:15: style: The value returned by a function having non-void return type shall be used [misra-c2012-17.7]
printf("GOTO Vasilisa.");
A

test.c:1:0: style: The Standard Library input/output functions shall not be used [misra-c2012-21.6]

#include <stdio.h>
N

Ours

test.c:19:25: style: The precedence of operators within expressions should be made explicit [misra-c2012-12.1]
if (last_digit != 9 && next_digit <5) {
A

test.c:1:0: style: The Standard Library input/output functions shall not be used [misra-c2012-21.6]

#include <stdio.h>
A

Figure 9: Cppcheck diagnostics for the candidate program.

20

Under review as a conference paper at ICLR 2026

<|im_start/>system

You are Qwen, created by Alibaba Cloud. You are a helpful assistant.

<|im_end>

<|im_start/>user

Please generate a C program that solves the following programming problem:

Mad scientist Mike entertains himself by arranging rows of dominoes. He doesn\'t need dominoes, though: he uses rectangular
magnets instead. Each magnet has two poles, positive (a "plus") and negative (a "minus"). If two magnets are put together at a
close distance, then the like poles will repel each other and the opposite poles will attract each other.

Mike starts by laying one magnet horizontally on the table. During each following step Mike adds one more magnet
horizontally to the right end of the row. Depending on how Mike puts the magnet on the table, it is either attracted to the
previous one (forming a group of multiple magnets linked together) or repelled by it (then Mike lays this magnet at some
distance to the right from the previous one). We assume that a sole magnet not linked to others forms a group of its own.
<image>

Mike arranged multiple magnets in a row. Determine the number of groups that the magnets formed.

Input

The first line of the input contains an integer n (1 <n < 100000) — the number of magnets. Then n lines follow. The i-th line
(1 £1<n) contains either characters "01", if Mike put the i-th magnet in the "plus-minus" position, or characters "10", if Mike
put the magnet in the "minus-plus" position.

Output

On the single line of the output print the number of groups of magnets.

Examples

Input

6

10

10

10

01

10

10

Output

3

Input

4

01

01

10

10

Output

2

Note

The first testcase corresponds to the figure. The testcase has three groups consisting of three, one and two magnets.
The second testcase has two groups, each consisting of two magnets.

The program should read input from stdin and print output to stdout.

Include necessary headers and write efficient code.

Please provide only the C code in <code> </code>, without any explanations or markdown formatting.

<|im_end[>

<|im_start[>assistant

Figure 10: The example prompt of Codecontents+ (Wang et al., 2025b) for evaluation test cases.

21

	Introduction
	Related Work
	LLM-based Code Generation
	Reinforcement Learning for Code LLMs

	Method
	Data Preparation
	Spec-to-Reward Mapping
	Reward Function Design
	Frequency-Driven Curriculum
	Policy Optimization

	Experiment
	Main Results
	Ablation Study

	Conclusion
	The Use of Large Language Models (LLMs)
	Reproducibility Statement
	Impact of Coding Standards on Model Functionality
	Re-evaluation Details for Baselines
	Vulnerability detection
	Data Processing Pipeline
	Ablation Study for Compliance
	Humaneval and MBPP
	Annealing warmup Epoch

	Learning sequence
	Coding Standards
	Case Examples

